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Abstract

Behavioral policy often aims at overcoming biases due to, e.g., imperfect
information or inattention. When there are multiple sources of bias, inter-
ventions targeting different sources each may be complements: each inter-
vention becomes more effective when combined with others. We test this in
a field experiment on energy conservation in a resource-intensive everyday
activity (showering). One intervention, shower energy reports, primarily im-
proves knowledge about environmental impacts; another intervention, real-
time feedback, primarily increases salience of resource use. While only the
latter reduced energy consumption when implemented in isolation, combin-
ing both interventions boosted this conservation effect by over 50%, indicat-
ing a striking complementarity.
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1. Introduction

Amidst growing public concern about climate change and resource scarcity, many indi-
viduals intend to make personal sacrifices to protect the environment; yet they often fail
to act pro-environmentally in their everyday lives (Kollmuss and Agyeman, 2002; Fred-
eriks, Stenner and Hobman, 2015). This gap between intentions and actions can result
from a multiplicity of behavioral frictions and biases. For instance, previous research has
shown that individuals tend to underestimate the impact of highly resource-intensive be-
haviors (Attari et al., 2010; Attari, 2014), and that they may also not be fully attentive to
their resource use (Allcott, 2016; Tiefenbeck et al., 2018).

Other factors such as self-control problems and status quo bias may certainly also play
a role. Importantly, however, such behavioral biases could not only prevent consumers
from acting on their intrinsic prosocial or pro-environmental motivations, but also mute
their response to policy interventions aimed at encouraging behavioral change. Thus,
when multiple dimensions of bias are present at the same time, interventions that miss
an important dimension may fail to unfold their full potential. For example, providing in-
formation about environmental impacts may have little effect on behavior if individuals
remain inattentive to their resource use.1 Conversely, making resource use salient may
only have a muted effect if agents remain unaware of adverse environmental impacts.
Hence, in this example, a combined approach that targets both imperfect information
and inattention could have synergetic, mutually reinforcing effects, i.e. positive interac-
tion effects or complementarities. More generally, we argue that bundling interventions
can result in complementarities if each intervention is particularly suited to address a
different source of behavioral bias. Following Coe and Snower (1997), we define inter-
ventions as complements if each intervention becomes more effective when implemented
in conjunction with the other(s) than in isolation. While many studies consider the use
of combined interventions, there is need for more theoretical and empirical research that
investigates systematic drivers of complementarity (or substitutability) and thereby pro-
vides guidance for the design of effective behavioral policy.

In this paper, we report evidence from a three-month randomized field experiment
in which we used two well-studied behavioral policy tools to encourage resource con-
servation in an energy- and water-intensive everyday activity, namely showering. Our
interventions were designed in such a way that we target different potential sources of
behavioral bias against resource conservation. The first intervention, shower energy re-
ports, inspired by the Opower home energy reports (Allcott, 2011), were primarily aimed
at closing knowledge gaps about environmental impacts by providing information on
water use as well as on energy use and CO2 emissions due to water heating. The second
intervention, real-time feedback, provided immediately visible and salient information

1Information provision is often regarded as a promising policy lever, as individuals often misperceive
the environmental impact of everyday activities (Attari et al., 2010; Attari, 2014; Camilleri et al., 2019) and
tend to engage in relatively ineffective conservation measures (Gardner and Stern, 2008; Tonke, 2019).
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on water consumption — but not energy use or CO2 emissions — through a smart me-
ter display (Tiefenbeck et al., 2018), and could thus help individuals focus their attention
while they engaged in the activity. Crucially, we implemented a complete 2×2-design to
evaluate both the combined intervention as well as each intervention in isolation, which
allows us to uncover potential complementarities.

To formalize our argument as to why complementarities might arise in such a context,
we introduce a stylized theoretical framework in which biased perceptions of resource
use arise from multiple sources (e.g. imperfect information, limited attention). Each of
these biases acts akin to a discount factor and thus prevents agents from fully incorpo-
rating the marginal costs of resource consumption into their behavior. A key prediction
from our framework is that when each bias mutes the perceived cost of resource use
independently of other biases, then the effects of pro-environmental interventions that
mitigate different sets of biases can reinforce each other, so that the interventions become
complements. The intuition is simple: the more one particular bias is reduced, the larger
is the impact of reducing another bias. For example, the more attention an agent pays to
her resource use behavior, the more likely it is that she will actually change her behavior
when learning that the environmental impact is more negative than previously thought.
This interaction mechanism is absent when two interventions mostly operate through the
same behavioral channel, e.g. if they both provide the same type of information.

There are several reasons why (warm) water consumption in the shower provides an
interesting context for studying complementarities in behavioral interventions. First,
showering is a resource-intensive activity: an average shower in our sample requires
2.2 kWh of energy to heat up 38 liters of water, which corresponds to about 10% of the
average residential energy use and 30% of the average water consumption per capita and
day in Germany, where we conducted our study.2 Second, individuals tend to underes-
timate the CO2 emissions caused by warm water consumption in the shower — by as
much as 89% on average based on one of our surveys —, which creates scope for reduc-
ing energy consumption through information provision. Third, showering is also prone
to behavioral biases like limited attention and self-control problems, as the pleasure of a
warm shower is salient and immediate, whereas the cost of resource use seems abstract
and is hard to keep track of (Tiefenbeck et al., 2018). Since individuals may not fully
engage in conservation efforts unless they are informed about the actual impact of their
behavior and keep environmental concerns on top of their minds while showering, it may
be necessary to draw on both of these mechanisms at the same time.

We conducted our field experiment in student dormitories in the cities of Bonn and
Cologne, Germany, in the winter term 2016/17. A total of 351 students participated in
our experiment, with all of them living in single-person dorm apartments with a private
bathroom. For the duration of our study, from early December 2016 until early March

2Calculated based on information from the German Federal Statistical Office. Source: https://www.
destatis.de/EN/Themes/Society-Environment/Environment/_node.html
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2017, each participant was equipped with a smart shower meter (installed directly below
the shower head) that recorded detailed data of each water extraction. Subjects were ran-
domly assigned into one of four experimental conditions: no intervention (CON group),
shower energy reports only (SER group), real-time feedback only (RTF group), or both
interventions combined (DUAL group). After a baseline stage of 10 showers, the smart
meter started displaying real-time feedback on water use for subjects in RTF and DUAL.
About halfway into the study, we further started constructing the individualized energy
reports using uploaded data from the smart meters and sent them out to subjects in SER
and DUAL via email. This staggered design allows us to identify and estimate treatment
effects of each intervention regime in a difference-in-differences setup. The shower en-
ergy reports mainly aimed at reducing knowledge gaps about environmental impacts,
whereas real-time feedback mainly aimed at focusing attention and creating a sense of
immediacy. As both mechanisms might be important for encouraging conservation be-
havior, we hypothesize that the two interventions are complements.3

Our empirical results show that, compared to the control group, subjects in the RTF
group reduced their energy (water) consumption by about 0.4 kWh (6.3 liters) per shower,
which corresponds to 17–18% of baseline resource use. This treatment effect remains sta-
ble over the entire 3-month duration of the study. Energy reports in isolation (SER group)
did not lead to any statistically detectable conservation effects. However, in line with our
hypothesis, we observe a striking complementarity between the two interventions. Com-
bining energy reports with real-time feedback (DUAL group) further increased the treat-
ment effect of real-time feedback in isolation by 0.22 kWh of energy (3.8 liters of water)
per shower, i.e. by more than 50%. Hence, the shower energy reports simply appeared
to require an enhanced choice environment to become effective. The additional reduc-
tion of energy use in the DUAL group was not driven by short-lived boosts directly after
receiving a shower energy report, but rather seemed to unfold over time, which speaks
against Hawthorne or pure reminder effects as the underlying mechanism. Furthermore,
we generally find no evidence of adjustments on the extensive margin, i.e. the number
of showers people take. One noteworthy feature of our sample is that subjects had no
monetary incentives for conserving energy or water, since they paid a flat fee for utilities.
Thus, all conservation effects are driven solely by non-monetary motives, which makes
them even more remarkable.

Additional questionnaire data shows that both interventions helped subjects form more
precise beliefs about their own water use in the shower; there is no evidence that subjects
in the DUAL group read their reports more carefully than subjects in the SER group.
Supplementary survey results from a comparable sample further suggest that informa-

3Complementarity can also arise if our interventions do not exactly work through the described mech-
anisms, as long as they sufficiently differ from each other in their targeted sources. For example, real-time
feedback could be interpreted as information provision about instantaneous water consumption that can
facilitate learning or optimization, and this information can be complementary to the information on CO2
emissions provided through shower energy reports.
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tion included in shower energy reports also induces drastic (upward) updates in beliefs
about CO2 emissions due to warm water consumption in the shower. Hence, the null
result for shower energy reports in isolation is not due to lack of learning. Instead, it
seems that in the absence of real-time feedback, inattention and lack of immediate vis-
ibility have prevented knowledge gains about environmental impacts from translating
into effective conservation behavior.

Overall, our findings are consistent with the hypothesis that the presence of multi-
ple bias dimensions can induce complementarities between interventions that largely
operate through different behavioral mechanisms. This implies that appropriate pol-
icy bundling may increase the cost-effectiveness of interventions beyond what can be
achieved with piecemeal approaches. In particular, lack of evidence for effectiveness of
an intervention in isolation — as for information provision through shower energy report
in our case — does not imply that it cannot be effective in an enhanced policy environ-
ment that also takes into consideration further potential sources of bias.

Our study builds on important previous contributions that have studied the effects
of similar behavioral interventions on household energy conervation.4 For example, in
an influential evaluation of the Opower home energy reports, which provide informa-
tion on aggregate electricity use to millions of U.S. households, Allcott (2011) reports a
household-level conservation effect of 2%, or about 0.62 kWh per day; effectivity might
be smaller outside the U.S., where the baseline energy consumption tends to be lower
(see e.g. Andor et al., 2020, for a sample of German households), or when there are little
monetary incentives to save energy (Myers and Souza, 2019). Our SER intervention also
gives feedback about past consumption patterns, although differing to classical home en-
ergy reports in several aspects, mainly in that it targets one specific activity (showering)
instead of aggregate household consumption. Disaggregated, activity-specific feedback
could enable better learning and thus stronger conservation responses in the targeted ac-
tivities (Gerster, Andor and Goette, 2020), in particular when provided in shorter time
intervals or even in real time. Tiefenbeck et al. (2018) provide real-time feedback in the
shower through the same type of smart meter that we use in this study and document
a 22% conservation effect, or, in absolute terms, a reduction of 0.6 kWh energy and 9
liters of water per shower. These results also replicate in a sample without monetary
incentives and without self-selection into the study (Tiefenbeck et al., 2019). As real-
time feedback can make resource consumption immediately salient, a natural question is
whether we can use this to improve the effectiveness of other interventions that aim to
encourage conservation behavior through further mechanisms like more detailed infor-
mation provision or social norms and could thus benefit from generally higher attention
to pro-environmental motives.

4Pro-environmental interventions have drawn from a broad set of instruments such as information pro-
vision, social norms, goal-setting, etc. For reviews, see e.g. Abrahamse et al. (2005), Fischer (2008), Delmas,
Fischlein and Asensio (2013), Karlin, Zinger and Ford (2015), Andor and Fels (2018), Carlsson et al. (2021).
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We further relate to a number of other studies that test a combination of different in-
terventions, especially to studies on pro-environmental behavior that also consider the
idea that policy measures might become more effective when implemented in conjunc-
tion with others.5 For example, Jessoe and Rapson (2014) find that pricing schemes that
incentivize lower peak electricity consumption can fail to change behavior due to con-
sumers not knowing how to effectively adjust electricity usage; only households who
have been outfitted with in-home-displays reduce consumption significantly in response
to price hikes. Other recent studies who investigate the combination of financial incen-
tives and behavioral interventions tend to find that they affect behavior along different
margins or for different subpopulations, but find no conclusive patterns with regard to in-
teraction effects (List et al., 2017; Holladay et al., 2019; Giaccherini et al., 2020; Fanghella,
Ploner and Tavoni, 2021). Hahn et al. (2016) test the individual and combined effects of
social comparisons and loss framing on take-up of water-efficient technology as well as
general household water consumption, but the results for interaction effects are mixed.
Brandon et al. (2019) evaluate the interaction effect of two behavioral interventions on
household energy conservation, home energy reports and “peak energy reports”, which
provide feedback and social norms for households’ peak electricity use. As both inter-
ventions are very similar and likely operate through similar behavioral channels, it is
not clear whether one should expect any interaction effect. Indeed, Brandon et al. find
neither strong evidence for complementarity nor substitutability. While we add to this
literature by providing a novel case study on the complementarity of two specific types
of behavioral interventions, our main contribution is that we attempt to make a step
towards understanding mechanisms that systematically lead different policy interven-
tions to become complements or substitutes. Hence, the empirical design is embedded
within a conceptual framework — highlighting specifically the role of multiple sources
of behavioral bias — that can be adapted to form hypotheses about policy interactions in
other contexts as well.

The remainder of this paper is structured as follows: Section 2 introduces the theoreti-
cal framework for policy interactions under multiple sources of behavioral bias. Section
3 describes the experimental setup and derives behavioral predictions. Section 4 presents
our data as well as some descriptive statistics. Section 5 explains our empirical approach

5Combined interventions are also used in other contexts than pro-environmental behavior. For exam-
ple, in development economics, a number of studies experimentally test the combined effect of different
interventions on financial savings (Dupas and Robinson, 2013; Jamison, Karlan and Zinman, 2014), educa-
tion (Mbiti et al., 2019), risky sexual behavior (Duflo, Dupas and Kremer, 2015; Dupas, Huillery and Seban,
2018), demand for health products (Ashraf, Jack and Kamenica, 2013), or immunization (Banerjee et al.,
2021). Many of these studies, however, cannot explicitly test policy interactions, and none of them asks
more generally if or why different interventions can be complements if they target separate mechanisms.
One notable study is by Mbiti et al. (2019), who find complementarities between providing school grants
and adding teacher incentives in improving children’s educational outcomes. Another study by Banerjee
et al. (2021) employs reminders, incentives, and information ambassador interventions on a large-scale, and
then uses a data-driven approach to identify the best combination; in particular, one observation is that
information ambassadors seem to amplify the effect of other interventions.
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and Section 6 presents our main empirical results. In Section 7, we study the potential
mechanisms underlying the results and provide robustness checks. Section 8 concludes.

2. Theoretical framework

We begin by introducing a stylized framework to formalize our argument of how com-
plementarities in behavioral interventions can arise in settings with multiple sources of
biased perceptions, e.g. imperfect information, limited attention, present bias.

2.1. Setup

Basic setup. — The agent engages in an energy-intensive activity, say showering and the
policy objective is to reduce energy use. Her consumption level is determined by a trade-
off between the consumption utility (incl. pleasure, instrumental benefits, opportunity
costs of time) and the perceived costs of resource use (incl. monetary costs, environmental
concern). She chooses energy use level e ≥ 0 to maximize

U(e) = V(e)− B · C(e) , (1)

where V(e) is the instantaneous consumption utility and C(e) is the cost of energy con-
sumption.6 In addition to standard smoothness conditions, we assume that V is hump-
shaped (locally increasing at 0, strictly concave, unique maximum) and that C is strictly
monotonically increasing and weakly convex. For simplicity, we abstract from uncer-
tainty or dynamics. In the absence of monetary motives, as in our empirical setting, C(e)
is the “moral” cost the agent perceives in face of the negative externalities from energy
use. However, the cost function is attenuated by an aggregate bias factor B, and energy
use is biased upwards if B ∈ [0, 1).

Multiple sources of bias. — The aggregate B factor can be the product of a collection of
separate factors. To illustrate the mechanics, it is sufficient to focus on the simple case
with two sources of bias:

B = b1 · b2 . (2)

For example, the first factor b1 may indicate the degree to which the agent underestimates
energy intensity (as shown, e.g., in Attari et al., 2010), and the second factor b2 the degree
to which she is inattentive (e.g., Tiefenbeck et al., 2018). The multiplicative form captures
that any single factor can independently prevent the agent from implementing her con-
servation motive. In this example, the agent will not take into account environmental
cost both if she believes her behavior has no impact (b1 = 0) and if she is fully inattentive

6The agent may not explicitly optimize with regard to energy use, but as long as the mapping from
actual decision variable (e.g. shower duration) to resource use is injective, we can represent the problem as
if the agent was optimizing over energy use.
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(b2 = 0), either condition by itself is sufficient.7 Note that the entire framework can be
easily generalized to the case of B = ∏K

k=1 bk with k > 2.

Consumption behavior. — The agent’s consumption choice is defined by the intersec-
tion of marginal utility and marginal costs, but with the latter being diminished by the
aggregate bias:

V ′(e) = B · C′(e) . (3)

If B < 1, then the marginal cost is underweighted and energy use is thus biased upwards.
Defining f such that f (e) = V′(e)

C′(e) for all e ∈ [0, ∞), we can directly map the relation
between implemented energy use and aggregate bias as

e(B) = f−1(B) , (4)

because equation (3) implies that f (e(B)) = B. Notice that f−1 is a strictly decreasing
function, so the weaker the aggregate bias, i.e. B closer to 1, the lower the energy use.8 In
this sense, B can be interpreted as an input for energy conservation.

Behavioral interventions. — In this setup, we define behavioral interventions as poli-
cies that aim to change consumers’ behavior by changing B.9 In contrast, price-based
policies would be aimed at increasing the marginal costs of energy use, C′(e), that the
agent faces.10 As B = b1 · b2, there are two behavioral policy levers for reducing en-
ergy consumption: raising b1 (e.g. providing information) and raising b2 (e.g. enhancing
salience).

2.2. Policy interaction mechanisms

Two interventions, X and Y, are complements if their combination reduces bias by more
than the sum of their individual effects, i.e ∆BX+Y > ∆BX + ∆BY. If they are substi-
tutes, the inequality sign is reversed. Notice that even under substitutability, it can be
the case that X + Y is more effective than either X or Y in isolation, i.e. ∆BX+Y > ∆BX

and ∆BX+Y > ∆BY. Thus, to empirically identify interaction effects between different

7This is reminiscent of the Anna Karenina principle, which states that failure in a single factor may
lead to failure of an endeavor as a whole. It is inspired by the opening phrase of Leo Tolstoy’s novel Anna
Karenina: “Happy families are all alike; every unhappy family is unhappy in its own way.” (Tolstoy, 2003).

8This is because marginal consumption utility V′(e) is strictly decreasing and marginal cost C′(e) is
non-decreasing. Hence, f is strictly increasing, so the inverse function f−1 exists and is strictly decreasing.

9Equation (4) shows that any policy X that mitigates the aggregate bias (BX) compared to no-intervention
state B will induce the agent to conserve energy. Hence, ∆BX = BX − B > 0 implies that ∆eX = e(BX)−
e(B) < 0 . The more successful an intervention is in mitigating the aggregate bias, the larger the energy
reduction effect.

10Our framework also allows for an interpretation that takes more a social planner’s point of view, aiming
for the agent to internalize the full social cost Cs(e). The ratio of private to social cost C(e)/Cs(e) would then
be another factor entering into the aggregate bias Bs, so decision utility is U(e) = V(e) − Bs · Cs(e). This
interpretation highlights the overarching policy objective of reducing externalities instead of “internalities”.
Efforts to increase the privately perceived cost can include Pigouvian taxes (e.g. carbon pricing), social
norms, goal-setting, etc.
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policy interventions, it is also necessary to evaluate the effectiveness of each intervention
in isolation. Our theoretical framework allows for several mechanisms that could make
interventions either complements or substitutes.

Complementary policy levers. — The key mechanism we aim to highlight in this paper
is that in the presence of multiple sources of bias, policies that target only one dimension
may have a limited effect on behavior, whereas the effect of combining several policy
levers may be superadditive. This is an immediate consequence of the multiplicative
structure of B, which implies a positive cross-derivative: (∂2B/∂b1∂b2) > 0. For example,
correcting perceptions of the environmental impact b1 may only have a small impact on
behavior if the attention parameter b2 is still close to zero.

There is a simple geometric interpretation to illustrate this: the overall bias parameter
B, defined in equation (2), can be thought of as the area of a rectangle with sides of
lengths b1 and b2 (see Figure 1a). The larger the rectangle the lower the resulting energy
consumption will be. Now suppose that b1 is exogenously increased by δ1. The resulting
increase in B will be δ1b2, as it is attenuated by b2. Analogously, an exogenous increase
of δ2 in the dimension of b2 results in an aggregate change of δ2b1. The effect of jointly
increasing b1 and b2 by the same amounts, however, results in an overall change of

∆B = δ1b2 + δ2b1 + δ1δ2 . (5)

There is an additional effect of size δ1δ2, because a gain in one dimension also makes
the improvement in the other dimension larger. Geometrically, this is represented by the
top right rectangle outlined in the second graph of Figure 1. This mechanism potentially
induces complementarity between interventions that are specialized on mitigating dif-
ferent sources of bias each.

In practice, it may be hard to design “pure” interventions where each intervention
changes only one dimension of B. To illustrate the complementarity in an example that
might be closer to reality, consider the case of two sources of bias and two interventions,
X and Y. Suppose that intervention X is primarily targeted at the perception of the en-
vironmental impact b1, while potentially also having a positive side-effect on b2, which
could describe an information intervention which may also lead to endogenously higher
attention levels (Hanna, Mullainathan and Schwartzstein, 2014; Gabaix, 2017). Analo-
gously, intervention Y is primarily targeted at the attention parameter b2, with positive
side-effects on b1. This could describe a salience intervention that incindentally also offers
some degree of information or induces information search efforts. Hence, the relevant pa-
rameters are such that δX

1 ≥ δY
1 and δY

2 ≥ δX
2 . The reduction in bias of each intervention

in isolation are ∆BX = δX
1 b2 + δX

2 b1 + δX
1 δX

2 and ∆BY = δY
1 b2 + δY

2 b1 + δY
1 δY

2 , respectively,
which is also illustrated in Figure 2a and b.

Aggregating policy interventions. — When two partially overlapping interventions are

9



Figure 1: Depiction of example interventions

(a) Baseline (b) Complementarity

Notes. The grey rectangle in Figure (a) illustrates the aggregate bias B as defined in equation 2 without
any intervention in place. Figure (b) illustrates the increase in B through exogenous interventions in
each dimension.

introduced jointly, we need to specify how they aggregate into the overall bias B. As a
benchmark, we assume that the mitigation effects δX

i , δY
i are additive (and that the result-

ing bi does not exceed 1). Figure 2c illustrates this example, in which δX+Y
1 = δX

1 + δY
1 and

δX+Y
2 = δX

2 + δY
2 . The additional bias reduction is

∆BX+Y − ∆BX − ∆BY = δX
1 δY

2 + δX
2 δY

1 . (6)

Notice, that — holding constant δX+Y
1 and δX+Y

2 — the potential for complementarity is
largest for two completely specialized interventions.

Next, we look at a case where, in each dimension, only the dominant intervention mat-
ters, i.e. δX+Y

i = max(δX
i , δY

i ). This is illustrated in Figure 2d. This case is less favorable
toward complementarities, as each intervention now only has an impact on one bias di-
mension, and the condition becomes

∆BXY − ∆BX − ∆BY = (δX
1 − δY

1 )(δ
Y
2 − δX

2 )− (δX
2 b1 + δY

1 b2 + δX
2 δY

1 ) (7)

This term is is positiv, if the top right rectangle in Figure 2d, which represents the policy
lever complementarity, is larger than the cross-shaded intersection of X and Y, which
represents loss in impact from X and Y in isolation. Complementarity is more likely the
more specialized each intervention is, as the interaction is increasing in bX

1 and bY
2 and

decreasing in bY
1 and bX

2 .

Complementarity in behavioral outcomes. — So far we have focused on mechanisms of
complementarity in manipulating B. How this maps into observable behavior depends
on the mapping of B to e. The condition for overall policy complementarity in the out-
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Figure 2: Depiction of example interventions

(a) Intervention X (b) Intervention Y

(c) Combined (no crowding out/in) (d) Combined (crowding out)

Notes. Figures (a) and (b) illustrate the bias mitigation effect of interventions X and Y in isolation,
respectively. Figure (c) illustrates their combined effect when their individual effects in each dimension
are additive, i.e. there is neither crowding out nor crowding in. Figure (d) illustrated their combined
effect when there is perfect crowding out of the less effective intervention in each dimension.

come of interest, energy consumption, can be written as

∆eX+Y ≤ ∆eX + ∆eY (8)

Typically, one would expect a decreasing responsiveness, as resource consumption is
more inelastic at lower levels (e.g. due to a desire for satisfying basic needs like hygiene),
so the scope for further conservation effects diminishes with every intervention that is
piled upon another. In our framework, this corresponds to function f−1 being convex.11

Intuitively, the more the agent already reduces her consumption, the more difficult it be-

11For example, if V has a positive third derivative and the cost function C is linear or quadratic, then f−1

is strictly decreasing and convex. A positive third derivative is often labeled prudence and implies a desire
for precautionary saving in choice under risk. Of course, f−1 could in principle also be concave, so marginal
returns are increasing, but this seems implausible. For example, concavity can imply that conservation
programs have larger effects for low-baseline consumers, although the opposite is usually true.
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comes to further reduce it. Thus, under this assumption, observing complementarities in
behavioral outcomes implies complementarities in bias mitigation.

Empirically identifying complementarities is important for optimal policy. Consider
the following stylized application: A policy maker has the objective of reducing the av-
erage energy consumption ē in the population and has at her disposal two equally-costly
and equally-effective behavioral interventions X and Y. Suppose that the budget allows
for treating fraction α ∈ (0, 1) of the population with an intervention. Alternatively, the
policy maker can also treat α/2 of the population with a combined intervention X + Y.
The latter is (weakly) superior to the former precisely when the complementarity condi-
tion in equation (8) holds. Thus, it is important to study empirically whether two inter-
ventions are complements or substitutes.

3. Experimental setup

Our field experiment was conducted from early December 2016 to late February/early
March 2017 in a sample of students living in dormitory apartments. Each participant was
equipped with a smart meter that measured individual energy and water consumption in
the shower over the entire study duration. We then evaluated the effect of two different
interventions, real-time feedback and shower energy reports, on resource conservation
behavior. To test for complementarity, we further implemented a combined intervention
in which subjects received both real-time feedback and shower energy reports.

3.1. Recruitment of participants

We selected six student dormitory sites in Bonn and Cologne for our sample, and ran
the study from early December 2016 to early March 2017. All dormitory residents were
students at the University of Bonn, the University of Cologne, or at various smaller uni-
versities in the cities. We recruited our subjects from the pool of dorm tenants living
in single-person apartments with private bathroom, as this allows us to precisely mea-
sure the resource use of each individual. These students have no direct monetary in-
centives to conserve energy or water, because they pay a flat monthly rent that includes
all utility bills. Hence, any observed conservation response would be solely driven by
non-monetary motives and unconfounded by income effects.

To participate in the study, residents had to actively agree based on the principle of
informed consent. Two additional criteria were levied: subject should not have lengthy
absences planned within the intended study period (except during Christmas vacation),
and they should own a smartphone compatible with Bluetooth 4.0, which was necessary
for implementing the shower energy reports.

The recruiting process started around mid-October 2016. Posters and flyers informed
residents of the selected dormitories about the upcoming study, and our local research
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assistant teams engaged in door-to-door recruiting. Interested students had to complete
an online registration survey to provide required information and to give their consent
to the collection and analysis of data on their showering behavior. It was explicitly (and
truthfully) stated that we would treat any collected data confidentially and not share it
with the dormitory administration. As remuneration, each participant received 20 Euros
after completing the study, and ten participants were randomly drawn to receive a 300
Euro cash prize. In total, 406 students registered for the study, out of which 361 met
our participation criteria.12 Ten students subsequently dropped out of the study, either
because they moved out of their dorm unexpectedly or because we were not able to
contact them again. This leaves us with a final sample of 351 participants.

3.2. Smart shower meters and smartphone app

At the beginning of the study, starting on 5th Dec 2016, each participant was equipped
with an Amphiro b1 smart shower meter that measures and records data of every water
extraction in the shower. The device can be easily attached below the shower head and
features a smartphone-sized liquid crystal display, which can be programmed to show
various types of information (see Figure 3a). The smart meter is small, lightweight, and
needs no battery; power is generated through an integrated hydro turbine, without no-
ticeably affecting water flow in the process. One drawback of the lack of battery is that
the device is unaware of the absolute time of day: showers can only be recorded in tem-
poral order, but without time stamps. Once the water flow in the shower starts, the smart
meter is powered and begins to measure, among others, the amount of water flowing
through, water temperature, and the time passed since beginning of water flow. After
water flow is stopped, the device remains powered on for three minutes with the display
remaining active. If the water is turned on again within this time frame, the device will
continue measurement from the point where it had previously stopped. This accounts
for short breaks in water flow when applying soap or shampoo. Once water flow stops
for more than three minutes, the device terminates measurement and stores the recorded
data as the most recent observation point.

We programmed the shower meters to display select pieces of information to partic-
ipants in real-time, i.e., while they are taking their showers, contingent on the study
progress and assigned experimental condition (as described below). In addition, we
asked all participants to install the Amphiro smartphone app around week 5 of the exper-
iment, shortly after the end of the Christmas break. The participants could use the app
to upload data from their shower meters via Bluetooth.13 We were then able to access

12The total number of all single apartments in the selected dorms was 1380 (vacancies included), thus our
gross recruitment rate was about 30%. For more than half of these apartments, we never encountered the
resident, so out of the students we actually managed to talk to, the majority registered for the study.

13The process was quite simple. After installing the smartphone app, subjects created an account and
paired it to their shower meter. After successful pairing, the meter automatically transmitted all stored data
to the app via Bluetooth whenever it was powered on and the smartphone within range.
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Figure 3: Amphiro b1 smart shower meter

(a) Position in the shower (b) Display in control mode (c) Display in feedback mode

the uploaded data and use it to create personalized shower energy reports. The original
Amphiro smartphone app also calculates summary statistics about users’ resource use in
the shower, but we deactivated this feature for our study participants, so its only func-
tionality was data uploading. One ancillary benefit of the app was that it stored time and
date of each data upload, which allows us to construct approximate time windows for
each shower. About three out of four participants (72%) uploaded all data successfully,
while the remaining experienced some technical problems. The most common sources
of failure were problems with the Bluetooth connection or unexpected incompatibility
between smartphone and app. We will come to back to this issue again later.

3.3. Implementation of real-time feedback

The live tracking of water use on the shower meter display in feedback mode is what we
refer to as real-time feedback, our first type of intervention. We programmed half of the
smart meters as control devices and the other half as treatment devices. Control devices
only displayed the current water temperature throughout the entire study (Figure 3b).
Treatment devices also started in control mode for the first ten showers, which we use
to measure baseline behavior, but switched permanently to feedback mode starting from
the eleventh shower. In feedback mode, the display shows both the water temperature
and the amount of water used (in liters) at any time of the shower (Figure 3c).

3.4. Implementation of shower energy reports

Our second type of intervention consists of two personalized shower energy reports.
These reports were sent via e-mail and showed descriptive statistics about the subject’s
water and energy use in the shower, as well as information about environmental impacts.
Temperature information was not included, as all subjects received this through their
smart meter anyway. To allow for learning about outcomes of single showers, a graphical
representation of the subject’s history of water use per shower was included. The reports
were constructed based on data that was uploaded by subjects through the smartphone
app. We sent out additional reminders to upload data before each planned delivery, but
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the reports themselves were not explicitly announced. Subjects who did not manage to
upload any data received a report template with blanks in place of statistical figures and
graphs.

Appendix Figure A1 shows the screenshot of a typical shower energy report. After a
short introductory text, subjects see a scatter plot of their history of water use per shower
since the beginning of the study, including a fitted regression line to help recognize trends
and averages. Below the graph, average water use (in liters) and energy use (in kWh) per
shower are stated numerically. Furthermore, there is a paragraph with information on
projected CO2 emissions per year and the number of trees required to absorb the corre-
sponding amount of CO2. The whole report is formulated concisely in neutral language,
to avoid any normative or moral suasion elements. In the second report, we added a
social comparison component in the spirit of the original Opower home energy reports,
see Appendix Figure A2. Specifically, we assigned a random anonymous peer to each
subject and displayed statistics on the peer’s energy and water use.14 At the bottom of
each report, there was a personalized link to a mini-survey that we can use to verify if,
and how closely, the email has been read.

3.5. Experimental design

We implemented a complete 2×2 design with four experimental conditions. Subjects in
the control (CON) group received no intervention at all; subjects in the RTF group only
received real-time feedback through the smart shower meters; subjects in the SER group
only received shower energy reports; and subjects in the DUAL group received both real-
time feedback and shower energy reports. Treatment assignment was randomized and
the group sizes are as follows: 82 in CON, 88 in SER, 90 in RTF, 91 in DUAL.15

Figure 4 illustrates the experimental design in detail. Each shower meter went through
a baseline stage of ten showers, in which it only displayed the current water temperature,
regardless of the experimental condition. We use these showers to measure baseline con-
sumption behavior. Starting from the eleventh shower (intervention stage), devices in
RTF and DUAL additionally displayed water use in real-time, whereas devices in CON
and SER permanently stayed in control mode. About halfway into the study, we started
sending energy reports to each subject in the SER or DUAL group; the first report was
sent on 23 January 2017 and the second report on 8 February 2017, about two weeks
later. We distinguish between intervention (IN) stage 1, in which real-time feedback is
switched on but there were no reports yet, and intervention (IN) stage 2, which is the
period that begins after the first report was sent out.16 In order to hold interaction with

14The matching procedure was one-sided and ensured that each subject (except the most and the least
efficient) was equally likely to see a peer with lower or higher energy use per shower.

15For the exact randomization protocol, see Appendix B.
16In practice, the distinction between IN stage 1 and 2 is not perfect, as we observe 23 subjects in our

sample who had yet to complete all 10 baseline showers when the first report was sent out. If anything, this
generates measurement error in our treatment indicators and thus biases estimates toward zero.
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Figure 4: Experimental design and timing of interventions

Baseline stage
(showers 1-10, start: 5th Dec 16)

Intervention (IN) stage (showers 11+)

IN stage 1 (until 23rd Jan 17) IN stage 2 (from 23rd Jan until ~1st Mar 17)

CON group

+ HER group

RTF group

+ DUAL group

experimenters constant, subjects in CON and RTF groups received placebo emails at the
exact same time the shower energy reports were sent out. These subjects were simply
asked to fill out a mini-survey, the same that came along with the actual reports.

This staggered experimental design allows us to exploit both between- and within-
subject variation to cleanly identify and efficiently estimate treatment effects of interest.
The effect of real-time feedback in isolation is identified by the comparison between the
RTF and CON groups in the (entire) intervention stage, or alternatively by the compari-
son between the pooled RTF/DUAL group and the pooled CON/SER group in IN stage
1. The effect of shower energy reports in isolation is identified by the comparison be-
tween the SER and CON groups in IN stage 2. The additional effect of shower energy
reports, when combined with real-time feedback is identified by the comparison between
the DUAL and RTF groups in IN stage 2. Differences between the effects of shower en-
ergy reports with and without real-time feedback identify policy interaction effects, i.e.
whether the two interventions are substitutes or complements. Note that behavior in the
CON group may not reflect the “true” counterfactual, as subjects still receive a smart me-
ter with temperature information and placebo emails instead of shower energy report.
We would underestimate the effects of our interventions to the degree that subjects re-
spond to this by itself, but any relative comparison across intervention regimes would
remain valid.
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3.6. Behavioral predictions

In order to derive behavioral predictions for each of our experimental groups, we first
briefly discuss the channels through which each of the two interventions is likely to work.
Our theoretical framework shows that the effect of each regime depends on the degree to
which it succeeds in overcoming the aggregate bias, which may be the product of mul-
tiple separate factors. Furthermore, real-time feedback and shower energy reports could
be complements if they are relatively specialized and operate largely through different
channels.

Real-time feedback visually displays live measurement of water use in the shower. This
water volume information can debias individuals’ beliefs about the amount of water they
use, but there is no additional information on energy use or CO2 emissions due to water
heating, so severe knowledge gaps about the environmental relevance of showering may
remain. In addition, the steadily upward moving liter count is likely to significantly re-
duce inattention and self-control problems, as users are constantly facing the smart meter
display, and the previously abstract and elusive notion of resource use suddenly becomes
salient and palpable, infused with a sense of immediacy. It may also facilitate experimen-
tation with various conservation strategies by keeping track of progress in real-time. As
the RTF condition in our experiment is essentially a replication of the intervention by
Tiefenbeck et al. (2018), albeit more minimalistic and in a sample without monetary in-
centives, we also expect to find comparable conservation effects.

Prediction 1. Providing real-time feedback through the smart shower meter display in treatment
RTF leads to a reduction in water and energy consumption in the shower.

Shower energy reports provided personalized information about subjects’ water use
in the shower as well as additional information about energy use and CO2 emissions.
We therefore expect that the reports can help close knowledge gaps in these areas and
thereby induce conservation behavior, since past evidence suggests that individuals tend
to grossly underestimate the energy intensity associated with water heating (Attari et al.,
2010). The second report also included a comparison with a randomly assigned and
anonymous peer, which might further add motivation through social norms, although
Tiefenbeck et al. (2018) find no effect of including comparisons with the co-resident in a
two-person household. However, the reports are not immediately salient while shower-
ing.

Prediction 2. Providing information through shower energy reports in treatment SER leads to a
reduction in water and energy consumption in the shower.

The conservation effect of knowledge gains through energy reports could be stifled
by remaining barriers like limited attention or self-control problems, which can be more
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suitably targeted by real-time feedback.17 Vice versa, the effect of real-time feedback may
be attenuated if subjects remain unaware of the energy and carbon intensity of warm wa-
ter use. If the two interventions indeed work largely through these separate behavioral
mechanisms, a combined intervention should leverage all mechanisms at the same time.
As we argue in the theoretical framework, shower energy reports and real-time feedback
could therefore become complements in the sense that one intervention makes the other
more effective when implemented jointly.

Prediction 3. Shower energy reports in IN stage 2 lead to a larger (marginal) reduction in water
and energy consumption in the shower for subjects who also receive real-time feedback (treatment
DUAL) than for subjects who do not receive real-time feedback (treatment SER).

4. Data and descriptive statistics

4.1. Measurement data on resource use behavior

For every water extraction in the shower, the smart meters measured, among others, the
volume of water used, its average temperature, and the average flow rate (i.e. volume per
time unit). The amount of energy used was then calculated based on volume and temper-
ature data, using the standard engineering formula for heat energy.18 Every subject had a
shower meter installed for the whole duration of the study, starting from early December
2016. At the end of the study, in early March 2017, we retrieved the devices and read
out the data manually.19 In this way, we were able to extract an initial data set of 21,469
showers by 327 participants. Unfortunately, no data could be obtained in 24 cases, either
because the device was defective or because subjects never used it, or because subjects
simply disappeared without a trace (and their shower meters with them).

A number of data cleaning steps are performed before running the empirical analyses.
We briefly describe the most important steps here; a more detailed documentation can be
found in Appendix C. First, we drop the very first data point of each participant, as they
usually started with a test run to check if the device was working. Following Tiefenbeck
et al. (2018), we further drop any water extraction with volume below 4.5 liters (in total
2, 942 extractions), as these are unlikely to be actual showers but rather minor extractions
for other purposes such as cleaning. As there are rare cases in which the device can pro-

17In principle, it is possible that participants also become more attentive about resource use even without
visual aid through the smart meter, as would be predicted by rational inattention models when updates in
beliefs about environmental impacts are sufficiently large. However, if there is such an effect, it may prove
short-lived once reports fade out of memory and resolutions cool off (Allcott and Rogers, 2014; Schwartz
and Loewenstein, 2017).

18The formula for energy use of water heating is Q = m× cp × ∆T, with heat energy Q, mass of water m,
heat capacity cp , and ∆T the difference between the measured water temperature and cold water tempera-
ture (assumed to be 12 degrees Celsius). Following Tiefenbeck et al. (2018), we also assume boiler efficiency
losses of 35% and distribution losses of 24%.

19We already started retrieving some devices in late February, but as the retrieval process was drawn out
over a period several days, the end of the study was in early March for most subjects.
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duce errors when storing data, we further remove 37 extreme outlier points, defined as
such by being more than 4.5 times the subject-specific interquartile range away from the
closest quartile.20 We further exclude 1 device with generally erratic data, 5 devices with
fewer than 10 recorded extractions, as well as 3 devices with an abnormally large base-
line consumption of 168 liters or more per shower, which is about 40 liters (1.5 standard
deviations) away from the rest of the field. In 8 cases, the integrated temperature sensor
became defective after some time, and we impute missing information with the average
temperature of showers taken while the sensor was still intact. The final data set used for
our empirical analyses includes 17, 942 showers by 318 participants.

The shower meter stores the temporal order of showers, so we can easily classify each
shower into baseline or intervention stage, as real-time feedback (in the RTF and DUAL
groups) started from the eleventh shower. Assigning showers to intervention stage 1
(pre-reports) or stage 2 (post-reports) is slightly more tricky, as the device has no counter
for global time. Fortunately, the smartphone app stores the date and time of each data up-
load, which allows us to construct bounds for when a shower took place. We instructed
subjects to use the smartphone app regularly starting from 11 January 2017, and sent
additional reminders before each energy report was sent out. Using this timing informa-
tion, we classify observations into pre-report showers (IN stage 1) or post-report showers
(IN stage 2). If there are multiple showers within the range of uncertainty around report
dates, we use the switching point implied by constant shower frequency. One complica-
tion is that we do not know the timing of showers by the subjects who did not manage to
upload any data to the app. Therefore, we impute the timing of showers for these non-
uploaders based on the assumption that timing of shower energy reports follows the
same distribution for uploaders and non-uploaders. To operationalize this, we use tim-
ing information from uploaders to estimate the probability that a shower took place after
receiving the first (second) report, and then assign the implied post-report probabilities
to showers of non-uploaders. Figure A3 in Appendix A plots the estimated CDFs.21

4.2. Survey data

To supplement our behavioral data on resource use in the shower, we administered sev-
eral questionnaires. In the baseline survey, we collected information on individual char-
acteristics (i.e. age, gender, etc.), perceived water use in the shower, shower comfort
(i.e. how much they enjoy showering), environmental attitudes and beliefs, as well as a
number of personality attributes (i.e. Big Five, patience, etc). In the post-intervention sur-
vey, we again collected self-reported data on perceived water use, shower comfort, and
environmental attitudes. Furthermore, we administered mini-surveys with each energy

20We are particularly strict in only excluding the most implausible data points here. Conventionally, 1.5
or 3 times the interquartile range (IQR) are used as criterion for outliers. For a normal distribution, 4.5 times
the IQR away from the nearest quartile corresponds to 6.745 standard deviations away from the mean.

21For more details of the imputation procedure, see Appendix D.
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Table 1: Descriptive statistics – baseline showers

Mean Std. dev. 10th pctile Median 90th pctile Obs.

Energy use [kWh] 2.21 1.91 0.43 1.71 4.58 2489

Volume [liter] 37.82 30.45 9.20 29.60 76.00 2489

Duration [min] 7.00 5.01 1.96 5.83 13.01 2489

Temperature [Celsius] 36.16 5.22 32.00 37.00 40.00 2463

Flow rate [l/min] 5.71 2.45 2.80 5.40 9.10 2489

Includes only showers taken in the baseline stage, i.e. first 10 showers and before shower energy
reports were sent out. For temperature statistics, devices with broken temperature sensors are
excluded. Duration is net of any breaks and calculated by dividing water volume by flow rate.

report, in which subjects were asked to estimate their resource use in the shower.
We mainly make use of information on water use perceptions, shower comfort, and

environmental attitudes, and how they change in response to our interventions. Envi-
ronmental attitude is elicited using four items about pro-environmental behavior and
identity, e.g. “I do what is right for the environment, even when it costs more money or
takes more time”.22 Shower comfort is elicited using five items on how much subjects
enjoy showering, e.g. “I find it relaxing to take a shower”.23 We create indices for shower
comfort and environmental attitude, respectively, by taking the simple average of the in-
dividual’s responses to the relevant items (rated on a 4- or 5-point Likert scale) and then
normalizing to mean 0 and standard deviation 1. For perceived water consumption, we
asked subjects to estimate how many liters of water they typically use when taking a
shower. These estimates can then be directly compared to their actual water use as mea-
sured by the smart meter. Note that we refrained from eliciting subjects’ beliefs about
energy use and carbon emissions from water heating, because we did not want to raise
awareness about these issues and risk undermining the shower energy report treatments.

4.3. Sample characteristics and baseline behavior

All participants in the field experiment were students at universities in Bonn or Cologne
living in single-person dorm apartments, so our sample is rather homogeneous. From
the 318 participants represented in our main dataset, 203 lived in a dorm in Bonn and 115
lived in a dorm in Cologne. The share of females was 61 percent.24 Average age was 23.8
years (median 23 years), with students from all stages of their studies being represented
in our sample.

22The other items are “Environmental friendliness is part of my personal identity”, “How often do you
try to conserve water?”, and “How often do you try to conserve energy?”. We also include a set of questions
adapted from Nolan et al. (2008) in the baseline questionnaire.

23The other items are “I like showering”, “For me, taking a shower is just a means to an end”, “I like to
let my mind wander when I shower”, and “I try to shower as quickly as possible”.

24In 2016/17, the overall share of female students was 55% at the University of Bonn and 60% at the
University of Cologne, suggesting that there was no substantial gender-based selection into our study.
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Using the nine showers (the first being excluded) in the baseline stage, where only
the current water temperature was displayed, we can construct measures of each sub-
ject’s baseline resource use behavior. Table 1 presents descriptive statistics about baseline
energy and water use per shower, as well as shower duration (net of breaks), water tem-
perature, and flow rate. Shower duration is calculated from dividing water volume by
average flow rate. On average, showers in the baseline stage feature 7 minutes of water
flow, which amounts to 37.82 liters of water. On average, water is heated up to a tem-
perature of 36.16 degrees Celsius, resulting in energy use of 2.21 kWh per shower. There
is substantial variation across showers, as observed from the standard deviations and
different quantiles of the distributions. Water and energy consumption follow a right-
skewed distribution, thus the median energy use per shower (1.71 kWh) is substantially
lower than the mean. The average flow rate of 5.74 liters per minute is relatively low,
likely due to dorm infrastructure not being up to modern standards (flow rates of 10-12
liters per minute are more typical for German households).

4.4. Randomization checks

Our identification strategy relies on randomization producing treatment groups that are
comparable with regard to observable and unobservable subject characteristics. Although
it is naturally impossible to test the latter, we can check balance on observable baseline
characteristics. Panel A of Table 2 shows results from regressing various measures of sub-
jects’ baseline behavior on assigned treatment groups. The differences between groups
are very small and treatment assignment is insignificant for predicting any of the behav-
ioral measures, so randomization seems to have worked well. We also check for balance
along background characteristics and survey responses (see Table A1 in Appendix A),
and again find that treatment assignment is statistically insignificant. Importantly, self-
reported environmental attitude and shower comfort are comparable across groups.

4.5. Number of showers

On average, we observe 56.8 showers per individual over roughly 12 weeks of our study,
which corresponds to a frequency of about two showers every three days. However, the
net frequency (i.e. adjusting for absences) might be closer to one shower per day, as our
study period included a two weeks Christmas break. In Panel B of Table 2, we check
whether the number of showers per individual differs across experimental conditions,
but we find that treatments have no effect on the number of showers (p = 0.669). Hence,
our interventions do not seem to induce adjustments along the extensive margin, and we
do not need to worry about subjects compensating shorter showers with more showers,
substituting behavior to other facilities (e.g. wash basin, gym showers), or about them
compromising on basic hygiene needs. This means that we can make use of the full panel
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Table 2: Randomization checks and extensive margin responses

Panel A. Baseline averages by individual Panel B.

Energy use Volume Duration Temperature Flow rate Number
[kWh] [liter] [min] [Celsius] [l/min] of showers

SER group -0.066 -1.901 0.181 0.959 -0.435 3.393
(0.220) (3.468) (0.548) (0.608) (0.320) (5.226)

RTF group -0.111 -1.253 0.284 0.086 -0.124 -2.312
(0.215) (3.427) (0.597) (0.595) (0.370) (5.183)

DUAL group -0.057 -0.910 0.213 0.320 -0.165 3.224
(0.226) (3.575) (0.581) (0.560) (0.358) (5.861)

Constant 2.237 38.316 6.797 35.681 5.832 55.312
(0.163) (2.539) (0.411) (0.447) (0.240) (3.698)

Observations 316 316 316 314 316 318
R-squared 0.001 0.001 0.001 0.011 0.005 0.005
F-test: p-value 0.966 0.958 0.969 0.356 0.571 0.669

Robust standard errors in parentheses. The omitted category is the CON group. For two participants,
the device was not able to record information on baseline showers, but we could extract valid data on
showers in later stages; hence the number of observations is only 316 in most columns. In addition, two
participants with initially defective temperature sensors are excluded in column 4.

structure of our data and analyze (intensive-margin) water and energy conservation ef-
fects at the level of individual shower observations.

4.6. Presence of imperfect information and behavioral biases

Before moving on to the analysis of our experimental interventions, we provide some
descriptive evidence that individuals’ resource consumption in our setting may indeed
be subject to significant behavioral frictions due to imperfect information and limited
attention.

First, we make use of the pre-intervention questionnaire and compare subject’s percep-
tions of their own water use per shower to their actual baseline water use as measured
by the smart meter. Figure 5 shows that subjects’ estimates are all over the place, and
we cannot reject the null hypothesis that estimated and measured water use are in fact
uncorrelated (Pearson’s ρ = 0.08, p = 0.1825). This clearly demonstrates that subjects
were not well informed about their own behavioral outcomes prior to any intervention.25

Interestingly, however, the mean estimate across all subjects (39.8 liters) is close to the ac-
tual mean water use per shower in the baseline stage (37.8 liters). This is reminiscent
of a “wisdom of crowds” phenomenon and suggests that, on average, our interventions
should not work through debiasing beliefs about water use.

Furthermore, subjects are probably especially unaware of how much energy is con-

25We excluded 35 subjects who responded to the baseline survey more than 2 weeks after we distributed
shower meters, as they have likely reached the intervention stage by then. We also exclude 3 extreme outliers
with estimates above 200 liters. The corresponding regression results are presented in Appendix A Table A5.
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Figure 5: Pre-intervention awareness about water use per shower
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Notes. This figure compares estimated water use from the baseline survey with actual water use in the
baseline stage (showers 2 to 10), excluding late survey responders. 3 outliers with estimates between
200 and 600 liters are excluded. Point clouds consist of individual observations (hollow diamonds for
CON and RTF, solid circles for SER and DUAL) and lines represent separate regression fits for each
treatment group. The dashed line starting from the origin is the 45 degree line.

sumed, and hence CO2 emitted, in a typical shower. Attari et al. (2010) show that con-
sumers are in general highly prone to underestimating the amount of energy required for
heating up water (e.g., water boilers, dishwashers). We did not elicit beliefs about energy
intensity or carbon emissions in the original experimental sample, to avoid the risk of
undermining our shower energy report treatments. We did, however, elicit beliefs about
carbon emissions in a different sample of students living in the same dormitories three
years after the original study (n = 329). Without additional information, these students
underestimated the carbon impact of warm water use in the shower by a factor of 8 to
9 on average, even though the average guess for the amount of water used per shower
was fairly unbiased.26 Thus, there might be a large potential for encouraging energy
conservation through the information provided in shower energy reports.

Although anecdotally compelling, finding direct evidence for inattention or self-control
problems in the shower is more tricky. The closest we have is a baseline survey item
on how much subjects agree with the statement “I like to let my mind wander when I
shower.” on a five-point Likert scale. 59% of our sample states that they agree or strongly
agree to the statement (34% agree, 25% strongly agree), whereas only 18% of subjects dis-
agree or strongly disagree (13% disagree, 5% strongly disagree), indicating that a lack of
focus while showering is prevalent. We further find that subjects’ response to this item is
significantly correlated with their baseline energy use in the shower (Pearson’s ρ = 0.17,

26On average, students estimated that a typical shower causes emissions of 91.3 grams of CO2 (median
35 grams). The actual emissions amount based on the data from our experiment is about 800 grams. The
average guess for amount of water used per shower was 40.4 liters. The survey was conducted in Nov/Dec
2019 among 329 residents of the exact same student dorms in which the original study took place in 2016/17.
Only 4 surveyees had already participated in the original study. For more details, see Appendix E.
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p = 0.003). In fact, it is the single most predictive item for baseline consumption in the
entire survey. Our interventions could thus help reduce energy use by reminding subjects
not to lose track of time completely under the shower.

5. Estimation approach

Next, we describe our strategy for estimating the effects of our interventions on resource
use in the shower. The empirical results will be presented in the following section.

5.1. Basic estimation strategy

To formally estimate the effects of different intervention regimes, we exploit the staggered
introduction of real-time feedback and shower energy reports in the experimental design,
which gives us a double-layered difference-in-differences setup. The differential changes
in consumption behavior across conditions from baseline stage to intervention stage 1
identify the causal effect of real-time feedback (RTF/DUAL versus CON/SER), and the
additional changes from intervention stage 1 to stage 2 identify the causal effect of shower
energy reports, both in isolation (SER versus CON) and in conjunction with real-time
feedback (DUAL versus RTF).

For estimating the effect of real-time feedback in isolation, the most straightforward
and easy-to-interpret approach is to simply compare subjects in the RTF and CON groups
over the entire experimental period, as these subjects never received shower energy re-
ports in any form. We do so by estimating the equation

yit = αi + β0 INit + β1 INit × TR
i + ε it , (9)

where the outcome variable yit is energy use (water use) by individual i for shower num-
ber t, αi is the individual fixed effect, INit is an indicator that takes the value 1 if obser-
vation it falls into the intervention stage (i.e. t > 10), and TR

i is an indicator for being
assigned to treatment group RTF. The coefficient of interest is β1, which corresponds
to the average treatment effect of real-time feedback (in isolation) over the entire three
months of the study. In this specification, we do not have to deal with issues relating to
non-compliance and timing of reports, though it comes at the cost of disregarding half of
the sample in intervention stage 1.

To make use of the full sample when estimating the effect of real-time feedback, we
can compare differential changes in consumption behavior from baseline stage to inter-
vention stage 1 for the pooled RTF/DUAL group versus the pooled CON/SER group,
because real-time feedback had already phased in but shower energy reports had not.
For intervention stage 2, when shower energy reports started flying in, we split up the
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pooled groups again, so the regression equation is

yit = αi + INit ×
(

β0 + β1TR/D
i

)
+ IN s2

it ×
(

γ0 + γ1TR/D
i + γ2TS

i + γ3TD
i

)
+ ε it . (10)

INit is again the indicator for the intervention stage, and IN s2
it is an indicator for showers

that fall into intervention stage 2 (post-report). TR/D
i , TD

i and TS
i are treatment group

indicators, where superscript R/D denotes the combined groups RTF and DUAL, super-
script D denotes the DUAL group, and superscript S denotes the SER group only. As INit

remains switched on for the entire intervention period, IN s2
it comes on top of that, so all

γ-parameters need to be interpreted as incremental changes from intervention stage 1 to
intervention stage 2.

Equation (10) incidentally also includes estimates for the effect of shower energy re-
ports (γ2 and γ3), but one concern here is that they do not control for differences between
RTF and DUAL or between CON and SER in the first intervention stage. Although the
pooled groups in intervention stage 1 should behave the same before reports are sent out,
some random differences are likely to exist, and these would propagate to the estimates
of γ2 and γ3. For estimating the effects of shower energy reports we therefore prefer
the more flexible model in which treatment groups are considered separately from the
beginning of the intervention stage:

yit = αi + INit ×
(

β0 + β1TR/D
i + β2TS

i + β3TD
i

)
+ IN s2

it ×
(

γ0 + γ1TR/D
i + γ2TS

i + γ3TD
i

)
+ ε it . (11)

Given the model formulation, we can interpret β1 as treatment effect of real-time feed-
back on energy (water) use per shower in the first stage of the study, while γ1 is the
change in treatment effect in the second stage. γ2 is the treatment effect of shower en-
ergy reports in isolation, and γ3 is the additional effect of adding shower energy reports
to real-time feedback. The relevant comparisons of interests are between SER and CON
on the one hand — for the effect of reports without real-time feedback — and between
DUAL and RTF on the other hand — for the marginal effect of adding reports to reinforce
the already existing real-time feedback.

5.2. Estimating treatment effects on the treated

One complication in estimating the effect of shower energy reports is that 28% of sub-
jects did not succeed in uploading any data to the Amphiro smartphone app before we
sent out the reports, mostly due to technical problems (e.g., Bluetooth connection fail-
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ure).27 For these “non-uploaders”, we were unable to provide informative shower en-
ergy reports. As the emails were generated automatically, non-uploaders in SER and
DUAL groups received report templates with blanks where it was supposed to show
statistics on resource use and environmental impacts. Effectively, this leads to imperfect
treatment take-up of shower energy reports, although being less the result of deliberate
non-compliance than unfortunate circumstances. For participants in the CON and RTF
groups, it is inconsequential whether they successfully uploaded data.

One possible approach to estimate treatment effects under imperfect treatment take-
up is to run an intention-to-treat (ITT) analysis, which ignores that some participants
did not actually receive informative shower energy reports and simply uses treatment
assignment to estimate treatment effects. However, this is not very appealing in our
context, as failure of information provision due to technical problems is in principle an
avoidable problem. The more policy-relevant treatment effect is the effect of delivering
informative shower energy reports. Therefore, our preferred approach is to estimate the
treatment effect on the treated (TOT), i.e., on subjects who managed to upload data and
thus received actual information through the shower energy reports.

The first way in which we estimate the TOT is by simply comparing only the uploaders
in SER and DUAL groups with subjects in the CON and RTF groups. The usual concern
at this point would be that treatment take-up is not random. Fortunately, our setting
limits potential endogeneity concerns for three reasons. First, we include individual fixed
effects, so our estimates would still be unbiased if differences between uploaders and
non-uploaders do not interact with the treatment effect. Second, subjects only knew that
they should use the smartphone app to upload data, but we did not announce that we
would use this data to construct shower energy reports. Thirdly, the main cause for non-
compliance is not the lack of willingness to use the smartphone app, but unexpected
technical failure, which is unlikely to be selected on the trend. To alleviate the most
blatant endogeneity issue, we also exclude non-uploaders in the CON and RTF groups
who did not report any technical problems.

The second way in which we estimate the TOT is by using random treatment assign-
ment as instrument for actual take-up.28 This can be shown to identify the so-called local
average treatment effect (LATE), i.e., the average treatment effect for the sub-population
of compliers, in our case the uploaders (Imbens and Angrist, 1994).29 Compared to the
“uploaders-only”-approach, the instrumental variables approach is always consistent,

27Out of the 90 non-uploaders in our estimation sample, 63 have explicitly contacted us for technical
problems encountered during their upload attempts.

28To do this, we create new treatment indicators for the DUAL and SER groups that took the value 1 for
showers in IN stage 2 by subjects who were assigned to the respective group and who uploaded data through
the smartphone app that we could use to construct their shower energy reports. The previously defined ITT
indicators are then used as instruments for these new indicators for receiving actual shower energy reports.

29This identification result holds under the condition that there are no “defiers”, subjects who always do
the opposite of what they are prescribed. This monotonicity condition holds by design in our study, because
we control the eligibility of shower energy report treatment, so any participant in the sample can be classified
either as complier or as never taker in the LATE framework.
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Figure 6: Descriptive evidence on energy conservation effects
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Notes. The bars represent changes in average energy use per shower compared to the baseline period.
The error whiskers show standard errors of the mean. Non-uploaders in SER and DUAL as well as
non-uploaders without technical problems in CON and RTF are excluded.

but potentially inefficient. We will report the results from both TOT-approaches, but the
estimates are very similar, suggesting that endogeneity is not a large issue in our setting.

6. Empirical results

6.1. Main results

First, we present descriptive evidence on the conservation effects of our interventions.
Figure 6 shows subjects’ average changes in energy consumption per shower in interven-
tion stage 1 (pre-report) and intervention stage 2 (post-report) compared to the baseline
period. The differences-in-differences across treatment groups then correspond to the
average treatment effects. In order to show the TOT for shower energy reports, we use
the uploaders-only approach of excluding non-compliers in SER and DUAL as well as
non-compliers without technical problems in CON and RTF. The graph essentially sum-
marizes our main results in eight bars.

The four bars to the left of the dashed vertical line represent the change in energy
use per shower in intervention stage 1 compared to the baseline stage. We can see that
relative to subjects in the CON and SER groups, subjects in the RTF and DUAL groups
with real-time feedback reduced their energy consumption drastically, by almost 0.4 kWh
per shower. Recall that there were no shower energy reports yet at this point.
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The four bars to the right of the dashed vertical line represent the change in energy use
per shower from baseline stage to intervention stage 2, after shower energy reports were
sent out. The first observation is that average energy use in the control group further
increased, which could be driven by weather effects, by pending exams leaving students
stressed and in need for a long and warm shower, or by Hawthorne effects that decrease
over time (Tiefenbeck, 2016).30 The second observation is that the RTF group and the
CON group followed a more or less parallel trend from intervention stage 1 to stage
2, hence the effect of real-time feedback in isolation remains nearly constant at around
0.4 kWh per shower. The third observation is that providing shower energy reports in
isolation does not seem to result in effective behavioral change: energy consumption of
subjects in the SER group followed the CON group in close synchronization. In light of
this, the fourth and final observation is particularly striking: shower energy reports are
highly effective when combined with real-time feedback. In fact, subjects in the DUAL
group are the only ones to defy the general upward trend and reduce their consumption
considerably compared to subjects in the RTF group.

Our descriptive results presented in Figure 6 are confirmed by formal empirical esti-
mates based on the empirical strategy outlined in the previous section. We first focus
on estimating the effect of real-time feedback in isolation, before turning to the effect of
shower energy reports, for which we need to account for imperfect compliance.

The cleanest way to estimate the effect of real-time feedback is to only compare subjects
in the RTF and CON groups over the entire intervention period, by estimating equation
(9). Table 3 columns 1 and 2 show that real-time feedback in isolation reduces resource
use by 0.40 kWh of energy and 6.3 liters of water per shower compared to the CON
group, which corresponds to about 17-18% of baseline use. Columns 3 and 4 present
the results from estimating equation (10) on the full sample, using treatment assignment
as the independent variable. Subjects in RTF and DUAL conserved about 0.31 kWh of
energy and 4.6 liters of water per shower in intervention stage 1, compared to subjects
in CON and SER. These are slightly lower than the estimates in columns 1 and 2, partly
due to the inclusion of the DUAL and SER groups, partly due to the conservation effect
increasing in intervention stage 2, albeit statistically insignficantly.

Result 1. Real-time feedback through the smart meter display led to a reduction in energy (water)
consumption by around 0.3-0.4 kWh (4.6-6.3 liters) or 14-18% per shower.

With the advent of shower energy reports in intervention stage 2, we split the pairs
up into the four separate groups again, which incidentally gives us ITT estimates for the
effect of shower energy reports; but as discussed earlier, this misses the policy-relevant
effect of actually receiving information through shower energy reports. The ITT estimates
for the effect of shower energy reports are neither significant for SER nor DUAL, but the

30While the baseline phase fell mainly into an unusually warm and dry December, the main intervention
months of January and February saw much higher precipitation. Exam periods at the universities began in
mid-February.
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Table 3: Effect of real-time feedback and ITT estimates
only RTF & CON Intention to treat

(1) (2) (3) (4)
Energy Water Energy Water
[kWh] [liter] [kWh] [liter]

Intervention 0.283∗∗∗ 4.453∗∗∗ 0.179∗∗∗ 2.915∗∗∗

(0.104) (1.597) (0.067) (1.049)

Intervention × RTF/DUAL -0.397∗∗∗ -6.346∗∗∗ -0.309∗∗∗ -4.628∗∗∗

(0.125) (1.926) (0.087) (1.387)

IN stage 2 0.187∗ 3.157∗∗

(0.097) (1.441)

IN stage 2 × RTF/DUAL -0.071 -1.745
(0.118) (1.854)

IN stage 2 × SER 0.038 0.147
(0.130) (2.006)

IN stage 2 × DUAL -0.133 -2.302
(0.093) (1.555)

Individual fixed effects yes yes yes yes

Clusters 156 156 318 318
Observations 8446 8446 17942 17942
R2 0.379 0.375 0.403 0.404

Columns (1) and (2) only include individuals in the RTF or CON group. Standard
errors in parentheses are clustered at the individual level. Permutation-based in-
ference for the main coefficients of interest is depicted in Appendix Figure A4.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

point estimates for the DUAL group look quantitatively relevant.
Therefore, we move on to the TOT analyses described in Section 5 to estimate the effect

of actually receiving information through shower energy reports on conservation behav-
ior. In Table 4, columns 1 and 2 show the estimates obtained by using the uploader-only
approach, in which we estimate regression equation (11) on the restricted sample that
excludes non-uploaders in SER and DUAL, as well as non-uploaders in RTF and CON
without technical issues. Columns 3 and 4 display the LATE estimates, for which we use
random treatment assignment to the SER or DUAL group as instruments for actually up-
loading data and receiving informative shower energy reports. While the LATE approach
is consistent even under strong endogeneity of treatment take-up, the uploaders-only ap-
proach is potentially more efficient and still consistent if actual take-up (i.e. uploading
data) is as good as random conditional on being willing to upload data.

Both approaches produce nearly identical results, suggesting that endogeneity of treat-
ment take-up is not a major issue. The conservation effect of real-time feedback in iso-
lation is also similar to the ones reported in Table 3. The results show that, contrary to
our prediction, shower energy reports had no significant conservation effect in the SER
group, and the point estimates even run in the opposite direction. While the null effect
is not very tightly estimated, we can rule out energy use reductions of more than 7.5%
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Table 4: Treatment on the treated (TOT) estimates
Uploaders-only LATE

(1) (2) (3) (4)
Energy Water Energy Water
[kWh] [liter] [kWh] [liter]

Intervention 0.179 2.628 0.172∗ 2.533
(0.111) (1.702) (0.102) (1.565)

Intervention × RTF/DUAL -0.388∗∗∗ -5.753∗∗∗ -0.365∗∗∗ -5.481∗∗∗

(0.134) (2.124) (0.125) (1.981)

Intervention × SER 0.027 0.837 0.016 0.733
(0.154) (2.415) (0.134) (2.082)

Intervention × DUAL 0.035 0.576 0.109 2.159
(0.113) (1.860) (0.107) (1.751)

IN stage 2 0.150 2.770∗ 0.189∗ 3.273∗∗

(0.093) (1.422) (0.098) (1.460)

IN stage 2 × RTF/DUAL -0.021 -1.142 -0.053 -1.463
(0.118) (1.913) (0.120) (1.908)

IN stage 2 × SER 0.090 0.714 0.042 -0.084
(0.137) (2.168) (0.162) (2.510)

IN stage 2 × DUAL -0.222∗∗ -3.702∗∗ -0.215∗ -3.836∗

(0.100) (1.756) (0.116) (2.037)

Individual fixed effects yes yes yes yes

Clusters 261 261 318 318
Observations 14712 14712 17942 17942
R2 0.413 0.415 0.004 0.004

In columns (1) and (2), we exclude all non-uploaders in SER and DUAL as well
as all non-uploaders in RTF and CON who did not report a technical problem. In
columns (3) and (4), we use treatment assignment to SER and DUAL, respectively,
interacted with the IN stage 2 indicator as instrument for receiving informative
shower energy reports. The reported R2 in Columns (3) and (4) is the within R2.
Standard errors in parentheses are clustered at the individual level. Permutation-
based inference for the main coefficients of interest is depicted in Figure A6.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

per shower with 90% confidence in the (less precise) LATE specification. Furthermore,
we can reject the hypothesis that shower energy reports in isolation were as effective as
real-time feedback in isolation (p < 0.003 in all specifications).

Result 2. Shower energy reports in isolation did not induce any significant reduction in energy
and water consumption per shower.

Statistical imprecision aside, this does not imply that the shower energy reports are
generally ineffective in our setting, but only when administered in isolation to the SER
group. In stark contrast, we find that subjects in the DUAL group further reduced energy
use by around 0.22 kWh (water use by around 3.8 liters) per shower in intervention stage
2, which corresponds to another 10 percentage points reduction from baseline consump-
tion. This means that adding shower energy reports boosted the effectiveness of real-time
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feedback by more than 50%. The difference between energy conservation effects in the
DUAL group and the SER group is weakly significant in the uploaders-only specification
(p = 0.067). Unfortunately, we do not have enough power to detect this differential ef-
fect with larger statistical certainty, due to the technical issues with the smartphone app.
Our results are, however, fully robust to randomization-based inference methods (Young,
2019), as presented in Appendix Figures A4 and A6.

Result 3. Combining real-time feedback with shower energy reports further reduced energy (wa-
ter) use by around 0.22 kWh (3.8 liters) per shower and thus boosted the conservation effect of
real-time feedback in isolation by more than 50%.

This contrast between the effect of shower energy reports with and without real-time
feedback is all the more remarkable given that subjects in DUAL had already cut their
energy consumption per shower significantly in response to real-time feedback and thus
had less room for further behavioral adjustments, which is exactly one of the opposing ef-
fects against complementarity we described in the theoretical framework. Overall, there
seems to be a strong complementarity between real-time feedback and shower energy
reports. This is consistent with our theoretical framework, which shows that in the pres-
ence of multiple sources of bias to resource conservation, behavioral interventions may
need to overcome all significant sources of bias simultaneously in order to unfold their
full effect. While shower energy reports provide information about resource use and as-
sociated environmental impacts, the lack of salience in resource consumption is likely to
hinder conservation efforts. Real-time feedback through smart meters could thus turn
environmental considerations into action by putting them into focus while showering.
We will analyze the underlying mechanisms more closely in Section 7.

6.2. Treatment effect dynamics

We now investigate whether the conservation effects of real-time feedback and shower
energy reports remain stable over the three-month period of our study. The previous
subsection already documents that the effect of real-time feedback does not drop from
the first to the second intervention stage. Therefore, we now focus on the 5-6 weeks
period of IN stage 2. To estimate dynamic effects, we extend the empirical model for
average treatment effects i.e. equation (11), by interacting with a time variable Zi:

yit = αi + INit ×
(

β0 + β1TR/D
i + β2TH

i + β3TD
i

)
+ IN s2

it ×
(

γ0 + γ1TR/D
i + γ2TH

i + γ3TD
i

)
+ IN s2

it × Zi ×
(

δ0 + δ1TR/D
i + δ2TH

i + δ3TD
i

)
+ ε it . (12)

We explore two variants of Zi. In the first variant, we look additionally at energy use per
shower after the second shower energy report was sent about two weeks after the first re-
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Table 5: Treatment effect dynamics
Zi = I{post 2nd report} Zi = # weeks after 1st report

(1) (2) (3) (4)
Uploaders LATE Uploaders LATE

IN stage 2 0.139 0.176 0.065 0.109
(0.103) (0.110) (0.124) (0.127)

IN stage 2 × RTF/DUAL -0.027 -0.053 0.047 0.019
(0.128) (0.134) (0.156) (0.159)

IN stage 2 × SER 0.092 0.048 0.198 0.174
(0.148) (0.169) (0.181) (0.202)

IN stage 2 × DUAL -0.068 -0.041 0.030 0.075
(0.123) (0.135) (0.166) (0.177)

IN stage 2 ×Zi 0.019 0.022 0.032 0.029
(0.093) (0.090) (0.027) (0.026)

IN stage 2 × RTF/DUAL ×Zi 0.012 0.000 -0.026 -0.026
(0.123) (0.119) (0.037) (0.035)

IN stage 2 × SER ×Zi -0.002 -0.010 -0.041 -0.051
(0.126) (0.136) (0.042) (0.047)

IN stage 2 × DUAL ×Zi -0.279 -0.316 -0.099 -0.114∗

(0.209) (0.215) (0.064) (0.067)

Individual fixed effects yes yes yes yes

Clusters 261 318 261 318
Observations 14712 17942 14712 17942
R2 0.413 0.005 0.413 0.005

The results are obtained by estimating equation (12). The full table with all the coef-
ficients is presented in Appendix A Table A3. In columns (1) and (3), we exclude all
non-uploaders in SER and DUAL, as well as all non-uploaders in RTF and CON who did
not report a technical problem. In columns (2) and (4), we use treatment assignment to
SER and DUAL, respectively, interacted with the IN stage 2 indicator as instrument for
receiving informative shower energy reports. The reported R2 in Columns (2) and (4) is
the within R2. Standard errors in parentheses are clustered at the individual level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

port. In the second variant, we interact each treatment group indicator with a linear time
trend, so the δ coefficients can be interpreted as weekly depreciation (or appreciation)
rate of energy conservation effects by intervention regime.

Table 5 shows that the effect of shower energy reports in the DUAL group seems to
gradually unfold over time. In fact, the reduction in energy use is not yet statistically
significant in the first two weeks of intervention stage 2; columns (1) and (2) show that
the average conservation effect is driven largely by the final 3-4 weeks of the study, i.e.
after the second reports were sent out. However, this does not seem stem from a discrete
jump, but rather from a continuous trend. In columns (3) and (4), we estimate that the
conservation effect per shower in the DUAL group increases by a rate of around 0.1 kWh
every week. We should note these changes over time are mostly statistically insignificant
and therefore to be interpreted with caution. Shower energy reports in isolation (SER
group) show no signs of any dynamic pattern; the coefficient is identical before and after
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the second report. The effect of real-time feedback in isolation also appears to stay con-
stant in intervention stage 2, overall showing no signs of weakening within the 3 months
of our experiment.31

There are several potential explanations for the pattern of increasing behavioral re-
sponses over time that we observe in the DUAL group. For one, subjects may have
skimmed through the email reports initially and only looked at it more carefully later.
What speaks against this explanation is that most of the subjects responded to the at-
tached mini-surveys within few days after we sent out the email and that the overall re-
sponse rate was much higher in the first than in the second report.32 Nevertheless, it may
well be possible that the apparent increase over time is at least partly due to lower mea-
surement error of when subjects where actually treated. Also, the social comparison in
the second report might have provided additional motivation, which then interacted with
real-time feedback, as would be predicted by the theoretical framework. A third explana-
tion is that subjects may have required some time to try out and discover new strategies
for further reducing energy use. This experimentation channel seems consistent with
the finding that subjects in the DUAL group do not conserve energy by reducing their
shower duration in the second intervention stage, but rather through adjusting flow rate
and water temperature. Importantly, the results speak against pure Hawthorne effects or
short-lived attention boosts, as these would rather predict an “action-and-backsliding”
pattern (Allcott and Rogers, 2014; Schwartz and Loewenstein, 2017).

6.3. Heterogeneous treatment effects

Particular subgroups of individuals may have responded more strongly to our interven-
tions than others. Previous studies often find that households or individuals with high
baseline consumption tend to respond more strongly to policy interventions targeted at
their conservation behavior (e.g. Allcott 2011; Ferraro and Price 2013; Tiefenbeck et al.
2018). For example, Allcott (2011) reports that Opower home energy reports achieved
virtually no savings for households in the bottom decile of baseline energy use, whereas
the treatment effect for top-decile users was 6.3% savings. Tiefenbeck et al. (2018) esti-
mate that real-time feedback has an additional conservation effect of 0.31 kWh for a 1
kWh increase in baseline energy use per shower. Policy makers concerned about cost-
effectiveness can therefore purposefully target high-baseline users.

To estimate heterogeneity along the dimension of baseline energy use, we extend the

31This is consistent with other studies using the Amphiros smart meter. For example, Agarwal et al. (2020)
find stable effects for an intervention duration of up to 6 months, as well as evidence for strong persistence
several months after the intervention.

32In fact, 53% (40%) of all subjects in DUAL responded within one day of receiving the first (second)
report, and 80% (48%) did so within one week. Overall response rate was 81% (48%).
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Table 6: Treatment effect heterogeneity
(1) (2)

continuous I{> median}

... ... ...

Intervention × RTF/DUAL -0.403∗∗∗ -0.254∗∗∗

(0.127) (0.096)

IN stage 2 × RTF/DUAL -0.014 0.171∗

(0.117) (0.102)

IN stage 2 × SER 0.095 0.267∗∗

(0.139) (0.121)

IN stage 2 × DUAL -0.239∗∗ -0.156∗

(0.102) (0.093)
... ... ...

Intervention × RTF/DUAL × Baseline energy use -0.164 -0.247
(0.119) (0.266)

IN stage 2 × RTF/DUAL × Baseline energy use -0.094 -0.385∗

(0.101) (0.228)

IN stage 2 × SER × Baseline energy use -0.021 -0.368
(0.124) (0.268)

IN stage 2 × DUAL × Baseline energy use -0.097 -0.166
(0.092) (0.203)

Other treatment variables yes yes
Individual fixed effects yes yes

Observations 14675 14675
R2 0.413 0.413

The coefficients are obtained by estimating equation (13). For visual ease, not all
coefficient estimates are presented. The full table with is can be found in Appendix
A Table A4. All non-uploaders in SER and DUAL as well as all non-uploaders in RTF
and CON who did not report a technical problem are excluded. Baseline energy use
is demeaned, so main effects represent TEs at the sample mean. Standard errors in
parentheses are clustered at the individual level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

basic statistical model in equation (11) with interaction terms:

yit = αi + INit ×
(

β0 + β1TR/D
i + β2TH

i + β3TD
i

)
+ INit × Xi ×

(
λ0 + λ1TR/D

i + λ2TH
i + λ3TD

i

)
+ IN s2

it ×
(

γ0 + γ1TR/D
i + γ2TH

i + γ3TD
i

)
+ IN s2

it × Xi ×
(

µ0 + µ1TR/D
i + µ2TH

i + µ3TD
i

)
+ ε it (13)

where variable Xi is a measure of subjects’ baseline energy consumption per shower. As a
measure of baseline consumption, we use a subject’s average energy use in the 9 baseline
showers (the first shower is excluded), re-centered around the sample mean (2.21 kWh)
so that intercept terms can be interpreted as effects at the mean. In addition, we report a
specification where Xi is an above-median indicator.

Table 6 presents TOT estimates of heterogeneous effects along baseline energy use.
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Note that we only show the main coefficients of interests here to keep the table visually
tractable, but the full set of coefficients can be found in Table A4 in the Appendix. Con-
sistent with previous literature, we find that the effect of real-time feedback in isolation
increases with baseline use. In intervention stage 2, compounding the effects over both
periods (λ̂1 + µ̂1), subjects with 1 kWh higher baseline reduce their energy use per shower
by an additional 0.26 kWh (p = 0.069) on average. Above-median baseline users (mean
3.30 kWh) save 0.63 kWh (p = 0.039) of energy more per shower compared to subjects
with below-median baseline use (mean 1.17 kWh). This is consistent with the notion that
real-time feedback reduces “slack” in resource use, but does not lead subjects to compro-
mise on basic needs. It also appears that providing information through shower energy
reports in the DUAL condition induces about double the conservation effect for above-
median users (γ̂3 + µ̂3 = −0.322 kWh, p = 0.075), compared to below-median baseline
users (γ̂3=−0.156 kWh, p = 0.096) in intervention stage 2, although the difference is not
significant (p = 0.414). Shower energy reports in isolation (SER group) are neither effec-
tive for low- nor high-baseline users. In fact, it seems that subjects with below-median
baseline use tend to increase their energy use in intervention stage 2 (p = 0.028).

7. Underlying mechanisms

The empirical results show that, in our setting, shower energy reports seem to be inef-
fective in isolation, but induce large and significant conservation effects when combined
with real-time feedback, which suggests that our interventions are strong complements.
Through the lens of the theoretical framework in section 2, the most plausible mecha-
nism for this finding is that the two interventions operated through complementary pol-
icy levers. Shower energy reports may have increased knowledge about environmental
impacts of warm water use in the shower, but this in itself may not achieve reductions in
energy consumption if subjects still face bias due to limited attention or self-control prob-
lems. Real-time feedback could help mitigating these problems and thus enable knowl-
edge gains to translate into conservation behavior. If, on the other hand, shower energy
reports and real-time feedback both operated through the same policy levers, we would
generally not expect complementarities unless there is some type of crowding in effect,
e.g. if the combined intervention leads to positive attention or motivation spillovers. In
this section, we conduct a number of analyses to explore the mechanisms underlying our
main empirical results.

7.1. Awareness about resource intensity and environmental impacts

A crucial element of both interventions in our study is that they can enable learning about
the outcomes of one’s behavior. Real-time feedback through the smart meter provides
immediate display of water use (and temperature) for the current shower. Shower en-

35



ergy reports also contain information of individuals’ entire history of water (and energy)
use per shower since the start of the study, with the difference that it comes in retro-
spect. Hence, a first manipulation check for our interventions is to analyze their effect on
subjects’ awareness about their own water use per shower.

In the post-intervention survey at the end of the study, we asked subjects to again
estimate the amount of water they typically use per shower. Recall that prior to the inter-
ventions, subjects’ assessments were virtually uncorrelated with their actual water use,
with low-baseline users overestimating and high-baseline users underestimating their
water use (see Figure 5). The picture changes completely after the interventions. Fig-
ure 7 plots individuals’ post-intervention estimates as a function of their average water
use per shower as measured by the smart meter. The corresponding regression table A5
is presented in Appendix A. Whereas subjects in the CON group remain as ignorant as
before, subjects who received real-time feedback (RTF and DUAL group) are now able
to estimate their water use almost without bias, so the fitted regression lines are close to
the identity line. While the slope looks slightly flatter for the DUAL group compared to
the RTF group, the difference is not statistically significant. Importantly, shower energy
reports in isolation (SER group) also induce strong learning effects about water use, as
estimated water use increases visibly in actual water use per shower (TOT slope 0.57),
and significantly more strongly than in the CON group (p = 0.025). We cannot reject that
learning through shower energy reports is more effective with real-time feedback than
without (p = 0.497). While these analyses focus on the bias of subjects’ estimates (con-
ditional on actual water use), we obtain similar results when we look at the magnitude
of absolute estimation errors across groups. Table A6 in Appendix A shows that subjects
in the three treated groups are on average about 27-30 percentage points closer to their
actual water use than subjects in the CON group, and notably, the effect is virtually the
same for SER, RTF, and DUAL groups.

Taken together, the results show that subjects in our study did engage with the inter-
ventions and thereby became more aware of their own water use behavior in the shower.
However, belief updates about water use per se are unlikely to drive our main results.
First, subjects’ prior beliefs about water use were by and large unbiased on average. Sec-
ond, although the posterior beliefs in the SER group do not become quite as accurate as in
the RTF group, we would have expected at least some conservation effect through shower
energy reports in isolation if belief updating about water use was the main mechanisms.
This points to the importance of the immediacy and salience of the real-time feedback in-
tervention, which can help subjects track their water use while showering and overcome
inattention problems.

In contrast to real-time feedback, shower energy reports did not only contain informa-
tion about water use, but also on energy use and environmental impacts in terms of CO2

emissions. This can explain why subjects in the DUAL group reduced their energy con-
sumption even further after receiving the reports. As a manipulation check for whether
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Figure 7: Post-intervention awareness about water use per shower
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(b) TOT (uploaders only)

0
40

80
12

0
16

0

Es
tim

at
ed

 w
at

er
 u

se
 in

 li
te

rs
0 40 80 120 160

Actual water use (IN stage 2 average) in liters

CON HER
RTF DUAL

Notes. Both graphs compare subject’s water use estimates in the final questionnaire with their actual
water use in intervention stage 2. Graph (b) only uses the subsample defined for the uploaders-only
approach. 7 outliers with estimates between 200 and 500 liters are excluded. Point clouds consist of
individual observations (hollow diamonds for CON and RTF, solid circles for SER and DUAL) and
lines represent separate regression fits for each treatment group. The dashed line starting at the origin
is the 45 degree line.

subjects responded to this information, we conducted a supplementary survey in a new
sample of 329 students at the end of 2019 (see also Section 4.6). After eliciting prior be-
liefs about water consumption and CO2 emissions per shower, we randomly presented
one fact sheet (out of three) to each surveyee, mimicking the basic informational con-
tent of our original interventions. The “CON sheet” only reported the average water
temperature in the shower, the “RTF sheet” also included the average amount of water
used, and the “SER sheet” further added information on energy use and CO2 emissions.
After presenting the fact sheets, we elicited posterior beliefs as well as conservation in-
tentions. We find that the SER sheet induces surveyees to drastically adjust their beliefs
about CO2 emissions upwards compared to the CON or RTF sheets (p < 0.001). This
experimentally-induced belief update is further associated with a 0.24 standard devia-
tions (p = 0.003) increase in self-stated intention to take shorter showers in the future,
compared to the RTF sheet group. For further details, see Appendix E.

Shower energy reports seem to induce knowledge gains about the environmental im-
pact of showering, yet they are only associated with significant conservation effects when
combined with real-time feedback. One of the key insights of our theoretical framework
is that if multiple sources of bias play a role, different behavioral interventions can be-
come complements, because a single narrowly-targeted intervention is undermined by
the presence of other behavioral biases. Hence, our empirical results suggest that, in the
absence of real-time feedback, additional barriers like limited attention or self-control
problems have prevented knowledge gains and good intentions from translating into
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actual behavior.

7.2. Engagement with shower energy reports

One potential alternative channel is differential treatment engagement, in the sense that
subjects in different treatment groups may pay more or less attention to the interven-
tions per se. For example, if previous exposure to real-time feedback induced subjects in
the DUAL group to read shower energy reports more carefully than subjects in the SER
group, this might lead to complementarity between the two interventions through some
type of crowding in or foot-in-the-door effect as described in the theoretical framework.
The previous subsection shows that shower energy reports did induce significant learn-
ing effects about water use in the shower also in the SER group. Furthermore, we can also
directly assess whether the level of scrutiny was similar in the SER and the DUAL group.
To do so, we make use of the mini-surveys that were attached to each of the two report
emails. As described before, each email included a link to a survey in which we asked
subjects to give an estimate of the amount of water they use in a typical shower. The
survey link was at the bottom of the email, so subjects had to scroll through all the statis-
tics on resource use and CO2 emissions before clicking on it. We therefore use survey
responses as proxy for the level of engagement with the feedback email.

Table A7 in Appendix A shows response rates by treatment group in the uploaders-
only sample. Recall that subjects in the RTF and CON groups received Placebo emails
containing a link to the same mini-survey. The overall response rates of uploaders was
87% for the first email and 71% for the second email. The share of respondents in the
SER group was 8.4%p lower than in the DUAL group for the first email (p = 0.203),
and 9.4%p higher for the second mail (p = 0.308); both differences are statistically in-
significant. Apart from the extensive margin, Table A7 further shows subjects’ relative
estimation error by treatment group, defined as percent deviation of estimated water use
in the mini-survey from the actual water use per shower.33 Smaller estimation errors are
an indication of subjects paying closer attention while reading the reports. Respondents
in the SER group were only 10% off on average, and they actually gave more precise es-
timates than respondents in the DUAL group (p = 0.039), who were 21% off on average.
Notwithstanding, both groups still outperform the CON group (49% off on average) by
far. Overall, we find no evidence that uploaders in the DUAL group studied reports more
carefully than uploaders in SER group.

As an additional plausibility check that it is not lower level of engagement with the
shower energy reports that prevented energy conservation in the SER group, we look at
whether subjects who studied the reports more closely also engaged more strongly in
conservation actions. For this purpose, we again make use of subjects’ water use assess-
ments in the mini-surveys and regress energy use per shower on several new shower

33As measure for actual water use per shower, we take the number that was calculated for each subject
when sending out the shower energy reports.
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Figure 9: Effects for different levels of engagement with shower energy reports
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Notes. The points represent estimated regression coefficients for the effects of shower energy reports in
intervention stage 2, where treatment engagement status is instrumented with treatment assignment
(with the exception of ITT). Lines represent 90% confidence intervals. “LATE, survey all” includes all
subjects who uploaded data and clicked on the mini survey. The labels “p25+/p25+/p75+” denote
the groups of subjects whose estimate precision, defined as distance between estimated and measured
water use per shower, was above the 25th, 50th, or 75th percentile of all subjects, respectively.

energy report treatment indicators that increase in their level of strictness. Specifically,
we define an indicator for whether subjects uploaded data and clicked on the mini sur-
vey in their report, and additional indicators for whether a subject’s estimate precision,
defined as distance between estimated and measured water use per shower, was above
the 25th, 50th, or 75th percentile of all subjects, respectively. To avoid the endogeneity
issue at hand, we use treatment assignment as instrument for level of engagement with
reports. Figure 9 plots the coefficients and confidence intervals for the effect of shower
energy reports in SER and DUAL group, respectively. The estimated conservation effect
in the DUAL group increases monotonically with the strictness of our compliance def-
inition, reaching almost 0.5 kWh for the strictest indicator. In contrast, even the most
studious subjects in the SER group did not reduce their energy use in response to the
reports, which corroborates our interpretation that some source of bias such as limited
attention may have prevented shower energy reports in isolation from inducing behav-
ioral change.

7.3. Other potential mechanisms

There are a number of alternative channels through which our interventions could affect
conservation behavior. For one, they could trigger Hawthorne effects, but recall that also
subjects in the control group received a smart meter and placebo emails reminding them
to upload their data. See Appendix F.1 for a more detailed discussion of why Hawthorne
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or cueing effects are unlikely to explain our findings. Furthermore, it is possible that
real-time feedback and shower energy reports reduced subjects’ shower comfort or in-
creased their pro-environmental attitude, but based on survey evidence, neither seems to
be the case (see Appendix F.2). If anything, we observe a decrease in self-perceived pro-
environmental attitudes in the treated groups compared to the control group, potentially
due to feedback provision curbing the capacity for distorted self-image formation.

8. Conclusion

In this paper, we argued that if multiple sources of behavioral bias (e.g., imperfect infor-
mation and limited attention) simultaneously prevent individuals from acting on their
values and intentions, then combining interventions that each target a different source
of bias can result in complementarity, meaning that each intervention becomes more ef-
fective when implemented in conjunction with the other(s) than in isolation. We first
introduced a theoretical framework that delineates the interplay of behavioral interven-
tions and illustrates mechanisms for complementarity and substitutability in a setting
with multiple behavioral biases; in particular, the potential for complementarity becomes
larger the more differentiated the interventions are with regard to their targeted biases.
We then presented results from a three-month field experiment on energy conservation
behavior in a specific resource-intensive everyday activity (showering), in which we eval-
uated interaction effects between two types of interventions: shower energy reports,
which provided information on energy use and carbon emissions via email, and real-
time feedback through a smart meter display, which made water consumption in the
shower immediately salient. While only the latter induced a signficant conservation ef-
fect when implemented in isolation, combining both interventions resulted in a striking
complementarity. It seems that knowledge gains about environmental impacts only trig-
gered conservation behavior once resource use was additionally made salient through
real-time feedback.

Although our interventions were targeted towards one specific resource-intensive ac-
tivity, showering, the effect sizes are also quantitatively meaningful on the aggregate
household level, which is all the more remarkable given that our subjects had no mone-
tary incentives to conserve resources. In our study, real-time feedback in isolation low-
ered consumption by 0.4 kWh (6.3 liters) per shower; adding shower energy reports fur-
ther lowered consumption by 0.22 kWh (3.8 liters). For comparison, total daily energy
use for lighting in German households is about 0.33 kWh per person on average.34 In his
influential evaluation of the Opower home energy reports, which target aggregate elec-
tricity use in U.S. households, Allcott (2011) finds a household-level conservation effect
of 0.62 kWh per day. One limitation of our study is that we do not observe subjects’
consumption behavior outside the shower. However, in a related study that uses Am-

34Source: German Federal Statistical Office.
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phiro smart shower meters in a representative household sample in Singapore, Schmitt
et al. (2021) find that the direct conservation effect in the shower may even understate the
effect on overall household water consumption. This is in line with recent evidence for
potential positive spillover effects of pro-environmental interventions (Jessoe et al., 2021;
Sherif, 2021).

We attempted to make a step towards understanding why different interventions can
be complements (or substitutes). While both our theoretical framework and our field
experiment are tailored to a very specific setting, the notion that potentially multiple
different barriers need to be overcome for behavioral change can be relevant in other
contexts as well, including situations involving more standard economic barriers such
as lack of incentives or constraints on time, money, or technology. Such complexity of
behavioral mechanisms is a pervasive feature of many domains of our lives, and it is
likely that this creates numerous opportunities for complementarities between different
interventions, yet many of these may still be untapped.35

Further research is necessary to investigate whether this channel for complementarity
of interventions we propose also generalizes to other settings and more representative
samples. Nevertheless, our study underlines that any evaluation is inevitably confined
to the particular policy and choice environment that consumers act in, which may itself
be malleable. Interventions that may seem feeble at first glance may thus be able to un-
fold their full potential once combined with other interventions that address remaining
sources of behavioral bias. For example, our results suggest a special role for interven-
tions that increase the salience of one’s resource use: giving individuals simple tools that
allow them to track their use may also make their behavior more sensitive to other poli-
cies, such as price incentives (Jessoe and Rapson, 2014). Hence, behavioral policy design
should not only consider through which channels a particular intervention affects behav-
ior, but also attempt to identify and overcome behavioral barriers that may still remain.

New policies are always introduced to an existing set of policies, institutions, and
norms. As social scientists are beginning to pioneer the process from small-scale proof-of-
concept studies to large-scale interventions (Banerjee et al., 2017), future research should
therefore synchronously advance our knowledge on the interplay of different policy in-
struments.

35Indeed, some empirical findings in the literature are at least suggestive of mechanisms at work that
are similar to the one we suggest. For example, Cortes et al. (2019) find that text-message based curricula
supporting good parenting practices work less well when parents face high cognitive load than during
time periods when the load is lighter. Dupas and Robinson (2013) study financial savings behavior in a
developing country and find that simply providing a safe box for storing money is already quite effective
for encouraging higher savings, except for the subgroup of individuals with severe present bias, who need
additional social commitment. Similarly, prompting deliberation about food choice, to help resist short-run
temptations, increases the effectiveness of healthy purchasing subsidies (Brownback, Imas and Kuhn, 2019).
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Appendix A Supplementary figures and tables

Figure A1: Screenshot of a typical shower energy report (for a fictitious person)

46



Figure A2: Screenshot of a shower energy report with peer comparison
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Figure A3: Empirical distribution of report timing
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Table A1: Additional randomization checks

Baseline survey responses

environmental shower 1 if age 1 if
attitude comfort female in years international

SER group -0.106 0.094 -0.046 0.757 -0.017
(0.165) (0.164) (0.080) (0.615) (0.075)

RTF group 0.044 -0.164 -0.015 0.872 0.042
(0.167) (0.156) (0.079) (0.584) (0.077)

DUAL group 0.154 0.115 0.117 0.540 0.032
(0.161) (0.149) (0.075) (0.583) (0.075)

Constant -0.041 -0.014 0.597 23.351 0.325
(0.118) (0.100) (0.056) (0.380) (0.054)

Observations 307 306 318 307 318
R-squared 0.009 0.012 0.017 0.007 0.003
F-test: p-value 0.425 0.327 0.130 0.437 0.847

Robust standard errors in parentheses. The omitted category is the CON group.
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Table A2: Comparing uploaders and non-uploaders

uploaders: non-uploaders: diff. in means
mean (sd) mean (sd) p-value

Energy [kWh] 2.23 2.20 0.95
(1.38) (1.37)

Water volume [liter] 38.54 37.13 0.87
(22.36) (20.73)

Temperature [Celsius] 35.41 35.94 0.61
(3.33) (3.47)

Flow rate [liter/min] 6.01 5.30 0.11
(2.34) (2.19)

Duration [min] 6.61 7.69 0.10
(2.98) (4.54)

Environmental attitude -0.04 0.07 0.79
(1.03) (0.93)

Shower comfort -0.05 0.14 0.55
(1.05) (0.87)

1 if female 0.58 0.70 0.28
(0.49) (0.46)

Age in years 23.93 23.79 0.95
(3.80) (3.99)

1 if international 0.31 0.41 0.42
(0.46) (0.49)

Observations 228 90

Subject characteristics before sending out shower energy reports. p-values
adjusted for multiple hypothesis testing (Romano-Wolf procedure using 2, 000
bootstrap repetitions).
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Table A3: Treatment effect dynamics
Zi = I{post 2nd report} Zi = # weeks after 1st report

(1) (2) (3) (4)
Uploaders LATE Uploaders LATE

Intervention 0.179 0.172∗ 0.178 0.171∗

(0.111) (0.103) (0.111) (0.102)

Intervention × RTF/DUAL -0.388∗∗∗ -0.365∗∗∗ -0.386∗∗∗ -0.364∗∗∗

(0.134) (0.125) (0.133) (0.125)

Intervention × SER 0.027 0.016 0.029 0.019
(0.154) (0.134) (0.154) (0.134)

Intervention × DUAL 0.046 0.119 0.047 0.120
(0.113) (0.108) (0.112) (0.108)

IN stage 2 0.139 0.176 0.065 0.109
(0.103) (0.110) (0.124) (0.127)

IN stage 2 × RTF/DUAL -0.027 -0.053 0.047 0.019
(0.128) (0.134) (0.156) (0.159)

IN stage 2 × SER 0.092 0.048 0.198 0.174
(0.148) (0.169) (0.181) (0.202)

IN stage 2 × DUAL -0.068 -0.041 0.030 0.075
(0.123) (0.135) (0.166) (0.177)

IN stage 2 ×Zi 0.019 0.022 0.032 0.029
(0.093) (0.090) (0.027) (0.026)

IN stage 2 × RTF/DUAL ×Zi 0.012 0.000 -0.026 -0.026
(0.123) (0.119) (0.037) (0.035)

IN stage 2 × SER ×Zi -0.002 -0.010 -0.041 -0.051
(0.126) (0.136) (0.042) (0.047)

IN stage 2 × DUAL ×Zi -0.279 -0.316 -0.099 -0.114∗

(0.209) (0.215) (0.064) (0.067)

Individual fixed effects yes yes yes yes

Clusters 261 318 261 318
Observations 14712 17942 14712 17942
R2 0.413 0.005 0.413 0.005

Standard errors in parentheses are clustered at the individual level. In columns (1) and
(2), we exclude all non-uploaders in SER and DUAL as well as all non-uploaders in RTF
and CON who did not report a technical problem. In columns (3) and (4), we use treat-
ment assignment to SER and DUAL, respectively, interacted with the IN stage 2 indica-
tor as instrument for receiving informative shower energy reports. The reported R2 in
Columns (3) and (4) is the within R2.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A4: Treatment effect heterogeneity
Xi : baseline energy use Xi : envir. attitude

(1) (2) (3) (4)
linear median+ linear median+

Intervention 0.180∗ 0.272∗∗∗ 0.178 0.243
(0.105) (0.072) (0.112) (0.203)

Intervention × RTF/DUAL -0.403∗∗∗ -0.254∗∗∗ -0.392∗∗∗ -0.324
(0.127) (0.096) (0.134) (0.222)

Intervention × SER 0.012 -0.139 0.003 0.030
(0.146) (0.112) (0.149) (0.255)

Intervention × DUAL 0.085 0.020 0.049 -0.088
(0.111) (0.087) (0.113) (0.151)

IN stage 2 0.148 0.001 0.166∗ 0.140
(0.091) (0.065) (0.089) (0.172)

IN stage 2 × RTF/DUAL -0.014 0.171∗ -0.036 -0.032
(0.117) (0.102) (0.115) (0.196)

IN stage 2 × SER 0.095 0.267∗∗ 0.074 0.214
(0.139) (0.121) (0.133) (0.221)

IN stage 2 × DUAL -0.239∗∗ -0.156∗ -0.225∗∗ -0.313∗∗

(0.102) (0.093) (0.105) (0.157)

Intervention ×Xi -0.016 -0.192 0.031 -0.137
(0.101) (0.226) (0.130) (0.220)

Intervention × RTF/DUAL ×Xi -0.164 -0.247 -0.210 -0.176
(0.119) (0.266) (0.145) (0.269)

Intervention × SER ×Xi 0.109 0.325 -0.172 -0.039
(0.140) (0.301) (0.166) (0.296)

Intervention × DUAL ×Xi 0.062 0.039 0.103 0.310
(0.110) (0.215) (0.105) (0.232)

IN stage 2 ×Xi 0.056 0.313∗ -0.076 0.056
(0.077) (0.179) (0.116) (0.185)

IN stage 2 × RTF/DUAL ×Xi -0.094 -0.385∗ 0.084 -0.002
(0.101) (0.228) (0.129) (0.237)

IN stage 2 × SER ×Xi -0.021 -0.368 0.083 -0.363
(0.124) (0.268) (0.144) (0.260)

IN stage 2 × DUAL ×Xi -0.097 -0.166 0.024 0.146
(0.092) (0.203) (0.083) (0.207)

Individual fixed effects yes yes yes yes

Clusters 260 260 257 257
Observations 14675 14675 14501 14501
R2 0.413 0.413 0.414 0.415

Standard errors in parentheses are clustered at the individual level. The coefficients
are obtained using the within estimator. All non-uploaders in SER and DUAL, as well
as all non-uploaders in RTF and CON who did not report a technical problem, are
excluded.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A5: Estimated vs actual water use per shower

before study after study
ITT TOT

Actual volume 0.271 0.175 0.186
(0.263) (0.139) (0.145)

Actual volume × RTF 0.025 0.742∗∗∗ 0.835∗∗∗

(0.376) (0.199) (0.179)

Actual volume × SER -0.465 0.289∗ 0.381∗∗

(0.292) (0.174) (0.169)

Actual volume × DUAL -0.074 0.520∗∗∗ 0.517∗∗

(0.299) (0.182) (0.230)

RTF group -0.131 1.694 3.162
(6.777) (3.234) (3.183)

SER group -7.001 -4.578 -5.200∗

(5.813) (3.181) (3.029)

DUAL group -5.182 1.655 1.588
(5.851) (3.136) (3.826)

Constant 43.436∗∗∗ 39.507∗∗∗ 39.610∗∗∗

(4.590) (2.429) (2.542)

Observations 267 296 251
R2 0.030 0.378 0.440

Robust standard errors in parentheses. Actual volume is recentered around 40
liters.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A6: Estimated versus actual water use: relative estimation error

before study after study
ITT TOT

RTF group 0.075 -0.283∗∗∗ -0.296∗∗∗

(0.201) (0.073) (0.075)

SER group 0.008 -0.172∗∗ -0.281∗∗∗

(0.175) (0.080) (0.072)

DUAL group -0.055 -0.214∗∗ -0.270∗∗∗

(0.178) (0.085) (0.076)

Constant 0.927∗∗∗ 0.577∗∗∗ 0.583∗∗∗

(0.136) (0.061) (0.064)

Observations 302 296 251
R2 0.002 0.050 0.101
Robust standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A7: Response to mini-surveys attached to reports

Survey response rate

(1) (2) (3) (4)
first report second report any report estimation error [%p]

RTF group -1.05 0.53 -2.48 -30.69
(5.35) (6.57) (4.90) (7.62)

SER group -7.85 -16.76 -7.18 -38.74
(6.39) (7.91) (5.81) (7.54)

DUAL group 0.58 -26.17 -0.44 -27.70
(5.54) (8.14) (5.00) (8.57)

Constant 88.89 80.56 91.67 48.93
(3.73) (4.70) (3.28) (7.14)

p-value for SER = DUAL 0.203 0.308 0.270 0.039

Observations 261 261 261 231
R-squared 0.009 0.061 0.008 0.139
Robust standard errors in parentheses.
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Table A8: Margins of behavioral adjustment

Duration in seconds Temperature in ◦C Flow rate in liter/min
(1) (2) (3) (4) (5) (6) (7) (8) (9)
ITT Uploaders LATE ITT Uploaders LATE ITT Uploaders LATE

Intervention 8.40 8.52 8.40 -0.00 0.01 -0.00 0.25∗∗ 0.25∗∗ 0.25∗∗

(11.02) (11.76) (11.02) (0.34) (0.37) (0.34) (0.11) (0.12) (0.11)

Intervention × RTF/DUAL -38.41∗∗ -39.32∗∗ -38.41∗∗ -0.74 -0.88∗ -0.74 -0.17 -0.19 -0.17
(16.31) (17.17) (16.31) (0.46) (0.49) (0.46) (0.17) (0.18) (0.17)

Intervention × SER 13.37 11.16 11.50 -0.54 -0.63 -0.53 -0.08 -0.12 -0.07
(16.35) (17.60) (16.19) (0.42) (0.46) (0.41) (0.15) (0.18) (0.15)

Intervention × DUAL 6.35 7.73 6.32 -0.23 0.19 -0.25 -0.01 -0.20 -0.04
(16.92) (17.49) (16.55) (0.40) (0.41) (0.38) (0.18) (0.19) (0.17)

IN stage 2 24.69 12.99 24.69 0.39 0.46 0.39 0.26∗∗ 0.24∗∗ 0.26∗∗

(17.75) (9.81) (17.75) (0.31) (0.34) (0.31) (0.11) (0.12) (0.11)

IN stage 2 × RTF/DUAL -32.30 -19.75 -32.30 0.28 0.31 0.28 0.21 0.22 0.21
(19.74) (13.33) (19.74) (0.40) (0.42) (0.40) (0.19) (0.20) (0.19)

IN stage 2 × SER -30.85 -12.45 -38.01 0.18 0.21 0.22 0.16 0.11 0.20
(21.83) (17.21) (27.21) (0.37) (0.40) (0.46) (0.17) (0.17) (0.21)

IN stage 2 × DUAL -0.49 0.71 -0.62 -0.21 -0.41 -0.26 -0.34 -0.40 -0.43
(12.70) (14.22) (16.01) (0.35) (0.33) (0.44) (0.22) (0.25) (0.28)

Observations 17942 14712 17942 17942 14712 17942 17942 14712 17942
R2 0.383 0.361 0.001 0.310 0.323 0.003 0.751 0.763 0.016

Standard errors in parentheses (clustered on subject level)
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure A4: Randomization inference for coefficients of interest in Table 3

(a) Col 1: Intervention × RTF/DUAL
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(b) Col 3: Intervention × RTF/DUAL
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(c) Col 3: IN stage 2 × SER
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(d) Col 3: IN stage 2 × DUAL
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Notes. Distribution of estimated t-statistics based on 10, 000 permutation samples. For each permutation,
treatment assignment into CON, SER, RTF, or DUAL was randomly relabeled, holding constant the actual
number of individuals in each treatment group. The red vertical line represents the t-value for the true
treatment labels. Permutation-based p-values are shown in the top right corner.
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Figure A6: Randomization inference for coefficients of interest in Table 4

(a) Col 1: IN stage 2 × SER
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(b) Col 3: IN stage 2 × SER

p = .7946
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(c) Col 1: IN stage 2 × DUAL
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(d) Col 3: IN stage 2 × DUAL

p = .0641

0
.1

.2
.3

.4
.5

pr
ob

ab
ilit

y 
de

ns
ity

 

-4 -2 0 2 4
 

t-statistic

(e) Col 1: IN stage 2 × (DUAL − SER)

p = .0733

0
.1

.2
.3

.4
.5

pr
ob

ab
ilit

y 
de

ns
ity

 

-4 -2 0 2 4
 

t-statistic

(f) Col 3: IN stage 2 × (DUAL − SER)

p = .2051
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Notes. Distribution of estimated t-statistics based on 10, 000 permutation samples. For each permutation,
treatment assignment into CON, SER, RTF, or DUAL was randomly relabeled, holding constant the actual
number of individuals in each treatment group. The red vertical line represents the t-value for the true
treatment labels. Permutation-based p-values are shown in the top right corner.
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Appendix B Randomization protocol

At the beginning of the study, we randomly assigned subjects into groups that receive
or do not receive real-time feedback. Each smart meter was programmed as either treat-
ment or control device. Treatment device started displaying real-time feedback from the
eleventh shower onwards, whereas control devices only ever showed the current wa-
ter temperature. When distributing the smart meters to subjects, we alternated between
treatment and control devices after each apartment. Thus, treatment and control devices
are by construction balanced within dorms.

We assigned subjects into groups with or without shower energy report shortly before
we intended to sent out the reports. We used the data that subjects uploaded through the
smartphone app to rank them from lowest to highest average water use per shower, split
by whether they receive real-time feedback or not. Then, we formed pairs between sub-
jects adjacent to each other in rank and assigned shower energy reports to only one mem-
ber of a pair based on a virtual coin flip. This ensures that the distribution of resource
consumption levels remain balanced across experimental conditions. Subjects who had
not uploaded any data at that point in time were assigned to a group randomly without
prior ranking.

The second shower energy report further contained a social comparison component
with a random and anonymous peer. This peer was assigned to subjects in the following
way: (1) we used uploaded data prior to the second report to rank subjects again by their
average water use per shower; (2) we then selected three potential peers for each subject,
a subject who was somewhat above him/her in rank, a subject who was somewhat below
him/her in rank, and a directly adjacent subject; (3) we then chose one of these three can-
didates randomly with equal probabilities; (4) subjects who had not uploaded any data
received a random peer from the pool of subjects who had uploaded data. This proce-
dure ensured that the direction of peer comparison was orthogonal to subjects’ resource
use level.

Appendix C Data cleaning procedures

A number of data cleaning steps are performed before running the empirical analyses. In
principle, we have access to the smart meter data from two sources: (1) uploads by sub-
jects themselves using the smartphone app, and (2) the data that we read out manually
after retrieving the devices. For the large majority of devices, the two sources gave us
identical data. In the cases where it differed, we always opted to use the information we
read out manually.

We drop the very first data point of each participant, as they usually started with a test
run to check if the device was working. Following Tiefenbeck et al. (2018), we further
drop any water extraction with volume below 4.5 liters (in total 2, 942 extractions), as
these are unlikely to be actual showers but rather minor extractions for other purposes
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such as cleaning. We further remove 37 extreme outlier points, defined as energy use
and water use for that shower being more than 4.5 times the subject-specific interquartile
range away from the closest quartile. We are particularly strict in only excluding the most
unplausible data points here. Conventionally, 1.5 or 3 times the interquartile range (IQR)
are used as criterion for outliers. For a normal distribution, 4.5 times the IQR away from
the nearest quartile corresponds to 6.745 standard deviation away from the mean.

We further exclude 1 device with erratic data, as evidenced by huge intra-device vari-
ance (the largest for all devices) and some outrageous data points with water volumes
of up to above 500 liters for a single shower. In 8 cases, the device’s temperature sensor
broke at some point, and we impute missing information with the average temperature
of showers taken while the sensor was still intact. For some devices, we detected an error
through which decimal places of the flow rate are shifted such that the stored number
is actually ten times the actual flow rate. We corrected these manually for showers with
flow rates that are about ten times the flow rate of other showers stored on the device.

Appendix D Timing of showers

As the smart meter itself has no global time counter and only stores the chronological or-
der of water extractions, we make use of smartphone app information to put a time stamp
on each observation. In particular, we need to determine whether a shower took place
before or after we sent out the shower energy reports, so whether it is in intervention
stage 2. The app provides us with information on the date and time of each data upload
by subjects. This allows us construct time windows in which a shower observation has
plausibly happened. Firstly, a shower must have been taken by the time data was up-
loaded via the app, so this gives us the upper bound. Secondly, it must have been taken
place after the previous data upload, because otherwise it would have been uploaded by
then; this gives us the lower bound. To be able to determine the timing relatively reli-
ably around the crucial time period, in which we sent out shower energy reports, we sent
several upload reminders to all participants. Whenever it was not unambiguously clear,
which shower was the first that took place after a shower energy report, we assigned the
switching point implied by constant shower frequency. For example, if one upload was
1 day before the shower energy report and the next upload 1 day after, and there were
2 showers in the window, we assumed that the first shower was before and the second
shower after the report.

A complication arising from non-uploaders is that we do not know the timing of show-
ers by these participants, because the shower meter itself only stores the order of showers
but not the time and date. We can only infer the earliest and latest possible date of each
shower based on when it was uploaded to the smartphone app. Therefore, whenever we
want to include non-uploaders in our analyses, we need to impute the timing of showers
in one way or another, in particular whether it took place before or after a shower energy
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report.
We use a pragmatic imputation approach based on the assumption that, given the stage

of study completion, i.e. which fraction of the number of total recorded showers have
been completed, showers by uploaders and non-uploaders have the same probability of
having taken place after the first/second shower energy report. Formally, we assume
that for each stage of study completion π,

Pr
(

IN s2
it = 1|π, non-uploader

)
= Pr

(
IN s2

it = 1|π, uploader
)

.

To operationalize this approach, we estimate the distribution of uploaders’ report timing
over study completion non-parametrically, so P̂r

(
IN s2

it = 1 | π, uploader
)
, and, instead of

the indicator IN s2
π for intervention stage 2, we define

ÎN
s2
s = P̂r

(
IN s2

it = 1 | πs
it = 1, uploader

)
as probabilistic indicator for every shower of non-uploaders in study completion stage
π. In other words, the regressor ÎN

s2
π is the probability that a particular shower by a

non-uploader took place after the first shower energy report. In all our regressions, we
actually use the indicator

ĨN
s2
it =


IN s2

it if uploader

P̂r
(

IN s2
it = 1 | π, uploader

)
if non-uploader .

(14)

Appendix E Supplementary Survey

We conducted a supplementary survey in a new sample of students in November and
December 2019, about three years after the original experiment took place. The purpose
of the survey was two-fold. First, we wanted to collect evidence that people tend to
underestimate the environmental impact of showering without additional information.
Second, we wanted to provide a manipulation check for our shower energy report in-
tervention, testing whether the additional information on energy use and CO2 emissions
due to showering can plausibly induce stronger conservation efforts. The survey was
conducted among residents of exactly the same student dorms in Bonn and Cologne in
which the original study took place. Thus, the surveyee pool is comparable to the subject
pool of the original experiment. In total, 329 students participated in the supplementary
survey. Due to the high fluctuation rate of residents in student dorms, only 4 out of the
329 surveyees had also participated in the original experiment in 2016/17.

We first elicited students’ prior beliefs about the amount of water used and CO2 emit-
ted per shower, as well as how confident they are about their response on a 10-point scale.
As reference, we told surveyees that one hour of room lighting causes about 10 grams of
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CO2 and that one hour of watching TV causes about 30 grans of CO2. Furthermore, we
asked students about their intention to take shorter showers on a 10-point Likert scale
(we normalize this to mean 0 and standard deviation 1 for all analyses). After the first
round of questions, we randomly presented one fact sheet (out of three) to each surveyee,
mimicing the basic informational content of our original interventions. The “CON sheet”
only contained information on average water temperature in the shower, the “RTF sheet”
also included the average water use per shower, and the “SER sheet” further added in-
formation on energy use and CO2 emissions. The exact wording was as follows. All fact
sheets started with this text:

“Did you know that a few years ago, a study was conducted in this dorm, as well as other dorms
in Cologne and Bonn? The study has shown that the average water temperature when taking a
shower is about 37 degrees Celsius.”

While the CON sheet ended here, the RTF sheet added the sentence “... A typical shower
uses around 40 liters of water.”. The SER sheet provided even more information by adding
the following sentences: “... A typical shower uses around 40 liters of water and 2.4 kWh of en-
ergy. This means that, on average, a person’s emissions due to daily showering amount to almost
300 kg CO2 per year (800 grams per shower). It requires about 24 trees to absorb this amount of
CO2.”. After surveyees had finished reading their respective fact sheet, we elicited pos-
terior beliefs and attitudes by asking them the same questions again that they answered
before receiving additional information. Surveyees were then paid 5 Euros for their par-
ticipation in the survey, although 11 students refused to accept any remuneration.

Prior to receiving the fact sheets, surveyees estimated on average that they use 40.4
liters of water per shower (standard error of the mean = 6.36), causing emissions of 91.3
grams of CO2 (s.e.m. = 15.03). While the estimate for water used per shower is roughly
accurate on average, surveyees grossly underestimate the amount of CO2 emitted by a
factor of 8 to 9. However, subjects are also very uncertain about their estimates. On a scale
from 1 (very uncertain) to 10 (very certain), the average surveyee places him-/herself at
4.24 for water use and 3.71 for CO2 emissions.

Table A9 shows how surveyee change their beliefs and intentions after being provided
with additional information through the fact sheets. Neither the RTF nor the SER survey
induces statistically significant changes in surveyees’ average estimates for water use per
shower compared to the CON sheet, although surveyees in these groups become much
more confident about their answer. In contrast, only the SER fact sheet has a strong im-
pact on surveyees beliefs about CO2 emissions. As surveyees severely underestimated
the carbon intensity of showering in baseline, the SER fact sheet had an extreme debi-
asing effect compared to the CON and RTF fact sheets. This experimentally-induced
belief update about environmental impacts is further associated with a sizeable increase
in self-stated intentions to take shorter showers. Compared to surveyees receiving the
RTF sheet, conservation intentions of surveyees receiving the SER sheet increased by 0.24
standard deviations (p = 0.003). In contrast, the RTF sheet did not increase intentions
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Table A9: Supplementary survey — change in beliefs and intentions after fact sheet

Water use per shower CO2 emissions

(1) (2) (3) (4) (5)
Estimate Confidence Estimate Confidence Intention

RTF fact sheet -12.274 2.148∗∗∗ 28.774 0.358∗ 0.060
(10.146) (0.279) (21.587) (0.208) (0.065)

SER fact sheet -22.909 2.561∗∗∗ 484.941∗∗∗ 2.023∗∗∗ 0.304∗∗∗

(16.813) (0.258) (37.599) (0.264) (0.076)

Constant 14.203 0.118 -15.274 0.335∗∗ 0.088∗∗

(9.663) (0.161) (19.023) (0.138) (0.042)

p-value for RTF = SER 0.451 0.175 0.000 0.000 0.003
Baseline mean 40.428 4.239 91.335 3.711 0.000
Observations 328 328 329 329 329
R2 0.008 0.222 0.476 0.185 0.054

Robust standard errors in parentheses. The omitted category is the CON fact sheet group. Column (1) and
(2) exclude one subjects who did not give a baseline estimate for water use. The intention measure used for
column (5) is normalized to mean 0 and standard deviation 1.

significantly compared to the CON sheet (p = 0.359). Overall, these results suggests that
people tend to severely underestimate the environmental impact of showering, and that
information provision about energy and carbon intensity can induce subjects to increase
their conservation efforts.

Appendix F More on Other Potential Mechanisms

F.1 Hawthorne or cueing effects

Given that we observe energy and water use in a relatively private and sensitive activ-
ity, showering, subjects’ behavior may have been distorted by Hawthorne effects. We
attempt to hold this constant by equipping every participant with a functioning smart
shower meter, so to the degree that subjects in the control group respond to the sheer
presence of a shower meter (with temperature feedback), we would in fact underes-
timate our conservation effects. To explain our empirical findings, Hawthorne effects
would thus need to additionally interact with the intervention regimes. As the conser-
vation effect in the RTF group (compared to the CON group) is quantitatively large and
remains stable over the entire 3-months study duration, it seems unlikely that it is driven
by differential Hawthorne effects. However, the shower energy reports may have made
it more salient again to participants that they were part of a study, or alternatively, the
reports may have simply served as a general cue or reminder to pay more attention to
conservation efforts in the shower. Note that we sent out placebo emails instead of infor-
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Table A10: Change in self-reported attitudes (baseline vs. post-intervention survey)

shower comfort environmental attitude
(1) (2) (3) (4)
ITT TOT ITT TOT

RTF group 0.042 0.047 -0.340∗∗∗ -0.345∗∗∗

(0.117) (0.119) (0.117) (0.119)

SER group 0.085 0.090 -0.277∗∗ -0.253∗

(0.134) (0.136) (0.133) (0.145)

DUAL group -0.097 -0.011 -0.225∗ -0.239∗

(0.138) (0.150) (0.129) (0.144)

Constant 0.026 0.030 0.139 0.143
(0.086) (0.088) (0.094) (0.095)

F-test: p-value 0.641 0.896 0.034 0.039
Observations 300 255 304 257
R2 0.007 0.003 0.027 0.031

Robust standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

mative shower energy reports to the RTF and CON groups precisely to limit such types of
confounders. Furthermore, we find that, if anything, the effect of shower energy reports
(in the DUAL group) tends to become stronger over time instead of weaker, and the ex-
ercise in Figure 9 using different complier definitions for LATE estimation also suggests
that it is the actual content of shower energy reports that matters. While we have no way
to directly rule out Hawthorne or cueing effects, we are therefore confident that they do
drive our empirical results.

F.2 Environmental attitude and consumption value of showering

Another alternative way in which two interventions could develop complementarities is
through some sort of motivational spillover effect, in which the combined intervention
convinced subjects to generally care more for the environment, or somehow made show-
ering less pleasurable to them. Our interventions presented all information in a neutral
and factual way, and we specifically refrained from including any normative element.
Nevertheless, to check if this could confound our results, we again analyse subjects’ sur-
vey responses before and after the study. The outcome variable of interest is the change in
environmental attitude index or shower comfort index, respectively. All indices are nor-
malized by subtracting the pre-intervention mean and dividing by the pre-intervention
standard deviation.

The first two columns in Table A10 show difference-in-differences estimates for the
effect of treatments on subjective shower comfort from baseline to endline survey. Both in
the ITT (column 1) and in the TOT (column 2) regressions for subjective shower comfort,
we find no significant differences across experimental condition, and all point estimates
are virtually zero. Hence, at least based on self-reported measures, our interventions
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do not seem to have diminished the consumption benefits of showering, which is also
relevant for welfare considerations.

The other two columns in Table A10 show the difference-in-differences estimates for
impacts on environmental attitude, with ITT estimates in column (3) and TOT estimates
in column (4). Surprisingly, we find that subjects in the treated groups become less pro-
environmental relative to the control group based on their survey responses. The magni-
tude of this decrease ranges from 22% to 35% of a (pre-study) standard deviation, which
is not exactly quantitatively large, but also not negligible. We can only speculate about
what is happening here. At face value, it may seem that feedback makes people less
motivated to act pro-environmentally. Of course, we only have self-reported measures
and cannot be certain of the underlying latent variable that they proxy for. But as we
seem to proxy self-perceived inclination to act pro-environmentally rather than the actual
extent of pro-environmental behavior, one possible interpretation could be that feedback
provision curbs the capacity for distorted self-image formation, because people become
aware of their intention-action gaps. We caution from overinterpreting the result here,
as we did not have any ex ante hypothesis along these lines. Still, we can tentatively
conclude that the conservation effects we observe are unlikely due to generally increased
pro-environmental motivation.
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