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Abstract

This paper studies the Bayes correlated equilibria of large majority elec-

tions in a general environment with heterogeneous, private preferences. Voters

have exogeneous private signals and a version of the Condorcet Jury Theo-

rem holds when voters do not receive additional information (Feddersen &

Pesendorfer, 1997). We show that any state-contingent outcome can be im-

plemented in some Bayes-Nash equilibrium by an expansion of the exogenous

private signal structure. We interpret the result in terms of the possibility of

persuasion by a biased sender who provides additional information to voters

who also have noisy private information from other sources. The additional

information can be an almost public signal that almost reveals the state truth-

fully. The same additional information is shown to be effective uniformly

across environments so that persuasion does not require detailed knowledge

of the distribution of the voters’ private information and preferences. In a

numerical example with uniform voter types, we show the effects of persuasion

with already 17 or more voters.
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1 Introduction

In most elections, a voter’s ranking of outcomes depends on her information.

For example, a shareholder’s view of a proposed merger depends on her belief

about its profitability, a legislators support of a proposed legislation depends

on her belief of its effectiveness. An interested party that has private infor-

mation may utilize this fact by strategically releasing information to affect

voters behavior. Examples of interested parties holding and strategically re-

leasing relevant information for voters are numerous: in a shareholder vote, the

management may strategically provide information about the merger through

presentations and conversations; similarly, lobbyists provide selected informa-

tion to legislators to influence their vote.

We are interested in the scope of such “persuasion” (Kamenica & Gentzkow,

2011) in elections. We study this question in the canonical voting setting by

Feddersen & Pesendorfer (1997): there are two possible policies (outcomes),

A and B. Voters’ preferences over policies are heterogenous and depend on

an unknown state, α or β, in a general way (some voters may prefer A in

state α, some prefer A in state β, and some “partisans” may prefer one of the

policies independently of the state). The preferences are drawn independently

across voters and are each voters’ private information. In addition, all vot-

ers privately receive information in the form of a noisy signal. The election

determines the outcome by a simple majority rule.

In this setting, Feddersen & Pesendorfer (1997) have shown that, within a

broad class of “monotone” preferences and conditionally i.i.d. private signals,

all equilibrium outcomes of large elections are equivalent to the outcome with

publicly known states (“information aggregation”). We restate their result as

a benchmark in Theorem 1. 1

We ask: can a manipulator ensure that a majority supports his favorite

policy—potentially state-dependent—in a large election merely by providing

additional information to the voters? Formally, the manipulator can choose

1Really, they consider a continuum of states, for binary states the result can be found
in Bhattacharya (2013).
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and commit to any joint distribution over states and signal realizations that

are then privately observed by the voters. In particular, the manipulator’s ad-

ditional signal is independent of the voters’ exogenous private signals and their

individual preferences (it is an “independent expansion”). The previous re-

sult by Feddersen & Pesendorfer (1997) suggests that the scope for persuasion

may be limited because, if voters simply ignored the additional information,

the outcome would be “as if” if the state were known, and, hence, the infor-

mation provided by the manipulator would be worthless.

Somewhat surprisingly maybe, our main result (Theorem 5) shows that,

nevertheless, within the same class of monotone preferences and for any state-

contingent policy, there exists an independent expansion of the conditionally

i.i.d. signal structure and a natural equilibrium that ensures that the targeted

policy is supported by a majority with probability close to one. So, just by

providing additional information, a manipulator can implement, for example,

a targeted policy that is the opposite of the outcome with publicly known

states, for every state.

The additional information affects the voters’ behavior directly, by changing

their beliefs about the state, and indirectly, by affecting their inference from

being “pivotal” for the election outcome. While the direct effect is limited

by the well-known “Bayesian-consistency” requirement of beliefs, the pivotal

inference turns out to have no such constraint, and so the indirect effect is

critical for the persuasion possibility.

To explain the effectiveness of persuasion, we first consider the case in

which all information of voters comes from a manipulator (“monopolistic per-

suasion”) in Section 5. Specifically, the main result for this baseline model

is the following, stated as Theorem 2: the manipulator can persuade a large

electorate to elect any state-contingent policy with probability close to 1 for

any distribution of preferences for which there is one belief about the likeli-

hood that the state is α such that a voter with randomly drawn preferences

prefers A with probability larger than 1/2 given this belief and another belief

such that the probability of preferring A given this belief is smaller than 1/2.

Denote these beliefs by pA and pB, respectively. In particular this condition
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guarantees that there is a belief r̄ at which a random voter prefers A with

probability of exactly 50% since we assume prefereces to be continuous in be-

liefs. Clearly, some such condition is necessary for persuasion to be effective:

For example, if for all beliefs, each voter prefers A with probability less than

1/2, then, whatever the induced beliefs, in a large election the expected share

of voters supporting A will be less than 1/2.

We show that the condition is sufficient. For example, when the manipula-

tor’s goal is to get A elected in both states we construct a signal structure as

follows. Roughly speaking, with high probability, 1−ε, the voters receive con-

ditionally independent draws of a binary signal, a or b, with a being relatively

more likely in state α and b relatively more likely in state β. With monotone

preferences and ε = 0, this would generally ensure information aggregation in

equilibrium as in Feddersen & Pesendorfer (1997). However, with probabil-

ity ε > 0, the manipulator induces an additional state-of-confusion: In this

additional state, almost all voters will receive a common signal z while only

few voters receive signals a or b. Thus, conditional on observing z, a voter

knows that most other voters have also observed z. The consequence is that,

in contrast to the usual calculus of strategic voting, there is essentially no fur-

ther information about others’ signals contained in the event of being pivotal.

This is the critical observation, and it implies that voters behave essentially

sincerely conditional on z. By choosing the relative probability of z in the two

states appropriately, the posterior conditional on z will be r̄, meaning, each

voter prefers A with probability 1/2 and, hence, the election is close to being

tied in the state-of-confusion. We show that, even from the viewpoint of the

few voters observing signals a or b, conditional on the election being tied, it is

likely that the other voters received the common signal z. By appropriately

choosing the probabilities of a and b in the state-of-confusion, the posterior

conditional on the state-of-confusion and conditional on a or b is is the belief

pA for which more than 1/2 of the voters support A. Hence, in the standard

state, when there are only signals a and b, a large majority supports A. The

main idea of the construction is that one can first characterize equilibrium for

voters receiving a z signal and then use that characterization to extend the
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construction to voters receiving other signals.

We argue that the manipulated equilibrium is robust in various dimen-

sions. First, the played equilibrium is simple and insures voters against errors.

Specifically, the equilibrium profile is almost identical to voting sincerely given

one’s signal, conditional on the state-of-confusion. One may argue that this

behavior is simple. In particular, voters just need interpret their own signal

conditional on that state; they do not need to make any further inference

about other voters’ signals using the equilibrium strategy profile or have to

know the preference distribution of the electorate. Furthermore, as will be ex-

plained in detail later, sincere behavior is ‘safe’ in the sense of being an ε best

response conditional on being pivotal, for a neighborhood around the actual

environment. Thus, even if a voter’s belief about the environment and the

equilibrium is slightly wrong, the cost of this error is small (even conditional

on being pivotal). Second, the equilibrium is ‘attracting’. In particular, its

“basin of attraction” for the best response dynamic is essentially the full set of

strategy profiles, except for the one (essentially unique) strategy profile that

corresponds to the one type of other equilibrium:2 If we start with any strat-

egy profile that is close to but not exactly equal to that type of equilibrium

and if we consider the voters best response to it and the voters best response

to this best response, then the resulting strategy profile is arbitrarily close to

the manipulated equilibrium when the number of voters is large (Theorem 3).

We show that the same information structure can be used uniformly across

many environments. This implies that the sender does not need to know the

exact details of the game. By way of contrast, as discussed momentarily, ex-

isting work assumes that the manipulator knows the exact preference of each

individual voter and this knowledge is indeed used. First, we show that the mo-

2For common values, it follows from a result by McLennan (1998) that the symmetric
strategy that maximizes the voters’ welfare is an equilibrium. In this equilibrium, informa-
tion aggregates except in the added state. By continuity, it is impossible that the manipu-
lator implements a prefered outcome in all equilibria with probability 1 when voters have
almost common values. Our model nests almost common values. Hence, the robustness
result presented here is the strongest possible.
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nopolistic manipulator can use the same information structure to implement

a preferred policy for a large set of prior beliefs and preferences, including all

“monotone preferences and priors.

In the second part of the paper, we consider the setting in which voters al-

ready have access to exogeneous information of the form studied in Feddersen

& Pesendorfer (1997). We show that, by adding the information structure

as before, the manipulator can still persuade the voters effectively to elect

any state-contingent policy (Theorem 5). This is surprising since the manip-

ulator cannot block information aggregation in a small added state as in the

monopolistic scenario. The voters can infer a lot about the state from the

pivotal event when they hold exogenous i.i.d. private information. In fact, if

the manipulator adds no further information, the voters would aggregate the

exogenous information perfectly.

By releasing the additional information to the voters, the manipulator uses

the pivotal inference of the voters and its power in a judoe-esque manner.

First, when the manipulator sends the additional signal z to almost all voters,

the voters hold almost no further information beyond their private signals.

Moreover, from the perspective of almost all voters (those with the z-signal)

it is almost common knowledge that the game is close to the game without

further information. We show that, after z, the equilibrium played by a large

electorate is arbitrarily close to equilibrium without further information. This

pins down the margins of victory in the added state and allows to extend the

construction to the other signals in the same way as before: we show that there

is an equilibrium in which all voters believe that conditional on the election

being tied, it is most likely that almost all voters received z, i.e. that they are

in the added state. By appropriately choosing the probabilities of a and b in

the added state, the posterior conditional on the added state and conditional

on a or b is close to 1. Since preferences are ‘monotone in beliefs, a belief of 1

implies the maximal support for A. Hence, when voters hold such beliefs, in

the standard state, when there are only signals a or b from the manipulator,

A receives close to maximal support. We show that, then, from the viewpoint

of the voters receiving an a- or b signal, conditional on the election being tied,
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it is likely that all other voters received the signal z. This supports the equi-

librium belief that they are in the added state.

In the last part of the paper, we show that, even a manipulator with very

limited knowledge about the state can persuade a large electorate (Theorem

6 and Theorem 7). Most strikingly, even when all voters hold private signals

about the state, typically, already when the manipulator has more information

than only two random voters together, he can persuade the voters to elect any

policy (which might depend on his private signal).

The rest of the paper is organized as follows: In Section 2 we present the

model. In Section 3 contains the preliminary analysis. In Section 4, we discuss

a binary-state version of Feddersen & Pesendorfer (1997) as in Bhattacharya

(2013). We restate the Condorcet Jury Theorem observed here (Theorem 1).

In Section 5, we show that persuasion is essentially limitless when the informa-

tion designer is monopolistic (Theorem 2), give a numerical example with 17

voters and illustrate the robustness of the ‘manipulated equilibrium’; in par-

ticular, we discuss other equilibria (Proposition 4) and their non-robustness.

In Section 6, we prove the main result of this paper by showing that persuasion

is essentially limitless even when a manipulator can only add information to

arbitrarily precise exogeneous private signals (Theorem 5). In particular, any

state-contingent policy can be an equilibrium outcome. In Section 7, we show

that the main result extends to the situation where the manipulator holds

incomplete information about the state, as long as his information is not too

imprecise. In Section 8, we provide additional results and give another inter-

pretation of the main result: the equilibria of the game with a manipulator

are the Bayes correlated equilibria a voting game as in Feddersen & Pesendor-

fer (1997). In Section 9, we discuss the paper’s contribution to the existing

literature and compare our results especially to other results on voter persua-

sion and other reported failures of information aggregation. The conclusion

discusses the relation to the literature on auctions with general information

structures.
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2 Model

There are 2n+ 1 voters (or citizens), two policies A and B, and two states of

the world ω ∈ {α, β} = Ω. The prior probability of α is Pr (α) ∈ (0, 1).

Voters have heterogeneous preferences. A voter’s preference is described

by a type t = (tα, tβ) ∈ [−1, 1]2, with tω the utility of A in ω. The utility of

B is normalized to 0, so that tω is the difference of the utilities of A and B

in ω. The types are independently and identically distributed across voters

according to a cumulative distribution function G : [−1, 1]2 → [0, 1] with a

strictly positive, continuous density g. The own type is private information of

the voter.

An information structure π is a finite set of signals S and a joint distri-

bution of signal profiles and states that is independent of G. The conditional

distribution is exchangeable with respect to the voters. In particular, there

is a finite number of substates {αj}j=1,...,Nα
and {βj}j=1,...,Nβ

such that the

signals are independently and identically distributed conditional on the sub-

states.3 Abusing notation slightly, we denote by Pr(ωj|ω) and Pr(si|ωj) the

corresponding probabilities of the substates and the individual signal si, con-

ditional on a substate. So, for a signal profile s =(si)i=1,...,2n+1 ∈ S2n+1, we

have

Pr(s|ω) =
∑

j

Pr(ωj|ω)
∏

i=1,...,2n+1

Pr(si|ωj). (1)

The observed signal is the private information of the voter as well. It will be

sufficient to use a class of information structures with two substates, {α1, α2}
and {β1, β2}, and three conditionally independent signals in each substate,

s ∈ {a, b, z} that is illustrated in Figure 1.

The voting game is as follows. First, nature draws the state, the profile of

preferences types t and the profile of signals s according to G and π. Second,

after observing her type and signal, each voter simultaneously submits a vote

3Note that the Hewitt-Savage-de Finetti theorem (De Finetti (1931), Hewitt & Savage
(1955)) states that for any exchangeable infinite sequence of random variables (Xi)i=1,...,∞

with values in some set X there exists a random variable Y such that the random variables
Xi are independently and identically distributed conditional on Y .
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Figure 1: The main class of information structures considered in this paper.
Each state ω has two substates {ω1, ω2}, occuring with conditional probabil-
ities Pr(ωj|ω). Conditional on the substate, the distribution of the signals
si ∈ {a, z, b} is independent and identical with the marginal probabilities de-
noted by Pr(s|ωj) (the marginals are degenerate in α1 and β1) .
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for A or B. Finally, the submitted votes are counted and the majority outcome

is chosen. This defines a Bayesian game.

A strategy of a voter is a function σ : S× [−1, 1]2 → [0, 1], where σ (s, t) is

the probability that a voter of type t with signal s votes for A.

We consider only weakly undominated strategies. In particular, we require

that

σ (s, t) = 0 for all t = (tα, tβ) < (0, 0) , (2)

σ (s, t) = 1 for all t = (tα, tβ) > (0, 0) ,

where t > (0, 0) and t < (0, 0) are partisans who prefer A and B, respectively,

independently of the state. Given our full support assumption on G, this

rules out degenerate strategies for which either σ (s, t) = 1 for all (s, t) or

σ (s, t) = 0 for all (s, t). Here, and in the following, we ignore zero measure

sets when writing ”for all”.

From the viewpoint of a given voter and given any strategy σ′ used by

the other voters, the pivotal event piv is the event in which the realized types

and signals of the other 2n voters are such that exactly n of them vote for

A and n for B. In this event, if she votes A, the outcome is A; if she votes

B, the outcome is B. In any other event, the outcome is independent of her

vote. Thus, a strategy is optimal if and only if it is optimal conditional on the

pivotal event.

Let Pr(α|s, piv; σ′) denote the posterior probability of α conditional on

s and conditional on being pivotal for the nondegenerate strategy σ′. The

strategy σ is a best response to σ′ if and only if

Pr(α|s, piv; σ′) · tα + (1− Pr(α|s, piv; σ′)) · tβ > 0 ⇒ σ (s, t) = 1, (3)

and

Pr(α|s, piv; σ′) · tα + (1− Pr(α|s, piv; σ′)) · tβ < 0 ⇒ σ (s, t) = 0, (4)

that is, a voter supports A if the expected value of A conditional on being
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pivotal is strictly positive and supports B otherwise. Note that indifference

holds only for a set of types that has zero measure. For all other types, the

best response is pure. It follows that there is no loss of generality to consider

pure strategies with σ (s, t) ∈ {0, 1} for all (s, t).

So, a symmetric, undominated, and pure Bayes-Nash equilibrium of Γ(π)

is a strategy σ : S × [−1, 1]2 → {0, 1} that satisfies (2), (3), and (4), with

σ′ = σ. We refer to such a strategy simply as an equilibrium.

3 Preliminary Observations

3.1 Inference from the Pivotal Event

When making an inference from being pivotal, voters ask which state is more

likely conditional on a tie, with exactly n voters supporting A and n supporting

B. It is intuitive that a tie is evidence in favor of the substate in which the

election is closer to being tied in expectation. Thus, conditional on being

pivotal, a voter updates toward the substate in which the expected vote share

is closer to 1
2
. We now verify this simple intuition and introduce some notation

along the way.

Fix some strategy σ for the other voters. Then, the probability that any

given voter supports A in substate ωj is

q (ωj; σ) =
∑

s∈S
π (s|ωj) PrG {t : σ (s, t) = 1} ; (5)

we refer to q (ωj; σ) also as the expected vote share of A.

Given that the signals and the types of the voters are independent condi-

tional on the substate, the probability of a tie in the vote count is

Pr (piv|ωj; σ) =

(

2n

n

)

(q (ωj; σ))
n (1− q (ωj; σ))

n . (6)
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For any two substates ωj and ω̂l, the likelihood ratio of being pivotal is

Pr (piv|ωj; σ)

Pr (piv|ω̂l; σ)
=

(

q (ωj; σ) (1− q (ωj; σ))

q (ω̂l; σ) (1− q (ω̂l; σ))

)n

. (7)

Using the conditional independence, the posterior likelihood ratio of any two

substates conditional on a signal s and the event that the voter is pivotal is

Pr (ωj|piv, s; σ)
Pr (ω̂l|piv, s; σ)

=
Pr(ωj)

Pr(ω̂l)

Pr(s|ωj)

Pr(s|ω̂l)

Pr (piv|ωj; σ)

Pr (piv|ω̂l; σ)
. (8)

Now, we record the intuitive fact that voters update toward the substate

in which the vote share is closer to 1/2, that is, in which the election is closer

to being tied in expectation.

Claim 1 Take any two substates ωj and ω̂l, and any strategy σ for which

Pr (piv|ω̂l; σ) ∈ (0, 1); if

∣

∣

∣

∣

q (ωj; σ)−
1

2

∣

∣

∣

∣

<

∣

∣

∣

∣

q (ω̂l; σ)−
1

2

∣

∣

∣

∣

, (9)

then
Pr (piv|ωj; σ)

Pr (piv|ω̂l; σ)
> 1. (10)

Proof. The function q(1−q) has an inverse u-shape on [0, 1] and is symmetric

around its peak at q = 1
2
, as is illustrated in Figure (2). So,

∣

∣q − 1
2

∣

∣ <
∣

∣q′ − 1
2

∣

∣

implies that q(1 − q) > q′(1 − q′). Thus, it follows from (7) that (9) implies

(10).

3.2 Pivotal Voting

Given any strategy profile σ′ used by the others, the vector of posteriors con-

ditional on piv and s is denoted as

ρ (σ′) = (Pr(α|s, piv; σ′))s∈S. (11)
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Figure 2: The function q(1 − q) for q ∈ [0, 1]. If |q − 1
2
| < |q′ − 1

2
|, then

q(1− q) > q(1− q′).

This vector of posteriors is a sufficient statistic for the unique best response

to σ′ for all nonpartisan voter types; see (3) and (4).

In particular, given some vector of beliefs p =(ps)s∈S , let σp be the unique

undominated strategy that is optimal if a voter with a signal s believes the

probability of α to be ps; that is,

∀(s, t) : σp (s, t) = 1 ⇔ ps · tα + (1− ps) · tβ > 0, (12)

and (2) holds for the partisans. Then, the strategy σ is a best response to σ′

if and only if σ = σp for p = ρ (σ′).

So, σ∗ is an equilibrium if and only if σ∗ = σρ(σ∗). Conversely, an equilib-

rium can be described by a vector of beliefs p∗ that is a fixed point of ρ(σp),

that is

p∗ = ρ (σp∗) ; (13)

meaning, the belief p∗ corresponds to an equilibrium if, when voters behave

optimally given p∗ (i.e., vote according to σp
∗

), the posterior conditional on

being pivotal is again p∗.
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Equation (13) provides an equilibrium existence argument: the expression

ρ (σp) defines a finite-dimensional mapping [0, 1]|S| → [0, 1]|S| from beliefs

p into posterior beliefs ρ (σp), and this mapping is continuous.4 Thus, an

application of Kakutani’s theorem implies the existence of a fixed point p∗

that solves (13).5 The strategy σp
∗

is an equilibrium.6

The possibility of writing equilibria in terms of posteriors enables us to

connect our model and our results to the Bayesian persuasion literature.

3.3 Aggregate Preferences

A central object of the analysis is the aggregate preference function

Φ(p) := PrG({t : p · tα + (1− p) · tβ > 0}), (14)

which maps a belief p ∈ [0, 1] to the probability that a random type t prefers

A under p. The function Φ proves useful to express expected vote shares. If

a strategy σ is optimal given beliefs p, i.e. σ = σp, then the expected vote

share of outcome A in substate ωj is simply given by

q (ωj; σ) =
∑

s∈S
Pr(s|ωj)Φ (ps) . (15)

Figure 3 illustrates Φ. Given p, the dashed (blue) line corresponds to the plane

of indifferent types t = (tα, tβ) with p · tα+(1−p) · tβ = 0. Voters having types

to the north-east prefer A given p, and Φ is the measure of such types under

G. The indifference plane has a slope − p

1−p
, and a change in p corresponds

to a rotation of it. Given that G has a continuous density, it follows that the

function Φ is continuous in p. Given that G has a strictly positive density on

4 To see why ρ (σp) is continuous in p, first, note that (12) implies that
PrG {t : σp (s, t) = 1} is continuous in p since G has a continuous density. Second, q(ωj ;σ

p)
are continuous in PrG {t : σp (s, t) = 1}, given (5). Third, ρ(σp) is continuous in q(ωj ;σ

p),
given (6) and (8).

5The ability to write an equilibrium as a finite-dimensional fixed point via (13) is a
significant advantage. This reduction to finite dimensional equilibrium beliefs has been
useful in other settings as well; see Bhattacharya (2013) and Ahn & Oliveros (2012).

6Note that, because of the partisans, σp
∗

is non-degenerate.
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−1 1

−1

1

tβ = −p

1−p
tα

tα

tβ

Figure 3: The curve of indifferent types is tβ = −p

1−p
tα for any given belief

p = Pr(α) ∈ (0, 1).

[−1, 1]2, we also have that

0 < Φ(p) < 1 for all p ∈ [0, 1]. (16)

As observed before, voters having types t in the north-east quadrant prefer

A for all beliefs and voters having types t in the south-west quadrant always

prefer B (partisans). Voters having types t in the south-east quadrant prefer

A in state α and B in β (aligned voters) and voters having types t in the

north-west quadrant prefer B in state α and A in β (contrarian voters).

We assume that the distribution of types is rich enough so that there is

a belief p for which a majority prefers A and a belief p′ for which a majority

prefers B,7 i.e.,

Φ (p′) <
1

2
< Φ (p) . (17)

7Otherwise, the analysis is trivial: if, for all beliefs p ∈ [0, 1], in expectation a majority
prefers A, then, for any information structure, it follows from the weak law of large numbers
that in any equilibrium sequence A is elected with probability converging to 1.
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4 Large Elections: Basic Results

We consider a sequence of elections along which the electorate’s size n grows.

For each 2n+ 1, we fix some strategy profile σn and calculate the probability

that a policy x ∈ {A,B} wins the support of the majority of the voters in state

ω, denoted Pr (x|ω; σn, n). We will be interested in the limit of Pr (x|ω; σ∗
n, n)

as n → ∞ for equilibrium sequences (σ∗
n)n∈N.

8 We first state a central obser-

vation regarding the inference from being pivotal in large elections, and then

we show how this observation implies the Condorcet Jury Theorem, which we

restate as a benchmark.

4.1 Inference in Large Elections

As a first step, we study the properties of the inference from being pivotal

in a large election. We show that Claim 1 extends in an extreme form as

the electorate grows large (n → ∞): the event that the election is tied is

infinitely more likely in the (sub-)state in which the election is closer to being

tied in expectation. In fact, the likelihood ratio of the pivotal event diverges

exponentially fast.

Since we want to allow the information structure to depend on n, we also

include πn now in the argument. The set of substates is kept fixed.

Claim 2 Consider any sequence of strategies (σn)n∈N and any sequence of

information structures (πn)n∈N and any two substates ωj and ω̂l for which

Pr (piv|ω̂l; σ, n, πn) ∈ (0, 1) for all n. If

lim
n→∞

∣

∣

∣

∣

q (ωj; σn, πn)−
1

2

∣

∣

∣

∣

< lim
n→∞

∣

∣

∣

∣

q (ω̂l; σn, πn)−
1

2

∣

∣

∣

∣

, (18)

then, for any d ≥ 0,

lim
n→∞

Pr (piv|ωj; σn, πn)

Pr (piv|ω̂l; σn, πn)
n−d = ∞. (19)

8Recall that an equilibrium exists, given the representation as a finite-dimensional fixed
point of a continuous mapping; see (13).
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Proof. Let

kn =
q (ωj; σn, πn)

q (ω̂j; σn, πn)

(1− q (ωj; σn, πn))

(1− q (ω̂j; σn, πn))
.

From (7), the left-hand side of (19) is (kn)
n

nd . If (18) holds, then limn→∞ kn > 1,

because of the properties of q (1− q) illustrated in Figure 2. So, limn→∞ (kn)
n =

∞. Moreover, (kn)
n diverges exponentially fast and, hence, dominates the de-

nominator nd, which is polynomial.

4.2 Benchmark: Condorcet Jury Theorem

The model embeds a special case of the canonical voting game by Feddersen

& Pesendorfer (1997) with a binary state. In the following, we restate their

full-information equivalence result, assuming, at first, that signals are binary,

S = {u, d}.
As in Feddersen & Pesendorfer (1997), we assume that the signals are

independently and identically distributed across voters conditional on the state

ω ∈ {α, β}.9 This corresponds to the case of an information structure πc with

a single substate in each state; in the following, we identify the substate with

this state. The probabilities Pr(s|ω; πc) for s ∈ {u, d} and ω ∈ {α, β} satisfy

1 > Pr(u|α; πc) > Pr
πc
(u|β; πc) > 0 ; (20)

that is, signal u is indicative of α, and signal d is indicative of β. We further

assume that

Φ(p) is strictly increasing in p. (21)

We say that the aggregate preference function is monotone.10 Monotonicity

(21) and (17) together imply that Φ(0) < 1
2
< Φ(1); so, the full information

outcome is A in α and B in β.

9Feddersen & Pesendorfer (1997) assume the existence of subpopulations and allow the
signal distributions to vary across those. This is not critical. Moreover, they assume a
continuum of states ω. Bhattacharya (2013) nests a binary-state version of their model.
The binary state version here is a special case of Bhattacharya (2013).

10Bhattacharya (2013) says that the distribution of preferences satisfies ’Strong Prefer-
ence Monotonicity’ if (21) holds except possibly for a countable number of beliefs p.
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Theorem 1 Feddersen & Pesendorfer (1997), Bhattacharya (2013)

Suppose Φ is monotone (i.e., satisfies equation (21)). Then, for every sequence

of equilibria (σ∗
n)n∈N given πc,

lim
n→∞

Pr (A|α; σ∗
n, π

c, n) = 1,

lim
n→∞

Pr (B|β; σ∗
n, π

c, n) = 1.

4.3 Proof of the Condorcet Jury Theorem

The following sketches the proof of Theorem 1. The proof is standard. We

state it here to introduce some of the basic arguments that we use for the later

analysis as well.

Step 1 For all n and every equilibrium σ∗
n, the vote share of A is larger in α

than in β,

0 < q(β; σ∗
n, n) < q(α; σ∗

n, n) < 1. (22)

This ordering of the vote shares follows from the likelihood ratio ordering of

the signals. In particular, recall the expression (8) for the posterior likelihood

ratio of two states conditional on a given voter’s signal s and the event that

the voter is pivotal,

Pr (α|s, piv; σ∗
n, n)

1− Pr (α|s, piv; σ∗
n, n)

=
Pr (α)

Pr (β)

Pr (piv|α; σ∗
n, n)

Pr (piv|β; σ∗
n, n)

Pr(s|α; πc)

Pr(s|β; πc)
, (23)

where Pr (piv|β; σ∗
n, n) > 0 because σ∗

n is nondegenerate by (2). Therefore,
Pr(u|α;πc)
Pr(u|β;πc)

> Pr(d|α;πc)
Pr(d|β;πc)

implies that Pr (α|u, piv; σ∗
n, n) > Pr (α|d, piv; σ∗

n, n). Now,

(22) follows from (15) and the monotonicity of Φ. Intuitively, the expected

posterior in state α is higher and this translates into a larger set of types

preferring A given the monotonicity of Φ.

Step 2 Voters cannot become certain of the state conditional on being pivotal,

that is, the inference from the pivotal event must remain bounded,

lim
n→∞

Pr (piv|α; σ∗
n, n)

Pr (piv|β; σ∗
n, n)

∈ (0,∞) , (24)
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for every convergent subsequence in the extended reals.

Suppose not and suppose instead, for example, that conditional on being piv-

otal voters become convinced that the state is β (i.e., η = limn→∞
Pr(piv|α;σ∗

n,n)
Pr(piv|β;σ∗

n,n)
=

0). This would imply limn→∞ Pr (α|s, piv; σ∗
n, n) = 0 for s ∈ {u, d}. Then,

given Φ (0) < 1
2
, a strict majority would support B in both states. However,

the election is then closer to being tied in state α and voters would update

towards state α conditional on being pivotal, in contradiction to η = 0.

Formally, if η = 0 for some converging subsequence, then limn→∞ q(ω; σ∗
n) =

Φ (0) < 1
2
for ω ∈ {α, β}. Therefore, for large enough n, (22) implies that

q(β; σ∗
n) < q(α; σ∗

n) < 1/2. Now, Claim 1 implies that voters update towards

state α, that is, Pr(piv|α;σ∗

n,n)
Pr(piv|β;σ∗

n,n)
≥ 1, in contradiction to η = 0.

Step 3 In every equilibrium sequence (σ∗
n)n∈N, the limit of the vote share of

A is larger in α than in β,

lim
n→∞

q(α; σ∗
n) > lim

n→∞
q(β; σ∗

n). (25)

From (24) and (125), we have that the limits of the posteriors conditional on

being pivotal and s ∈ {u, d} are interior and hence ordered,

0 < lim
n→∞

Pr (α|d, piv; σ∗
n, n) < lim

n→∞
Pr (α|u, piv; σ∗

n, n) < 1.

Now, (25) follows from (15) since Φ is strictly increasing.

Step 4 The election is equally close to being tied in expectation, that is,

lim
n→∞

q(α; σ∗
n)−

1

2
= lim

n→∞

1

2
− q(β; σ∗

n). (26)

Since voters must not become certain conditional on being pivotal by (24),

Claim 2 requires that

lim
n→∞

∣

∣

∣

∣

q(α; σ∗
n)−

1

2

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

q(β; σ∗
n)−

1

2

∣

∣

∣

∣

. (27)
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Given the ordering of the limits of the vote shares from (25), the equation

(27) implies (26).

It follows from Step 4 and (25) that

lim
n→∞

q(α; σ∗
n) >

1

2
> lim

n→∞
q(β; σ∗

n).

Therefore, by the weak law of large numbers, A wins in state α with probability

converging to 1 as n → ∞ and B wins in state β with probability converging

to 1 as n → ∞. This proves the result. �

Theorem 1 holds more generally for any information structure π for which

the signals are independent and identically distributed conditional on the

state ω ∈ {α, β} (i.e., there is a single substate) and for which signals are

not completely uninformative. To see why this is true, note that, given

the binary state, the signals can be taken to be ordered by the monotone

likelihood ratio, without loss of generality. For any information structure

π and any equilibrium σ∗
n, it then follows from (125) that the distribution

of posteriors Pr(α|piv, s; σ∗
n, π, n) in the state α (as implied by the distribu-

tion over s) first order stochastically dominates the distribution of posteriors

Pr(α|piv, s; σ∗
n, π, n) in the state β. Then, given that Φ is monotone, it follows

from (15) that the vote shares satisfy the ordering (22). From (22) onward

none of the arguments use that the signals are binary.

By the same line of argument, Theorem 1 holds even when we allow the infor-

mation structure π with a single substate to vary with n (keeping the signal

set S fixed), as long as the limit information structure is not completely unin-

formative, i.e.

∃s ∈ S : lim
n→∞

Pr(s|πn) > 0 and lim
n→∞

Pr(s|α; πn)

Pr(s|β; πn)
6= 1. (28)

We conclude,
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Theorem 1’ Suppose Φ is monotone (i.e. satisfies equation (21)). Then, for

every sequence of information structures (πn)n∈N with a single substate and

satisfying (28) and for every sequence of equilibria (σ∗)n∈N given (πn)n∈N,

lim
n→∞

Pr (A|α; σ∗
n, πn, n) = 1,

lim
n→∞

Pr (B|β; σ∗
n, πn, n) = 1.

5 Monopolistic Persuasion

We now consider the case of a sender who aims to affect the election outcome by

providing information to voters, and voters have no other source of information

on their own. Thus, the sender is the monopolist for information, which is the

case studied in much of the literature on persuasion.

When the sender provides no information, the election outcome is trivially

the outcome that is preferred by the majority at the prior, as determined

by Φ (Pr (α)). In addition, the sender can implement the full information

outcome with public signals by revealing the state. What else can the sender

implement?

For example, could the sender implement a constant policy that is the

opposite of what the voters prefer at the prior? Or could the sender even

implement the inverse of the full information outcome? Clearly, in order to

implement these policies, the sender must provide some information to the

voters, and, in fact, to implement the inverse of the full information outcome,

the sender must provide sufficient information for the voters to be able to

collectively distinguish the two states. On the other hand, the Condorcet

jury theorem suggests that providing information to voters may easily lead to

the full information outcome, suggesting that the possibility of persuasion is

limited.

21



5.1 Result: Full Persuasion

Formally, we study what policies can be implemented in an equilibrium of a

large election for some choice of π. This determines the set of feasible policies

for a strategic sender.

The choice of the information structure π affects voters by affecting the

posteriors (Pr(α|s, piv; σ′, π))s∈S. There are two effects of π. First, there is a

direct effect of π on how voters learn from their signal. This effect is known

from the work on persuasion. Second, there is an indirect effect of π because

it affects the inference of the voters from being pivotal.

We show that there is no limit to the set of feasible policies. For any state-

dependent policy and for large n, there is an information structure πn and an

equilibrium σn for which the targeted policy wins with probability close to 1

in the respective state.11

Theorem 2 Take any Φ that satisfies (17) and any prior Pr (α) ∈ (0, 1): for

every state-dependent policy (x (α) , x (β)) ∈ {A,B}2 there exists a sequence

of signal structures (πn)n∈N and equilibria (σ∗
n)n∈N given (πn)n∈N such that

lim
n→∞

Pr (x (α) |α; σ∗
n, πn, n) = 1,

lim
n→∞

Pr (x (β) |β; σ∗
n, πn, n) = 1.

From the previous analysis, with a single substate in each state, the sender

can only implement either the policy that gets a majority at the prior or the

full-information policy, by choosing uninformative signals or by choosing any

other information structure, respectively.12

Thus, there need to be at least two substates for any nontrivial result. And,

indeed, the class of information structures from the model section with two

substates (as illustrated in Figure 1) turns out to be sufficient for the result.

In the following, first, we provide a proof for a special case of the theorem

11The sender can also implement any stochastic policy by ”mixing” over information
structures in the appropriate way.

12See Theorem 1 and the remarks after.
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Figure 4: The information structure πr
n with ε = 1

n
and r ∈ (0, 1).

in Section 5.2. Then, we provide the proof for the general case in Section 5.4.

5.2 Proof: Constant Policy

This section proves Theorem 2 for the case in which Φ is monotonically in-

creasing and the targeted policy is A in both states (i.e., Φ satisfies (21) and

(x (α) , x (β)) = (A,A)). We further assume a uniform prior to simplify the

algebra, setting Pr (α) = 1/2.

5.2.1 The Information Structure

We specialize the general information structure introduced in the model section

to the one defined in Figure 4. Setting ε = 1
n
, the information structure has a

single parameter, r ∈ (0, 1), and we denote it by πr
n.

As ε vanishes for large n, the signals are almost public in the following sense:

conditional on observing any signal s, a voter believes that any other voter has

received the same signal with a probability close or equal to 1. Furthermore,

the signals a and b reveal the state (almost) perfectly. In particular, this way

the proof implies that even when constraining the sender to (almost) perfectly
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revealing information structures, persuasion is not constrained. In other words,

the sender could be constrained to not ‘lie’ too often. The signal z contains

only limited information since r ∈ (0, 1). When observing the signal z, a voter

knows that the substate must be either α2 or β2. Moreover, given that a voter

receives zwith a probability close to 1 in either substate, we have (recall the

uniform prior),

lim
n→∞

Pr(α|z; πr
n) = lim

n→∞
Pr(α|{α2, β2} , πr

n) = r. (29)

5.2.2 Voter Inference

Clearly, for signal a,

Pr(α|a, piv; σn, π
r
n) = 1. (30)

Hence, in state α1, when all voters receive a, the probability that a random

citizen votes A is Φ(1) > 1
2
. It follows from the weak law of large numbers

that in any equilibrium A is elected with probability converging to 1 in state

α1. In state β1 all voters receive b. Conditional on the signal b alone, state β

is more likely.

The remaining part of this section shows that the indirect effect from the

inference of the voters from being pivotal can dominate and turn around this

direct effect of the inference from the signal b alone such that there is an

equilibrium sequence (σ∗
n)n∈N for which

lim
n→∞

Pr(α|b, piv; σ∗
n, π

r
n) = 1. (31)

Consider the signal z and the inference about the relative likelihood of α2

and β2. We show that, for any strategy used by the other voters, the pivotal

event contains no information about the relative probability of α2 and β2 as

the electorate grows large.

Claim 3 Given any r ∈ (0, 1) and any sequence of strategies (σn)n∈N,

lim
n→∞

Pr(piv|α2; σn, π
r
n)

Pr(piv|β2; σn, πr
n)

= 1. (32)
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The proof is in the Appendix in Section A. The pivotal event contains

no information since the distribution of signals is almost identical in the two

substates α2 and β2 (and the distribution of preference types is identical by

construction). Therefore, for any strategy σ, the distribution of votes must be

almost identical in the two substates; in particular, the probability of a tie is

also almost the same in the two substates.13

Claim 3 and (29) imply, in particular, that for any sequence of strategies

(σn)n∈N,

lim
n→∞

Pr(α|z, piv; σn, π
r
n) = r. (33)

Therefore, the sender can ”steer” the behavior of voters with signal z by

choosing r.

Next, we consider signal b and the voters’ inference about the relative

likelihood of α2 and β1. We show that, for this signal, the inference from

the signal is dominated by the inference from being pivotal, for a large set of

voting strategies. Conditional on the signal alone, state β is much more likely.

However, this is turned around if the election is closer to being tied in state

α2 than in state β1:

Claim 4 Take any sequence of strategies (σn)n∈N such that

lim
n→∞

|q(σn;α2, π
r
n)−

1

2
| < lim

n→∞
|q(σn; β1, π

r
n)−

1

2
|; (34)

then,

lim
n→∞

Pr(α|b, piv; σn, π
r
n)

Pr(β|b, piv; σn, πr
n)

= ∞. (35)

13The probability that all voters receive signal z in state α2 is (1− 1
n2 )

2n and limn→∞(1−
1
n2 )

2n = 1, recalling that limn→∞(1− 1
n

1
d
)2n = e−

2

d . This observation is the critical step in
the proof in the appendix.
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Proof. The posterior likelihood ratio is

Pr(α|b, piv; σn, π
r
n)

Pr(β|b, piv; σn, πr
n)

=
Pr (α)

Pr (β)

Pr (α2|α)
Pr (β1|β)

Pr (b|α2; π
r
n)

Pr (b|β1; πr
n)

Pr (piv|α2; σn, π
r
n)

Pr (piv|β1; σn, πr
n)

=
Pr (α)

Pr (β)

r 1
n

1− (1− r) 1
n

1
n2

1

Pr (piv|α2; σn, π
r
n)

Pr (piv|β1; σn, πr
n)

≈ Pr (piv|α2; σn, π
r
n)

Pr (piv|β1; σn, πr
n)
n−3. (36)

For the approximation on the last line we used that the prior is uniform. Given

(34), equation (35) follows from applying Claim 2 for d = 3.

Thus, for any sequence of strategies that satisfies (34),

lim
n→∞

Pr(α|b, piv; σn, π
r
n) = 1. (37)

5.2.3 Fixed Point Argument

By the richness assumption on Φ (see (17)), there is some r̂ such that Φ(r̂) = 1
2
.

We will show that, for the information structure πr̂
n and n large enough, there

is an equilibrium in which A receives a strict majority of votes in both states

in expectation.

Recall that equilibrium is equivalently characterized by a vector of beliefs,

p∗ = (p∗a, p
∗
z, p

∗
b) such that p∗ = ρ

(

σp
∗
)

; see (13). Now, take any δ > 0 and let

Bδ =
{

p ∈ [0, 1]3 | |p− (1, r̂, 1)| ≤ δ
}

,

so that Bδ is the set of beliefs at most δ away from (1, r̂, 1). Take any p ∈Bδ

and the corresponding strategy σp. Since Φ (1) > 1
2
, this means that A receives

a strict majority of votes in the states α1 and β1 for δ small enough. In

the states α2 and β2, (almost) all voters observe signal z, so q(α2; σ
p, πr̂

n) ≈
Φ(r̂) and q(β2; σ

p, πr̂
n) ≈ Φ(r̂). Since Φ (r̂) = 1

2
, the vote share for A is

approximately 1
2
.
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Now, we show that our two previous claims, Claim 3 and 4, imply that,

given σp, the posterior conditional on being pivotal is again in Bδ, for any

p ∈Bδ, any sufficiently small δ and any sufficiently large n:

Claim 5 For any δ sufficiently small, there exists n(δ) such that for all n ≥
n(δ),

∀p ∈Bδ : ρ
(

σp; πr̂
n, n
)

∈ Bδ . (38)

Proof. Take any p ∈Bδ and its corresponding behavior σp. For the posterior

following signal a it is immediate that, for all δ and n,

ρa

(

σp; πr̂
n, n
)

= 1; (39)

see (31). Secondly,

lim
n→∞

ρz

(

σp; πr̂
n, n
)

= r̂, (40)

follows from Claim 3 for all δ; see (33).

Finally, for δ small enough and n large enough, the election is closer to

being tied in α2 than in β1,

∀p ∈Bδ: |q(α2; σ
p, πr̂

n)−
1

2
| < |q(β1; σ

p, πr̂
n)−

1

2
| (41)

To see why, note that for n large enough, q(α2; σ
p, πr̂

n) ≈ Φ (pz) and q(β1; σ
p, πr̂

n) =

Φ (pb) since almost all voters receive z in α2 and all voters receive b in β1. In ad-

dition, by the continuity of Φ, for δ small enough, we have that Φ (pz) ≈ Φ (r̂)

and Φ (pb) ≈ Φ (1). Finally, (41) follows then from Φ (r̂) = 1
2
and Φ (1) > 1

2
.

Now, it follows from (41) and from Claim 4 that

lim
n→∞

ρb

(

σp; πr̂
n, n
)

= 1. (42)

Thus, the claim follows from (39),(40), and (42).

Since ρ(σp) is continuous in p by the arguments after (13), it follows from

(38) and Kakutani’s fixed point theorem that there exists a fixed point p∗
n ∈ Bδ
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for all n large enough. By the arguments from the proof of Claim 5,

lim
n→∞

p∗
n = (1, r̂, 1) , (43)

see (39), (40), and (42). Finally, for the corresponding sequence of equilib-

rium strategies, (σp
∗

n)n∈N, the policy A wins in both states; this follows from

(43), which implies that voters with signals a and b are supporting A with a

probability converging to Φ (1) > 1
2
, and from the weak law of large numbers.

This finishes the proof of the theorem for the special case in which Φ is

monotone, the targeted policy is A in both states, and the prior is uniform.

When the prior is not uniform, the only piece of the argument that needs to

be adjusted is the choice of r̂. For a general prior Pr (α), the value of r̂ should

be such that

Φ

(

Pr (α) r̂

Pr (α) r̂ + (1− Pr (α)) (1− r̂)

)

=
1

2
. (44)

We provide the proof for the general case (i.e. non-constant policies) in

Section 5.4.

5.3 Numerical Example with 17 voters

Let Φ(p) = p for all p ∈ [0, 1].14 Further, we set p0 =
1
4
and let the information

structure be πr
n with r = 1

2
.

In the Online Supplement, we show that under these primitives, when there

are at least 2n + 1 = 17 voters, there is an equilibrium σ∗
n for which A is

elected with a probability larger than 99.9% in the states α1 and β1. So, the

overall probability of A being elected exceeds 0.999(1− 1
n
) which is larger than

87% when there are at least 2n + 1 = 17 voters. To do so, we show that

under the specified primitives, when n ≥ 8, the best reponse is a self-map

14In the Online Supplement, we give an example of a preference distribution G such that
Φ(p) = p for all p and such that Pr(t : tα > 0, tβ < 0) = 1. Note that this is slightly
inconsistent with the assumption that G has a strictly positive density on [−1, 1]2, but is
done for the simplicity of presentation.
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on the set of strategies σ satisfying q(ω1; σ, π
r
n) ≥ 0.95 for ω1 ∈ {α1, β1}, and

q(ω2; σ; π
r
n) ∈ [0.32, 0.68] for ω2 ∈ {α2, β2}. This yields an equilibrium in which

voters with an a-or b-signal vote A with a probability of at least 95%.

5.4 Proof: How to shape the voter beliefs freely

Now we allow for non-monotone Φ. The way we prove Theorem 2 is by showing

that the sender can implement almost any belief µα in state α and simultane-

ously any belief µβ in state β as n → ∞, in the sense that, with probability

close to one, (almost) all voters will have such beliefs conditional on being

pivotal.

This implies the theorem as follows: the richness assumption (17) states that

there is a belief p for which a majority prefers A in expectation and a belief

p′ for which a majority prefers B in expectation, i.e. Φ(p) < 1
2
< Φ(p′). So,

given belief p′, it follows from the weak law of large numbers that B is elected

with probability converging 1. Given belief p, it follows from the weak law

of large numbers that A is elected with probability converging 1. Hence, the

sender can implement any state-contingent policy (xα, xβ) ∈ {A,B}2 simply

by implementing belief p′ in any state ω for which xω = A and by implement-

ing belief p in any state for which xω = B.

Formally, a pair of beliefs (µα, µβ) ∈ (0, 1)2 is implementable if there is a se-

quence of information structures (πn)n∈N and an equilibrium sequence (σ∗
n)n∈N

given (πn)n∈N and two signals sα, sβ ∈ S2 such that for all ω ∈ {α, β}

lim
n→∞

Pr(sω|ω; πn) = 1, (45)

and the posterior after sω converges to µω, i.e.

lim
n→∞

ρ̂sω(σ
∗
n; πn, n) = µω. (46)

Lemma 1 Take any Φ that satisfies (17) and any prior Pr(α) ∈ (0, 1): any

pair of beliefs (µα, µβ) ∈ [0, 1]2 with Φ(µα) 6= 1
2
and Φ(µβ) 6= 1

2
is imple-
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mentable.

5.4.1 The Information Structure

Figure 5: The information structure πx,r,y
n with ε = 1

n
and (x, r, y) ∈ (0, 1)3.

The parameter r controls the posterior after z and the parameters x and y
control the beliefs after a and b, respectively, conditional on being in substate
α2 or β2.

We consider the information structure depicted in Figure 5. the signals are

(almost) public, similar to the information structure in the previous section

(see Figure 4), . Also, the signals a and b reveal the state (almost) perfectly.

The signal z contains only limited information since r ∈ (0, 1). When observing

the signal z, a voter knows that the substate must be either α2 or β2. Moreover,

given that a voter receives z with a probability close to 1 in either substate,

lim
n→∞

Pr(α|z; πx,r,y
n )

Pr(β|z; πx,r,y
n )

= lim
n→∞

Pr(α|{α2, β2} , πx,r,y
n )

Pr(β|{α2, β2} , πx,r,y
n )

=
Pr(α)

Pr(β)

r

1− r
. (47)

5.4.2 Voter Inference

The basic arguments of the previous discussion of the voters’ inference extend

(compare with Section 5.2.2):

30



Consider the signal z and the inference about the relative likelihood of α2

and β2. As in the previous section (compare to Claim 3), for any strategy

used by the other voters, the pivotal event contains no information about the

relative probability of α2 and β2 as the electorate grows large.

Claim 6 Given any parameters (x, r, y) ∈ (0, 1)3 and any sequence of strate-

gies (σn)n∈N,

lim
n→∞

Pr(piv|α2; σn, π
x,r,y
n )

Pr(piv|β2; σn, π
x,r,y
n )

= 1. (48)

The proof follows from previous arguments: the arguments from the proof of

Claim 3 hold verbatim with the required changes in notation. Claim 6 and

(47) imply, in particular, that

lim
n→∞

Pr(α|z, piv; σn, π
x,r,y
n )

Pr(β|z, piv; σn, π
x,r,y
n )

=
Pr(α)

Pr(β)

r

1− r
. (49)

Therefore, the sender can ”steer” the behavior of voters with signal z by

choosing r.

Next, we consider a signal s ∈ {a, b} and the voters’ inference about the

relative likelihood of α and β. We show that, analogous to Claim 4, for this

signal, the inference from the signal is dominated by the inference from being

pivotal, for a large set of voting strategies. Conditional on the signal a alone,

state α is much more likely. Conditional on the signal b alone, state β is much

more likely. However, if the election is closer to being tied in states α2 and β2

than in the states α1 and β1, this inference after receiving a signal s ∈ {a, b}
can be turned around.

Claim 7 Take any sequence of strategies (σn)n∈N such that

lim
n→∞

max
ω2∈{α2,β2}

|q(σn;ω2, π
x,r,y
n )− 1

2
|

< lim
n→∞

min
ω1∈{α1,β1}

|q(σn;ω1, π
x,r,y
n )− 1

2
|; (50)
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then, for s ∈ {a, b},

lim
n→∞

Pr({α2, β2}|s, piv; σn, π
x,r,y
n )

Pr({α1, β1}|s, piv; σn, π
x,r,y
n )

= ∞. (51)

The proof is in the Appendix in Section A. The proof is the same as for Claim

4, except for minor modifications.

For any sequence of strategies that satisfies (50), Claim 7 implies that for

signal a,

lim
n→∞

Pr(α|a, piv; σn, π
x,r,y
n )

Pr(β|a, piv; σn, π
x,r,y
n )

=
Pr(α2|{α2, β2}, a; σn, π

x,r,y
n )

Pr(β2|{α2, β2}, a; σn, π
x,r,y
n )

=
Pr(α)

Pr(β)

r

1− r

x

1− x
(52)

and that for signal b,

lim
n→∞

Pr(α|b, piv; σn, π
x,r,y
n )

Pr(β|b, piv; σn, π
x,r,y
n )

=
Pr(α2|{α2, β2}, b; σn, π

x,r,y
n )

Pr(β2|{α2, β2}, b; σn, π
x,r,y
n )

=
Pr(α)

Pr(β)

r

1− r

y

1− y
. (53)

So, for the signals s ∈ {a, b}, the limits of the beliefs conditional on being

pivotal are pinned down by the inference from the signal probabilities in the

states α2 and β2 (i.e. the parameters x ∈ (0, 1) and y ∈ (0, 1)).

5.4.3 Implementable Beliefs

In this section, we prove Lemma 1, using the observations from the preceding

section.

Similar to before in section 5.2.3 we use that an equilibrium is equivalently

characterized by a vector of beliefs, p∗ = (p∗a, p
∗
z, p

∗
b) such that p∗ = ρ

(

σp
∗
)

;

see (13). Take any δ > 0 and let

Bδ =
{

p ∈ [0, 1]3 | |p− (µα, r
′, µβ)| ≤ δ

}

, (54)
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so that Bδ is the set of beliefs at most δ away from (µα, r
′, µβ).

We show that our two previous claims, Claim 6 and 7, imply that there

is a large set of belief triples (µα, r
′, µβ) such that, given σp, the posterior

conditional on being pivotal is again in Bδ, for any p ∈Bδ, any sufficiently

small δ and any sufficiently large n.15

Claim 8 Let (µα, µβ) ∈ [0, 1]2 and r′ ∈ (0, 1) with

|Φ(µα)−
1

2
| > |Φ(r′)− 1

2
| and |Φ(µβ)−

1

2
| > |Φ(r′)− 1

2
|. (55)

For any δ > 0 small enough, there exists n(δ) such that for all n ≥ n(δ),

∀p ∈Bδ : ρ (σp; πx,r,y
n , n) ∈ Bδ (56)

with Pr(α)
Pr(β)

r
1−r

x
1−x

= µα

1−µα
, Pr(α)

Pr(β)
r

1−r

y

1−y
=

µβ

µβ
, and Pr(α)

Pr(β)
r

1−r
= r′

1−r′
.

Proof. Let πn = πx,r,y
n . Take any p ∈ Bδ and consider the corresponding

strategy σp. The condition (55) implies that for δ small enough, the election

is closer to being tied in the states α2 and β2 than in the states α1 and β1 in

expectation as n → ∞:

∀p ∈Bδ: lim
n→∞

max
ω2∈{α2,β2}

|q(ω2; σ
p, πn)−

1

2
|

< lim
n→∞

min
ω1∈{α1,β1}

|q(ω1; σ
p, πn)−

1

2
| (57)

To see why, note that for n large enough, q(α2; σ
p, πn) ≈ Φ (pz) and q(β2; σ

p, πn) ≈
Φ (pz) since almost all voters receive z in α2 and β2. Also, q(α1; σ

p, πn) = Φ (pa)

since all voters receive a in α1 and q(β1; σ
p, πn) = Φ (pb) since all voters receive

b in β1. In addition, by the continuity of Φ, for δ small enough, we have that

Φ (pz) ≈ Φ (r̂), Φ (pa) ≈ Φ (µα) and Φ (pb) ≈ Φ (µβ). Finally, (57) follows then

from Φ (r̂) = 1
2
and Φ (µω) 6= 1

2
for ω ∈ {α, β}. Now, it follows from (57),

15In the following, we use the convention that dividing by zero yields a result of infinity

such that formulas like Pr(α)
Pr(β)

r
1−r

x
1−x

= µα

1−µα

make sense for µα ∈ {0, 1}.
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Claim 7, and its implications (52) and (53) that

lim
n→∞

ρa (σ
p; πn, n) = µα, (58)

lim
n→∞

ρb (σ
p; πn, n) = µβ (59)

for any δ > 0 small enough. Thus, the claim follows from (49), (58) and (59).

We finish the proof of Lemma 1. Let r = r̂ such that Φ(r′) = 1
2
with

r′ = Pr(α)r̂
Pr(α)r̂+(1−Pr(α))(1−r̂)

; see (44). Take any (µα, µβ) with Φ(µα) 6= 1
2
and

Φ(µβ) 6= 1
2
. Then, given Claim 8, ρ(σp) is a self-map on Bδ for δ small enough

and n ≥ n(δ) Since ρ(σp) is continuous in p, it follows from Kakutani’s fixed

point theorem that there exists a fixed point p∗
n ∈ Bδ for all n large enough,

i.e. p∗
n = ρ(σp

∗

n) and the corresponding behaviour σp
∗

n forms a sequence of

equilibria. Since the probability that a random voter receives a in α converges

to 1 and since the probability that a random voter receives b in β converges

to 1, Lemma 1 follows from (58) and (59) with a = sα and b = sβ.

5.5 Robustness

In this section, we discuss the robustness of Theorem 2. In particular, we ask:

can the sender persuade the voters even when he does not know the exact

details of the game? Can the sender release information to the voters such

that there is a unique manipulated equilibrium that implements the target

policy? If not, will the voters play the manipulated equilibrium?

5.5.1 Robustness: Detail-Freeness

In this section, we show that, to persuade the voters, the signal structure does

not need to be finely tuned to the details of the environment. In fact, there is a

single information structure that implies the manipulated outcome uniformly

across a large set of environments. These environment are given by the set of
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nondegenerate priors about α and preference distributions for which

|Φ(0)− 1

2
| > |Φ(Pr(α))− 1

2
|, (60)

|Φ(1)− 1

2
| > |Φ(Pr(α))− 1

2
|, (61)

hold, where (60) and (61) imply that, when the citizens vote optimally given a

common belief, the election is closer to being tied when they hold a degenerate

belief about the state relative to when they hold the prior belief (recall here

the definition of Φ in (14)).

Proposition 1 For every state-dependent policy (x (α) , x (β)) ∈ {A,B}2 there
is a sequence of signal structures (πn)n∈N such that for any Pr(α) ∈ (0, 1) and

any Φ for which 60) and (61) hold, there is a sequence of equilibria (σ∗
n)n∈N

given (πn)n∈N such that

lim
n→∞

Pr (x (α) |α; σ∗
n, πn, n) = 1,

lim
n→∞

Pr (x (β) |β; σ∗
n, πn, n) = 1.

Proof. We provide the proof for the constant target policy A in both states,

i.e. (x(α), x(β)) = (A,A). The other cases are analogous. Let the sender

use the information structures πn = πx,r,y
n with x = y = 1 and r = 1

2
. It

follows from Claim 8 that, for any Φ for which (60) and (61) hold, that there

is a δ small enough such that ρ(σp) is a self-map on Bδ = {p ∈ [0, 1]3 :

|p− (1,Pr(α), 1)| ≤ δ} for all n large enough.

Since ρ(σp) is continuous in p, it follows from Kakutani’s fixed point theorem

that there exists a fixed point p∗
n ∈ Bδ for all n large enough, i.e. p∗

n =

ρ(σp
∗

n) and the corresponding behaviour σp
∗

n forms a sequence of equilibria

that implements the beliefs (µα, µβ) = (1, 1). Given (σp
∗

n)n∈N, the policy

A wins in both states; this follows since voters with an a and b-signal are

supporting A with a probability converging to Φ(1) > 1
2
and from the weak

law of large numbers. This finishes the proof of the proposition.
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5.5.2 Robustness: Basin of Attraction

We provide a robustness argument by showing that for a large set of initial

strategies, an iterated best response leads quickly to the “manipulated equi-

librium” of Theorem 2 described before:

Let (µα, µβ) be any pair of beliefs with Φ(µα) 6= 1
2
and Φ(µβ) 6= 1

2
. By Lemma

1, there is a sequence of information structures and equilibria (σ∗
n)n∈N that

implements the pair of beliefs as n → ∞, in the sense that, with probability

close to one, (almost) all voters will have such beliefs conditional on being

pivotal; see (45) and (79) for the definition of implementable beliefs. Lemma 1

was instrumental to show Theorem 2, namely, that the sender can implement

any target policy (x(α), x(β)) ∈ {A,B}2 since he can do so by implementing a

belief µω with Φ(µω) >
1
2
whenever x(ω) = B and a belief µ′

ω with Φ(µ′
ω) >

1
2

whenever x(ω) = A.16

The next result shows that, for almost any other strategy σ 6= σ∗
n, the twice

iterated best response is arbitrarily close to σ∗
n when n is large enough.

First, let us define the twice iterated best response: take any belief p and

the strategy σp that is optimal given these beliefs. Then, σρ(σp) is the best

response to σp and is optimal given the beliefs

ρ
1(p) = ρ(σp) (62)

where ρ(σp) is the vector of the posteriors conditional on the pivotal event

and the signal s. In the same way, σ
ρ

(

σρ
1(p)

)

is the best response to σρ
1(p) (so

it is the twice iterated best reponse to σp) and is optimal given the beliefs

ρ
2(p) = ρ(σρ

1(p)). (63)

Theorem 3 shows that for almost any p, we have |ρ2 (p) − (µα, r̂, µβ) | < ǫ

when n is large enough. This means that the twice iterated best response is

arbitrarily close to the manipulated equilibrium σ∗
n since the equilibrium is

16Recall that such beliefs exist by the richness assumption (17).
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consistent with the belief ρ(σ∗
n) ≈ (µα, r̂, µβ); see (13). More generally, for

almost any strategy σ, which does not need to be optimal given some belief

p, the twice iterated best is arbitrarily close to the manipulated equilibrium

when n is large enough; we omit the proof of the more general case.

Theorem 3 Let Φ(0) 6= 1
2
and Φ(1) 6= 1

2
. Take any beliefs (µα, µβ) ∈ [0, 1]2

with Φ(µα) 6= 1
2
and Φ(µβ) 6= 1

2
and the information structures (πx,r̂,y

n )n∈N

with Pr(α)
Pr(β)

r
1−r

x
1−x

= µα

1−µα
, Pr(α)

Pr(β)
r

1−r

y

1−y
=

µβ

µβ
, and r̂ such that Φ(r′) = 1

2
with

Pr(α)
Pr(β)

r̂
1−r̂

= r′

1−r′
(see Figure 5). For any δ > 0, there is some B ⊂ [0, 1]|S| with

Lebesgue-measure at least 1− δ and n̄ ∈ N such that, for all n ≥ n̄,

∀p ∈ B : |ρ2 (p)− (µα, r
′, µβ) | < δ. (64)

Proof. Recall that for any strategy σ, the distance between the margin of

victory in α2 and β2 is smaller than 1
n2 in expectation since the probability

that a random voter receives the signal z is at least 1− 1
n2 in both the substates.

Now, consider any belief p ∈ [0, 1]3 such that under the corresponding strategy

σp the margins of victory differ by at least δ > 0 for any other pair of substates.

The theorem follows from the following claim: we show that for any such belief

p, the twice iterated response is δ-close to the manipulated equilibrium when

n is large enough.

Claim 9 For any δ > 0, there exists n̄ ∈ N such that the following holds: take

any p ∈ [0, 1]3 and the information structures (πx,r̂,y
n )n∈N with Pr(α)

Pr(β)
r

1−r
x

1−x
=

µα

1−µα
, Pr(α)

Pr(β)
r

1−r

y

1−y
=

µβ

µβ
, and r̂ such that Φ(r′) = 1

2
with Pr(α)

Pr(β)
r̂

1−r̂
= r′

1−r′
(see

Figure 5). If n ≥ n̄ and

∣

∣

∣
|q(ωi, σ

p, πn)−
1

2
| − |q(ω′

j, σ
p, πn)−

1

2
|
∣

∣

∣
> δ, (65)

for all ωi ∈ (α1, α2, β1, β2} and, ω′
j ∈ {α1, β1} with ωi 6= ω′

j, then |ρ2 (p) −
(µα, r̂, µβ) | < ǫ.

Proof.

Take any p ∈ [0, 1]3 such that (65) holds and consider the corresponding

behaviour σp. Denote the best response to σp by σ̃ = σρ(σp;πn,n) and let
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πn = πx,r̂,y
n with x = µα and y = µβ. The critical step is to show the following

assertion: given σ̃, that is, given , the expected margin of victory in the states

α1 and β1 is larger than in the states α2 and β2, i.e. σ̃ satisfies (50). We show

one part of (50), i.e.

lim
n→∞

max
ω2∈{α2,β2}

|q(σ̃;ω2, πn)−
1

2
| < lim

n→∞
|q(σ̃;α1, πn)−

1

2
|. (66)

The proof for the second part, the analogous statement where we replace α1

by β1, is verbatim with the required changes in notation. To prove (66), we

distinguish two cases. Note that the two cases are exhaustive since (65) holds.

Case 1 limn→∞ |q(σp;ω2, πn)− 1
2
| < limn→∞ |q(σp;α1, πn)− 1

2
|

Given (65), the difference is at least δ. Since almost all voters receive signal z

in α2 and β2, the expected vote shares in α2 and β2 differ by much less than δ
2

for n large enough. So, the expected margin of victory in α1 is larger than the

expected margin of victory in both α2 and β2 for n large enough. It follows

from Claim 2 that for any ω2 ∈ {α2, β2},

lim
n→∞

Pr (ω2|piv, a; σp, πn, n)

Pr (α1|piv, a; σp, πn, n)
= ∞. (67)

Since all voters receive a in α1, it holds q(α1; σ̃, πn) = Φ(ρa(σ
p)). Since almost

all voters receive z in α2 and β2 (see Figure 5), it holds q(α2; σ̃, πn) ≈ Φ(ρz(σ
p))

and q(β2; σ̃, πn) ≈ Φ(ρz(σ
p)). It follows from (67) and Claim 6, which says that

conditional on α2 and β2, there is nothing to be learnt from the pivotal event,

that, when a voter observes signal a, the inference from the signal probabilities

in the states α2 and β2 pins down the limits of the beliefs conditional on being

pivotal,

lim
n→∞

Pr(α|a, piv; σp, πn, n) = lim
n→∞

Pr(α|a, {α2, β2}; σp, πn, n)

= µα; (68)

compare to (52). Finally, (66) follows from (68) and (49) together with
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Φ(µα) 6= 1
2
and Φ(r′) = 1

2
. This finishes the first case.

Case 2 limn→∞ |q(σp;ω2, πn)− 1
2
| > limn→∞ |q(σp;α1, πn)− 1

2
|

Given (65), the difference is at least δ. Since almost all voters receive signal

z in α2 and β2 (see Figure 5), the expected vote shares in α2 and β2 differ by

much less than δ
2
for n large enough. So, the expected margin of victory in α1

is smaller than the expected margin of victory in both α2 and β2 for n large

enough. It follows from Claim 2 that for ω2 ∈ {α2, β2},

lim
n→∞

Pr (piv|α1; σ
p, πn, n)

Pr (piv|ω2; σp, πn, n)
= ∞. (69)

Therefore,

lim
n→∞

ρa(σ
p; πn, n)

1− ρa(σp; πn, n)

≥ lim
n→∞

Pr(α) Pr(α1|α) Pr(a|α1) Pr (piv|α1; σ
p, πn, n)

∑

j=1,2 Pr(β) Pr(βj|β) Pr(a|βj) Pr(piv|βj, a; σp, πn, n)
,

=
Pr(α)

Pr(β)

(1− r
n2 )

(1− r) 1
n

1

(1− x) 1
n2

Pr (piv|α1; σ
p, πn, n)

Pr (piv|β2; σp, πn, n)

= ∞, (70)

where the equality on the third line follows since the probability of signal a is

zero in β1 and where we used (69) for the equality on the last line.

We will show now that (70) implies (66): to see why, recall that for n large

enough, q(α2; σ̃, πn) ≈ Φ(ρz(σ
p; πn, n)) and q(β2; σ̃, πn) ≈ Φ(ρz(σ

p; πn, n))

since almost all voters receive z in α2 and β2. Also, q(α1; σ̃, πn) = Φ(ρa(σ
p; πn, n))

since all voters receive a in α1. In addition, we have that ρz(σ
p; πn, n) ≈ r̂ by

(49) and ρa(σ
p; πn, n) ≈ 1 by (70). Finally, (66) follows since Φ(r′) = 1

2
and

since Φ(1) 6= 1
2
. This finishes the second case.

Now, we finish the proof of Claim 9. Since we just showed that, given

σ̃ = σρ(σp;πn,n), the expected margin of victory in α1 and β1 is larger than in

α2 and β2, it follows from Claim 7 that
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lim
n→∞

Pr ({α2, β2}|piv, s; σ̃, πn, n)

Pr ({α1, β1}|piv, s; σ̃, πn, n)
= ∞ (71)

for any s ∈ {a, b}. It follows from (71) and Claim 6, which says that conditional

on α2 and β2, there is nothing to be learnt from the pivotal event, that, given

σ̃; when a voter observes signal a, the inference from the signal probabilities

in the states α2 and β2 pins down the limits of the beliefs conditional on being

pivotal, such that (52) and (53) hold for σn = σ̃. This, together with (49)

yields Claim 9. So, we are also done with the proof of Theorem 3.

Simple Reasoning. Theorem 3 illustrates that a simple reasoning is

underlying the manipulated equilibrium σ∗
n. The result loosely relates to the

concepts of level k-thinking and level-k-implementability (De Clippel et al.

(2016)). The theorem implies that for almost any strategy (a ‘behavioral

anchor’), the strategies that are consistent with level-2-thinking are close to

the manipulated equilibrium. In this sense, any state-dependent target policy

(x(α), x(β)) ∈ {A,B}2 is level-2-implementable.17

5.5.3 Other Equilibria

Theorem 3 shows that the basin of attraction of an arbitrarily small neig-

bourhood of the manipulated equilibria consists of almost all strategies when

n is large enough. However, this still leaves open the possibility that there

are other equilibria such that, if we start exactly at such a strategy profile,

the best reponse dynamic stays there. We show that this is indeed the case.

There exists another equilibrium and that equilibrium is not ”manipulated”,

but implements the full information outcome as n → ∞.

Theorem 4 Let Φ be stricly increasing. Take information structures (πn)n∈N =

πn = πx,r,y
n with (x, r, y) ∈ (0, 1)3 as illustrated in Figure 5. There exists an

equilibrium sequence (σ∗
n)n∈N for which the full information outcome is elected

17De Clippel et al. (2016) consider different notions of level-2-implementability which
demand that there is some behavioral anchor such that any profile of strategies that are level-
1-consistent or level-2-consistent for this anchor implement a given social choice function;
see their paper for the exact definitions.
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as n → ∞,

lim
n→∞

Pr(A|α; σ∗
n, πn) = 1,

lim
n→∞

Pr(B|β; σ∗
n, πn) = 1.

The proof is in the Appendix in Section B.

Intuition. Note that the signal πn almost always sends an (almost) per-

fectly revealing signal when n is large. Hence, there is a sequence of strategies

(e.g. given by sincere voting) for which the full-information outcome is elected

as n → ∞. The question is if such a sequence of strategies can be an equilib-

rium sequence. The theorem shows that, whenever Φ is monotone, the answer

is yes.

This is easy to see when voters have a common type t > 0.18 A result of

McLennan (1998) states that the utility maximizing symmetry strategy is a

symmetric equilibrium. Hence, for this special case, the existence of a sequence

of strategies that aggregates information implies the existence of an equilib-

rium sequence that aggregates information.

Non-Robustness. Consider the information structures πn = πx,r̂,y
n used

to construct the manipulated equilibria in the proof of Lemma 1. Recall that,

given r̂, it holds that Φ(r′) = 1
2
for Pr(α)

Pr(β)
r

1−r
= r′

1−r′
; see (44). We claim that,

given πn, any equilibrium sequence other than the sequence of manipulated

equilibria must be close to being tied in either α1 or β1 as n → ∞. To see why,

consider any strategy sequence (σn)n∈N. It follows from (33) and Φ(r′) = 1
2

that the margin of victory in α2 and β2 converges to zero. Hence, unless the

margin of victory in α1 or β1 converges to zero, Claim 7 and its implications

(52) and (53) together with (33) yield that limn→∞ ρ(σn; π
x,r̂,y
n ) = (µα, r

′, µβ)

with Pr(α)
Pr(β)

r
1−r

x
1−x

= µα

1−µα
and Pr(α)

Pr(β)
r

1−r

y

1−y
=

µβ

µβ
, i.e. the best response to σn

converges to the manipulated equilibrium. So, for any equilibrium other than

18Recall that our model imposes no restriction on the preference distribution G other
than that G has a strictly positive density. In particular, the model embeds preferences
that are close to being common.
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the manipulated equilibrium there is a marginal perturbation such that the

best response to the perturbed strategy is close to the manipulated equilibrium,

illustrating that the other equilibrium is not stable.

6 Persuasion of Privately Informed Voters

Recall the binary information structure from the CJT, defined by the signal

probabilities Pr (s|ω)ω∈{α,β} for s ∈ {u, d} such that (20) holds. We will think

of this as exogenous private information that is held by the voters and denote

the information structure by πc. We say that an information structure π with

signal set S is an independent expansion of πc if there exists an information

structure πp with signal set S2 and substates {α1, . . . , αNα
} and {β1, . . . , βNβ

}
such that

S = {u, d} × S2, (72)

and

Pr(s|ωj; π) = Pr(s1|ω; πc)Pr(s2|ωj; π
p) (73)

for all ωj ∈ {α1, . . . , αNα
} ∪ {β1, . . . , βNβ

} and all signal profiles s = (s1, s2) ∈
({u, d} × S2)

2n+1. We write π = πc × πp. We think of the expansion as re-

sulting from additional information that is provided by a sender to voters who

also receive private signals from πc, the exogenous information structure. In

this sense, we call πp the additional information structure. By considering

only independent expansions, we do not allow the sender’s signal to condition

directly on the realization of πc. As before, we do not allow the sender to elicit

the voters’ private information (the preference type the signal). As in the

setting of the CJT, the preferences of the voters are such that the aggregate

preference function Φ is strictly increasing, i.e. (21)) holds.

What outcomes can the sender implement when the voters have exogenous

signals and how should he communicate with the voters? Clearly, to imple-
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ment any policy other than the full information outcome, the sender has to

communicate with the voters in some way, since without additional informa-

tion (i.e. when π2 is uninformative) it follows from the CJT that the unique

equilibrium outcome is the full information outcome as the electorate grows

large.

Consider a sender who communicates with public signals s ∈ S2, meaning,

that the signals are commonly received by all the voters.19 When the voters

receive a public signal s, this shifts the common belief from the prior Pr(α) to

Pr(α|s). Since the CJT (Theorem 1) holds for any common prior, it follows

that in the subgame following any public signal, the full information outcome

is elected with probability converging to 1 as n → ∞.20

Therefore, in order to implement any outcome other than the full information

outcome, the sender has to communicate privately with the voters. We provide

a possibility result; even when the voters hold arbitrarily precise exogenous in-

formation, the sender can release additional information πp to the voters such

that the voters elect any arbitrary target policy of the sender with probability

close to 1 (Section 6.1).

6.1 Result: Full Persuasion

The following theorem shows that there exists an independent expansion of the

private information of the voters that allows to implement any arbitrary state-

dependent policy, including, e.g., the policy that inverts the full-information

outcome.

Theorem 5 Take any exogenous private signals πc of the voters and any

strictly increasing Φ satisfying (17). For every state-dependent policy (x (α) , x (β)) ∈
{A,B}2, there exists a sequence of independent expansions (πn)n∈N of π1 and

19Alonso & Câmara (2015) have studied persuasion with public signals when voters do
not have exogenous private signals.

20To be precise, the CJT only applies to any non-degenerate prior Pr(α) ∈ (0, 1). How-
ever, if the sender reveals the state publicly such that Pr(α|s) ∈ {0, 1}, trivially, the full-
information outcome is elected as n → ∞.
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equilibria (σ∗
n)n∈N given (πn)n∈N such that

lim
n→∞

Pr (x (α) |α; σ∗
n, πn, n) = 1,

lim
n→∞

Pr (x (β) |β; σ∗
n, πn, n) = 1.

In the next section 6.2, we state Lemma 2, a result more general than

Theorem 5, which describes the beliefs that the sender can implement in equi-

librium in states α and β by releasing independent additional information. A

proof of Lemma 2 is in the Appendix in Section C.

6.2 Implementable Beliefs

We provide a compact representation of equilibrium as a belief vector, which

will be used in the following; it simplifies the one given before by (13). Given

any strategy σ′ used by the others, the vector of posteriors conditional on piv

and the additional signal s2 ∈ S2 is denoted as

ρ̂(σ′; π, n) = (Pr(α|s2, piv; σ′, π))s2∈S2 (74)

and called the vector of induced priors.21 It follows from the independence of

the additional information and the exogenous information πc that the vector

of induced priors pins down the vector of the beliefs Pr(α|s1, s2, piv; σ′, π): for

any s2 ∈ S2 and any s1 ∈ {u, d},

Pr(α|s1, s2, piv; σ′, π) =
ρ̂s2(σ

′; π, n) Pr(s1|α; πc)

ρ̂s2(σ
′; π, n) Pr(s1|α) + (1− ρ̂s2(σ

′; π, n)) Pr(s1|β)
.(75)

Recall that the vector of beliefs (Pr(α|s1, s2, piv; σ′, π))(s1,s2)∈{u,d}×S2 is a suffi-

cient statistic for the unique best response to σ′ for all types; see (11). Hence,

the vector of induced priors pins down the best response for all types. Slightly

abusing notation, for any p = (pa, pz, pb) ∈ [0, 1]3 we let σp be the unique

strategy that is optimal if a voter with exogenous signal s1 and additional

21We adopt the wording from Bhattacharya (2013).
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signal s2 ∈ S2 believes the probability of α to be given by

ps2 Pr(s1|α; πc)

ps2 Pr(s1|α; πc) + (1− ps2) Pr(s1|β; πc)
. (76)

Equilibrium can be equivalently characterized by a vector of beliefs p∗ =

(p∗a, p
∗
z, p

∗
b) such that

p∗ = ρ̂(σp
∗

; π, n); (77)

compare to the alternative representation (13).

Lemma 2 shows that, independent of the exogenous information πc of the

voters, the sender can implement an extreme belief µω ≈ 0 as induced prior

with probability close to 1 in any state ω ∈ {α, β}. Similarly, the sender can

implement an extreme belief µω ≈ 1 as induced prior in any state. However,

more generally, the set of implementable beliefs depends on πc: he can im-

plement any belief as an induced prior in state α outside some intermediate

interval [λα, λ] and any belief as an induced prior in state β outside some in-

termediate interval [λ, λβ].

Formally, a pair of beliefs (µα, µβ) ∈ (0, 1)2 is implementable22 if there is a se-

quence of independent expansions (πn)n∈N of πC and an equilibrium sequence

(σ∗
n)n∈N given (πn)n∈N and two signals sα, sβ ∈ S2 such that for all ω ∈ {α, β}

lim
n→∞

Pr(sω|ω; πn) = 1, (78)

and the induced prior after sω converges to µω, i.e.

lim
n→∞

ρ̂sω(σ
∗
n; πn, n) = µω. (79)

Lemma 2 Take any exogenous private signals πc of the voters and any strictly

increasing Φ satisfying (17). There exist λα < λ < λβ such that any pair of

22We slightly adapt the definition of implementable belief pairs from Section 5.4 to ac-
count for the exogenous signals of the voters.
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beliefs [µα, µβ] ∈ [0, 1]2 with µα /∈ [λα, λ] and µβ /∈ [λ, λβ] is implementable.

The proof is in the Appendix in Section C. The rest of this section describes

the boundaries λα and λβ.

For any belief p ∈ (0, 1),

q̂(ω; p, πc) =
∑

s1∈{u,d}
Pr(s1|ω; πc)Φ(

pPr(s1|α)
pPr(s1|α) + (1− p) Pr(s1|β)

) (80)

is the probability that a random voter with induced prior p votes for the

outcome A in state ω. We illustrate the functions q̂(ω; p, πc) in Figure 6.

Figure 6: The function q̂(α; p, πc) of the implied vote share in state α and the
function q̂(β; p, πc) of the implied vote share in state β.

Since Φ is continuous, it follows from (17) and the intermediate value the-

orem that there exists a belief λ such that the implied vote shares satisfy

q̂(α;λ, πc)− 1

2
=

1

2
− q̂(β;λ, πc); (81)
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this is also illustrated in Figure 6. Since Φ is strictly increasing, for any given

πc , q(α; p, πc) and q(β; p, πc) are strictly increasing and λ is unique.

The boundaries λα and λβ of the lemma are such that all beliefs outside the

intermediate intervals [λα, λ] and [λ, λβ] imply margins of victory that are

larger than the ones implied by λ in any state ω ∈ {α, β}, i.e. margins of

victory that are larger than q(α;λ, πc)− 1
2
. Formally, λα and λβ are given by

q(α;λα, π
c) = q(β;λ, πc), (82)

q(β;λβ, π
c) = q(α;λ, πc). (83)

Figure 7 illustrates the boundaries λα and λβ of the set of implementable

induced priors. Intuitively, when the exogenous information πc of the voters

Figure 7: All pairs of induced priors (µα, µβ) with µα ∈ [λα(π
c), λ(πc)]c and

µβ ∈ [λ(πc), λβ(π
c)]c are implementable in a limit equilibrium through some

independent expansion of πc.

becomes arbitrarily precise, the lower boundary λα converges to zero and the

upper boundary λβ to 1. In the Appendix, we formally show that, indeed,
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when Pr(u|α; πc) → 1 and Pr(d|β; πc) → 1, then

λα → 0, (84)

λβ → 1. (85)

6.3 Sketch of Proof: Full Persuasion

In the following, first, we make two observations about the induced priors.

These two observations parallel previous ones from the analysis of monop-

olistic persuasion in Section 5. Then, we use these observations to provide

intuition for Theorem 5 and sketch the reasoning of the equilibrium where A

is the target policy in both states. There, a new subtlety arises, driven by the

presence of more information, i.e. the exogenous information of the voters,

relative to the monopolistic scenario. We cannot apply the fixed point argu-

ments as before, but need an additional argument to construct equilibria.

We observe that, when the sender provides additional information (πx,r,y
n )n∈N

as illustrated in Figure 5), the induced prior after z, and thereby the margin

of victory in the states α2 and β2 is pinned down uniquely by the exogenous

information πc of the voters.23

Claim 10 Suppose that the additional information is given by πx,r,y
n for some

(x, r, y) ∈ (0, 1)3 (see Figure 5) and consider the corresponding sequence (πn)n∈N

of independent expansions of πc. Then, for any equilibrium sequence (σ∗
n)n∈

given (πn)n∈N,

lim
n→∞

ρ̂z(σ
∗
n, πn, n) = λ. (86)

Sketch of Proof. The key insight why (86) holds is the following: given

πn, in the substates α2 and β2, a random voter receives the additional signal

z with probability converging to 1 . Voters who received z know that either

α2 or β2 holds and that almost all other voters got a signal z as well. Hence,

from their perspective, it is close to common knowledge that the game is close

23This observation is analogous to Claim 6 and its implication (49).
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to a game with a binary state and binary signals πc, as in the original setting

of the CJT. Then, using arguments similar to the proof of the Condorcet Jury

Theorem, we show that for any equilibrium sequence (σ∗
n)n∈N, the election is

equally close to being tied in expectation in α2 and β2 as n → ∞ (compare

with (26)), that is

lim
n→∞

q(σ∗
n;α2, πn)−

1

2
= lim

n→∞

1

2
− q(σ∗

n; β2, πn). (87)

Since almost all voters receive z in α2 and β2, the expected vote share in any

of these states converges to the vote share implied by the induced prior after

z; for any ω2 ∈ {α2, β2},

lim
n→∞

q(σ∗
n;ω2, πn) = lim

n→∞
q(ω; ρ̂z(σ

∗
n, πn, n)). (88)

Recall that λ is the unique induced prior such that the margins of victory

are equal given the implied vote shares; see (81). So, (87) and (88) imply

lim
n→∞

ρ̂z(σ
∗
n, πn, n) = λ. (89)

Let M = q(α, λ) − 1
2
be the margin of victory implied by λ. Now, (87) -

(89) yield

lim
n→∞

q(σ∗
n;α2, πn)−

1

2
= lim

n→∞

1

2
− q(σ∗

n; β2, πn) = M. (90)

Consider a belief vector p with pz = λ and pa > λβ. Then,

q̂ (β, pa,π1)−
1

2
> M (91)

Similarly, if pb > λ then

q̂ (β, pb,π1)−
1

2
> M (92)

49



Since q̂(α, p) > q̂(α, p), it follows that the margins of victory implied by pa and

pb are larger than the margin of victory implied by λ, i.e. M = q̂(α, λ)− 1
2
, in

any state ω ∈ {α, β}.

Given Claim 10, for intuition, let us fix the belief after z to be λ. The

following claim takes a sequence of belief vectors (pn)n∈N with pz,n = λ,

limn→∞ pa,n > λβ and, limn→∞ pb,n > λβ and then characterizes the vector

of induced priors of the corresponding strategy σpn , that is ρ̂(σpn ; πn, n).

To prove the claim, we use (91) and (92) and give arguments similar to the

ones given for Claim 7 and Claim 6 and show that, as n → ∞, the inference

from being pivotal, given σpn , is that the state is in {α2, β2}. If the voters

believe that the state is in {α2, β2}, then after receiving s ∈ {a, z, b}, they hold

beliefs

Pr (α| {α2, β2} , a; πn) =
xr

xr + (1− x) (1− r)
,

lim
n→∞

Pr (α| {α2, β2} , z; πn) = r,

Pr (α| {α2, β2} , b; πn) =
yr

yr + (1− y) (1− r)
.

where, for simplicity, we assumed a uniform prior.24

Claim 11 Let Pr(α) = 1
2
. Take any sequence of belief vectors (pn)n∈N such

that pz,n = λ for all n ∈ N, limn→∞ pa,n > λβ and limn→∞ pb,n > λβ. Then

lim
n→∞

ρ̂ (σpn

n ) = lim
n→∞

(Pr (α| {α2, β2} , s))s∈{a,z,b} ,

Proof. The result parallels Claim 6 and the implications (52) and (53) of

Claim 7.

Step 1 For any ω1 ∈ {α1, β1} and ω′
2 ∈ {α2, β2}, it holds limn→∞

Pr(ω1|piv;σpn ,πn)

Pr(ω′

2|piv;σpn ,πn)
=

0.

First, if pn is such that pa,n > λβ, then, since all voters receive a in α1,

it follows from (92) and (15) that, given σpn , we have
∣

∣q (α1; σ
pn ,n)− 1

2

∣

∣ >

24The claim provides intuition, but is not used to prove the Theorem 5.
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M . Given that almost all voter receive z in β2 and α2 and since pz,n = λ,

limn→∞ q(ω2; σ
pn) = q̂(ω, λ; πc) for ω2 ∈ {α2, β2}. Recalling M = q(α, λ, πc)−

1
2
= 1

2
− q(β, λ, πc), Claim 2 implies that

lim
n→∞

Pr (β1|piv)
Pr (β2|piv)

= lim
Pr (β1|piv)
Pr (α2|piv)

= 0. (93)

Step 2 limn→∞
Pr(α2|piv;σpn ,n)
Pr(β2|piv;σpn ,n)

= 1

As pz,n = λ and since q(α, λ, πc) − 1
2
= 1

2
− q(β, λ, πc) and since almost all

voters receive z in α2 and β2, the election is almost equally close to being tied

in α2 and β2. Intuitively, this is why the voters cannot infer anything about

the likelihood of α2 and β2 from the pivotal event. To show the claim of the

second step formally, note that q(α, λ, πc)− 1
2
= 1

2
− q(β, λ, πc) implies

(

q (α;λ,πc) (1− q (α;λ,πc))

q (β;λ,πc) (1− q (β;λ,πc))

)n

= 1 (94)

for all n. We claim that

lim
n→∞

(

q (ω; pz,π
c) (1− q (ω; pz,π

c))

q (ω2; σ
pn
n ,n) (1− q (ω2; σ

pn
n ,n))

)n

= 1 (95)

The claim follows from the argument as in the proof of Claim 3 since q(ω;pz ,n)

q(ω2;σ
pn
n ,n)

converges to 1 sufficiently fast given that each voter receives a signal z in ω2

with probability converging to 1 sufficiently quickly. More precisely, the likeli-

hood of not receiving z is of order 1
n2 , which implies that

(

q(ω;pz ,πc)(1−q(ω;pz ,πc))

q(ω2;σ
pn
n ,n)(1−q(ω2;σ

pn
n ,n))

)

∈
[1− K

n2 , 1 +
K
n2 ] for some constant K 6= 0; compare to (131). The equality fol-

lows since limn→∞[1 ± K
n2 ]

n = 1. The claim finally follows from (94) and (95)

and (7).

Step 1 and 2 together imply that the voter’s inference from the pivotal

event is that the state is in {α2, β2}; hence, for all s,

lim
n→∞

Pr (α|piv, s; σpn

n ,n) = Pr (α| {α2, β2} , s) . (96)
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This finishes the proof of Claim 11.

Fixed Point. To construct an equilibrium with a majority supporting A

in α1 and β1, we let x = y = 1 and r = λ and find an equilibrium belief vector

close to (1, λ, 1). Let δ > 0 and

Bδ =
{

p ∈ [0, 1]3 | |p− (1, λ, 1)| ≤ δ
}

,

so that Bδ is the set of beliefs at most δ away from (1, λ, 1). Take any p ∈Bδ

and the corresponding strategy σp. For δ small enough, pa > λβ and pb > λβ

for all p = (pa, pz, pz) ∈ Bδ. By Claim 10 and Claim 11, if we start with

beliefs p ∈ Bδ such that pz = λ holds exactly, ρ̂(σp) response maps back

into the neighborhood, i.e. ρ̂(σp) ∈ Bδ. However, for beliefs pz 6= λ that

are δ-close to λ, this is not the case for n large enough. This is because,

in that case, the margins of victory in α2 and β2 are strictly different, i.e.

limn→∞ |q(α2; σ
p) − 1

2
| 6= limn→∞ |1

2
− q(β2; σ

p)|. Therefore, being pivotal

contains information about the relative likelihood of α2 and β2, in contrast to

the previous case of a monopolistic sender (see Claim 3). To deal with this

problem, we consider a constrained version of ρ̂(σp), namely, the projection of

the induced prior mapping ρ̂(σp) onto Bδ. We then show that, when n is large

enough, for any fixed point p∗n of the projection the constraints do not bind,

i.e. ρ̂(σp
∗

n) ∈ Bδ; establishing that a fixed point p∗
n is an equilibrium belief.

The corresponding strategy σp
∗

n is an equilibrium where a majority supports

A in α1 and β1 since ps ≈ 1 for s ∈ {a, b} and Φ(1) > 1
2
.

6.4 Robustness of Theorem 5

Detail-Freeness. Can the sender persuade the voters even when he does not

know the exact details of the game? We argue that Proposition 1 extends in

a more general form to the situation when the voters hold exogenous private

signals: to be able to persuade the voters, it is sufficient that the sender knows

that Φ is monotone, i.e. (21) holds, and that Φ satisfies the richness assump-

tion (17). We claim that he can release information to the voters such that,
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uniformly, for any any prior Pr(α) ∈ (0, 1), any exogenous information πc of

the voters (see Section 6 for the definition of πc) and any aggregate preference

function Φ with (17) and (21), his target policy is implemented.

Consider e.g. the constant policy A. We have already seen in Lemma 2 that,

given (17) and (21), the sender can always implement very extreme beliefs

p ≈ 1, meaning that with probability close to 1, all the voters are almost certain

that the state is α. When all voters hold an extremely high belief p ≈ 1, then

A is elected as n → ∞ since Φ(1) > 1
2
. The proof of Lemma 1 in the Appendix

shows, that, to implement beliefs such high beliefs, the sender can uniformly

choose the same sequence of information structures (πn)n∈N = (πx,r,y
n )n∈N with

x = y = 1; see in particular Claim 13 and the paragraph thereafter. This is

analogous to the situation when the sender is the monopolistic information

provider; see Section 5.5.1.

The results from Section 5.5.2 about the basin of attraction of the ma-

nipulated equilibria do not extend to the situation when the sender is not a

monopolistic information provider.25

7 Partially Informed Sender

We now consider a sender who does not know the state ω ∈ {α, β}. Instead,

the sender receives a private signal m. Conditional on the private signal m,

the sender can release signals to the voters. In the following, we consider infor-

mation structures π of the voters that are consistent with the sender’s private

information π0 and call them coarsenings of π0.

The sender’s signal is finite, m ∈ {m1, . . . ,mk} and boundedly informative

25Instead, one can show the following: let the sender release the information (πx,y
n )n∈N

to the voters as in the proof of Theorem 5. Then, when the electorate is large enough,
for almost any initial strategy, under the iterated best response, the voter behaviour after
signal z jumps back and forth infinitely from voting approximately according to σp with
p = Pr(α|s)s∈{a,z,b} to voting approximately as if one of the states is known to be the true
state. We omit the proof.
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about the state, i.e. 0 < Pr(mi|α) < 1 and 0 < Pr(mi|β) < 1 for all i =

1, . . . , k. After seeing his private signal, the sender randomizes how he releases

information to the voters. More precisely, for any m, there exist probabilities

(Pr(j|m; π))j∈{1,...,Nm},m∈{m1,...,mk} and these probabilities define a distribution

over substates ωm,j,

Pr(ωm,j|ω; π) = Pr(m|ω; π0) Pr(j|m; π). (97)

The sender uses an information structure (as defined in Section 2) such that

the substates of each state ω ∈ {α, β} can be partitioned into sets Pm(ω) =

{ωm,1, ωm,2, . . . , ωm,Nm
} for m = m1, . . . ,mk and the probabilities of the sub-

states are given by (97). We call such an information structure a coarsening

of π0.

7.1 Monopolistic Persuasion

First, we consider the situation when all of the information of the voters

comes from a partially informed sender and the sender receives a binary signal

m ∈ {h, ℓ}.26 The sender is free to release his information to the voters: to do

so, he chooses a coarsening π of π0. We consider preferences of the voters such

that Φ is strictly increasing and satisfies (17). Recall that this implies that is

exists a unique belief r̂ ∈ [0, 1] for which the electorate is split between A and

B, i.e. Φ(r̂) = 1
2
.

Clearly, the voters cannot learn more about the state than the sender since all

their information comes from the sender. The private signal m ∈ {h, ℓ} of the

sender is what the voters learn about and, effectively, h and ℓ take the role of

the binary state from before.

Whenever

Pr(α)

Pr(β)

Pr(ℓ|α; π0)

Pr(ℓ|β; π0)
<

r̂

1− r̂
<

Pr(α)

Pr(β)

Pr(h|α)
Pr(h|β) , (98)

26The restriction to a binary signal is made for the ease of exposition.
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there exists a belief p = Pr(h) about the sender’s binary signal such that a

majority of the voters prefers A given p; similarly there exists p′ such that

a majority of the voters prefers B given p′. So, (98) is the analogue of the

richness condition (17).

The sender might have very little information such that even when he re-

leases all his information to the voters, the alternative favored by the majority

under the prior is elected. When Pr(α)
Pr(β)

Pr(h|α)
Pr(h|β) < r̂

1−r̂
, this is in fact the case:

to see why, note that all voters necessarily hold beliefs smaller than r̂,27 so,

the alternative B is elected as n → ∞. Similarly, alternative A is elected, as

n → ∞, when Pr(α) Pr(ℓ|α)
Pr(β) Pr(ℓ|β) >

r̂
1−r̂

.

As a corollary of Theorem 2, we show that a monopolistic information

provider is able to persuade the voters to elect any policy contingent on his

private signal when he possesses sufficiently precise information about the

state, i.e. (98) holds.

Theorem 6 Let Φ be strictly increasing and satisfy (17). Take any binary

signal π0 of the sender. If (98) holds, then, for every signal-dependent policy

(x (h) , x (ℓ)) ∈ {A,B}2 there is a sequence of coarsenings (πn)n∈N of π0 and a

sequence of equilibria (σ∗
n)n∈N given (πn)n∈N such that

lim
n→∞

Pr (x (h)) |h; σ∗
n, πn, n) = 1, (99)

lim
n→∞

Pr (x (ℓ) |ℓ; σ∗
n, πn, n) = 1. (100)

To prove the result, we recast the model with the partially informed sender

into a model of a sender who is perfectly informed about the states m ∈ {h, ℓ}.
Then, the result follows from Theorem 2. A proof is in the Appendix in Section

D.

27This holds regardless of the coarsening π and regardless of the signal received by the
voter.
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7.2 Persuasion of Privately Informed Voters

In this section, we analyse the situation when the voters hold exogenous in-

formation from a binary information structure πc (satisfying (20) as in the

setting of the CJT) and the partially informed sender can release additional

information to the voters. Formally, we consider the setting of Section 6, but

we restrict the analysis to the Bayesian games of voters that are induced by

independent expansions π of π1 that are coarsenings of π0, reflecting the par-

tial informedness of the sender; see Section 7 for the definition of a coarsening.

The next result provides a weak condition on the informativeness of the

sender’s private signal m that guarantees that he can release information to

the voters such that the voters elect any arbitrary policy contingent on his

signal. The condition is that there exist two signals h, ℓ ∈ {m1, . . . ,mk} of the

sender such that
λ

1− λ

Pr (h|α)
Pr(h|β) >

λβ

1− λβ

(101)

as well as
λ

1− λ

Pr ℓ|α)
Pr(ℓ|β) <

λα

1− λα

. (102)

We show momentarily that these conditions, for example, are usually fulfilled

when the sender holds more information than two random voters together; see

Remark 1.

Theorem 7 Let Φ be strictly increasing and satisfy (17). If the information

structure π0 of the sender satisfies (101) and (102), then, for every signal-

dependent policy (x(mi))i=1,...,k ∈ {A,B}k, there exists a sequence of indepen-

dent expansions (πn)n∈N of πc that are coarsenings of π0 and a sequence of

equilibria (σ∗
n)n∈N given (πn)n∈N such that for all i = 1, . . . , k,

lim
n→∞

Pr (x(mi)|mi; σ
∗
n, πn, n) = 1. (103)

The proof of the theorem follow the same ideas as the proof of Theorem 5
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for the case of an informed sender who perfectly knows the state ω ∈ {α, β}.28
We delegate the proof to the Appendix Section D.

Intuition. Recall the definitions (82) and (83) of λα and λβ which imply:

when voters hold a common belief p > λβ and vote accordingly, then in both

states, a majority of citizens votes A and it follows from the weak law of large

numbers that A is elected. Conversely, when voters hold a common belief

p < λα and vote accordingly, then in both states, a majority of citizens votes

B and it follows from the weak law of large numbers that B is elected.

So, to implement any target policy x(m) ∈ {A,B} after receiving signal m , it

is sufficient to implement the respective belief p > λβ or p < λα. Recall that

a sender with perfect information can implement any pair of beliefs (µα, µβ)

with µα ∈ [λα, λ]
c and µβ ∈ [λ, λβ]

c (see Lemma 2). Intuitively, given this re-

sult, when the sender has sufficiently good information about the state, he is

able to implement sufficiently extreme beliefs. In the Appendix Section D we

prove Theorem 7 and show: when the information structure π0 of the sender

satisfies the weak conditions (101) and (102), then he he is able to implement

a belief p > λβ or a belief p < λα after any m.

The Information Structure with Binary Signals. In the Appendix,

first, we show the result of the theorem for the case when the signals of the

sender are binary, i.e. m ∈ {h, ℓ}, and then explain how the result generalizes.

The information structures in the binary signal case parallel the information

structures used by the perfectly informed sender in Section 5.4: the sender re-

leases information to the voters given by the sequence of coarsenings (πx,y
2,n)n∈N

in Figure 8.

Remark 1 Let the sender’s signal be Blackwell more informative than the

signals of two random voters, i.e. π0 is Blackwell more informative than the

independent expansion πc × πc. Then, there are signals h, ℓ ∈ {m1, . . . ,mk}
28We conjecture that the sender cannot persuade voters in the sense of Theorem 7 when

the signal m of the sender is sufficiently uninformative, i.e. Pr(m|α)
Pr(m|β) is sufficiently close to 1

for all realizations m ∈ {m1, . . . ,mk}. We were not able to prove this conjecture.
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Figure 8: The coarsenings πx,y
2,n with ε = 1

n
, and (x, y) ∈ {0, 1}2 .

with

Pr(h|α; π0)

Pr(h|β; π0)
≥
[Pr(u|α; πc)

Pr(u|β; πc)

]2

, (104)

Pr(ℓ|α; π0)

Pr(ℓ|β; π0)
≥
[Pr(d|α; πc)

Pr(d|β; πc)

]2

. (105)

Recall the definitions of λ, λα and λβ through (81), (82) and (83). So, (101)

means that the vote share implied by the posterior p with p

1−p
= Pr(h|α;π0)

Pr(h|β;π0)
λ

1−λ

in β is larger than the vote share implied by the belief λ in α. We argue that

(101) is implied by (104) when the signals of the voters are symmetric, i.e.

Pr(u|α; πc) = Pr(d|β; πc) holds. Then, (104) implies that Pr (h|α;π0)
Pr(h|β;π0)

Pr (d|α;πc)
Pr(d|β;πc)

≥
Pr (u|α;πc)
Pr(u|β;πc)

. So, p

1−p

Pr(d|α;πc)
Pr(d|β;πc)

> λ
1−λ

Pr(u|α;πc)
Pr(u|β;πc)

. Now, this implies (101), given

(80). Similarly, (102) means that the vote share implied in α by the posterior

p′ with p′

1−p′
= Pr(ℓ|α;π0)

Pr(ℓ|β;π0)
λ

1−λ
is smaller than the vote share implied in β by the

belief λ. We argue that (102) is implied by (105) when the signals of the

voters are symmetric. Then, (105) implies that Pr (ℓ|α;π0)
Pr(ℓ|β;π0)

Pr (u|α;πc)
Pr(u|β;πc)

≤ Pr (d|α;πc)
Pr(d|β;πc)

.

So, p′

1−p′
Pr(u|α;πc)
Pr(u|β;πc)

< λ
1−λ

Pr(d|α;πc)
Pr(d|β;πc)

. Now, this implies (102), given (80).
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8 Remarks and Extensions

8.1 Bayes Correlated Equilibria

The Bayes correlated equilibria given some exogenous information structure

πc are the Bayes-Nash equilibria that arise from expansions π of πc (see Berge-

mann & Morris (2016) for the definition of an expansion and the characteri-

zation of Bayes correlated equilibria). In terms of Bayes correlated equilibria,

Theorem 5 means that for any state-dependent policy (x (α) , x (β)) ∈ {A,B}2,
there exists a sequence of Bayes correlated equilibria given πc that implements

the policy as n → ∞.

8.2 Non-Implementability of Intermediate Beliefs

Theorem 2 shows that the sender can implement any pair of beliefs µα, µβ that

do not come from intermediate intervals [λα, λ] and [λ, λβ] respectively, which

depend on the exogenous information of the voters. In this section, we study

whether all pairs of beliefs can be implemented, including the intermediate

ones. Recall that this is essentially the case when the sender is the monopolis-

tic information provider (see Theorem 1). However, we show that this is not

the case when the voters hold exogenous information. Specifically, we show

that when the aggregate preference function Φ is linear, then no belief from

the intermediate intervals of Theorem 2 can be implemented (8).

Thus, the presence of exogenous private information implies a true constraint

on the implementable beliefs: whatever signals from the broad class of ex-

changeable information structures with finite substates the sender releases to

the voters and whatever equilibrium sequence given these signals we look at,

no equilibrium sequence implements intermediate beliefs.

Theorem 8 Let any exogenous information structure πc be given that satisfies

(20) and (21) (as in the CJT), and Φ be linear. Any pair of beliefs (µα, µβ) ∈
(0, 1)2 with µα ∈ (λα, λ) or µβ ∈ (λ, λβ) is not implementable.

Proof. In the Online Supplement.
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8.3 Known Preferences: Targeted Persuasion

When the types of the voters are known to a potential sender, voters can be

‘targeted’ with recommendations; formally, a revelation principle applies say-

ing that any equilibrium is equivalent to a recommendation policy that will be

followed by the voters.29 Below, we show that when the preference types are

known, there is a simple way how the sender can persuade the voters to elect

a constant policy via private recommendations.30 We also show that, with

known preferences, the possibility of persuasion is unaffected by the presence

of a private signal of the voters.

Targeted Persuasion. Suppose that the voters’ preference types ti = (tiα, t
i
β)

are commonly known, and ti 6= 0 for any i ∈ {1, . . . , 2n + 1}. The voters re-

ceive exogeneous private signals as in the setting of the CJT (Section 4.2)

(the following result extends when these exogeneous signals are uninforma-

tive). Suppose that the voters 1, . . . ,m weakly prefer A in α and B in β,

that is tiα ≥ 0 and tiβ ≤ 0 and without loss let m > n. The remaining voters

m+ 1, . . . , 2n+ 1 weakly prefer B in α and A in β, that is tiα ≤ 0 and tiβ ≥ 0.

The following recommendation policy implements the outcome A with proba-

bability of at least 1− ǫ in an equilibrium, for some arbitrarily small ǫ > 0: in

both states, with probability 1−ǫ, all voters receive the recommendation ‘vote

A’ (signal a). In state α, with the remaining probability ǫ, a random subset of

size n+1 of the voters 1, . . . ,m receives the recommendation ‘vote A’ and the

remaining n voters receive the recommendation ‘vote B’ (signal b). In state

β, with the remaaining probability ǫ > 0, a random subset of size n + 1 of

the voters 1, . . . ,m receives b and the remaining n voters receive a. Voting A

after an a-signal and B after a b-signal constitutes an equilibrium: given this

strategy, denoted by σ, voters i ∈ {1, . . . ,m} with an a-signal are only pivotal

in α, and voters i ∈ {1, . . . ,m} with a b-signal are only pivotal in β, that is

29For a formal proof of the general revelation principle see e.g. Bergemann & Morris
(2017).

30This has been observed by Chan et al. (2016) and in Bardhi & Guo (2016a) in similar
settings. Therefore, the main part of these papers considers a setting with voting costs
(‘expressive voting’) and unanimity, respectively.
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Pr(α|piv, a, i ≤ m; σ) = 1 and Pr(α|piv, b, i ≤ m; σ) = 0. Hence, voting A af-

ter a and B after b is a strict best reponse for any voter i ∈ {1, . . . ,m}. Voters
i ∈ {m + 1, . . . , 2n + 1} are never pivotal if the other voters follow the rec-

ommendations. Hence, following the recommendation is a best response also

for them and therefore σ is an equilibrium. Since with probability 1 − ǫ all

citizens vote A, given σ, the recommendation policy implements the outcome

A with probability of at least 1− ǫ.

9 Literature

We contribute to several strands of the literature: we contribute to the liter-

ature on information design in general (see Bergemann & Morris (2017) for a

survey) and especially on persuasion with multiple receivers (e.g., Mathevet

et al. (2017)), e.g. voter persuasion (Section 9.2). The paper also contributes

to the literature on information aggregation in elections (Section 9.1). Section

9.3 discusses relations to further literature; in particular, to the literature on

Bayes correlated equilibria in auctions and to the literature on information

transmission between informed experts and an uninformed decision maker.

9.1 Information Aggregation Literature

The literature has identified several circumstances in which information may

fail to aggregate. We discuss the studies that are most closely related: Fedder-

sen & Pesendorfer (1997) (FP, Section 6) show that an invertibility problem

causes a failure when there is aggregate uncertainty with respect to the pref-

erence distribution conditional on the state. A specific case of the model in

this paper has been studied in Bhattacharya (2013) (BH) who shows that

failure can happen when preference monotonicity is violated. However, when

the preferences are monotone, i.e. when (21) holds, information is aggregated

perfectly; we show that in the setup with monotone preferences, a sender can

implement any state-contigent outcome (Theorem 5, Theorem 7) and thereby

create a failure of information aggregation simply by providing additional in-
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formation about the state to the voters.

In a pure common-values setting, Mandler [2012] (MA) shows that failure can

happen when there is aggregate signal uncertainty conditional on the state.

The paper does not discuss persuasion, but the results can be understood in

terms of it. Similar to (MA), in our model, the sender uses signals with ag-

gregate signal uncertainty to persuade the voters and thereby creates a failure

of information aggregation. We discuss in Section 8.3 persuasion via private

signals when the preference types are known since then the sender can rely on

techniques of targeted persuasion.31 Further related models of elections that

perform poorly in aggregating information are Razin (2003), Acharya (2016),

Ekmekci & Lauermann (2016), Ali et al. (2018).

9.2 Voter Persuasion Literature

Previous papers on voter persuasion have studied persuasion through public

signals (Alonso & Câmara (2015)), persuasion with conditionally independent

private signals (Wang (2013)) and targeted persuasion with private signals

(Bardhi & Guo (2016a), Chan et al. (2016)) in situations when the prefer-

ences of the voters are commonly known. In contrast to the existing literature,

we revisit the general voting setting of Feddersen & Pesendorfer (1997) with

private preferences: we discussed how in this setup, as a consequence of the

Condorcet Jury Theorem, there is no scope for persuasion with public signals

and no scope for persuasion with conditionally independent private signals; see

Theorem 1’ and the discussion in the introduction of Section 6. We discussed

persuasion with private signals if preferences of the voters would be known,

see Section 8.3.

More generally, most of the Bayesian persuasion literature assumes that the

sender has much knowledge about the the environment; for example, typically,

perfect knowledge about the state and the receiver’s types is assumed. In this

paper, the informational requirements for persuasion are considerably weak;

we allow for private preferences and exogeneous private signals of the receivers;

31This has been observed by Chan et al. (2016) and in Bardhi & Guo (2016a) in similar
settings.
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we also consider the case when the sender has incomplete information about

the state (see Section 7) and the case when the sender has incomplete or mis-

specified information about the prior probabilities of the state, the distribution

of the private preference types of the voters or the distribution of the private

signals of the voters (see Section 5.5.1 and Section 6.4). A notable exception

in the literature are Bobkova & Fuchs (2018) who study persuasion of voters

when voting is by unanimity and voters hold private information.32 Further

are Guo & Shmaya (2017) who study persuasion of a receiver with exogenous

private signals and Kolotilin et al. (2015) who study persuasion of a privately

informed receiver and show that optimal information structures do not need

to screen types. Correspondingly, we showed that for large electorates with

private preferences, the set of equilibrium outcomes that can be obtained by

information design is the same with and without the option to screen types.

This results holds when the information designer is monopolistic (Theorem

2) as well as when voters have private signals from an exogeneous source, see

(Theorem 5, Theorem 7).

Several other paperps study how groups can be influenced through strategic

information transmission, but are less closely related: Kerman et al. (2019)

study targeted persuasion via private signals when the sender is restricted to

use signals that induce the voters to sincerely in some equilibrium; compare to

the discussion of targeted persuasion in Section 8.3. Levy et al. (2018) study

persuasion of voters with correlation neglect. Schipper & Woo (2012) is an

early paper and studies persuasion of unaware voters. Schnakenberg (2015)

studies a cheap talk setting in which an expert tries to manipulate a voting

body. Salcedo (2019) studies persuasion of subgroups of receivers via private

messages in a setting where each receiver’s payoff only depends on his own

action and the state. Bardhi & Guo (2016b) study sequential persuasion of a

group of receivers.

32This is complementary to our paper. The results presented here are for the simple
majority rule. However, they generalize to any any majority rule except unanimity: to see
why, recall that we did not impose restrictions on the likelihood of the partisans and note
that a shift in the majority threshold is strategically equivalent to a shift in the likelihood
of the partisans.
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9.3 Further Literature

The paper is related to work on information design in general (see Berge-

mann & Morris (2017) for a survey) and especially to persuasion with mul-

tiple receivers (e.g., Mathevet et al. (2017)). The paper naturally relates

to the literature on information design in auctions since the analysis of auc-

tions and elections is largely connected.33 Bergemann et al. (2016) and Du

(2017) studied Bayes correlated equilibria of common value auctions, and in

particular calculated the minimum revenue across all models of information

and all Bayesian equilibria for the mechanisms that maximize minimum rev-

enue. Yamashita et al. (2016) studies such optimal mechanisms in an auction

setting where each bidder may have additional information about the other

bidders’ valuations, e.g. through information acquisition. In comparison to

the auctions literature, we fixed the voting rule and characterized the Bayes

correlated equilibrium outcomes both when the information designer is mo-

nopolistic and also when a minimum level of private information of the voters

is imposed where this minimum level of information can be arbitrarily precise.

By correlating the signals of voters, the information designer can implement

any state-contingent outcome (see Theorem 5 and Theorem 7).

Gerardi et al. (2009) study aggregation of expert information by an unin-

formed decision maker. By giving each expert a small chance of being a dicta-

tor, information can be extracted at a small loss when either the correlation of

the experts’ information or the number of experts is high, while implementing

an adversarial outcome with a high probability otherwise. Relatedly, Feng

& Wu (2019) show that, even when there is little or no correlation between

the experts’ information, information extraction is possible and they provide

conditions when this is the case.

33For example, the analogue of the swing voter’s curse is the winner’s curse in auctions.
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Appendices

A Large Elections and Monopolistic Persua-

sion

Proof of Claim 3

Suppose w.l.o.g. that q(α2 ; σn)(1− q(α2 ; σn)) < q(β2; σn)(1− q(β2; σn)) for all

n. It follows directly from (7) that

lim
n→∞

Pr(piv|α2; σn, πn)

Pr(piv|β2; σn, πn)
≤ 1. (106)

We now show that the reverse inequality also holds and thereby finish the

proof of the lemma. For this, note the following: first, it follows from (15)

that the expected vote share for A in α2 differs from the expected vote share

for A in β2 maximally by the probability that b is observed in α2, that is by

ε2 = 1
n2 ,

|q(α2 ; σn)− q(β2 ; σn)| ≤ ǫ2, (107)

for all n. Second, recall that Φ(0) < q(ωj; σ) < Φ(1) for any strategy and any

substate ωj and note that the derivative of q(1− q) is bounded by some L > 0

on the compact interval [Φ(0),Φ(1)]. These observations taken together imply

that

h(q(β2 ; σn))
∣

∣

∣

h(q(α2 ; σn))

h(q(β2 ; σn)
− 1
∣

∣

∣
= |h(q(α2 ; σn))− h(q(β2 ; σn))| ≤ Lǫ2. (108)

for h(q) = q(1 − q) and all n. Since 0 < Φ(0) < q(α2 ; σn) < Φ(1) and h is

inverse U-shaped with maximum at 1
2
, this bound implies

h(q(α2 ; σn))

h(q(β2 ; σn)
≥ 1− L

h(q(β2 ; σn))n2
≥ 1− L

Mn2
(109)
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forM = min (h(Φ(0)), h(Φ(1))) and all n. It follows from (7) that Pr(piv|α2;σn,πn)
Pr(piv|β2;σn,πn)

≥
(1− L

Mn2 )
n. However, limn→∞(1− L

Mn2 )
n = 1 such that

lim
n→∞

Pr(piv|α2; σn, πn)

Pr(piv|β2; σn, πn)
≥ 1. (110)

(To see in more detail why limn→∞(1− L
Mn2 )

n = 1 , note that limn→∞(1−
L

Mn2 )
2n = (1−

√
L√

Mn
)2n(1 +

√
L√

Mn
)2n = limn→∞ e2

√
L
M e−2

√
L
M = e0 = 1 where we

used the limit description limn→∞(1 + x
n
)n = ex for the exponential function.)

Proof of Claim 7

Let πn = πx,y
n . Let for example ω′

1 = α1 and ω2 = β2 and s = a. Then,

Pr(β2|s, piv; σn, πn)

Pr(α1|s, piv; σn, πn)

=
Pr(β) Pr (β2|ω) Pr (s|β2; πn) Pr (piv|β2; σn, πn)

Pr(α) Pr (α1|ω′) Pr (s|α1; πn) Pr (piv|α1; σn, πn)

=
Pr (β)

Pr (α)

(1− r) 1
n

(1− r 1
n
)

(1− x) 1
n2

1

Pr (piv|β2; σn, πn)

Pr (piv|α1; σn, πn)

≈ Pr(β)

Pr(α)

Pr (piv|β2; σn, πn)

Pr (piv|α1; σn, πn)
(1− r)(1− x)n−3

→ ∞. (111)

where the convergence on the last line follows from applying Claim 2 for d = 3,

given (50). In the same way, we obtain more generally for any s ∈ {a, b},

∀ω′
1 ∈ {α1, β1}, ω2 ∈ {α2, β2} :

Pr(ω2|s, piv; σn, πn)

Pr(ω′
1|s, piv; σn, πn)

→ ∞. (112)

Equation (51) follows from (112).
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B Other Equilibria

Proof of Theorem 4

Lemma 3 Consider any sequence of strategies (σn)n∈N and any sequence of

information structures (πn)n∈N with a common set of substates. Then, for any

substate ωi ∈ {α1, . . . , αNα
} ∪ {β1, . . . , βNβ

} let

c = lim
n→∞

(

q(ωi, σn)−
1

2

)

·
[ 2n+ 1

q(ωi, σn)(1− q(ωi, σn))

]
1
2

be the limit of the expected difference of the vote share to 1
2
measured in stan-

dard deviations of the expected vote share.34 The probability that A gets elected

in ωi converges to

lim
n→∞

Pr(A|ωi; σn) = Φ(c),

where Φ(·) is the cumulative distribution of the standard normal distribution.

Proof. Let qn = q(ωi, σn). By using the normal approximation35

B(2n+ 1, qn) ≃ N ((2n+ 1)qn, (2n+ 1)qn(1− qn)),

we see that the probability that A wins the election in ω converges to

Φ(
1
2
(2n+ 1)− (2n+ 1) · qn
((2n+ 1)qn(1− qn))

1
2

).

34We allow for c = ±∞.
35For this normal approximation we cannot rely on the standard central limit theorem,

because qn varies with n. Recall that for any undominated strategy, types t with tα >

0, tβ > 0 vote A and types t with tα < 0, tβ < 0 vote B. Hence, since the type distribution
has a strictly positive density, there exists ǫ > 0 such that ǫ < qn < 1− ǫ for all n ∈ N. We
claim, that, as a consequence, we can apply the Lindeberg-Feller central limit theorem (see
Billingsley (2008), Theorem 27.2). To see why, one checks that a sufficient condition for the
the Lindeberg condition is that (2n + 1)qn(1 − qn) → ∞ as n → ∞ since this implies that
for n sufficiently large the indicator function in the condition takes the value zero.
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Taking limits n → ∞, gives

lim
n→∞

Φ(
1
2
(2n+ 1)− (2n+ 1) · qn
(2n+ 1)qn(1− qn))

1
2

)

= lim
n→∞

Φ(
(2n+ 1)1

2
− (2n+ 1)(1

2
+ (qn − 1

2
))

((2n+ 1)
1
2 (qn(1− qn))

1
2

)

= lim
n→∞

Φ((qn −
1

2
)
[ (2n+ 1)

qn(1− qn)

]
1
2
)

= Φ(c),

where the equalities on the last two lines hold both when c ∈ {∞,−∞} and

when c ∈ R.

Lemma 4 Consider any sequence of strategies (σn)n∈N and any sequence of

information structures (πn)n∈N with a common set of substates. Then, for any

substates ωj, ω̂l ∈ {α1, . . . , αNα
} ∪ {β1, . . . , βNβ

}:

lim
n→∞

|q(ωj; σn)−
1

2
|n 1

2 ∈ R

⇒ lim
n→∞

Pr(piv|ωj; σn)

Pr(piv|ω̂l; σn)
∈ R ∪∞. (113)

Proof. Let xn = q(ωj; σn)− 1
2
. It suffices to show the claim for the case when

q(ω̂l; σn) =
1
2
, since in any other case the election is less likely to being tied in

ω̂l. Then,

q(ωj; σn)(1− q(ωj; σn))

q(ω̂l; σn)(1− q(ω̂l; σn))
=

(1
2
+ xn)(

1
2
− xn)

1
4

=
1
2

2 − x2
n

1
4

=
[ 1

4
− x2

n

1
4

]

=
[

1− x2
n
1
4

]

. (114)
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Then, it follows from (7) and (114) that

lim
n→∞

Pr(piv|ωi; σn)

Pr(piv|ω̂l; σn)
= lim

n→∞

[

1− x2
n
1
4

]n

(115)

Now, the assumption of the lemma implies

lim
n→∞

x2
nn = lim

n→∞
(xnn

1
2 )2 = k (116)

for some k ∈ R. Then (115) and (116) together with limn→∞(1 + x
n
)n = ex

imply

lim
n→∞

Pr(piv|ωj; σn)

Pr(piv|ω̂l; σn)
= e−4k ∈ R. (117)

This finishes the proof of the lemma.

Proof of Theorem 4. Let πn = πx,r,y
n . Recall that equilibrium is equiva-

lently characterized by a belief vector p∗ = (p∗a, p
∗
z, p

∗
b) such that p∗ = ρ(σp

∗

);

see (13). Recall that there exists r̂ with Φ(r̂) = 1
2
by the richness assumption

(17) and since Φ is continuous. For any strategy σ, we consider a constrained

variant ρ̄ of the belief vector ρ(σ) corresponding to the best response σρ(σ),

given by

ρ̄a(σ) =







r̂ if ρa(σ) < r̂,

ρa(σ) else.
, (118)

ρ̄b(σ) =







r̂ if ρb(σ) > r̂,

ρb(σ) else.
, (119)

ρ̄z(σ) = ρz(σ). (120)

The function that maps p ∈ [0, 1]3 to ρ̄(σp) = (ρ̄a(σ
p), ρ̄z(σ

p), ρ̄b(σ
p)) is

continuous since ρ(σp) is continuous.

Step 1 For any strategy sequence (σn)n∈N: if limn→∞ |q(α1; σn) − 1
2
|n 1

2 ∈ R,
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then limn→∞ Pr(α|piv, a; σn, πn) = 1. If limn→∞ |q(β1; σn) − 1
2
|n 1

2 ∈ R, then

limn→∞ Pr(β|piv, b; σn, πn) = 1.

If limn→∞ |q(α1; σn)− 1
2
|n 1

2 ∈ R, then

lim
n→∞

Pr(β|piv, a; σn, πn)

Pr(α1|piv, a; σn, πn)

≥ lim
n→∞

Pr(β2|piv, a; σn, πn)

Pr(α1|piv, a; σn, πn)

= lim
n→∞

Pr(β)

Pr(α)

Pr(β2|β; πn)

Pr(α1|α; πn)

Pr(a|β2; πn)

Pr(a|α1; πn)

Pr(piv|β2; σn, πn)

Pr(piv|α1; σn, πn)

= 0. (121)

where we used Lemma 4 and that limn→∞
Pr(β2|β;πn)
Pr(α1|α;πn)

Pr(a|β2;πn)
Pr(a|α1;πn)

= 0 for the equal-

ity on the last line. This implies the first statement. The second statement

follows in the same way. This finishes the first step.

Step 2 For any n large enough, any fixed point p∗
n of ρ̄(σp) is interior.

First, recall that Pr(piv|ωj; σn, πn) > 0 for all ωj and all n since σn is non-

degenerate by (2). So, for any fixed point p∗n of ρ̄(σp), we have 0 < p∗n < 1;

see (11) and (118) - (120) for the definition of ρ̄(σp). Suppose that there

exists a sequence of fixed points (p∗
n)n∈N with (pn)a = r̂ for all n large enough.

Then, it follows from (15) and since all voters receive a in α1 that q(α1; σ
p∗n) =

φ(r̂) for n large enough. Recall that Φ(r̂) = 1
2
. It follows from Step 1 that

limn→∞ Pr(α|piv, a; σp∗n , πn) = 1. But then, it follows from the definition of ρ̄a

that limn→∞ ρ̄a(σ
p∗n) = 1. Since (p∗

n)n∈N is a sequence of fixed points of ρ̄(σp),

we have limn→∞(p∗n)a = 1. This yields a contradiction to the assumption that

(p∗n)a =
1
2
for all n large enough. Suppose that there exists a sequence of fixed

points (p∗
n)n∈N with (pn)b = r̂ for all n large enough. We obtain a contradiction

by the analogous argument. This finishes the second step.
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Step 3 Consider any sequence p∗
n of fixed points of ρ̄(σp). Then, the corre-

sponding sequence of strategies σp
∗

n aggregates information, i.e.

lim
n→∞

Pr(A|α; σp
∗

n , πn, n) = 1,

lim
n→∞

Pr(B|β; σp
∗

n , πn, n) = 1.

Recall that it follows from the formula for the expected vote share (15) and

since all voters receive a in α1 that q(α1; σ
p∗n) = φ((p∗n)a). It follows from the

definition of ρ̄(σp) and since Φ is strictly increasing that q(α1, σ
p
∗

n) ≥ 1
2
for

all n ∈ N. Suppose that information is not aggregated in α. Then, it follows

from Lemma 3 that

lim
n→∞

(q(α1, σ
p
∗

n)− 1

2
)n

1
2 ∈ R. (122)

Consequently, it follows from Step 1 that limn→∞ Pr(α|piv, a; σp
∗

n , πn) = 1. So,

given the definition of ρ̄(σp), we obtain limn→∞ ρ̄a(σ
p
∗

n) = 1. Since p∗
n is a

sequence of fixed points, limn→∞(p∗n)a = 1. Then, it follows from (15) and

since all voters receive a in α1 that

lim
n→∞

q(α1; σ
p
∗

n) = Φ(1). (123)

However, Φ(1) > 1
2
and we see that (122) and (123) contradict each other.

Consequently, information is aggregated in α. The analogous argument shows

that information is aggregated in β. This finishes the third step.

Step 4 There exists an equilibrium sequence (σn)n∈N that aggregates informa-

tion.

Note that Step 2 implies the following: consider any sequence p∗
n of fixed

points of ρ̄(σp). Then, the sequence of the corresponding strategies (σp
∗

n)n∈N

is an equilibrium sequence. The claim of the fourth step therefore follows from

Step 3. Step 4 finishes the proof of the theorem.
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C Persuasion of Privately Informed Voters

Proof of Lemma 2

Fix a sequence of additional information structures (πn)n∈N = (πx,r,y
n )n∈N (as

in Figure 5). At first, we make some observations on the voter’s inference (Sec-

tion C.1.1) and then, in Section C.1.2, we use these observations to construct

equilibrium sequences and finally prove the theorem.

C.1.1 Voter Inference

Consider the additional signal z. A voter who observes z infers that the state

is α2 or β2. This is the direct effect of the signal z. Now, we prove Claim 10,

showing that after z the joint inference from the pivotal event and the signal

z is asymptotically the same across all equilibrium sequences as n → ∞.

Claim 10 Suppose that the additional information is given by πx,r,y
n for some

(x, r, y) ∈ (0, 1)3 (see Figure 5) and consider the corresponding sequence (πn)n∈N

of independent expansions of πc. Then, for any equilibrium sequence (σ∗
n)n∈

given (πn)n∈N,

lim
n→∞

ρ̂z(σ
∗
n, πn, n) = λ. (86)

Proof. It remains to show (87). The sketch of the proof in Section 6.3 then

shows how (87) implies (86). To show (87), we use arguments similar to the

proof of the Condorcet Jury Theorem; compare to Section 4.3. The arguments

are more subtle since, conditional on the substate being α2 or β2 the game is

close to a game with a binary state and binary signals, as in the setting of the

CJT, but not identical; so, we have to show that the arguments of the proof

of the CJT extend.

Step 1 For all n and every equilibrium σ∗
n, voters with z-signal and an u-

signal are more likely to vote A than voters with a z-signal and a d-signal

when n is large enough, i.e.

Φ(ρz,u(σ
∗
n)) > Φ(ρz,d(σ

∗
n)). (124)
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This ordering follows from the likelihood ratio ordering of the signals u and

d. In particular, if follows from the independence of πx,r,y
n and of πc that the

posterior conditional on on a given voter’s signals z and s ∈ {u, d} and the

event that the voter is pivotal is

Pr (α|z, s, piv; σ∗
n, πn, n)

=
Pr (α|z, piv; σ∗

n, πn, n) Pr(s|α; πc)

Pr (α|z, piv; σ∗
n, πn, n) Pr(s|α; πc) + Pr (β|z, piv; σ∗

n, πn, n) Pr(s|β; πc)
,(125)

Therefore, Pr(u|α;πc)
Pr(u|β;πc)

> Pr(d|α;πc)
Pr(d|β;πc)

implies that Pr (α|z, u, piv; σ∗
n, πn, n) > Pr (α|z, d, piv; σ∗

n, πn, n).

Now, (124) follows from (20), (80) and the monotonicity of Φ.

Step 2 For all n and every equilibrium σ∗
n, the vote share of A is at most 1

n2

smaller in α2 than in β2,

q(α2; σ
∗
n)− q(β2; σ

∗
n) ≥ − 1

n2
(126)

This follows from (15), given (20) and (124) and since in both α2 and β2 the

likelihood that a voter does not receive signal z is smaller than 1
n2 .

Step 3 For every equilibrium sequence (σ∗
n)n∈N,

lim
n→∞

ρ̂z(σ
∗
n, πn, n) = 0 ⇒ lim

n→∞

Pr(piv|α2; σ
∗
n, πn, n)

Pr(piv|β2; σ∗
n, πn, n)

≥ 1, (127)

lim
n→∞

ρ̂z(σ
∗
n, πn, n) = 1 ⇒ lim

n→∞

Pr(piv|α2; σ
∗
n, πn, n)

Pr(piv|β2; σ∗
n, πn, n)

≤ 1 (128)

Suppose that limn→∞ ρ̂z(σ
∗
n, πn, n) = 0. This implies limn→∞ q̂(ω; ρz(σ

∗
n, πn, n)) =

Φ(0) for ω ∈ {α, β}. Since almost all voters receive z in α2 and β2 and since

Φ(0) < 1
2
,

lim
n→∞

q(α2, σ
∗
n) <

1

2
, and lim

n→∞
q(β2, σ

∗
n) <

1

2
. (129)

Recall that Φ(0) < q(ωj; σ) < Φ(1) for any strategy and any substate ωj

and note that the derivative of h(q) = q(1 − q) is bounded below by some
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Lipschitz constant L > 0 on the compact interval [Φ(0),Φ(1)]. Hence, Step 2

implies

h(q(β2, σ
∗
n))(

h(q(α2, σ
∗
n))

h(q(β2, σ∗
n))

− 1) = h(q(α2, σ
∗
n))− h(q(β2, σ

∗
n)) ≥ − L

n2
. (130)

Recall that the function h(q) = q(1− q) is inverse U -shaped with peak at

q = 1
2
and note that it follows from (17) and since Φ is strictly increasing (see

(21)) that 0 < Φ(0) < 1
2
and Φ(1) > 1

2
. Since Φ(0) < q(β2; σn) < Φ(1),

h(q(α2, σ
∗
n))

h(q(β2, σ∗
n))

≥ 1− L

h(q(β2 ; σn))n2
≥ 1− L

Mn2
(131)

forM = min (h(Φ(0)), h(Φ(1))) and all n. It follows from (7) that Pr(piv|α2;σ∗

n,πn,n)
Pr(piv|β2;σ∗

n,πn,n)
≥

(1− L
Mn2 )

n. Now, (127) follows since limn→∞(1− L
Mn2 )

n = 1; to see why this is

true, see the discussion at the end of the proof of Claim 3. The proof of (128)

is analogous. This finishes the third step.

Step 4 For every equilibrium sequence (σ∗
n)n∈N,

lim
n→∞

ρ̂z(σ
∗
n, πn, n) /∈ {0, 1}. (132)

Suppose that limn→∞ ρ̂z(σ
∗
n, πn, n) = 0. We have

ρ̂z(σ
∗
n, πn, n)

1− ρ̂z(σ∗
n, πn, n)

=
Pr(α)

Pr(β)

Pr(α2|α; πn)

Pr(β2|β; πn)

Pr(piv|α2, σ
∗
n, πn, n)

Pr(piv|β2, σ∗
n, πn, n)

. (133)

If follows from (127) that limn→∞ ρ̂z(σ
∗
n, πn, n) > 0 which contradicts the as-

sumption limn→∞ ρ̂z(σ
∗
n, πn, n) = 0. The analogous argument leads the as-

sumption that limn→∞ ρ̂z(σ
∗
n, πn, n) = 1 to a contradiction. This finishes the

fourth step.

Step 5 In every equilibrium sequence (σ∗
n), the limit of the vote share of A is

larger in α2 than in β2,

lim
n→∞

q(α2; σ
∗
n) > q(β2; σ

∗
n). (134)
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Since almost all voters receive z in α2 and β2, we have

lim
n→∞

q(α2; σ
∗
n) = lim

n→∞
q̂(α; ρ̂z(σ

∗
n, πn, n)), (135)

lim
n→∞

q(β2; σ
∗
n) = lim

n→∞
q̂(β; ρ̂z(σ

∗
n, πn, n)). (136)

From (132) and (125), we have that, the limits of the posteriors conditional

being pivotal, the signal z and the signals s ∈ {u, d} are interior and hence

strictly ordered,

0 < lim
n→∞

Pr (α|z, d, piv; σ∗
n, πn, n) < lim

n→∞
Pr (α|z, u, piv; σ∗

n, πn, n) < 1. (137)

Now, (134) follows from (135), (136), and (80), given (20), (137), and since Φ

is strictly increasing.

Step 6 The election is equally close to being tied in expectation in α2 and β2,

that is, (87) holds.

It follows from (132) that voters must not become certain conditional on being

pivotal and the substate being α2 or β2, i.e. limn→∞ Pr(α|{α2, β2}, piv; σ∗
n, πn) /∈

{0, 1}. Hence, Claim 2 requires that

lim
n→∞

∣

∣

∣

∣

q(α2; σ
∗
n)−

1

2

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

q(β2; σ
∗
n)−

1

2

∣

∣

∣

∣

. (138)

Given the ordering of the limits of the vote shares from (134), the equation

(138) implies (87).

Now, we consider a voter who received an additional signal s2 ∈ {a, b}.
The following result shows that, independent of the private signal s1 ∈ {u, d}
received, the inference from the signals is dominated by the inference from the

pivotal event, for an open set of voting strategies: if the election is closer to

being tied in states α2 and β2 than in the states α1 and β1, after receiving the

additional signal a and any signal s1 ∈ {u, d}, the voter infers that conditional
on being pivotal the state is either α2 or β2, even though the likelihood of the
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signal a is infinitely higher in the substate α1 than in any other substate as

n → ∞. In the same way, the voter infers that the state is either α2 or β2

after receiving the additional signal b.

Claim 12 Suppose that the additional information is given by πx,r,y
n for some

(x, r, y) ∈ (0, 1)3 (see Figure 5) and consider the corresponding sequence (πn)n∈N

of independent expansions of πc. Take any sequence of strategies (σn)n∈N such

that

lim
n→∞

min
ω1∈{α1,β1}

|q(σn;ω1, πn)−
1

2
| > lim

n→∞
max

ω2∈{α2,β2}
|q(σn;ω2, πn)−

1

2
|; (139)

then, for any s ∈ {u, d} × {a, b},

lim
n→∞

Pr({α2, β2}|s, piv; σn, πn)

Pr({α1, β1}|s, piv; σn, πn)
= ∞. (140)

Proof. The proof follows from previous arguments: the arguments from the

proof of Claim 7 hold verbatim with the required changes in notation.

Claim 12 implies that for any sequence of equilibria (σ∗
n)n∈N that satisfies

(139),

lim
n→∞

Pr(α|a, piv; σ∗
n, πn, n)

Pr(β|a, piv; σ∗
n, πn, n)

= lim
n→∞

Pr(α2|a, pivσ∗
n, πn, n)

Pr(β2|a, piv, σ∗
n, πn, n)

(141)

In the following formula we omit the dependence on σ∗
n and πn. Using

Bayes’ rule,

lim
n→∞

Pr(α2|a, piv)
Pr(β2|a, piv)

= lim
n→∞

Pr(α)

Pr(β)

Pr(α2|α)
Pr(β2|β)

Pr(a|α2)

Pr(a|β2)

Pr(piv|α2)

Pr(piv|β2)

= lim
n→∞

Pr(α|{α2, β2}, piv)
Pr(β|{α2, β2}, piv)

Pr(a|α2)

Pr(a|β2)
(142)

We see that for a voter who received an additional signal s2 ∈ {a, b}, the

inference about the state is asymptotically pinned down by the inference from

the pivotal event conditional on the state being α2 or β2, and by the ratio of the
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signal probabilities in the states α2 and β2. Note that limn→∞ ρ̂z(σ
∗
n, πn, n) =

limn→∞ Pr(α|{α2, β2}, piv; σ∗
n, πn, n) such that Claim 10 implies

lim
n→∞

Pr(α|{α2, β2}, piv; σ∗
n, πn, n) = λ. (143)

Using (141), (142), (143) and the definition of the information structure πx,r,y
n

(see Figure 5), we conclude

lim
n→∞

Pr(α|a, piv; σ∗
n, πn)

Pr(β|a, piv; σ∗
n, πn)

=
x

1− x

λ

1− λ
, (144)

Similarly, for the additional signal b,

lim
n→∞

Pr(α|b, piv; σ∗
n, πn, n)

Pr(β|b, piv; σ∗
n, πn, n)

=
y

1− y

λ

1− λ
. (145)

C.1.2 Fixed Point Argument

In this section, we prove Theorem 2, using the observations from the preceding

section. Let us consider some belief µα ∈ [λα, λ]
c and some belief µβ ∈ [λ, λβ]

c

with λ, λα and λβ given by (81), (82) and (83).

Recall from Section 6.2 that equilibrium can be equivalently characterized by

a vector of beliefs p∗ = (p∗a, p
∗
z, p

∗
b) such that p∗ = ρ̂(σp

∗

; π, n); see (77). Now,

take any δ > 0 and let

Bδ =
{

p ∈ [0, 1]3 | |p− (µα, λ, µβ)| ≤ δ
}

,

so that Bδ is the set of beliefs at most δ away from (µα, λ, µβ). Take any p ∈Bδ

and the corresponding strategy σp. We define a constrained best reponse

function that ensures that the best reponse to any p ∈ [0, 1]3 is contained in

Bδ:

ρ̂tra (σ
p) =



















µα − δ if ρ̂a(σ
p) < µα − δ,

µα + δ if ρ̂a(σ
p) > µα + δ,

ρ̂a(σ
p) else.

(146)

77



The components ρ̂trz and ρ̂trb are defined in the analogous way. Note that the

vector ρ̂tr(σp) is continuous in p such that it follows from the Kakutani fixed

point theorem that ρ̂tr(σp) has a fixed point p∗ ∈ Bδ.

Now, we show that the previous Claim 12 implies that any fixed point p∗ of

ρ̂
tr(σp) is interior when n is large enough and δ is small enough.

Claim 13 Consider any µα ∈ [λα, λ]
c and any µβ ∈ [λ, λβ]

c. Consider the

sequence of independent expansions (πn)n∈N of πc with additional information

πx,r,y
n where µα = xλ

xλ+(1−x)(1−λ)
and µβ = yλ

yλ+(1−y)(1−λ)
and r ∈ (0, 1) (see

Figure 5). For any δ > 0 small enough, there exists n(δ) ∈ N such that for all

n ≥ n(δ) and any fixed point of ρ̂tr(σp) is interior.

Proof. Given the assumptions on µα, µβ, we can choose δ > 0 small enough

such that for any p ∈ Bδ and the corresponding behavior σp the expected

margins of victory in the states α2 and β2 are strictly smaller than the expected

margins of victory in the states α1 and β1, i.e. σ
p satisfies (50). Therefore, it

follows from Claim 12 and its implications (144) and (145) that

lim
n→∞

ρa(σ
p, n) = µα, (147)

lim
n→∞

ρb(σ
p, n) = µβ. (148)

This means in particular that ρ̂a and ρ̂b are interior for n large enough. Con-

sequently, for any fixed point p∗ = (p∗a, p
∗
z, p

∗
b) of ρ̂tr, the beliefs p∗a and p∗b

are interior when n is large enough. If p∗z = λ − δ, then, given σp
∗

and as

n → ∞, the margin of victory in α2 is strictly smaller than the margin of

victory in β2, given the definition of λ; see (81). Hence, Claim 2 implies that

limn→∞
Pr(piv|α2;σp

∗

,π
x,r,y
n ,n)

Pr(piv|β2,σp∗
,π

x,r,y
n ,n)

= ∞. This implies, limn→∞ ρz(σ
p
∗

; πx,r,y
n , n) = 1.

For any n large enough this contradicts with p∗z = λ − δ since p∗ is a fixed

point of ρ̂tr(σp). In the same way we can exclude that p∗z = λ + δ for any n

large enough. We conclude that any fixed point p∗ of ρ̂tr(σp) is interior when

δ is small enough and n is large enough.

Now, we finish the proof of Theorem 2. Note that the behavior σp
∗

cor-

responding to any interior fixed point p∗ of ρ̂tr is an equilibrium. Therefore,
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Claim 13 implies the existence of a sequence of equilibria (σ∗
n)n∈N given addi-

tional information πx,r,y
n for which (147) and (148) hold. Since in state α the

probability that a random voter receives a converges to 1 and since in state β

the probability that a random voter receives a converges to 1, (147) and (148)

imply that (µα, µβ) is implementable. This finishes the proof of Theorem 2.

D Partially Informed Sender

Proof of Theorem 6

Proof. For each voter type t = (tα, tβ) and any m ∈ {h, ℓ}, let

tπ0
m = Pr(α|m)tα + Pr(β|m)tβ (149)

be the expected utility of a voter of type t from the outcome A being elected

when she received m. Let Gπ0 be the distribution of types tπ0 = (tπ0
h , tπ0

ℓ )

induced by the preference distribution G. Note that any coarsening π of π0

can be viewed as an information structure for the state space {h, ℓ} with

substates (m, j) ∈ {h} × {1, . . . , Nh} ∪ {ℓ} × {1, . . . , Nℓ}. So, the state space

{h, ℓ} together with the preference distribution Gπ0 and a coarsening π2 of π0

define a game of voters as in Section 2. To apply Theorem 2, we have to show

that the distribution Gπ0 satisfies the richness condition 17: let

Φπ0(p̃) = PrGπ0 ({tπ0 : p̃ · tπ0
h + (1− p̃) · tπ0

ℓ > 0}), (150)

be the function that maps a belief p̃ ∈ [0, 1] about the state h to the probability

that a random type tπ0 prefers A given belief p̃. We have to show that there

exists a belief p̃′ ∈ [0, 1] for which a majority prefers A and a belief p̃ for which

a majority prefers B, i.e.

Φπ0(p̃) <
1

2
< Φπ0(p̃′). (151)
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To see, why such beliefs p and p′ exist, note that any belief p̃ about h induces

a belief p(p̃) = p̃Pr(α|h) + (1− p̃) Pr(α|ℓ) about the state α. The assumption

(98) made in the theorem means that

p(p̃) < r̂ for p̃ = 0, (152)

p(p̃) > r̂ for p̃ = 1. (153)

Now,

Φπ0(p̃)

= PrG({t : (p̃Pr(α|h) + (1− p̃) Pr(α|ℓ))tα + (p̃Pr(β|h) + (1− p̃) Pr(β|ℓ))tβ > 0)

= Φ(p(p̃)). (154)

Hence, given that Φ is strictly increasing and given that Φ(r̂) = 1
2
, the as-

sumption (98) made in the theorem together with the richness condition (17)

implies the richness condition (151). We conclude that the result of the theo-

rem follows from Theorem 2.

Proof of Theorem 7

In Section D.2.1 we provide the proof for the case when the sender receives

binary signals m ∈ {h, ℓ} and the goal is to persuade the voters to elect B

after h and A after ℓ. In Section D.2.2, we explain how the result generalizes.

D.2.1 Proof: Binary Signals of the Sender

Let the sender release information to the voters given by the sequence of

coarsenings (πx,y
2,n)n∈N in Figure 8 (compare to Figure 5). Let πn = πx,y

2,n × πc

be the arising independent expansions of πc.

Step 1 We show that the margin of victory in the states αh,2, αℓ2 and βh,2,

βℓ,2 is pinned down uniquely by the exogenous information πc of the voters:

there exists M > 0 such that for any (x, y) ∈ {0, 1}2, any equilibrium sequence

(σ∗
n)n∈ given (πn)n∈N, and any m ∈ {h, ℓ},
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M = lim
n→∞

q(αm,2; σ
∗
n, πn)−

1

2
= lim

n→∞

1

2
− q(βm,2; σ

∗
n, πn). (155)

The key insight is the following: given the additional information πx,y
n provided

by the sender, in the substates αh,2, αℓ,2 and βh,2, βℓ,2, a random voter receives

the additional signal z with probability converging to 1 and infers that either

of these substates holds. Hence, conditional on the substate being αh,2, αℓ,2,

βh,2 or βℓ,2, the game of voters converges to a game with binary signals drawn

from πc that are independently and identically distributed conditional on the

state ω ∈ {α, β}, as in the setting of the CJT. Moreover, the limits of the vote

shares in these substates are given by the vote shares implied by the induced

prior after z: for any ωm,2 ∈ {αh,2, αℓ,2, βh,2, βℓ,2},

lim
n→∞

q(ωm,2; σ
∗
n, πn) = lim

n→∞
q(ω; ρ̂z(σ

∗
n, πn, n)). (156)

So, in particular, for any ω ∈ {α, β},

lim
n→∞

q(ωh,2; σ
∗
n, πn) = lim

n→∞
q(ωℓ,2; σ

∗
n, πn).

As in the proof of the CJT, we can show that the election is equally close

to being tied in the substates αh,2 and αℓ,2 compared to the substates βh,2 and

βℓ,2, that is for any m ∈ {h, ℓ},36

lim
n→∞

q(αm,2; σ
∗
n, πn)−

1

2
= lim

n→∞

1

2
− q(βm,2; σ

∗
n, πn). (157)

Since λ is the unique induced prior such that the margins of victory in the

states α and β are equal given the implied vote shares (see (81)), we must

have

lim
n→∞

ρ̂z(σ
∗
n, πn, n) = λ. (158)

such that (156) - (158) together yield the assertion of the first step.

36More precisely, the arguments from the proof of (87) in Section C hold verbatim with
the required changes in notation.
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Step 2 We show that for any strategy sequence (σn)n∈N, the pivotal event does

not contain any information about the relative likelihood of the states αh,2 and

αℓ,2 or the relative likelihood of the states βh,2 and βℓ,2: for any ω ∈ {α, β},
we have

lim
n→∞

Pr(piv|ωh,2, σn, πn)

Pr(piv|ωℓ,2, σn, πn)
= 1. (159)

To see why, note that almost all voters receive z in αh,2 and αℓ,2 such that the

signal distribution in these two states is almost the same. Similarly, the signal

distribution in the states βh,2 and βℓ,2 is almost the same. Now, the statement

formally follows by the same proof as provided for Claim 3. As a consequence

of (159), for any m ∈ {h, ℓ}

lim
n→∞

Pr(piv|αm,2; σn, πn)

Pr(piv|βm,2; σn, πn)
= lim

n→∞

Pr(piv|{αh,2, αℓ,2}; σn, πn)

Pr(piv|{βh,2, βℓ,2}; σn, πn)
. (160)

Fixed Point Argument. We provide a fixed point argument which shows

that there exists an equilibrium sequence (σ∗
n)n∈N, first, for which the limit of

the margin of victory in any state ωj ∈ {αh,2, αℓ,2, βh,2, βℓ,2} is smaller than

the limit of the margin of victory in any state ω̂l ∈ {αh,1, αℓ,1, βh,1, βℓ,1}, i.e.

lim
n→∞

|q(ωj, σ
∗
n)−

1

2
| < lim

n→∞
|q(ω̂l, σ

∗
n)−

1

2
|. (161)

and, second, for which B is elected after h and A after ℓ, as n → ∞. For this,

we let x = 1 and y = 0. The argument for any other signal-dependent policy

(x(h), x(ℓ)) ∈ {A,B}2 is analogous. Consider a strategy sequence (σn)n∈N such

that (161) holds. Then, it follows from Claim 2 that any voter, independently

of the signal he received, infers that conditional on the pivotal event, it is

most likely that the substate is one of αh,2, αℓ,2, βh,2, βℓ,2, i.e. for any s ∈
{u, d} × {a, b, z},37

lim
n→∞

Pr({αh,2, αℓ2 , βh2 , βℓ2}|s, piv; σn, πn)

Pr({αh,1, αℓ,1, βh,1, βℓ,1}|s, piv; σn, πn)
= ∞. (162)

37This is analogous to the observation on the voters’ inference in section 5.4.2 (see Claim
7).
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So, as n → ∞ the voter learns from the pivotal event that αh,2, αℓ,2, βh,2 or βℓ,2

holds and something about the relative likelihood of these substates. When

the voter receives a, she further learns that the signal of the sender must have

been ℓ since x = 0 and y = 1 (see Figure 8). To the end of this section, we

delegate to show that in fact, as n → ∞, the belief Pr(α|piv, a; σn, πn) has a

simple description in terms of these two inferences,

lim
n→∞

Pr(α|piv, a; σn, πn)

Pr(β|piv, a; σn, πn)
=

λ

1− λ

Pr(ℓ|α; π0)

Pr(ℓ|β; π0)
, (163)

where λ is the posterior conditional on being pivotal and the substate being

αh,2, αℓ,2, βh,2 or βℓ,2, as n → ∞, i.e. λ = limn→∞ Pr(α|piv, {αh,2, αℓ2 , βh2 , βℓ2}; σn, πn);

compare to (158). Similarly, we show that

lim
n→∞

Pr(α|piv, b; σn, πn)

Pr(β|piv, b; σn, πn)
=

λ

1− λ

Pr(h|α; π0)

Pr(h|β; π0)
. (164)

We omit the dependence of beliefs on σn and πn in the following. Now, we

claim that the sequence of the best responses to σn satisfies (161), i.e. the

sequence (σpn)n∈N with pn the vector (Pr(α|piv, s))s∈{u,d}×{a,z,b}.

To see why, note that in the states αℓ,1, βℓ,1 all voters receive b such that

q(αℓ,1; σ
pn) = q(α; Pr(α|piv, b)) and q(βℓ,1; σ

pn) = q(β; Pr(α|piv, b)). In states

αh,2, βh,2 all voters receive a such that q(αh,2; σ
pn) = q(α; Pr(α|piv, a)) and

q(βh,2; σ
pn) = q(β; Pr(α|piv, a)). In any state αm,2 ∈ {αh,2, αℓ,2}, almost all

voters receive z such that limn→∞ q(αm,2, σ
pn) = limn→∞ q(α; Pr(α|piv, z)). In

any state βm,2 ∈ {βh,2, βℓ,2}, almost all voters receive z such that limn→∞ q(βm,2, σ
pn) =

limn→∞ q(β; Pr(α|piv, z)). Now, (163) and (101) imply that limn→∞ Pr(α|piv, a) <
λα and the monotonicity of the implied vote share q(−, p) in p implies that

limn→∞ q(α; Pr(α|piv, a)) < q(α, λα). Similarly, (164) and (102) imply that

limn→∞ Pr(α|piv, b) > λβ) and then the monotonicity of q(−, p) in p implies

that limn→∞ q(β; Pr(α|piv, b)) > q(β, λβ). Also, recall (158) which states that

limn→∞ Pr(α|piv, z)) = λ. Now, finally, the claim about (σpn)n∈N follows since

q(α, λα) = q(β, λ) < 1
2
and 1

2
< q(α, λ) = q(β, λβ) by the definitions of λ, λα

and λβ given by (81), (82) and (83).
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It follows from the Kakutani fixed point theorem that there exists an equilib-

rium sequence (σ∗
n)n∈N such that (161) holds. Therefore, as just shown, for any

ω ∈ {α, β}, we have limn→∞ q(ωℓ,1; σ
∗
n) >

1
2
and since limn→∞ Pr({αℓ,1, βℓ,1}|ℓ) =

1, it follows from the weak law of large numbers that the probability that A

gets elected converges to 1 conditional on ℓ. Similarly, the probability that

B gets elected converges to 1 conditional on h. This finishes the proof of the

Theorem 7 for the case when the sender has binary signals and the goal is to

implement B after h and A after ℓ. We provide the proof for the general case

in Section D.2.2.

Proof of (163) and (164).

lim
n→∞

Pr(α|piv, a)
Pr(β|piv, a)

= lim
n→∞

Pr(α|piv, {αh,2, αℓ,2, βh,2, βℓ,2}, a)
Pr(β|piv, {αh,2, αℓ,2, βh,2, βℓ,2}, a)

= lim
n→∞

Pr(α)

Pr(β)

Pr(ℓ|α)
Pr(ℓ|β)

Pr(ℓ2|ℓ)
Pr(ℓ2|ℓ)

Pr(piv|αℓ,2)

Pr(piv|βℓ,2)

= lim
n→∞

Pr(α)

Pr(β)

Pr(ℓ|α)
Pr(ℓ|β)

Pr(piv|{αh,2, αℓ,2})
Pr(piv|{βh,2, βℓ,2})

= lim
n→∞

Pr(α)

Pr(β)

Pr({αℓ,2, αh,2}|α)
Pr({βℓ,2, βh,2}|β)

Pr(z|{αℓ,2, αh,2})
Pr(z|{βℓ,2, βh,2})

Pr(piv|{αh,2, αℓ,2})
Pr(piv|{βh,2, βℓ,2})

Pr(ℓ|α)
Pr(ℓ|β)

= lim
n→∞

Pr(α|piv, {αh,2, αℓ,2, βh,2, βℓ,2}, z)
Pr(β|piv, {αh,2, αℓ,2, βh,2, βℓ,2}, z)

Pr(ℓ|α)
Pr(ℓ|β)

=
λ

1− λ

Pr(ℓ|α)
Pr(ℓ|β) , (165)

where we omitted the dependence on σn and πn in the notation. For the

equality on the second line we used (162). For the equality on the third line,

we used Bayes’ rule and that a is send with probability 0 in the substates αh,2

and βh,2 and with probability 1
n2 in the substates αℓ,2 and βℓ2 . For the equality

on the fourth line we used (160). For the equality on the fifth line, I used

that
Pr({αℓ,2,αh,2}|α)
Pr({βℓ,2,βh,2}|β) = 1 and I used that z is send with the same probability

in all substates αh,2, αℓ,2, βh,2, βℓ,2 (see Figure 8). For the equality on the
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sixth line, I used Bayes’ rule. For the equality on the seventh line, we used

that limn→∞ ρ̂z(σ
∗
n, πn, n) = limn→∞ Pr(α|piv, {αh,2, αℓ,2, βh,2, βℓ,2}, z) and 158.

This finishes the proof of (163). The proof of (164) is analogous.

D.2.2 Proof: the General Case

Now, we study the general case when there exist two signals h, ℓ ∈ {m1, . . . ,mk}
of the sender such that (101) and (102) hold. Consider any target policy vector

(x(mi))i=1,...,k.

The Information Structure. Consider m ∈ {h, ℓ}. After receiving m, the

sender releases signals according to the coarsenings πx,y
2,n in Figure 8 with the

following slight modification of the signal probabilities in the substate m1: if

the target policy is x(m) = A, the sender releases signal b to all voters con-

ditional on m1. Conversely, if x(m) = B, the sender releases signal a to all

voters conditional on m1. Consider any other signal m /∈ {h, ℓ}. If x(m) = B,

the sender releases signal a to all voters. If x(m) = A, the sender releases

signal b to all voters.

Consider for example the case when x(h) = B and x(ℓ) = A such that

all voters receive a conditional on h1 and all voters receive b conditional on

ℓ1. Now, abusing notation, we identify all substates of ω ∈ {α, β} in which all

voters receive a with the substate ωh,1 and all substates of ω in which all voters

receive b with the substate ωℓ,1. With this notation, the proof of Theorem 7

for this case is the same as the proof for the case when the signals of the sender

are binary (see Section D.2.1). If the target policies for the signals h and ℓ are

different, i.e. x(h) 6= B or x(ℓ) 6= A, we proceed analogously. This finishes the

proof of Theorem (7).
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E Online Supplement

Computational Example

Note that one example of a distribution G on [0, 1] × [−1, 0] that induces a

uniform distribution of ‘thresholds of doubt’, i.e. Φ with Φ(p) = p for all

p ∈ [0, 1] is given by the density

g(tα, tβ) =







√

1 + (
tβ
tα
)2 · (2 ·

∫

|tα|>|tβ |

√

1 + (
tβ
tα
)2dt)−1 if

−tβ
tα−tβ

≤ 1
2
,

√

1 + ( tα
tβ
)2 · (2 ·

∫

|tα|>|tβ |

√

1 + (
tβ
tα
)2dt)−1 if

−tβ
tα−tβ

≥ 1
2
.

Lemma 5 Consider any sequence of strategies (σn)n∈N and any sequence of

information structures (πn)n∈N with a common set of substates across n. Then,

for any substates ωi, ω
′
j ∈ {α1, . . . , αNα

} ∪ {β1, . . . , βNβ
} and any n ∈ N,

Pr(piv|ωi; σn, πn)

Pr(piv|ω′
j; σn, πn)

=
[

1 +
(q(ω′

j; σ
p)− 1

2
)2 − (q(ωi; σ

p)− 1
2
)2

1
4
− (q(ω′

j; σ
p)− 1

2
)2

]n

(166)

Proof. Let xn = q(ωi; σn)− 1
2
and yn = q(ω′

j; σn)− 1
2
. Then,

q(ωi; σn)(1− q(ωi; σn))

q(ω′
j; σn)(1− q(ω′

j; σn))
=

(1
2
+ xn)(

1
2
− xn)

(1
2
+ yn)(

1
2
− yn)

=
1
4
− y2n + y2n − x2

n

1
4
− y2n

= 1 +
y2n − x2

n
1
4
− y2n

The claim follows from (8).

Fixed Point Argument.

Consider a belief p = (pa, pz, pb) with

pa ≥ 0.95, (167)

pb ≥ 0.95, (168)

pz ∈ [0.32, 0.68]. (169)
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Given (πn)n∈N = (πr
n)n∈N with r = 1

2
, we have the following bounds for n ≥ 8:

q(ω1; σ
p, n) ≥ 0.95 for ω1 ∈ {α1, β1}, (170)

q(α2; σ
p, n) > 0.3 (171)

q(β2; σ
p, n) ≤ 0.7. (172)

In the following, we omit the dependence on σp and on πn most of the time.

Step 1 For any n ∈ N and any ω1 ∈ {α1, β1}, ω′
2 ∈ {α2, β2},

Pr(piv|ω′
2)

Pr(piv|ω1; )
≥ (3.2)n (173)

Indeed,

Pr(piv|ω′
2)

Pr(piv|ω1)

≥ [1 + min
ω1,ω

′

2

(q(ω1; σ
p)− 1

2
)2 − (q(ω′

2; σ
p)− 1

2
)2

1
4
− (q(ω1; σp)− 1

2
)2

]n

≥ (1 + (
( 9
20
)2 − ( 4

20
)2

1
4
− ( 9

20
)2

))

≥ (1 +
65

19
)n

≥ (3.4)n. (174)

where we used Lemma 5 for the inequality on the second line.

Step 2 For n ≥ 8: ρa(σ
p) ≥ 0.95, ρb(σ

p) ≥ 0.95 and ρz(σ
p) ∈ [0.32, 0.68].

First,

ρa(σ
p) = 1 (175)
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since a is only sent in α. Second,

ρb(σ
p)

1− ρb(σp)
=

p0
1− p0

Pr(α2|α) Pr(b|α2) Pr(piv|α2)

Pr(β1|β) Pr(b|β1) Pr(piv|β1)

≥ 1

3

3
n

1
n2

(1− 1
n
)
(3.4)n

≥ 30 for n ≥ 8.

where we used (174) for the inequality on the second line. Hence, for n ≥ 8,

ρ(σp)b ≥
30

1 + 30
> 0.95. (176)

Third,

Pr(piv|α2)

Pr(piv|β2)
≤ [1 +

|(q(β2; σ
p)− 1

2
)2 − (q(α2; σ

p)− 1
2
)2|

1
4
− (q(β2; σp)− 1

2
)2

]n

≤ (1 +
1
n4 +

1
n2

1
4
− 16

400

)n

≤ 2. for n ≥ 8.

where we used Lemma 5 for the inequality on the first line. For the inequality

on the second line, we used that z is sent with probability 1 − 1
n2 in both

α2 and β2 such that the difference in the squared margins of victory cannot

exceed (x+ 1
n2 )

2 − x2 ≤ 2x
n2 +

1
n4 where x is the minimum margin of victory in

the states α2, β2. Finally, the inequality follows since the margin of victory in

both α2 and β2 is bounded by 0.2. So,

ρz(σ
p)z

1− ρz(σp)
=

Pr(α)

Pr(β)

Pr(α2|α)
Pr(β2|β)

Pr(z|α2)

Pr(z|β2)

Pr(piv|α2)

Pr(piv|β2)

= (1− 1

n2
)
Pr(piv|α2; σ

p)

Pr(piv|β2; σp)

≤ 2 for n ≥ 8.
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Consequently, for all n ≥ 8,

ρ(σp)z ≤ 2

3
. (177)

Fourth,

Pr(piv|α2)

Pr(piv|β2)
≥ (1− |(q(β2; σ

p)− 1
2
)2 − (q(α2; σ

p)− 1
2
)2|

1
4
− (q(β2; σp)− 1

2
)2

≥ (1−
1
n4 +

1
n2

1
4
− 16

400

)n

≥ 0.53 for n ≥ 8. (178)

So, for all n ≥ 8,

ρ(σp)z
1− ρ(σp)z

= (1− 1

n2
)
Pr(piv|α2; σ

p)

Pr(piv|β2; σp)
≥ 0.5.

This gives for all n ≥ 8,

ρ(σp)z ≥ 0.5

1 + 0.5
≥ 0.32. (179)

The claim follows from (175) - (179).

Step 3 For n ≥ 8, there is an equilibrium σ∗
n which satisfies (170) - (172).

It follows from Step 2 that, for any n ≥ 8, the continuous map that sends p

to ρ(σp) is a self-map on the set of beliefs that satisfy (167) - (169). It follows

from the Kakutani fixed point theorem that there exists fixed points p∗
n that

satisfy (167) - (169). The corresponding strategies σp
∗

n are equilibria (compare

to (13)) and they satisfy (170) - (172).

Step 4 Given the equilibrium σ∗
n for n ≥ 8, the probability that A is elected is

larger than 99.9% · (1− 3
n
).
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Evaluation of the binomial distribution shows that Pr(B(2n + 1, x)) > n) ≥
0.999999 if n ≥ 8 and x ≥ 0.95. Hence, given σ∗

n, A is elected with probability

larger than 99.9% in the states α1 and β1. Finally, the claim follows since these

states occur with probability larger than (1− 3
n
). The fourth step finishes the

calculations for the example.

Proof of Theorem 8

To prove the theorem we use that Bayesian updating exhibits a supermartin-

gale property: for any binary random variable x ∈ {x, x} given by a prior

probability Pr(x) and any finite random variable y ∈ Y ,

Ey(Pr(x|y)|x) ≥ Pr(x). (180)

This means that when the state is x, the average posterior conditional on y

exceeds the prior. Similarly,

Ey(Pr(x|y)|x) ≤ Pr(x). (181)

For a given strategy σ, we apply (180) and (181) to the binary event where a

given voter receives a given private signal s1 ∈ {u, d}, the voter is pivotal and
the state is α or where the given voter receives a given private signal s1 ∈ S1,

the voter is pivotal and the state is β:

Lemma 6 For any independent expansion π of πc with finite signal set {u, d}×
S2, any equilibrium σ given π and any s1 ∈ {u, d},

Es2(Pr(α|piv, s1, s2; σ)|piv, s1, α)
≥ Pr(α|piv, s1; σ)
≥ Es2(Pr(α|piv, s1, s2; σ)|piv, s1, β).

where the expectation is taken over the realizations of the additional signal s2.

Consider any sequence of independent expansions (πn)n∈N of πc and any

equilibrium sequence (σ∗
n)n∈N given π. We provide the proof for the case when
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limn→∞ Pr(α|piv; σn, πn) ≥ λ.38 Then, there must be a substate αj of α for

which the posterior likelihood conditional on being pivotal does not vanish as

n → ∞,

αj ∈ Ωα = {αi : lim
n→∞

Pr(αi|piv; σ∗
n, πn) 6= 0}. (182)

In the following, we sometimes omit the dependence on the information struc-

tures and the strategies from the notation. Now, we use Lemma 6 and the

linearity of the aggregate preference function Φ to establish the first step.

Step 1 The average vote share for A across the substates of α, weighted by

their likelihood conditional on the pivotal event, exceeds the vote share implied

by λ as n → ∞, i.e.

lim
n→∞

Eαj
(q(αj; σn)|α, piv) ≥ q(α;λ). (183)

We see that

38If limn→∞ Pr(piv|σ∗
n) ≤ λ, the proof is analogous and follows the same arguments

where one just needs to replace α with β and larger equal signs with smaller equal signs.
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Eαj
(q (αj) |α, piv)

=
∑

j

Pr (αj|piv, α) q (αj)

=
∑

j

Pr (αj|piv, α)
∑

s1

Pr (s1|αj)
∑

s2

Pr (s2|αj) (Φ (Pr (α|s1, s2, piv)))

=
∑

s1

Pr (s1|α)
[

∑

j

Pr (αj|piv, α)
(

∑

s2

Pr (s2|αj) Φ (Pr (α|s1, s2, piv))
)]

=
∑

s1

Pr (s1|α) Es2 (Φ (Pr (α|s1, s2, piv)) |piv, α)

=
∑

s1

Pr (s1|α) Es2 (Φ (Pr (α|s1, s2, piv)) |piv, s1, α)

=
∑

s1

Pr (s1|α) Φ (Es2 [Pr (α|s1, s2, piv) |piv, s1, α])

≥
∑

s1

Pr (s1|α) [Φ(Pr (α|s1, piv))]

= q(α; Pr(α|piv)) (184)

where we used the formula (15) for the vote share of outcome A in a given

substate for the equality on the third line. For the equality on the fourth

line, we used that the probability of receiving a private signal s1 ∈ {u, d}
only depends on the state ω ∈ {α, β}. For the equality on the sixth line we

used that the private signals s1 are independently and identically distributed

conditional on ω. For the equality on the seventh line, we used the linearity of

Φ. For the equality on the eigth line, we used Lemma 6. For the equality on

the ninth line we use the definition of the vote share q(α; p) of A in α implied

by a belief p ∈ [0, 1] (see (80)).

Since the function q(α, p) of the vote share implied by a belief p ∈ [0, 1] is

strictly increasing in p, the assumption that limn→∞ Pr(α|piv; σ∗
n, πn) ≥ λ

together with (184) implies the assertion (183).

Step 2 For any substate ωi, the limit of the margin of victory weakly exceeds
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the margin of victory implied by λ in α as n → ∞, i.e.

∀ωi : lim
n→∞

|q(ωi; σ
∗
n, πn, n)−

1

2
| ≥ q(α;λ, πc)− 1

2
(185)

For this, at first, we argue that for any αj ∈ Ωα and any other substate ωi,

the limit of the expected margin of victory in ωi is weakly larger than in αj,

as n → ∞, i.e.

∀αj ∈ Ωα, ∀ωi : lim
n→∞

|q(αj; σ
∗
n)−

1

2
| ≤ lim

n→∞
|q(ωi; σ

∗
n)−

1

2
| (186)

Suppose that the inequality in (186) does not hold for some αj ∈ Ωα and some

ωi. Then, Claim 2 implies that limn→∞ Pr(αj|piv; σ∗
n) = 0, contradicting the

assumption that αj ∈ Ωα.

Now, note that (186) implies that the limit of the margin of victory is the

same across all states αj ∈ Ωα. Then, it follows from Step E that the limit

margin of victory for the states in Ωα weakly exceeds q(α;λ(πc), πc)− 1
2
. The

assertion follows from (186) for all other substates.

Step 3 The equilibrium sequence (σn)n∈N does not implement any pair of be-

liefs (µα, µβ) ∈ (0, 1)2 with µα ∈ (λα, λ) or µβ ∈ (λ, λβ).

Step 2 implies that the equilibrium sequence can possibly only implement

beliefs (µα, µβ) for which the implied margins of victory |q(α;µα, π
c)− 1

2
| and

|q(β;µβ, π
c)− 1

2
| exceed the lower bound q(α;λ, πc)− 1

2
. Note that

|q(α;µα, π
c)− 1

2
| ⇒ µα ∈ (λα, λ)

c, (187)

|q(β;µβ, π
c)− 1

2
| ⇒ µβ ∈ (λ, λβ)

c, (188)

given the definitions of λ, λα and λβ through (81), (82) and (83). This finishes

the proof of the theorem.
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