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Abstract

The modern Condorcet jury theorem states that under weak conditions,

when voters have common interests, large elections will aggregate information,

in any responsive and symmetric equilibrium. Here, we study the performance

of large elections with population uncertainty. We find that the modern Con-

dorcet jury theorem holds if and only if the expected number of voters is inde-

pendent of the state. If the expected number of voters depends on the state,

then additional equilibria exist in which information is not aggregated. The

main driving force is that, everything else remaining equal, voters are more

likely to be pivotal if the population is small. We provide conditions under

which the additional equilibria are stable. In addition, we show that the Con-

dorcet jury theorem also fails if abstention is allowed and characterize equilib-

rium with binary signals. Finally, a state-dependent population can provide

additional information to voters, and we characterize how voters can take ad-

vantage of this information.
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helped with the proof of a critical result, Lemma 10. We thank Deniz Kattwinkel and Carl Heese
for excellent research assistance. This work was supported by a grant from the European Research
Council (ERC 638115) and the German Research Foundation (DFG) through the CRC TR 224
(Project B04).
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1 Introduction

Elections are said to be effective in aggregating information that is dispersed among

citizens, for example, about uncertainty regarding future economic prospects, costs

and benefits of a public good, or the political ramifications of a trade deal. This

belief has been justified by the so-called Condorcet jury theorem (see Ladha (1992)),

which asserts that large electorates choose correct outcomes, and its modern form

by Austen-Smith and Banks (1996), Feddersen and Pesendorfer (1997, 1998), Wit

(1998), Duggan and Martinelli (2001), and others. Precisely, the modern Condorcet

jury theorem states that under weak conditions, in a large voting game with common

values, all responsive and symmetric Nash equilibria aggregate information. The Con-

dorcet jury theorem is one motivation for using elections to make collective choices.

In its modern form, it provides “a rational choice foundation for the claim that ma-

jorities invariably ‘do better’ than individuals” (at least, for large electorates); see

Austen-Smith and Banks (1996).

Most of these earlier contributions assume that the number of voters is determin-

istic and known. Myerson (1998a) observed that the size of the electorate is often

uncertain. Importantly, this uncertainty may not be independent of the underlying

state of the world.

In fact, there are plenty of reasons why the state of the world may be correlated

with the expected number of voters. For example, in the case of local elections or

referenda, awareness about the election taking place may depend on the perceived eco-

nomic prospects. Similarly, the awareness of elections may depend on the competency

or the motivation of the current office holders because of its effect on news coverage

and general political engagement. Finally, election turnouts are often subject to ma-

nipulation by interested parties who may choose to influence turnout strategically

and differently across states; see Ekmekci and Lauermann (2019).

This paper studies whether the modern Condorcet Jury Theorem is robust to

population uncertainty. To do so, we use the model by Myerson (1998a): Voters have

to choose between two alternatives (two policies). They share common values that

depend on an unknown binary state of nature. The number of voters is Poisson-

distributed and the mean of the distribution may be state-dependent. Each voter

observes a private, conditionally independent signal.

To start, note that any asymmetry in the expected number of voters itself contains



additional information about the state of the world; hence, there is one more source

of information–in addition to the private signals of the voters–that the electorate

could use to aggregate information. However, as we argue below, even though there

is more information that could be used, large electorates may fail to aggregate any

information–that is, the modern Condorcet Jury Theorem is not robust to population

uncertainty.

Because our environment is a common-value environment, we follow McLennan

(1998), who showed that in common interest games, every symmetric strategy profile

that maximizes social welfare is also a symmetric Nash equilibrium. Our first order

of business is to extend McLennan (1998)’s theorem for a deterministic population

size to our environment, where participation is Poisson-distributed and the expected

number of voters is state-dependent. One notable observation we make is that when

the population size is state-dependent, the voting game from the viewpoint of the

actual participants fails to be a common interest game. An extension of McLennan

(1998)’s result can be obtained only when the social welfare function considered in

this program is selected to include the payoffs of the nonparticipating voters in the

welfare calculation.

We use our extension of McLennan (1998) to re-derive the main result from My-

erson (1998a): If voters have noisy but informative signals about the state of the

world, then large electorates in which the population size is state-dependent admit

at least one symmetric Nash equilibrium that aggregates information–that is, that

selects the correct outcome with a probability close to one.1 Thus, as is known from

Myerson (1998a), one part of the Condorcet Jury theorem survives: large electorates

are able to aggregate information.

However, we show that the second part of the Condorcet Jury theorem fails: there

are plausible equilibria that fail to aggregate information when the population is state-

dependent. In such equilibria, the majority of voters vote as if the state is the one

in which there are fewer voters. Therefore, the implemented policy is the one that is

preferred in the state in which there are fewer voters. Such equilibria are responsive,

and when sufficiently informative signals are possible, these equilibria are stable.

Thus, our main finding is that the modern Condorcet Jury theorem holds with

population uncertainty if and only if this uncertainty is independent from the state.

Otherwise, if the population is statistically state-dependent, additional responsive

1In Myerson (1998a), this result is proven directly, not using the common interest structure.
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equilibria exist that fail to aggregate information.

The key force that helps sustain such equilibria is a “participation curse.” A

vote is more likely to change the outcome of the election, that is, to be pivotal, when

there are fewer voters, all else being equal. Therefore, a majority of voters–but not

all voters–vote as if the state is the one with fewer voters.

We then explore whether strategic abstention can help eliminate such “bad” equi-

libria. Krishna and Morgan (2012) showed that voluntary voting improves on com-

pulsory voting and induces sincere voting outcomes when there are binary signals.

In Feddersen and Pesendorfer (1997), abstention allows uninformed players to par-

ticipate at a rate that cancels out the effect of partisans who cast their votes in one

direction independently of their signals. Hence, one may hope that strategic absten-

tion would help the electorate “undo” the asymmetry in the population size induced

by exogenous factors. However, for the binary signal setting by Krishna and Morgan

(2012), we show that allowing abstention does not eliminate responsive equilibria that

fail to aggregate information.

Somewhat surprisingly, if the asymmetry in the population size is not too large,

then in the equilibria that fail to aggregate information, voters with a certain signal

are mixing between all three options; they vote with positive probability for both

policies and abstain. This behavior is due to a swing voter’s blessing.2

We also explore abstention with state-dependent participation rates when signals

are continuous. In this case, if there is no bound on the informativeness of the signals,

then there are always equilibria that fail to aggregate information.

Finally, we explore the idea that state-dependent participation provides additional

information to voters by considering a setting in which signals are uninformative and

thus this is the only source of information. For this setting, we show how voters

can utilize the additional information and how much additional information can be

maximally provided by state-dependent participation.

Information aggregation fails in our setting because, whenever the expected num-

ber of voters depends on the state in a non-trivial manner, the probability of being

pivotal is different across states (even when voters use constant strategies). We also

explore this general topic in a companion paper, Ekmekci and Lauermann (2019),

where we study a setting in which the number of voters is state-dependent but de-

2To the best of our knowledge, this is the first paper to identify an equilibrium with a swing
voter’s blessing, rather than a swing voter’s curse, in the sense of Feddersen and Pesendorfer (1997).
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terministic. The companion paper focuses on how the number of voters may endoge-

nously emerge to give rise to equilibria in which information aggregation fails. Here,

we consider a different setting in which the number of voters is not deterministic but

Poisson-distributed in each state. For this case, the present paper provides a compre-

hensive equilibrium analysis. We allow for abstention and characterize equilibrium

for voluntary voting with a state-dependent population size.

Further, the literature has identified other circumstances in which information

may fail to aggregate. Feddersen and Pesendorfer (1997) show such a failure in an

extension (Section 6 of their paper) when the aggregate distribution of preferences

remains uncertain conditional on the realized state. Mandler (2012) demonstrates a

similar failure if the aggregate distribution of signals remains uncertain. In these set-

tings, the effective state is multi-dimensional. Intuitively, this implies an invertibility

problem from the relevant order statistic of the vote shares to payoff-relevant states.

A similar problem is identified by Bhattacharya (2013), who observes the necessity

of preference monotonicity for information aggregation; see also Bhattacharya (2018)

and Ali, Mihm, and Siga (2017). Barelli, Bhattacharya, and Siga (2018) study which

conditions on the joint distributions of states and voters’ signals make information

aggregation feasible. Gul and Pesendorfer (2009) show that information aggregation

fails when there is policy uncertainty. In our setting, conditional on the state, there

is no aggregate uncertainty (in the sense that the mean of the Poisson distribution

is known), preferences over policies are monotone in the state, and there is no policy

uncertainty.

2 Model

The model setup follows Myerson (1998a). Voters have to decide between two policies,

A and B. There are two states, α and β, with prior probability

π = Pr {α} ,

where 0 < π < 1 and Pr {β} = 1 − π. Voters have common values: Each voter
receives a payoff of 1 if the policy matches the state, and a payoff of 0 otherwise.

However, voters do not know the realized state. Instead, voters observe noisy
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signals x ∈ [x, x̄].3 Conditional on the state, the signals are independent and identi-
cally distributed. The c.d.f. of the signal distribution is G (·|ω). The distribution is
atomless and admits a density. Without loss of generality, signals are ordered so the

weak monotone likelihood ratio property (MLRP) holds,

g (x|α)
g (x|β) is weakly decreasing in x.

In addition, g (x|ω) > 0 for all x ∈ (x, x̄). This, together with G being atomless,
rules out that voters receive perfectly revealing signals with positive probability. Fi-

nally, for technical convenience, we assume right continuity of g(·|α)
g(·|β) on (x, x̄), defining

limx→x
g(x|α)
g(x|β) =:

g(x|α)
g(x|β) ∈ R ∪ {∞} and limx→x̄

g(x|α)
g(x|β) =:

g(x̄|α)
g(x̄|β) ∈ R.4 Signals contain

some information, meaning, g(x|α)
g(x|β) > 1 > g(x̄|α)

g(x̄|β) . Two important special cases are

boundedly informative signals,

∞ >
g (x|α)
g (x|β) > 1 >

g (x̄|α)
g (x̄|β) > 0,

and unboundedly informative signals,

∞ =
g (x|α)
g (x|β) and

g (x̄|α)
g (x̄|β) = 0.

The number of voters is Poisson-distributed in each state, with an expected num-

ber of nα = n and nβ = θn; so, the probability that there are t voters in state ω

is

Pr {t|ω} = (nω)
t e−nω

t!
.

The policy is decided by simple majority rule among submitted votes. If there is

a tie, then a fair coin flip decides. Abstention is not possible for now.

We consider symmetric and pure voting strategies. Given the Poisson setup,

symmetry is without loss of generality; see Myerson (1998a). A voting strategy is a

function a : [x, x̄]→ [0, 1], with a (x) being the probability to vote for A.

Let U (x,W ; a, n) be the expected utility for a voter having signal x who votes for

W ∈ {A,B}, given that all other voters use strategy a and the expected number of
voters is (n, θn) in states α and β, respectively. We often omit a and n.

3We allow x = −∞ and x̄ = +∞.
4Because we allow for a discontinuous density, discrete signals are a special case of our model.
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We study voting strategies that form a (Bayesian) Nash equilibrium. A voting

strategy a is a Nash equilibrium if and only if U (x,A; a, n) > U (x,B; a, n) implies

a (x) = 1 and U (x,A; a, n) < U (x,B; a, n) implies a (x) = 0.

To characterize equilibrium, the following is useful. The likelihood ratio of the

two states conditional on having signal x and participating is5

Pr (α|x)
Pr (β|x) =

π

1− π
n

θn

g (x|α)
g (x|β) . (1)

Let T denote the event in which the number of A and B votes is the same, T − 1
the event in which there is one less A vote than B votes, and T +1 the event in which

there is one more A vote. Then, the difference U (x,A; a, n) − U (x,B; a, n) is equal
to

Pr (α|x)
(
Pr [T − 1|α] 1

2
+ Pr [T |α] + Pr [T + 1|α] 1

2

)

−Pr (β|x)
(
Pr [T − 1|β] 1

2
+ Pr [T |β] + Pr [T + 1|β] 1

2

)
. (2)

Voting A versus voting B changes the payoffs only in the events T − 1, T , and
T+1. In the first event, voting A rather than B increases the probability of A winning

from 0 to 1/2; in the second event, it increases the probability from 0 to 1; and in

the third event, it increases the probability from 1/2 to 1.

The probability that the decision to vote A versus B turns out to be pivotal is6

Pr (Piv0|ω) =
1

2
Pr [T − 1|ω] + Pr [T |ω] + 1

2
Pr [T + 1|ω] .

Then, it is evident from (1) and (2) that voting for A is a best response for a voter

having signal x if

γ (x; a, n) :=
π

1− π
1

θ

g (x|α)
g (x|β)

Pr (Piv0|α)
Pr (Piv0|β)

≥ 1,

where γ denotes the critical likelihood ratio.

A strategy a is a cutoff strategy if for some x̂, a (x) = 1 if x > x̂ and a (x) = 0

5See also Milchtaich (2004) for a discussion of updating in Poisson games.
6We use the subscript 0 to distinguish the pivotal event with compulsory voting from the pivotal

event with voluntary voting that is introduced later.
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if x < x̂. We state without proof that cutoff strategies are without loss of generality.

This is immediate from γ being nonincreasing in x.

Lemma 1. If a strategy forms a Nash equilibrium, it is equivalent to a cutoff strategy.7

Our generic notation is x̂ for the strategy: “Vote for A if x ∈ (x, x̂), and vote for
B if x ∈ (x̂, x̄).” Abusing notation, let γ (x; x̂, n) be the critical likelihood ratio given
cutoff x̂. If γ (t; t, n) is continuous in t, then x̂ ∈ (x, x̄) is an interior Nash equilibrium
if and only if

γ (x̂; x̂, n) = 1.

3 Welfare Maximization and Nash Equilibria

McLennan (1998) observed that for common interest games, welfare maximizing strat-

egy profiles are also Nash equilibria. This result extends almost immediately to Pois-

son games with an infinite population. However, we first need to clarify the welfare

function to be maximized, since there are two natural candidates.

Let u (i, x̂|ω) be the expected payoff of a voter conditional on state ω and i voters
being present who vote according to x̂. The expected surplus of the participating

voters given a voting profile x̂ is

Esur [u; x̂] =
∑

ω∈{α,β}
Pr {ω}

∞∑

i=0

iPr {ñ = i|ω}u (i, x̂|ω) .

The expected payoff of a representative agent given x̂ is

Erep [u; x̂] =
∑

ω∈{α,β}
Pr {ω}

∞∑

i=0

Pr {ñ = i|ω}u (i, x̂|ω) .

The expected surplus weighs the payoffs in the two states by the population size;

however, the expected payoff of a representative agent does not. The first welfare

criterion is maybe more appropriate if those who do not participate receive payoff 0

(and/or do not exist). The second welfare criterion is maybe more appropriate if the

7If the likelihood ratio is constant on some interval, every voting strategy is equivalent to a voting
strategy in cutoffs (because we can reorder votes on that interval). If the likelihood ratio is strictly
increasing, every voting strategy is in cutoffs.
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non-participating agents are present and receive the same payoff u (i, x̂|ω), but just
do not vote.

Of these two criteria, only the second one corresponds to a game of common

interest.

Lemma 2. Any voting strategy x∗ that maximizes the expected payoff of a represen-

tative agent Erep [u; ·] is a Nash equilibrium.

One may have expected Nash equilibrium to be tilted towards the state in which

more voters are present, since the participating voters consider this state to be rela-

tively more likely.

4 Compulsory Voting

Lemma 2 implies that, for all θ, equilibria exist that aggregate information. Myerson

(1998a) provides a direct proof for this result.

Theorem 1. [Myerson (1998a)] For all θ ∈ (0,∞), there exists a sequence of equi-
libria {x̂n}∞n=1 such that limn→∞E

rep [u|x̂n] = 1.

For this and subsequent proofs, it will be useful to define the median signals

xα : G (xα|α) = 1/2 and xβ : G (xβ|β) = 1/2.

Since signals contain information, xα < xβ.

Proof. Take any x′ ∈ (xα, xβ). Let x̂n maximize the welfare of the representative
agent given n. Then, the proposition follows from

1 = lim
n→∞

Erep [u;x′] ≤ lim
n→∞

Erep [u; x̂n] ≤ 1.

The first equality follows from the weak law of large numbers, the first inequality from

the choice of x̂n, and the last inequality from the definition of Erep and u (i, x̂|ω) ∈
[0, 1]. �

Now, we study whether all equilibria aggregate information in large elections:

How reliably do elections enable voters to make good choices? Is the Condorcet jury

theorem robust to population uncertainty? If not, what drives the difference?
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4.1 Auxiliary Results

We use the following simple extension of the intermediate value theorem. This lemma

deals with the problem that the signal likelihood ratio g (x|α) /g (x|β) is monotone de-
creasing but may be discontinuous, implying that the critical likelihood ratio γ (t; t, n)

may be discontinuous in t as well.

Lemma 3. Suppose there are two points a and b, such that γ (a; a, n) ≤ 1 ≤ γ (b; b, n)
(either a < b or a > b). Then, there exists a Nash equilibrium with cutoff x̂ with

min {a, b} ≤ x̂ ≤ max {a, b}. If a < b, then there exists a Nash equilibrium cutoff

with γ (x̂; x̂, n) = 1.

We also use the following approximation of the critical likelihood ratio.

Lemma 4. If limn→∞ x̂
n ∈ (x, x̄), then

lim
n→∞

Pr [Piv0|α; x̂n, n]
Pr [Piv0|β; x̂n, n]

=




∞ if lim

n→∞
2
√
G (x̂n|α) (1−G (x̂n|α))− 1 > lim

n→∞
θ
(
2
√
G (x̂n|β) (1−G (x̂n|β))− 1

)
,

0 if lim
n→∞

2
√
G (x̂n|α) (1−G (x̂n|α))− 1 < lim

n→∞
θ
(
2
√
G (x̂n|β) (1−G (x̂n|β))− 1

)
.

For θ = 1, this simplifies to

lim
n→∞

Pr [Piv0|α; x̂n, n]
Pr [Piv0|β; x̂n, n]

=




∞ if lim

n→∞

∣∣G (x̂n|α)− 1
2

∣∣ <
∣∣G (x̂n|β)− 1

2

∣∣ ,
0 if lim

n→∞

∣∣G (x̂n|α)− 1
2

∣∣ >
∣∣G (x̂n|β)− 1

2

∣∣ .

This lemma follows from standard approximations to pivot probabilities; see Kr-

ishna and Morgan (2012). The proof of the lemma is provided in a separate section

in the appendix, where we re-state these general approximations and this and other

lemmas for our purposes. The case θ = 1 is particularly intuitive. Roughly, the state

in which the election is closer to being tied in expectation becomes arbitrarily more

likely conditional on the election being actually tied.

4.2 The Modern Condorcet Jury Theorem

The modern Condorcet theorem states that in large elections, all “reasonable” (sym-

metric and responsive) equilibria aggregate information. For a deterministic number

9



of voters, this result has been proven by Feddersen and Pesendorfer (1998) and Wit

(1998) for binary signals and by Duggan and Martinelli (2001) for a continuum of

signals. Krishna and Morgan (2012) prove it for Poisson elections when the expected

number of voters is independent of the state, θ = 1, and signals are binary. Here, we

extend this result to a continuum of signals.

As in Duggan and Martinelli (2001) and Krishna and Morgan (2012), we assume

that
π

1− π
g (x|α)
g (x|β) > 1 >

π

1− π
g (x̄|α)
g (x̄|β) . (3)

With this assumption, based on their own signal alone, a voter with the strongest

signal for α would prefer policy A and a voter with the strongest signal for β would

prefer policy B. The assumption holds if the prior is uniform. The assumption also

holds if signals are sufficiently informative.

Theorem 2. Condorcet Jury Theorem. All equilibria aggregate information if θ = 1

(there is no imbalance) and (3) holds (signals are sufficiently informative): For

every sequence of Nash equilibrium cutoffs {x̂n}∞n=1 with x ≤ x̂n ≤ x̄ for all n,

limn→∞E
rep [u|x̂n] = 1.

The proof of the theorem is by contradiction. The main step is to show that for

any sequence of Nash equilibrium cutoffs we have

xα < lim
n→∞

x̂n < xβ, (4)

which then implies that information aggregates by the weak law of large numbers.

To show (4), we verify that for any sequence of cutoffs x̂n,

lim
n→∞

Pr [Piv0|α; x̂n, n]
Pr [Piv0|β; x̂n, n]

=

{
∞ if x < limn→∞ x̂ ≤ xα,
0 if xβ ≤ limn→∞ x̂

n < x̄.
(5)

This rules out that such sequences are Nash equilibria, of course. A somewhat

different argument deals with the remaining cases x̂n → x or x̂n → x̄.

Equation (5) follows from the second part of Lemma 4. In particular, if x <

limn→∞ x̂
n ≤ xα, then with x0 = limn→∞ x̂

n, the MLRP implies that 0 < G (x0|β) <
G (x0|α) ≤ 1/2. Therefore, the election is closer to being tied in state α–and condi-
tional on being pivotal, a voter becomes almost certain that it is this state. Conversely,

10



if limn→∞ x̂
n = x0 is interior, then Lemma 4 requires that the election is equally close

to being tied in both states, meaning,
∣∣G (x0|α)− 1

2

∣∣ =
∣∣G (x0|β)− 1

2

∣∣, as otherwise
the relative likelihood of being pivotal explodes. However, for the election to be

equally close to being tied, it is easy to see that it must be that xα < x
0 < xβ; hence,

information is aggregated.

For deterministic elections, the analogous result holds only for symmetric and

responsive equilibria. For Poisson elections, the symmetry assumption is without loss

of generality, and there are no nonresponsive equilibria if (3) holds; hence, the result

is stronger. If θ = 1, all Nash equilibria aggregate information.8

4.3 The Failure of the Modern Condorcet Jury Theorem

We now show that the modern Condorcet theorem fails if θ 6= 1.

Theorem 3. Consider a sequence of voting games in which the expected number of

participants is (n, θn) in states α and β, respectively, and n→∞.

• If θ < 1, then there is a sequence of interior Nash equilibrium cutoffs {x̂n}∞n=1
with x̂n ∈ (x, xα) for large n, such that B wins in both states with probability

converging to one.

• If θ > 1, then there is a sequence of interior Nash equilibrium cutoffs {x̂n}∞n=1
with x̂n ∈ (xβ, x̄) for large n, such that A wins in both states with probability

converging to one.

The proof is provided in the appendix. The main observations are that

lim
n→∞

γ (xα;xα, n) =∞, (6)

and that for any xR sufficiently small, with x < xR < xα,

lim
n→∞

γ (xR;xR, n) = 0. (7)

8We emphasize the importance of (3) for these strong conclusions. If the condition fails, then it
can be easily seen that nonresponsive equilibria exist. Moreover, one can also show that in this case
there are responsive equilibrium sequences that do not aggregate information.

11



Hence, the intermediate value theorem from Lemma 3 implies that, for all n large

enough, there exists some x̂n ∈ (xR, xα) such that γ (x̂n; x̂n, n) = 1. We verify that
limn→∞ x̂

n < xα, and, hence, B wins with probability converging to 1 in both states.

Again, the critical observations (6) and (7) follow from Lemma 4. For (6), note

that for a cutoff x̂ = xα, the election is tied in state α, while B wins with certainty

in state β. Thus, it is intuitive that conditional on being pivotal, a voter becomes

certain that the state is α. Now, consider some xR close to x. Then, with xR small

enough, B will win in both states. Moreover, because θ < 1, the number of B votes

is actually larger in state α. Now, the expected vote difference in state α is

n ((1−G (xR|α))−G (xR|α)) ,

while the expected vote difference in state β is

nθ ((1−G (xR|β))−G (xR|β)) .

For xR close enough to x, the expected vote difference is larger in state α. Because

of the smaller margin of victory, it is therefore intuitive that B is less likely to win

in state β than in state α. Thus, conditional on being pivotal, the state is almost

certainly β for n large, explaining (7).

The fact that there are fewer voters in state β when θ < 1 is at the heart of

the aggregation failure. Because the number is smaller, a voter is more likely to be

pivotal in that state, and, given that sophisticated voters condition on being pivotal,

they tend to support B, even if their signals are strongly in favor of A.

4.4 Stability

If signals are unboundedly informative and g(x|α)
g(x|β) = ∞, it is immediate that for any

fixed n, there exists xnL with x < x
n
L < xR such that

9

γ (xnL;x
n
L, n) > 1. (8)

9This holds because, for any fixed n, the ratio Pr[Piv0|α;x,n]
Pr[Piv0|β;x,n]

is bounded.
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Together with (7) and Lemma 3, (8) implies that there exists some equilibrium with

x̂ns ∈ (xnL, xR) for all n large enough. Thus, when signals are unboundedly informative,
there are at least two interior equilibria in which information aggregation fails, this

one and the previous one with x̂n ∈ (xR, xα).

This argument also implies that when signals are unboundedly informative, there

is one “stable” equilibrium that fails to aggregate information by the following argu-

ment. From (7) and (8), for all n large enough, γ̃ (x) = γ (x;x, n) cuts 1 from above,

at least once at some point x̂s < xR. If x̂s is the only equilibrium cutoff in some neigh-

borhood, then x̂s is an equilibrium cutoff that is responsive, and this equilibrium is

an expectationally stable equilibrium in the sense of Fey (1997). Intuitively, this

equilibrium has the property that if this is the outcome of a dynamic best-response

iteration and if the process starts in a neighborhood of the equilibrium cutoff, then

the process will eventually converge to the cutoff.10

Unstable Equilibria. Applying the same argument to the case with boundedly

informative signals, it follows from (6) and (7) that there exists at least one point

x̂r ∈ (xL, xα) at which γ crosses 1 from below. Thus, when signals are boundedly

informative, there exists at least one equilibrium cutoff x̂r that is unstable.
11

Nonresponsive Equilibria. As observed by Myerson (1998a), for all θ 6= 1, if
signals are boundedly informative, then there are also nonresponsive equilibria when

n is large enough. Consider θ < 1 and suppose x̂ = x, so that all voters support B.

In this case, the relative probability of being pivotal is

Pr [Piv0|α;x, n]
Pr [Piv0|β;x, n]

=
e−n (1 + n)

e−θn (1 + θn)
≈ e−n(1−θ)1

θ
→n→∞ 0.

Thus, given that signals are boundedly informative, it is a best response for a voter to

vote for B independently of her signal, for n large enough. Nonresponsive equilibria

are stable.

10It may be that for some ε > 0 and x̃0 < x̃1, we have γ̃(x) > 1 for x ∈ (x̃0 − ε, x̃0), γ̃(x) = 1 for
x ∈ [x̃0, x̃1] and γ̃(x) < 1 for x ∈ (x̃1, x̃1 + ε). We may call such a set of equilibria “pseudo-stable,”
with singletons being special cases.
11On the other hand, even though there must be some equilibrium that is not stable, we cannot

rule out that there are stable equilibria. In fact, our previous discussion implies that it is easily
possible to construct stable equilibria for some boundedly informative signals.
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5 Voluntary Voting (Abstention)

We now consider the possibility of abstention or “voluntary voting.” Feddersen and

Pesendorfer (1996) noted that voters may have a strict incentive to abstain because

of the “swing voter’s curse.” Moreover, the possibility of abstention necessarily in-

creases the expected payoff of a representative agent in the best equilibrium relative

to compulsory voting. This is an immediate implication of Lemma 2; see also Krishna

and Morgan (2012).

In addition, Krishna and Morgan (2012) observe that with abstention and a binary

signal, there is no longer a conflict between voting strategically and voting sincerely,

which is often present with compulsory voting even when θ = 1.12 Thus, abstention

may help eliminate the equilibria that we identified earlier since these equilibria relied

on voters with a strong signal towards state α to nevertheless vote B. Thus, we now

ask whether abstention may help eliminate the bad equilibria.

With abstention, our generic notation is (y, z) for the following strategy: “Vote

for A if x ∈ (x, y), abstain if x ∈ (y, z), and vote for B if x ∈ (z, x̄).” We call a voting
strategy (y, z) nonresponsive if either z = x or y = x̄, so, either all participants vote

B or all of them vote A. Otherwise, an equilibrium is responsive.

Again, Lemma 2 implies that information aggregation is possible in some equilib-

ria. We state this without proof.

Theorem 4. Suppose voting is voluntary. Consider a sequence of voting games in

which the expected number of participants is (n, θn) in states α and β, respectively,

and n→∞. For all θ > 0, there exists a sequence of Nash equilibria that aggregates
information.

5.1 Voluntary Voting: Unboundedly Informative Signals

First, we study the case with unboundedly informative signals. As before, we study

whether every sequence of equilibria aggregate information.

Theorem 5. [Unboundedly Informative Signals.] Suppose voting is voluntary and

signals are unboundedly informative. Consider a sequence of voting games in which

12Moreover, if voting is costly, abstention enables a reduction in overall voting costs.

14



the expected number of participants is (n, θn) in states α and β, respectively, and

n→∞.

1. If θ < 1, then there is a sequence of responsive Nash equilibria such that B wins

in both states with probability converging to 1.

2. If θ > 1, then there is a sequence of responsive Nash equilibria such that A wins

in both states with probability converging to 1.

The proof is provided in the appendix. The basic idea is this: Consider an auxiliary

game Γ (xR, n) in which voters with signals x ≥ xR > x must vote for B, but which
otherwise remains unchanged. By a standard argument, this game has an equilibrium.

Then, for n large enough, this equilibrium is also shown to be an equilibrium of the

original game if xR is small enough, in particular, if xR < xα. The critical argument

for this proof is that for xR small enough, given any admissible strategy profile with

y ≤ z ≤ xR, the probability of state β conditional on being pivotal converges to

one.13 Thus, voters with signals around xR > x will optimally vote for B; hence, this

restriction does not bind. Thus, this is an equilibrium of the original game. Moreover,

the equilibrium is responsive: since signals are unboundedly informative, g(x|α)
g(x|β) =∞.

Therefore, for every given n, voters will optimally vote A for some sufficiently small

signal.

5.2 Voluntary Voting: Binary Signals

When signals are boundedly informative, the construction via an auxiliary game does

not work. If we simply search for an equilibrium with cutoffs y ≤ z ≤ xR, that

equilibrium may turn out to be a nonresponsive equilibrium, with y = z = x.14 We

also cannot use arguments using the intermediate value theorem, as in the compulsory

voting case, since we are now looking for a two-dimensional strategy profile. Instead,

in the Appendix in Section B, we introduce a new result, Lemma 10, which generalizes

the intermediate value theorem in a certain sense to two dimensions. With this result,

we can study the case with binary signals, which was also analyzed in Krishna and

Morgan (2012). Signals are binary if there is some xB, such that the signal likelihood

13Note that this argument is very similar to the one used in (7) for compulsory voting.
14Relatedly, we cannot use a fixed point theorem on a restricted strategy space because we cannot

ensure that points on the boundary of the space are mapped into the interior.
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ratios are constant below and above that cutoff, with g(x|α)
g(x|β) = cα ∈ (1,∞) for all

x ∈ [x, xB) and g(x|α)
g(x|β) = cβ ∈ (0, 1) for all x ∈ (xB, x̄]. Following Krishna and Morgan

(2012), we also assume π = 1/2, so that (3) holds.

Theorem 6. [Binary Signals.] Suppose voting is voluntary, signals are binary, and

π = 1/2. Consider a sequence of voting games in which the expected number of

participants is (n, θn) in states α and β, respectively, and n→∞.

1. [Krishna and Morgan, 2012]. If θ = 1, then all sequences of Nash equilibria

aggregate information.

2. If θ < 1 and 1−G(xB |α)
1−G(xB |β) 6= θ, there is a sequence of responsive Nash equilibria

such that B wins in both states with probability converging to 1.

3. If θ > 1 and G(xB |α)
G(xB |β) 6= θ, there is a sequence of responsive Nash equilibria such

that A wins in both states with probability converging to 1.

In the theorem, 1−G(xB |α)
1−G(xB |β) 6= θ is a genericity requirement.15 To the best of our

knowledge, the equilibrium construction via the new Lemma 10 is new. This con-

struction may be useful in other contexts as well and may constitute an independent

technical contribution of the paper.

Mixed Equilibrium. With binary signals, the equilibrium turns out to be typi-

cally mixed. Consider the case when θ < 1 but not too small such that 1−G(xB |α)
1−G(xB |β) < θ.

In this case, equilibrium may have somewhat surprising properties. In particular, it

will be the case that a voter with a signal x < xB (which is a signal indicative of

state α) is mixing between voting for A, voting for B, and abstaining, choosing each

of the three actions with a strictly positive probability. A necessary condition for this

is that there is no swing voters curse. Note that, in contrast to Krishna and Morgan

(2012), despite voting being voluntary, the voting strategy is not sincere,16 because

voters with signal x < xB are voting against their signal.

15This condition implies that a voter’s posterior conditional on participation and a high signal is
not exactly equal to the prior.
16We say that voting is sincere if x ≤ y implies π

1−π
1
θ

g(x|α)
g(x|β) ≥ 1 and x ≥ z implies π

1−π
1
θ

g(x|α)
g(x|β) ≤ 1

(if the strategy profile requires voting for either A or B for some signal, then given that signal,
voting for A and B is also myopically optimal, that is, if a voter were to be the sole voter and used
only the information contained in her signal and participating.)
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General Signal. We conjecture that Theorem 6 can be extended to all boundedly

informative signals. We have verified this for the case in which the signal likelihood

ratio g(x|α)
g(x|β) is continuous. However, the proof becomes much more involved and we

need to strengthen Lemma 10. To move even further to general discontinuous signals

would require a result analogous to Lemma 10 for certain sets of functions that are

discontinuous but monotone along one of the two dimensions. While we believe this

to be true, we have not been able to establish it.

Compulsory versus Voluntary Voting. In the beginning of this section, we

noted that abstention increases the expected payoff of a representative agent in the

best equilibrium relative to compulsory voting by Lemma 2; see also Krishna and

Morgan (2012). However, this is not necessarily the case relative to expected surplus.

While we have not found a specific example of this, we believe that there may be

parameters for which the expected surplus with compulsory voting is higher than

that with voluntary voting. Further exploring the costs and benefits of voluntary

voting will be an interesting avenue for further research.

6 Learning from the Population-Size

As mentioned in the introduction, any asymmetry in the expected number of voters

provides information about the state of the world that can be utilized by the elec-

torate. Here, we focus on this aspect by considering the special case in which the

voters have no further private signals at all and, therefore, the population asymmetry

is the only source of information.

Nevertheless, a substantial amount of information remains: If the expected pop-

ulation size is large and state-dependent, an outsider who observes the realized pop-

ulation size would know the state with arbitrarily high precision. We show that even

though voters do not observe the realized population size, the voters can still use the

information contained in the population size to increase the probability of the correct

choice.

Consider the following example in which the number of voters is deterministic

in each state (rather than Poisson-distributed). Specifically, in state α, there are n

voters, and in state β there is only 1 voter. Moreover, assume a uniform prior, that is,

π = 1
2
. In such an environment, a voter updates her belief about the state conditional
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on participating and her posterior belief that the state is α is n
n+1
. Then, the naive

(sincere) voting strategy would be to vote for A; hence, a would be selected regardless

of the state. Therefore, from an ex-ante perspective, the correct outcome is selected

with probability 1/2.

Now, consider the following alternative strategy profile in which a voter votes A

with a probability 1
2
+ ε, for some ε > 0. If n is sufficiently large, then, by the law of

large numbers, A wins in state α with a probability close to 1. On the other hand,

in state β, because there is only 1 voter, B wins with probability 1
2
− ε. Therefore,

this strategy profile selects the correct choice with a probability close to 3/4 for ε

small and n large. Note that, without an asymmetric population and n voters in both

states, any voting strategy leads to a correct choice with probability 1/2.

The key feature of the strategy profile that improves the probability of the correct

choice given the state-dependent participation is that the variance of the outcome is

larger in state β than in state α. Therefore, voters can use the asymmetry in the

variance of the outcome across the states to increase the probability of the correct

choice.

We now find the maximum probability with which the electorate can choose the

correct outcome in equilibrium when n is large. A symmetric strategy profile is a

pair of probabilities that we denote by q = (qa, qb), where qa + qb = 1 and qa is the

probability that a voter votes for A (and qb the probability to vote for B). Given a

symmetric strategy profile, the expected payoff of a representative agent is

Erepn [u; q] = πPr {a wins|α, q}+ (1− π)Pr {b wins|β, q} .

The strategy profile qn∗ that maximizes E
rep
n [u; ·] is a Nash equilibrium by Lemma

2, following McLennan (1998). We are interested in the limit of the sequence {qn∗ }∞n=1.
The first lemma derives the limiting outcome for a given sequence of strategy pro-

files {qn}, utilizing the central limit theorem to approximate the Poisson-distributed

vote totals for each alternative. What matters for the outcome is the expected margin

of victory of each alternative relative to the standard deviation of the vote total. In

state α, the expected margin of victory is n (qna − 1/2) and the standard deviation of
the vote total is

√
n. We denote the limit of their ratio as k := limn→∞

n(qna−1/2)√
n

. As

is intuitive, if k is large (i.e., the margin of victory is positive and large relative to the

standard deviation), then A wins with a high probability; if k is positive but close to
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zero, each alternative is almost equally likely to win; and if k is negative, then B is

more likely to win. The lemma verifies this intuition. The proof for this is provided

in the appendix. Recall that Φ denotes the c.d.f. of the standard normal distribution.

Lemma 5. Consider a sequence of voting games in which the expected number of

participants is (n, θn) in states α and β, respectively, and n → ∞. Take a sequence
of strategy profiles {qn} with lim√n (qna − 1/2) = k ∈ [−∞,∞]. Then,

1. limn→∞ Pr {a wins|α, qn} = Φ(2k),

2. limn→∞ Pr {b wins|β, qn} = 1− Φ
(
2
√
θk
)
,

where Φ(−∞) = 0, and Φ(∞) = 1.

Utilizing the lemma, the expected payoff from a given sequence of strategy profiles

is

lim
n→∞

Erepn [u; qn] = max
k∈[−∞,∞]

πΦ (k) + (1− π)
(
1− Φ

(√
θk
))
.

Maximizing the expected payoff with respect to k yields the optimal strategy profile

and, hence, the limit of the sequence of the welfare maximizing equilibrium profiles,

{qn∗ }∞n=1.

Theorem 7. Consider a sequence of voting games in which the expected number of

participants is (n, θn) in states α and β, respectively, and n→∞. Suppose that θ < 1
and π ≥ 1/2. Let k∗ :=

√
2
1−θ ln

(
π

(1−π)
√
θ

)
. Then, the sequence of Nash equilibria

{qn∗ } that maximizes Erepn [u; ·] is such that

1. limn→∞E
rep
n [u; qn∗ ] = πΦ (k

∗) + (1− π)
(
1− Φ

(√
θk∗
))
, and

2. limθ→0 limn→∞E
rep
n [u; qn∗ ] = π +

1
2
(1− π).

The proof of the theorem is given in the appendix. There, we also characterize

the best equilibria for the remaining parameters (θ, π).

7 Conclusion

In this paper, we study the set of equilibria of Poisson elections when the expected

number of voters is potentially state-dependent. We show that large Poisson elections
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robustly aggregate information–in the sense that all equilibria imply the correct

choice with probability converging to one–if and only if the expected number of

voters is constant across states. If the expected number of voters is different, then

there are additional responsive equilibria that fail to aggregate information. The

basic reason for this is that voters are more likely to be pivotal when the electorate

is smaller. This leads to equilibria in which voters systematically vote for the policy

that is optimal in the state with fewer expected voters. Moreover, when signals are

sufficiently informative, these equilibria can be chosen to be stable. Abstention does

not eliminate additional equilibria. For the case with abstention and binary signals,

we use a certain “two-dimensional extension” of the intermediate value theorem to

construct an equilibrium with novel properties (voters mix between all three options

and there is a swing-voters blessing). We end on a positive note: Although the state-

dependent population introduces a coordination problem, it also injects additional

information that the voters can utilize when coordinating on the best equilibrium.

Our results relate to three contributions: Ekmekci and Lauermann (2019) consider

a setting with compulsory voting and a deterministic number of voters in each state

and show that information aggregation may fail. Myerson (1998a) introduces a model

of Poisson elections in which the expected number of voters may be state-dependent

and voting is compulsory. He shows that there exist equilibria that aggregate infor-

mation. Krishna and Morgan (2012) study a model of Poisson elections in which

the expected number of voters is independent of the state and abstention is allowed,

showing that for the case with binary signals, all equilibria aggregate information.17

Relative to Ekmekci and Lauermann (2019), we consider Poisson elections and allow

abstention; relative to Myerson (1998a), we show the existence of additional equilibria

and allow abstention; and relative to Krishna and Morgan (2012) we allow continuous

signals and show that there are additional equilibria when the expected number of

voters depends on the state.

A Appendix

Notation. In the appendix, we denote the expected number of A and B votes

in state α as σA = nG (x̂|α) and σB (x̂) = n (1−G (x̂|α)). Similarly, for state β,
τA (x̂) = θnG (x̂|β), τB (x̂) = θn (1−G (x̂|β)). We often drop the arguments from
17Their paper considers costly voting, which is the main focus of their analysis.
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σω and τω.

Sequences and Limits. When taking limits, we mean with respect to subsequences

for which a limit exists (in the extended reals). In the context of our proofs, such sub-

sequences can always be found and proving statements for all converging subsequences

will be sufficient for the desired claims. This convention saves us from introducing

notation for layers of subsequences. We will not always repeat this qualifier.

A.1 Proofs for Section 3 (Welfare Maximization)

Proof of Lemma 2.

We apply the same argument as McLennan (1998), with a slight modification to

account for random number of voters . Let u(i, a|ω) denote the expected payoff of a
voter when there are i voters, the state is ω, and each voter is following the strategy

a, and let u(i, a′|ω, a) denote the expected payoff of a voter in state ω if she follows
the strategy a′ while all other voters are using the strategy a, and when there are

i + 1 voters in total. Finally, let u(a, i, a′, j|ω) be the expected payoff of a voter
when i voters are using the strategy a, and j voters are using the strategy a′. The

representative voter’s payoff is

Erep [u|a] =
∑

ω

Pr{ω}
∞∑

i=0

Pr {ñ = i|ω}u (i, a|ω) .

Let (1− ε)a+ εa′ denote mixing over the two strategies a and a′. We characterize
the derivative of Erep [u|a] in the direction of a′:
Claim.

lim
ε→0

Erep [u|a]− Erep[u|(1− ε)a+ εa′]
ε

=
∑

ω

Pr(ω)nω

∞∑

i=0

Pr(ñ = i|ω)(u(i+ 1, a|ω)− u(i, a′|ω, a)).

Note that the right-hand side is proportional to the increase of an individual

voter’s expected utility when changing her strategy from a′ to a, provided all other

voters follow strategy a.

21



Proof of the claim: Let x be the realized number of participants who play a

and y the realized number of participants who play a′, and note that x + y = ñ.

Notice that x has a Poisson distribution with mean nω(1 − ε), and y has a Poisson
distribution with mean nωε. Then,

Erep [u|a]− Erep[u|(1− ε)a+ εa′] =
∑

ω

Pr(ω)(

∞∑

i=0

Pr(ñ = i|ω)u(i, a|ω)

− Pr(y = 0|ω)
∞∑

i=0

Pr(x = i|ω)u(i, a|ω)

− Pr(y = 1|ω)
∞∑

i=0

Pr(x = i|ω)u(i, a′|ω, a)

−
∑

j>1

Pr(y = j|ω)
∞∑

i=0

Pr(x = i|ω)u(a, i, a′, j|ω)),

and so

Erep [u|a]− Erep[u|(1− ε)a+ εa′]
=
∑

ω

Pr(ω)(

Pr(y = 1|ω)
∞∑

i=0

Pr(x = i|ω)(u(i+ 1, a|ω)− u(i, a′|ω, a))

+
∑

j>1

Pr(y = j|ω)
∞∑

i=0

Pr(x = i|ω)(u(i+ j, a|ω)− u(a, i, a′, j|ω))).

Consider the term

1

ε

∑

ω

Pr(ω) Pr(y = 1|ω)
∞∑

i=0

Pr(x = i|ω)(u(i+ 1, a|ω)− u(i, a′|ω, a)).

Because

lim
ε→0

Pr(y = 1|ω)
ε

= nω,

and because

lim
ε→0

∞∑

i=0

Pr(x = i|ω)(u(i+1, a|ω)−u(i, a′|ω, a)) =
∞∑

i=0

Pr(ñ = i|ω)(u(i+1, a|ω)−u(i, a′|ω, a)),
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we have

lim
ε→0

1

ε

∑

ω

Pr(ω) Pr(y = 1|ω)
∞∑

i=0

Pr(x = i|ω)(u(i+ 1, a|ω)− u(i, a′|ω, a)) =

∑

ω

Pr(ω)nω

∞∑

i=0

Pr(ñ = i|ω)(u(i+ 1, a|ω)− u(i, a′|ω, a)).

Consider the term

1

ε

∑

j>1

Pr(y = j|ω)
∞∑

i=0

Pr(x = i|ω)(u(i+ j, a|ω)− u(a, i, a′, j|ω).

Because
∑

j>1 Pr(y = j|ω) is at the order of ε2, and because payoffs are bounded,
we have

lim
ε→0

1

ε

∑

j>1

Pr(y = j|ω)
∞∑

i=0

Pr(x = i|ω)(u(i+ j, a|ω)− u(a, i, a′, j|ω) = 0.

Therefore,

lim
ε→0

Erep [u|a]− Erep[u|(1− ε)a+ εa′]
ε

=
∑

ω

Pr(ω)nω

∞∑

i=0

Pr(ñ = i|ω)(u(i+1, a|ω)−u(i, a′|ω, a)),

proving the claim.

Suppose now to the contrary of the claim of the Lemma that the strategy a

maximizes Erep [u|a], and a is not a symmetric Nash equilibrium of the voting game.

Then, there is a strategy a′ such that

∑

ω

Pr(ω)nω

∞∑

i=0

Pr(ñ = i|ω)(u(i+ 1, a|ω)− u(i, a′|ω, a)) < 0,

because
∑

ω Pr(ω)nω
∑∞

i=0 Pr(ñ = i|ω)u(i, a′|ω, a) is proportional to the payoff to a
voter from following the strategy a′ when other voters follow strategy a. However,

then it follows from the claim there is some ε > 0 such that Erep [u|(1− ε)a+ εa′] >
Erep [u|a], which contradicts that a maximizes Erep [u|a]. �
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A.2 Proofs for Section 4.1 (Auxiliary Results)

Proof of Lemma 3. (The Generalized Intermediate Value Theorem.)

We are done if either γ (a; a, n) = 1 or 1 = γ (b; b, n): If γ (a; a, n) = 1, then the

weak MLRP implies γ (x; a, n) ≥ 1 for all x ≤ a (and hence voting A is optimal) and
γ (x; a, n) ≤ 1 for all x ≥ a (and hence voting B is optimal).
So, suppose γ (a; a, n) < 1 < γ (b; b, n).

Case a > b. Let x̂ = sup {x|γ (x;x, n) > 1}. By the continuity of Pr (Piv0|α) /Pr (Piv0|β)
on [x, x̄] and the right-continuity of g (x|α) /g (x|β), γ (x̂; x̂, n) = limε→0 γ (x̂+ ε; x̂+ ε, n) ≤
1. Also, limε→0 γ (x̂− ε; x̂− ε, n) ≥ 1. By the MLRP, γ (x; x̂, n) ≥ 1 for all x < x̂

and γ (x; x̂, n) ≤ 1 for all x ≥ x̂. Hence, x̂ is a Nash equilibrium cutoff.

Case a < b. Let x̂ = sup {x|γ (x;x, n) < 1}. As before, by the continuity of

Pr (Piv0|α) /Pr (Piv0|β) and the right-continuity of g (x|α) /g (x|β), γ (x̂; x̂, n) =
limε→0 γ (x̂+ ε; x̂+ ε, n) ≥ 1. By the continuity of Pr (Piv0|α) /Pr (Piv0|β) and the
MLRP, limε→0 γ (x̂− ε; x̂− ε, n) ≥ γ (x̂; x̂, n). By the definition of x̂, limε→0 γ (x̂− ε; x̂− ε, n) ≤
1. Hence, γ (x̂; x̂, n) ≤ 1. Together with the previous bound, γ (x̂; x̂, n) = 1. �

Recall that σA = nG (x̂|α) and σB (x̂) = n (1−G (x̂|α)) and similarly τA (x̂) =
θnG (x̂|β), τB (x̂) = θn (1−G (x̂|β)). We approximate the pivotal probabilities. Here
and in the following, given any sequence

{
xk
}∞
k=1
, we say f ≈ g for two functions if

limk→∞
f(xk)
g(xk)

= 1. To improve readability, we suppress the sequence index k in the

following statement.

Lemma 6. If σAσB →∞, then

Pr [T |α] ≈ e−σA−σB
e2
√
σAσB

√
2π2

√
σAσB

,

Pr [T ± 1|β] ≈ e−σA−σB
e2
√
σAσB

√
2π2

√
σAσB

(
σA
σB

)±1/2
.
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If σAσB → k ∈ (0,∞), then

Pr [T − 1|α] ≈ e−σA−σBσB
I1

(
2
√
k
)

√
k

,

Pr [T |α] ≈ e−σA−σBI0

(
2
√
k
)
,

Pr [T + 1|α] ≈ e−σA−σBσA
I1

(
2
√
k
)

√
k

,

with I0 : R+ → R+ a continuous, strictly positive function with limz→∞ I0 (z) =

I1 (z) = ∞, I0 (0) = 1 and I1 : R+ → R+ a continuous function that is strictly

positive on (0,∞) but limz→0
I1(z)
z
= 1/2.

If σAσB → 0, then

Pr [T − 1|α] ≈ e−σA−σBσB,

Pr [T |α] ≈ e−σA−σB ,

Pr [T + 1|α] ≈ e−σA−σBσA.

Of course, all analogous approximations hold for state β, after substituting τW

for σW .

Proof of Lemma 6.

The Lemma follows immediately from observations from Krishna and Morgan

(2012), equations (4) and (5), namely,

Pr [T |α] = e−σA−σBI0 (2
√
σAσB) , (9)

Pr [T ± 1|α] = e−σA−σB
(
σA
σB

)±1/2
I1 (2

√
σAσB) , (10)

where I0 and I1 are the so-called "modified Bessel functions." The approximations

then use properties of the modified Bessel functions, namely, that

lim
z→∞

ez√
2πz

I0 (z)
= lim

z→∞

ez√
2πz

I1 (z)
= 1,
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and that

lim
z→0

I1 (z)

z
=
1

2
⇒

(
σB
σA

)1/2
I1
(
2
√
σAσB

)

σB
=
I1
(
2
√
σAσB

)
√
σAσB

→ 1.

Now, the approximations follow. �

Proof of Lemma 4. (Approximation for Compulsory Voting.)

Recall that

Pr (Piv0|ω) =
1

2
Pr [T − 1|ω] + Pr [T |ω] + 1

2
Pr [T + 1|ω] .

From lim x̂n ∈ (x, x̄), we have σAσB →∞ and τAτB →∞. So, Lemma 6 implies
that

1

2
Pr [T − 1|α] + Pr [T |α] + 1

2
Pr [T + 1|α] ≈ e−σA−σB

e2
√
σAσB

√
2π2

√
σAσB

1

2

(
2 +

(
σA
σB

)+1/2
+

(
σA
σB

)−1/2)

=
e−n+2

√
σAσB

√
2π2

√
σAσB

1

2

(
2 +

(
σA
σB

)+1/2
+

(
σA
σB

)−1/2)
.

Furthermore, lim x̂n ∈ (x, x̄) implies that

0 < lim
4
√
τAτB

4
√
σAσB

2 +
√

σB
σA
+
√

σA
σB

2 +
√

τB
τA
+
√

τA
τB

=: K <∞.

This is because with x̂ = lim x̂n,

lim
4
√
τAτB

4
√
σAσB

= lim

4

√
θ2n2G (x̂n|β) (1−G (x̂n|β))
4

√
n2G (x̂n|α) (1−G (x̂n|α))

=

√
θ 4

√
G (x̂|β) (1−G (x̂|β))

4

√
G (x̂|α) (1−G (x̂|α))

,

and

lim
2 +

√
σB
σA
+
√

σA
σB

2 +
√

τB
τA
+
√

τA
τB

=
2 +

√
(1−G(x̂|α))
G(x̂|α) +

√
G(x̂|α)

(1−G(x̂|α))

2 +
√

(1−G(x̂|β))
G(x̂|β) +

√
G(x̂|β)

(1−G(x̂|β))

.
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So,

lim
Pr [Piv0|α]
Pr [Piv0|β]

= lim
e−n+2

√
σAσB

e−θn+2
√
τAτB

4
√
τAτB

4
√
σAσB

2 +
√

σB
σA
+
√

σA
σB

2 +
√

τB
τA
+
√

τA
τB

= K lim e
n
(
2
√
G(x̂n|α)(1−G(x̂n|α))−1−θ

(
2
√
G(x̂n|β)(1−G(x̂n|β))−1

))

.

and the lemma now follows. �

A.3 Proofs for Sections 4.2 and 4.3 (Compulsory Voting)

Proof of Theorem 2. (If θ = 1, all equilibria aggregate information.)

We show first that for any sequence of cutoffs xn,

lim
n→∞

Pr [Piv0|α;xn, n]
Pr [Piv0|β;xn, n]

=

{
∞ if x < limn→∞ x

n ≤ xα,
0 if xβ ≤ limn→∞ x

n < x̄.

This rules out that such sequences are Nash equilibria, of course. Consider xβ ≤
limn→∞ x

n < x̄. Then, from the MLRP and the fact that signals contain information,

1/2 ≤ limG (x̂n|β) < limG (x̂n|α) < 1. Now, the claim follows from Lemma 4.

We now rule out equilibria in which xn is close to x̄. By assumption (3), there is

some xr > xβ such that for x > xr

1 >
π

1− π
g (x|α)
g (x|β) .

Now, if x ∈ (xr, x̄), then 1/2 < limG (x̂n|β) < limG (x̂n|α) < 1 implies that the

probability Pr [Piv0|β;x, n] > Pr [Piv0|α;x, n]. To see this, consider a fixed voter
and suppose the realized number of other voters is m and each of the m other voters

supports A with i.i.d. probability G (x|ω). If m = 0, then the voter is pivotal in both

states with equal likelihood. If m > 0 is even, then the fixed voter affects the election

if and only if exactly m
2
other voters support A and B. The probability that exactly

m
2
voters support each policy is strictly larger in state B since G (x|β) (1−G (x|β)) >

G (x|α) (1−G (x|α)) by 1/2 < limG (x̂n|β) < limG (x̂n|α) < 1. If m is odd, then the

fixed voter affects the election if and only if she votes A and m−1
2
other voters support

A and m+1
2
support B and vote for B changes the outcome if m+1

2
support A and m−1

2
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support B. With m−1
2
=: r and qω := G (x|ω), the sum of these two probabilities is

(
2r + 1

r

)
(qω)

r (1− qω)r+1 +
(
2r + 1

r + 1

)
(qω)

r+1 (1− qω)r

=

(
2r + 1

r

)
(qω)

r (1− qω)r (qω + (1− qω)) =
(
2r + 1

r

)
(qω)

r (1− qω)r .

Again, G (x|β) (1−G (x|β)) > G (x|α) (1−G (x|α)) implies that this probability is
higher in state β. Thus, conditional on any realization of the number of other voters

(either even or odd), the probability to affect the election is higher in state β. Hence,

for all x̄ > x > xr,
Pr [Piv0|α;x, n]
Pr [Piv0|β;x, n]

< 1.

Thus, for all n and x > xr,

π

1− π
g (x|α)
g (x|β)

n

nθ

Pr [Piv0|α;x, n]
Pr [Piv0|β;x, n]

<
π

1− π
g (x|α)
g (x|β) < 1.

There can be no equilibrium with a cutoff x ∈ (xr, x̄) for any n. A symmetric

argument rules out equilibria with cutoffs x close to x.

Finally, from θ = 1, we have for a cutoff x̄ that

Pr [Piv0|α; x̄, n]
Pr [Piv0|β; x̄, n]

=
1
2
Pr [T − 1|α] + Pr [T |α] + 1

2
Pr [T + 1|α]

1
2
Pr [T − 1|β] + Pr [T |β] + 1

2
Pr [T + 1|β]

=
0 + e−n + 1

2
e−nn

0 + e−n + 1
2
e−nn

= 1,

which follows because A cannot be behind if the cutoff is x̄ (all vote A), a tie occurs

only if no voter participates, and A is one ahead if there is exactly one voter. Thus,

γ (x̄; x̄, n) =
π

1− π
g (x̄|α)
g (x̄|β)

n

nθ

Pr [Piv0|α; x̄, n]
Pr [Piv0|β; x̄, n]

=
π

1− π
g (x̄|α)
g (x̄|β) < 1,

and so by the left-continuity of g (·|α) /g (·|β) at x̄, γ (x; x̄, n) < 1 for all x < x̄. There
can be no equilibrium with cutoff x̄ for any n. Similarly, there can be no equilibrium

with cutoff x for any n. �
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Proof of Theorem 3. (If θ 6= 1 then there are interior equilibria that do

not aggregate information.)

We prove the theorem for θ < 1. The argument for θ > 1 is analogous and

omitted.

Suppose signals are boundedly informative, that is, g(x|α)
g(x|β) <∞.

We verify that

lim
n→∞

γ (xα;xα, n) = ∞, (11)

lim
n→∞

γ (x;x, n) = 0. (12)

From the MLRP and the fact that signals contain information, 1/2 = G (xα|α) >
G (xα|β) > 0. Now, (11) follows from Lemma 4.

For x = x, we have

Pr [Piv0|α;x, n]
Pr [Piv0|β;x, n]

=
1
2
Pr [T − 1|α] + Pr [T |α] + 1

2
Pr [T + 1|α]

1
2
Pr [T − 1|β] + Pr [T |β] + 1

2
Pr [T + 1|β]

=
1
2
e−nn+ e−n + 0

1
2
e−θnθn+ e−θn + 0

→n→∞ 0,

where the second equality follows because A is one behind if there is exactly one

voter, a tie occurs only if no voter participates, and A cannot be ahead if the cutoff

is x (all vote B). The limit follows from θ < 1. This implies (12).

Given (11) and (12), existence of an interior Nash equilibrium x̂n with γ (x̂n; x̂n, n) =

1 for all n large enough follows from the generalized intermediate value theorem,

Lemma 3. By Lemma 4, the conclusion of (11) also holds if x̂n → xα. Thus,

lim x̂n < xα, and so B wins with probability converging to one.

Suppose signals are unboundedly informative, that is, g(x|α)
g(x|β) =∞.

Since θ < 1, there exists some xR ∈ (x, xα) small enough such that

2
√
G (xR|α) (1−G (xR|α))− 1 < θ

(
2
√
G (xR|β) (1−G (xR|β))− 1

)
,

noting that the left-hand side approaches −1 for xR → x and the right-hand side
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approaches −θ. Lemma 4 implies that

lim
n→∞

γ (xR;xR, n) = 0. (13)

Since signals are unboundedly informative, it is immediate that for any given n, there

exists xnL with x < x
n
L < xR such that

γ (xnL;x
n
L, n) > 1. (14)

To check: For a fixed n, for x̂ → x, we have limx̂→x
Pr[Piv0|α;x̂,n]
Pr[Piv0|β;x̂,n] =

1

2
e−nn+e−n+0

1

2
e−θnθn+e−θn+0

∈
(0, 1). Hence, from signals being unboundedly informative, limx̂→x γ (x̂; x̂, n) =∞ for

all n.

Given (13) and (14), existence of a Nash equilibrium x̂n for all n large enough

follows again from Lemma 3. �

A.4 Proofs for Section 5 (Abstention)

Notation. In the following, we denote the critical likelihood ratio at the cutoff types

as

γA (y, z, n) =
π

1− π
1

θ

g (y|α)
g (y|β)

Pr [PivA|α; y, z, n]
Pr [PivA|β; y, z, n] ,

and

γB (y, z, n) =
π

1− π
1

θ

g (z|α)
g (z|β)

Pr [PivB|α; y, z, n]
Pr [PivB|β; y, z, n] .

A strategy profile (y, z) is an interior Nash equilibrium if x < y ≤ z < x̄ and

1 = γA (y, z, n) = γB (y, z, n) .

A.4.1 Auxiliary Approximation Results

Lemma 7. Suppose abstention is possible and suppose signals are boundedly infor-

mative. Pick a sequence of equilibrium cutoffs (yn, zn).

If σAσB → ∞ (or, equivalently, τAτB → ∞), then there is some Kα (σ, τ) such

that limKα (σ, τ) ∈ (0,∞) and

lim
Pr [PivA|α]
Pr [PivA|β] = lim

e−(
√
σA−

√
σB)

2

e−(
√
τA−

√
τB)

2
Kα (σ, τ) ,
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and similarly there is some Kβ (σ, τ) such that limKβ (σ, τ) ∈ (0,∞) and

lim
Pr [PivB|α]
Pr [PivB|β] = lim

e−(
√
σA−

√
σB)

2

e−(
√
τA−

√
τB)

2
Kβ (σ, τ) .

It follows that under these conditions that for W ∈ {A,B},

lim
n→∞

Pr [PivW |α]
Pr [PivW |β] =

{
∞ if limn→∞

∣∣√σA −
√
σB
∣∣ < limn→∞

∣∣√τA −
√
τB
∣∣ ,

0 if limn→∞
∣∣√σA −

√
σB
∣∣ > limn→∞

∣∣√τA −
√
τB
∣∣ ,

Remark. Observe that for any z < xα

√
σA −

√
σB < 0 and

√
τA −

√
τB < 0.

Hence,

− (√σA −
√
σB)

2
+ (
√
τA −

√
τB)

2

= −n
((√

G (y|α)−
√
1−G (z|α)

)2
+ θ

(√
G (y|β)−

√
1−G (z|β)

)2)
→ −∞,

if √
1−G (z|α)−

√
G (y|α) >

√
θ
(√

1−G (z|β)−
√
G (y|β)

)
.

Thus, it follows from the lemma that

lim
n→∞

Pr [PivW |α]
Pr [PivW |β] (15)

=




∞ if limn→∞

√
1−G (z|α)−

√
G (y|α) < limn→∞

√
θ
(√

1−G (z|β)−
√
G (y|β)

)
,

0 if limn→∞
√
1−G (z|α)−

√
G (y|α) > limn→∞

√
θ
(√

1−G (z|β)−
√
G (y|β)

)
.

Proof. We consider W = A. With abstention, we have

Pr [PivA|α] = 1

2
Pr [T |α] + 1

2
Pr [T − 1|α] .
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Suppose signals are boundedly informative. So, from Lemma 6,

1 =
Pr [PivA|α]

1
2
Pr [T |α] + 1

2
Pr [T − 1|α]

≈ n→∞

1
2
e−σA−σB e2

√
σAσB√

2π2
√
σAσB

(
1 +

√
σB√
σA

)

1
2
Pr [T |α] + 1

2
Pr [T − 1|α]

=

1
2
e−(

√
σA−

√
σB)

2

√
2π2

√
σAσB

(
1 +

√
σB√
σA

)

1
2
Pr [T |α] + 1

2
Pr [T − 1|α] .

Let

Kα (σ, τ) =

√
2π2

√
τAτB√

2π2
√
σAσB

1 +
√
σB√
σA

1 +
√
τB√
τA

.

Then, arguing analogously for state β,

lim
n→∞

Pr [PivA|α]
Pr [PivA|β] = lim

n→∞

e−(
√
σA−

√
σB)

2

e−(
√
τA−

√
τB)

2
Kα (σ, τ) .

Given the hypothesis that signals are boundedly informative, it is immediate that

lim
n→∞

Kα (σ, τ) ∈ (0,∞) .

The claim follows. �

A.4.2 Proof for the Unboundedly Informative Signal Case

Throughout this section, we consider the case with

θ < 1,

and signals are unboundedly informative, in particular,

g (x|α)
g (x|β) =∞.

Let Γ (xR, n) be an auxiliary game in which voters with signals x ≥ xR must vote
B, while voters below xR can choose between voting A, B, or abstaining as before.

We will show that Γ (xR, n) has an equilibrium that satisfies the properties of the
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theorem and for which the constraint at xR does not bind.

Note that Γ (xR, n) has an equilibrium (y, z) by standard arguments for all xR;

see Myerson (1998b).

We use the following Lemma, proven at the end of this section.

Lemma 8. Suppose θ < 1, abstention is possible, and signals are unboundedly in-

formative. There exists some xR ∈ (x, xα) such that for any sequence (yn, zn) with
yn ≤ zn ≤ xR,

lim
n→∞

Pr [PivA|α; yn, zn, n]
Pr [PivA|β; yn, zn, n] = lim

n→∞

Pr [PivB|α; yn, zn, n]
Pr [PivB|β; yn, zn, n] = 0.

Now, suppose that (yn, zn) is an equilibrium sequence of Γ (xR, n), for xR chosen

to satisfy Lemma 8. It cannot be that zn → xR. Suppose otherwise. If z
n → xR,

then

lim
n→∞

γB (y
n, zn, n) = lim

n→∞

π

1− π
g (zn|α)
g (zn|β)

Pr [PivB|α]
Pr [PivB|β]

=
π

1− π
g (xR|α)
g (xR|β)

lim
n→∞

Pr [PivB|α]
Pr [PivB|β]

= 0.

Thus, for any x′, any voter having a signal in (x′, xR) would have a strict preference

to vote for B. Thus, it must be that lim zn < xR. But this implies that all voters with

signals in (lim zn, xR) prefer voting B to voting A or abstaining. By the MLRP, this

implies that in particular all voters with signals x ≥ xR prefer voting B. Hence, the
initial restriction of Γ (xR, n) relative to the original game does not bind. Therefore,

for large n, (yn, zn) is also an equilibrium of the original game. Clearly, from lim zn <

xR < xα, policy B is chosen with probability converging to one. This proves the claim

of the theorem.

Proof of Lemma 8.

There exists a signal xR ∈ (x, xα) such that for all y ≤ z ≤ xR,

√
1−G (z|α)−

√
G (y|α) >

√
θ
(√

1−G (z|β)−
√
G (y|β)

)
.
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Hence, it follows from the remark after Lemma 7 that for all yn ≤ zn ≤ xR,

lim
n→∞

e−(
√
σA−

√
σB)

2

e−(
√
τA−

√
τB)

2
= 0. (16)

Moreover,

lim
e−σA−σB

e−τA−τB
= 0.

This follows from

−σA − σB + τA + τB = τA − σA + τB − σB
= n (θG (y|β)−G (y|α) + θ (1−G (z|β))− (1−G (z|α))) ,

and

(θG (y|β)−G (y|α) + θ (1−G (z|β))− (1−G (z|α))) < 0,

from θG (y|β) < G (y|α) (by the MLRP) and θ (1−G (z|β)) < (1−G (z|α)) (which
is necessary by z ≤ xR for our choice of xR).

Case 1. Suppose τAτB →∞. From MLRP, σAσB →∞. Then, from Lemma 6,

lim
Pr [PivA|α]
Pr [PivA|β] = lim

e−(
√
σA−

√
σB)

2

e−(
√
τA−

√
τB)

2

√
2π2

√
τAτB√

2π2
√
σAσB

1 +
√
σB√
σA

1 +
√
τB√
τA

.

If lim yn > x, then we are done because of (16) and the last fractions are bounded.

Suppose lim yn = x. Then,

lim

√
2π2

√
τAτB√

2π2
√
σAσB

1 +
√
σB√
σA

1 +
√
τB√
τA

<∞,

since lim τB
σB
∈ (0,∞) and τA

σA
≤ 1.

Similarly,

lim
Pr [PivB|α]
Pr [PivB|β] = lim

e−(
√
σA−

√
σB)

2

e−(
√
τA−

√
τB)

2

√
2π2

√
τAτB√

2π2
√
σAσB

1 +
√
σA√
σB

1 +
√
τA√
τB

,
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and

lim

√
2π2

√
τAτB√

2π2
√
σAσB

1 +
√
σA√
σB

1 +
√
τA√
τB

<∞,

follows from lim
√
σA√
σB
<∞, lim τB

σB
∈ (0,∞), and τA

σA
≤ 1.

Case 2a. Suppose τAτB → k <∞ and z = limσAσB <∞. This requires yn → x.

Then, from Lemma 6,

Pr [PivA|β] ≈ e−τA−τB


I0

(
2
√
k
)
+ τB

I1

(
2
√
k
)

√
k


 ,

Pr [PivB|β] ≈ e−τA−τB


I0

(
2
√
k
)
+ τA

I1

(
2
√
k
)

√
k


 ,

with
I1(2

√
k)√

k
= 1 if k = 0. Similarly, from z = limσAσB <∞, we have

Pr [PivA|α] ≈ e−σA−σB
(
I0
(
2
√
z
)
+ σB

I1 (2
√
z)√
z

)
,

Pr [PivB|α] ≈ e−σA−σB
(
I0
(
2
√
z
)
+ σA

I1 (2
√
z)√
z

)
.

So, if limσAσB <∞ then

lim
Pr [PivA|α]
Pr [PivA|β] = lim

e−σA−σB

e−τA−τB

I0 (2
√
z) + σB

I1(2
√
z)√

z

I0

(
2
√
k
)
+ τB

I1(2
√
k)√

k

→ 0,

since e−σA−σB

e−τA−τB
→ 0 by (16), I0

(
2
√
k
)
> 0,

I1(2
√
k)√

k
> 0 and lim σB

τB
<∞. Analogously,

lim
Pr [PivB|α]
Pr [PivB|β] = lim

e−σA−σB

e−τA−τB

I0 (2
√
z) + σA

I1(2
√
z)√

z

I0

(
2
√
k
)
+ τA

I1(2
√
k)√

k

→ 0,

since limσA = lim τA = 0.
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Case 2b. Suppose τAτB → k <∞ and limσAσB =∞. Then, from Lemma 6,

lim
Pr [PivA|α]
Pr [PivA|β] = lim

e−σA−σB

e−τA−τB

e2
√
σAσB

( (
1+

√
σB√
σA

)

√
2π2

√
σAσB

)

I0

(
2
√
k
)
+ τB

I1(2
√
k)√

k

.

Now, observe that

lim e2
√
τAτB

e−σA−σB

e−τA−τB
e2
√
σAσB

e2
√
τAτB

= e2
√
k lim

e−(
√
σA−

√
σB)

2

e−(
√
τA−

√
τB)

2

= 0.

Moreover, from I0

(
2
√
k
)
∈ (0,∞), I1(2

√
k)√

k
∈ (0,∞), τB →∞, and σAσB →∞

lim

( (
1+

√
σB√
σA

)

√
2π2

√
σAσB

)

I0

(
2
√
k
)
+ τB

I1(2
√
k)√

k

≤ lim
√
σB√
σA

τB
≤ lim

√
σB√
σA

σB
=

1√
σAσB

→ 0.

This proves the result. �

A.4.3 Proof for the Binary Case

Suppose signals are binary and suppose

θ < 1

throughout the section.

We sometimes refer to a signal x < xB as an “a signal” and a signal x ≥ xB as a “b
signal,” analogously to the notation from existing work on binary signals by Krishna

and Morgan (2012) and others. We use the following notation for the signals,

r = G (xB|α) and 1− r = 1−G (xB|α)
s = 1−G (xB|β) and 1− s = G (xB|β) ,
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so that r
1−r > 1 >

1−s
s
. We only consider strategies (y, z) with y ≤ xB. Let

p =
G (min {y, xB} |α)

G (xB|α)
= Pr (Vote A|x ≤ xB)

q =
G (xB|α)−G (min {z, xB} |α)

G (xB|α)
= Pr (Vote B|x ≤ xB)

γ =
1−G (max {z, xB} |α)

1−G (xB|α)
= Pr (Vote B|x ≥ xB) .

Noting that the definitions above also hold with α replaced by β since G(min{y,xB}|α)
G(xB |α) =

G(min{y,xB}|β)
G(xB |β) , etc...

Step 1. Suppose
1− r
s

> θ.

Then, there exist equilibria such that limnp =∞ and lim pr < lim γ (1− r). In these
equilibria, γ = 1 > p > 0 = q for all n large.

Proof of Step 1. We want to prove the existence of an equilibrium with p ∈ (0, 1),
γ = 1, and q = 0. Such a strategy profile is an equilibrium if

r

1− s
1

θ

Pr [PivA|α]
Pr [PivA|β] = 1 and

r

1− s
1

θ

Pr [PivB|α]
Pr [PivB|β] ≥ 1,

1− r
s

1

θ

Pr [PivA|α]
Pr [PivA|β] ≤ 1 and

1− r
s

1

θ

Pr [PivB|α]
Pr [PivB|β] ≤ 1.

Given γ = 1, and q = 0, (15) becomes

lim
n→∞

Pr [PivW |α]
Pr [PivW |β] (17)

=




∞ if limn→∞

√
1− r −√pr < limn→∞

√
θ
(√
s−

√
p (1− s)

)
,

0 if limn→∞
√
1− r −√pr > limn→∞

√
θ
(√
s−

√
p (1− s)

)
.

Fix some θ < 1−r
s
. Let p∗ be the p solution to

√
(1− r)−√pr =

√
θ
(√
s−

√
p (1− s)

)
. (18)
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A solution exists by the intermediate value theorem because at p = 0, the left-hand

side> right-hand side by 1 − r > sθ, and for p = 1, the left-hand side < 0 <

right-hand side. The solution p∗ satisfies 0 < p∗ < 1. Moreover, the solution also

satisfies

p∗r < 1− r,

for otherwise the left-hand side would be non-positive while the right-hand side> 0.

The solution is unique: For this, note that both sides are linear in
√
p with coefficients

√
r >

√
θ
√
1− s. Thus,

p < p∗ ⇒
√
(1− r)−√pr >

√
θ
(√
s−

√
p (1− s)

)
(19)

and vice versa for p > p∗. Pick ε > 0 such that 0 < p∗ − ε < p∗ + ε < 1 and

(p∗ + ε) r < (1− r).
Notice that for all p ∈ [p∗ − ε, p∗ + ε], σAσB = (npr) (n (1− r)) → ∞, validating

the use of the previous approximations. With p as a free variable, define

P (p, n) :=
Pr [PivA|α; p]
Pr [PivA|β; p] .

From (17) and (19),

limP (p∗ − ε, n) = 0, and limP (p∗ + ε, n) =∞. (20)

(A rough intuition may be this: B wins in both states. The margin of victory is

necessarily larger in state β and the election closer to being tied in state α. Increasing

p brings the election even closer to being tied in state α. Thus, the probability of

state α increases if we increase p.)

Notice that for fixed n, P (p, n) is a continuous function. This and (20) implies

that for all large n, there is a p̄n ∈ (p∗ − ε, p∗ + ε) such that

r

1− s
1

θ
P (p̄n, n) = 1 for all n. (21)

From (17) and from the definition and uniqueness of p∗, we have p̄n → p∗.
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Now, observe that

Pr [PivB|α]
Pr [PivB|β] =

Pr [T |α]
Pr [T |β]

1 +
√
σA√
σB

1 +
√
τA√
τB

=
Pr [T |α]
Pr [T |β]

1 +
√
σB√
σA

1 +
√
τB√
τA

√
σA√
σB√
τA√
τB

=
Pr [PivA|α]
Pr [PivA|β]

√
σA√
σB√
τA√
τB

, (22)

using (9) and (10). From,

σA
σB
τA
τB

=

r
(1−r)
(1−s)
s

=
r

(1− r)
s

(1− s) > 1, (23)

we have that the second optimality condition for voters with an a signal holds since,

r

1− s
1

θ

Pr [PivB|α]
Pr [PivB|β] > 1.

Now, consider voters with a b signal. From the indifference condition of the a

voter,

lim
Pr [T |α]
Pr [T |β]

1 +
√
σB√
σA

1 +
√
τB√
τA

= θ
1− s
r
.

Hence, from (22) and (23)

lim
Pr [PivB|α]
Pr [PivB|β] = θ

(1− s)
r

√
r

(1− r)
s

(1− s) = θ
√
(1− s) s
(1− r) r .

Hence,

lim
1− r
s

1

θ

Pr [PivB|α]
Pr [PivB|β] =

1− r
s

1

θ
θ

√
(1− s) s
(1− r) r =

√
1− s
s

1− r
r

< 1.

So, the b voter strictly prefers voting for B to abstaining. Moreover, from MLRP,

1− r
s

1

θ

Pr [PivA|α]
Pr [PivA|β] <

r

1− s
1

θ

Pr [PivA|α]
Pr [PivA|β] = 1.

Therefore, γ = 1 is a best response to (p̄n, q = 0, γ = 1) for n large enough.

Thus, for large n, (p̄n, q = 0, γ = 1) is an equilibrium profile. Finally, from p̄n → p∗

and p∗ solving (18), it must be that p̄nr < γ (1− r) = (1− r). This proves the first
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step.

Step 2. Suppose

1 > θ >
1− r
s
. (24)

For all n ≥ n̄, there exists an equilibrium profile (p∗, q∗, γ∗) with p∗ ∈ (0, 1), q∗ ∈
(0, 1), and γ∗ = 1 such that for n→∞

lim rp∗ < lim rq∗ + (1− r) .

A strategy profile (p, q, γ) with p ∈ (0, 1), q ∈ (0, 1), and γ = 1 is an equilibrium
if

r

1− s
1

θ

Pr [PivA|α]
Pr [PivA|β] = 1 and

r

1− s
1

θ

Pr [PivB|α]
Pr [PivB|β] = 1,

1− r
s

1

θ

Pr [PivA|α]
Pr [PivA|β] ≤ 1 and

1− r
s

1

θ

Pr [PivB|α]
Pr [PivB|β] ≤ 1.

Note that the inequalities are implied by the equalities.

Define

g (p, q) : =
Pr (PivA|α; p, q)
Pr (PivA|β; p, q) ,

f (p, q) : =
Pr (PivB|α; p, q)
Pr (PivB|β; p, q) ,

for (p, q) ∈ [0, 1]2, p+ q ≤ 1.

The proof uses two lemmas.

Lemma 9. There exist n̄, and p̄, q̄, q0 ∈ [0, 1]3, with q̄ > q0, p̄ > 0, q̄ + p̄ ≤ 1, and

rq0 + (1− r) > rp̄ such that for all n ≥ n̄ and p ∈ [0, p̄] ,

r

1− s
1

θ
f (p, q0) > 1, (25)

and
r

1− s
1

θ
f (p, q̄) < 1, (26)
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So, by continuity of f , for all p ∈ [0, p̄] there exists a solution q̃ (p) ∈ [q0, q̄] to

r

1− s
1

θ
f (p, q) = 1.

Any such solution satisfies

g (0, q̃ (0)) > f (0, q̃ (0)) , (27)

and

g (p̄, q̃ (p̄)) < f (p̄, q̃ (p̄)) . (28)

Proof: Pick some q0 ∈ (0, 1) with

q0r + (1− r) < θ (q0 (1− s) + s) ,

which exists by (24) and pick some q̄ ∈ (q0, 1) with

q̄r + (1− r) > θ (q̄ (1− s) + s) ,

which exists by θ < 1 from (24). Finally, pick p̄ ∈ (0, 1− q̄) small enough such that
√
rq̄ + (1− r)−√rp̄ >

√
θ ((1− s) q̄ + s)−

√
θ (1− s) p̄. (29)

Such p̄ exists since the inequality holds strictly for p̄ = 0. Since θ ((1− s) q̄ + s) >
θ (1− s) p,

rq0 + (1− r) > rp̄.

Remark: The choices imply that for all (p, q) ∈ [0, p̄]× [q0, q̄],

√
σB >

√
σA,

and hence
√
τB >

√
τA. Furthermore,

√
τB −

√
τA >

√
σB −

√
σA for q = q0 and any p ∈ [0, p̄] ,

and
√
τB −

√
τA <

√
σB −

√
σA for q = q̄ and any p ∈ [0, p̄] .
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Proof of Equation (25),

r

1− s
1

θ
f (p, q0) > 1 for all 0 ≤ p ≤ p̄.

The proof shows that for any sequence of (p, n), for n→∞, f (p, q0)→∞.
Case 1: σAσB →∞. Then,

lim
Pr [PivB|α]
Pr [PivB|β] = lim

e−(
√
σA−

√
σB)

2

e−(
√
τA−

√
τB)

2
Kβ (σ, τ) ,

with limKβ (σ, τ) ∈ (0,∞). We show that

lim (
√
τA −

√
τB)

2 − (√σA −
√
σB)

2
=∞,

that is, by choice of p ≤ p̄ (which implies √σB >
√
σA),

θ
(√

(1− s) q0 + s−
√
(1− s) p

)2
−
(√

rq0 + (1− r)−
√
rp
)2
> 0.

By choice of q0,

θ ((1− s) q0 + s) > rq0 + (1− r) ,

and from θ < 1 and (1− s) < r, for all p,

θ (1− s) p < rp.

Case 2: σAσB → k <∞. Suppose k = 0 (the case k ∈ (0,∞) is analogous). Then,
τAτB → 0 as well. Also σA → 0 from σB ≥ n (1− r)→∞. Similarly, τA → 0. From

Lemma 6,

lim
Pr [PivB|α]
Pr [PivB|β] = lim

e−(
√
σA−

√
σB)

2

e−(
√
τA−

√
τB)

2

σB + 1

τB + 1
=∞,

since lim σB+1
τB+1

> 0 and lim e−(
√
σA−

√
σB)

2

e−(
√
τA−

√
τB)

2 =∞ (as before).

Proof of Equation (26),

r

1− s
1

θ
f (p, q̄) < 1.

Case 1: σAσB →∞. Then, from Lemma 7
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lim
Pr [PivB|α]
Pr [PivB|β] = lim

e−(
√
σA−

√
σB)

2

e−(
√
τA−

√
τB)

2
Kβ (σ, τ) ,

with limKβ (σ, τ) ∈ (0,∞). We show that

lim (
√
τA −

√
τB)

2 − (√σA −
√
σB)

2
= −∞

that is,

θ
(√

(1− s) q̄ + s−
√
(1− s) p

)2
−
(√

rq̄ + (1− r)−√rp
)2
< 0

but this holds by choice of p̄ in (29).

Case 2: σAσB → k. This is just as the proof of Case 2 in the proof of Equation (25)

and therefore omitted.

Proof of Equation (27): Any solution q̃ (p) with

r

1− s
1

θ
f (p, q̃ (p)) = 1.

satisfies

g (0, q̃ (0)) > f (0, q̃ (0)) . (30)

So, suppose p = 0 in the following. A B vote is only pivotal if there is no other

vote. An A vote is pivotal is there is either no other vote or one other vote (which

would be a B vote). Let m count the number of other B votes. The probability that

there is either no voter or 1 voter is

Pr (m = 0|α) = e−n(qr+(1−r))

Pr (m = 1|α) = e−n(qr+(1−r))n (qr + (1− r))

and

Pr (m = 0|β) = e−θn(q(1−s)+s)

Pr (m = 1|β) = e−θn(q(1−s)+s)θn (q (1− s) + s)
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and so a B vote is pivotal implies

Pr [PivB|α]
Pr [PivB|β] =

e−n(qr+(1−r))

e−θn(q(1−s)+s)
= en(θ(q(1−s)+s)−(qr+(1−r)))

and

Pr [PivA|α]
Pr [PivA|β] =

e−n(qr+(1−r)) + e−n(qr+(1−r))n (qr + (1− r))
e−θn(q(1−s)+s) + e−θn(q(1−s)+s)θn (q (1− s) + s)

=
e−n(qr+(1−r))

e−θn(q(1−s)+s)
1 + n (qr + (1− r))
1 + θn (q (1− s) + s)

Let f (q, n) ≡ Pr[PivB|α]
Pr[PivB|β] (recall that we set p ≡ 0 for this part). Let q∗ ∈ (q0, q̄)

solve

θ (q (1− s) + s) = (qr + (1− r))

Such a solution exists because by our choices at q = q0, we have θs > q0r + (1− r)
and for q = q̄ we have θs < q̄r + (1− r).
Then,

lim f (q0, n) =∞

since at q = q0,

limn (θ (q (1− s) + s)− (qr + (1− r))) =∞,

and

lim f (q̄, n) = 0,

since at q = q̄

limn (θ (q (1− s) + s)− (qr + (1− r))) = −∞.

Thus, for all large n, we can find a q̃n such that

r

1− s
1

θ
f (q̃n, n) = 1.

Finally, from

f (q̃n, n) < 1,
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and
Pr [PivB|α]
Pr [PivB|β] =

e−n(qr+(1−r))

e−θn(q(1−s)+s)
= en(θ(q(1−s)+s)−(qr+(1−r))),

we get

θ (q̃n (1− s) + s) < (q̃nr + (1− r)) ,

and so with
Pr [PivA|α]
Pr [PivA|β] =

e−n(qr+(1−r))

e−θn(q(1−s)+s)
1 + n (qr + (1− r))
1 + θn (q (1− s) + s) ,

we have
1 + n (q̃nr + (1− r))
1 + θn (q̃n (1− s) + s) > 1.

This and
Pr [PivA|α]
Pr [PivA|β] =

Pr [PivB|α]
Pr [PivB|β]

1 + n (q̃nr + (1− r))
1 + θn (q̃n (1− s) + s) ,

implies
Pr [PivA|α]
Pr [PivA|β] >

Pr [PivB|α]
Pr [PivB|β] ,

proving what we wanted to show.

Remark. This step fails with π 6= 1. If π 6= 1, then there may be equilibria in
which p = 0 and q ∈ (0, 1), supported by the fact that Pr[PivA|α]

Pr[PivA|β] ≤
Pr[PivB|α]
Pr[PivB|β] . This is

because when π 6= 1, then it does not need to be the case that f (q̃n, n) < 1.

Proof Equation (28): Any solution q̃ (p) with

r

1− s
1

θ
f (p, q̃ (p)) = 1.

satisfies

g (p̄, q̃ (p̄)) < f (p̄, q̃ (p̄)) .

By choice of the boundaries, q̃ (p̄) ∈ [q0, q̄] ⊂ (0, 1) and p̄ ∈ (0, 1), implying that
σAσB →∞. So,

Pr [PivB|α]
Pr [PivB|β] ≈

Pr [PivA|α]
Pr [PivA|β]

√
σA√
σB√
τA√
τB

,
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and inspection shows

σA
σB

τB
τA

=
rp

(1− s) p
(1− s) q + s
rq + (1− r) =

q + s
1−s

q + 1−r
r

> 1,

and hence,
Pr [PivB|α]
Pr [PivB|β] >

Pr [PivA|α]
Pr [PivA|β] ,

as claimed. �

Lemma 10. Continuous Selection. Suppose f : [0, 1] × [0, 1] → [0, 1] is a function

such that

• f (0, r) < 1 for all r

• f (1, r) > 1 for all r

• f is continuous in (x, r)

Then, there exist continuous functions x̂ : [0, 1]→ [0, 1] and r̂ : [0, 1]→ [0, 1] such

that r̂ (0) = 0, r̂ (1) = 1 and

f (x̂ (t) , r̂ (t)) = 1 for all t.

Proof: See Section B. �

Proof of Step 2:

For all n ≥ n̄, there exists an equilibrium profile (p∗, q∗, γ∗) with p∗ ∈ (0, 1),

q∗ ∈ (0, 1), and γ∗ = 1 such that for n→∞

lim rp∗ < lim rq∗ + (1− r) .

We are looking for (p∗, q∗) ∈ [0, p̄]× [q0, q̄] such that

g (p∗, q∗) = f (p∗, q∗) = θ
1− s
r
.

Any such solution will be an equilibrium. Since q∗ ≥ q0 and p ≤ p̄, information fails
to aggregate.
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Note that f is a continuous function with

f (p, q0) < θ
1− s
r

< f (p, q̄) ,

for all p ∈ [0, p̄] and n ≥ n̄, by (25) and (26) from Lemma 9.

Thus, by the continuous selection lemma, there are continuous functions p̂ :

[0, 1]→ [0, p̄] and q̂ : [0, 1]→ [q0, q̄] such that p̂ (0) = 0 and p̂ (1) = p̄ and

f (p̂ (t) , q̂ (t)) = θ
1− s
r

for all t.

Now,

g (p̂ (0) , q̂ (0))− f (p̂ (0) , q̂ (0)) = g (0, q̂ (0))− f (0, q̂ (0)) > 0,

and

g (p̂ (1) , q̂ (1))− f (p̂ (1) , q̂ (1)) = g (1, q̂ (1))− f (1, q̂ (1)) < 0,

by (27) and (28).

By construction, the difference g (p, q) − f (p, q) is continuous in (p, q). Hence,
g (p̂ (t) , q̂ (t))− f (p̂ (t) , q̂ (t)) is continuous in t. Therefore, by the intermediate value
theorem, there exists some t∗ such that

g (p̂ (t∗) , q̂ (t∗))− f (p̂ (t∗) , q̂ (t∗)) = 0.

Thus, (p∗, q∗) = (p̂ (t∗) , q̂ (t∗)) solves the equilibrium conditions. Since p̂ (t∗) , q̂ (t∗) ∈
[0, p̄]× [q0, q̄], we have lim rp∗ < lim rq∗ + (1− r). This proves Step 2.

A.5 Proofs for Section 6 (Learning from Participation)

Proof of Lemma 5.

Suppose k ∈ (−∞,∞). Let tna , tnb be the number of A and B votes in state α. tna

is Poisson-distributed with mean nqna , and t
n
b is Poisson-distributed with mean nq

b
n,

and they are independent from each other. Let

zna :=
tna − nqna√
nqna

,

znb :=
tnb − nqnb√
nqnb

.
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Because k ∈ (−∞,∞), nqna , nqnb → ∞. Hence, the central limit theorem (e.g.

Greene, 2003, p. 912) implies that

(zna , z
n
b )→ N

(
(0, 0),

(
1 0

0 1

))
. (31)

Because limPr {tna = tnb |α} = 0, we obtain

limPr {a wins|α, qn} = limPr {tna > tnb }
= limPr

{
zna
√
nqna + nq

n
a > z

n
b

√
nqnb + nq

n
b

}

= limPr
{
zna
√
nqna − znb

√
nqnb > n (q

n
b − qna )

}

= limPr
{
zna
√
qna − znb

√
qnb >

√
n (qnb − qna )

}
.

Equation 31 together with qna + q
n
b = 1 implies that

zna
√
qna − znb

√
qnb →D N (0, 1) .

Hence,

limPr
{
zna
√
qna − znb

√
qnb >

√
n (qnb − qna )

}
= 1− Φ

(
lim

√
n (qnb − qna )

)

= 1− Φ (−2k)
= Φ(2k).

If k =∞, then limPr {tna > n/2} = 1, and limPr {tnb < n/2} = 1, hence limPr {a wins|α, qn} =
1 = Φ (∞). An analogous argument establishes that if k = −∞, limPr {a wins|α, qn} =
0 = Φ (−∞).
For state β, lim

√
n (qna − 1/2) = k implies that lim

√
θn (qna − 1/2) =

√
θk. Hence,

the same analysis for state α applies here, and

limPr {a wins|β, qn} = Φ
(
2
√
θk
)
.

�

Proof of Theorem 7.

Item 1:
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Let g(k) := πΦ (k) + (1 − π)
(
1− Φ

(√
θk
))
. The maximum of g(k) for k ∈

[−∞,∞] is attained at one of its critical points. Taking the first order condition, we
find that

g′(k) = πφ(k)− (1− π)
√
θφ(
√
θk). (32)

g′(k) < 0 if π < (1 − π)
√
θ. Hence, in this case, the maximum is attained at

k = −∞. Because we assume θ < 1, and π ≥ 1/2, π > (1 − π)
√
θ. In this case,

we obtain that g′(k) = 0 if and only if k ∈ {−k∗, k∗}. Hence, the maximum is

attained at k ∈ {−∞,−k∗, k∗,∞}. Because π ≥ 1/2, k = −∞ is never the unique

optimal solution (it is never optimal if π > 1/2). Taking the second derivative of g

delivers that g′′(−k∗) > 0. Hence, the only candidates that attain the maximum are

k ∈ {k∗,∞}.
We now verify that g′′(k∗) < 0. Taking the derivative of equation 32, we obtain

that

sign(g′′(k)) = sign
(
−kπφ(k) + k(1− π)θφ(

√
θk)
)
.

Because k∗ > 0, we obtain that

sign(g′′(−k∗)) = sign
(
πφ(k∗)− (1− π)θφ(

√
θk∗)

)
.

Because g′(−k∗) = πφ(−k∗) − (1 − π)
√
θφ(−

√
θk∗) = 0,

√
θ < 1, and because

φ(−
√
θk∗) > 0, we obtain that

πφ(k∗)− (1− π)θφ(
√
θk∗) > πφ(−k∗)− (1− π)

√
θφ(−

√
θk∗) = 0.

Therefore,

g′′(−k∗) > 0.

A similar argument establishes that g′′(k∗) < 0.

Observe that by L’Hopital’s rule,

lim
k

1− Φ(
√
θk)

1− Φ(k) = lim
k

√
θφ
(√
θk
)

φ (k)
=∞.

Therefore, there exists some k̄ > 0 such that g(k) > π for all k > k̄. Therefore,

the maximum cannot be attained at k =∞. Hence, the maximum is attained at k∗.

Item 2:
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Denote k∗(θ) :=

√
2
1−θ ln

(
π

(1−π)
√
θ

)
. Observe that limθ→0

k∗(θ) =∞, therefore, in
state α, A wins with probability approaching to 1. We will now show that

lim
θ→0

√
θk∗(θ) = 0.

Note that
√
θk∗(θ) =

√
2θ
1−θ ln

(
π

(1−π)
√
θ

)
. Note also that, by L’Hopital’s rule we

have

lim
θ→0

θ ln θ = 0.

Hence,

lim
θ→0

2θ

1− θ ln
(

π

(1− π)
√
θ

)
= lim

θ→0
−θ ln (θ) = 0.

Therefore, limθ→0

√
θk∗(θ) = 0. Hence, limθ→0 limE

rep
n [u; qn∗ ] = π +

1
2
(1− π). �

We now complete the remaining case for Theorem 7.

Theorem 8. Suppose 0 < θ < 1. There exists a ρ∗(θ) ∈
(
max{1/2,

√
θ}, 1

)
such

that:

1. If π
1−π ≤ ρ∗(θ), then limErepn [u; qn∗ ] = (1− π).

2. If π
1−π > ρ

∗(θ), then limErepn [u; qn∗ ] = πΦ (k
∗) + (1− π)

(
1− Φ

(√
θk∗
))
.

3. ρ∗ is increasing in θ for θ ∈ (0, 1).

Proof. Recall that g(k) := πΦ (k) + (1 − π)
(
1− Φ

(√
θk
))
, and g′(k) = πφ(k) −

(1− π)
√
θφ(
√
θk).

If π ≤
√
θ(1− π), then g′(k) < 0 for all k 6= 0, because φ(k) < φ(

√
θk) for k 6= 0

(equality is attained only if k = 0, and if π =
√
θ(1−π)). Hence, g is decreasing, and

the optimum is attained at k = −∞.
If π ≤ 1

2
(1− π), then for all k > 0, g(k) < 1− π, because Φ

(√
θk
)
> 1/2. Hence,

g(−∞) > g(k∗) if k∗ > 0. Note that k∗ = 0 if and only if π =
√
θ(1 − π). In that

case, the previous item delivers that g(−∞) > g(k∗).
If π ≥ 1 − π, then Theorem 7 established that limErepn [u; qn∗ ] = πΦ (k∗) + (1 −

π)
(
1− Φ

(√
θk∗
))
.
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Hence, if there exists a cutoff ρ∗(θ), then it is in the interval we claimed. Now we

show the existence of the cutoff ρ∗(θ).

When π < 1/2, the optimal is attained either at k = k∗, or at k = −∞.
Viewing g also dependent on π, observe that,

g(k; π)− (1− π) = πΦ (k)− (1− π)Φ
(√
θk
)
.

g(k; π) − (1 − π) is increasing in π, for every k 6= 0, and is constant for k = 0.

Viewing k∗ as a function of π, we have that if for some π1, g(k
∗(π1);π1) − (1 −

π1) ≥ 0, then, for all π > π1, we have that g(k∗(π1);π2) − (1 − π2) > 0. Moreover,
g(k∗(π1);π2) < g(k

∗(π2);π2). This is because, as shown in the proof of Theorem 7,

g′(k) = 0 has a unique positive solution (when π is in the range we are considering),

and g′′(k∗) < 0. Hence, g(·) is maximized at k = k∗ in the range k ≥ 0. Hence,

g(k∗(π2);π2)−(1−π2) > 0. Moreover, g(k∗(1/2); 1/2)−(1/2) > 0, and by continuity,
the property holds for an open interval around 1/2. This shows the existence of the

cutoff ρ∗(θ).

We now show that ρ∗ is increasing in θ for θ ∈ (0, 1). Observe that g viewed as
a function of θ, g(k; θ) is decreasing in θ for k > 0. Hence, if for π > 0, and k > 0,

πΦ (k)−(1−π)Φ
(√
θk
)
≥ 0, then for all θ′ < θ, we have πΦ (k)−(1−π)Φ

(√
θ′k
)
> 0.

Hence, the same reasoning in the previous paragraph delivers that, if k = −∞ is not

uniquely optimal for some (π, θ), then it is suboptimal for (π, θ′) for all θ′ ∈ (0, θ).
Hence, ρ∗ is increasing in θ. �

B The Generalized Intermediate Value Theorem

(Lemma 10)

Lemma 10 (Restatement). Continuous Selection. Suppose f : [0, 1] × [0, 1] →
[−1, 1] is a function such that

• f (0, r) < 0 for all r

• f (1, r) > 0 for all r

• f is continuous in (x, r)
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Then, there exist continuous functions x̂ : [0, 1]→ [0, 1] and r̂ : [0, 1]→ [0, 1] such

that r̂ (0) = 0, r̂ (1) = 1 and

f (x̂ (t) , r̂ (t)) = 0 for all t.

For intuition, consider the following related statement. Suppose g : R2 → R is a

continuous function with g (x0) = g0 > 0 for some x0 ∈ (0, 1)2 and g (x) = 0 for all
x /∈ [0, 1]2. Then, for every b ∈ (0, g0) there exists a loop in [0, 1]2 that goes around
x0 such that g (x) ≡ b for all x from this loop. (A loop is a continuous map from

the unit circle to R2.) Put differently, consider the iso-height lines of some mountain

on a map. Then, for every elevation level that is between the peak of the mountain

and the surrounding plains, there is at least one unbroken iso-height line that goes

around the peak of the mountain. The lemma makes an analogous statement for the

segment of a mountain ridge.

The lemma extends the intermediate value theorem in the following sense to two-

dimensions. Suppose there is another function q : [0, 1] × [0, 1] → [−1, 1] that is
continuous and which has the property that q (x, 0) < 0 if f (x, 0) = 0 and q (x, 1) > 0

if f (x, 1) = 0. Then, the lemma implies that there exists a point (x0, r0) such that

f (x0, r0) = q (x0, r0) = 0. This is because the lemma implies that q (x̂ (·) , r̂ (·)) is a
continuous function with q (x̂ (0) , r̂ (0)) < 0 and q (x̂ (1) , r̂ (1)) > 0.

Proof:18 Let F be the upper contour set of f :

F = {(x, r)|f(x, r) > 0}.

Notice that F is an open subset of X = [0, 1]× [0, 1] in induced topology, since f
is continuous.

Let E be the component of F containing the right edge, YR = {[1, y] | y ∈ [0, 1]}.
Let E ′ = E − ∂X. Then, E ′ is an open planar surface. As we can restrict ourselves
only to the end of E ′ containing YR, without loss of generality, we can assume the

open surface E ′ has finite topology, i.e. it has finite number of ends (it has already

genus 0 as it is planar). Therefore, by the classification of surfaces, there exists a

18We are thankful for help with the proof of this result to Baris Coskunuzer, Mathematics De-
partment at Koc University.
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compact surface with boundary, which we call S, such that E ′ is homeomorphic to

the interior of S, int(S). Let g : int(S) → E ′ be the homeomorphism (continuous

map with continuous inverse). By inducing the path metric of E ′, we define a metric

on int(S) via g.

Let E be the closure of E ′ in X. Let ĝ : S → E be the continuous extension

of g. In particular, for any p ∈ ∂S, let {pn} be a sequence in int(S) with pn → p.

Then qn = g(pn) defines a Cauchy sequence in E
′ as S has the induced metric. Since

E is compact, {qn} is convergent sequence in E, say qn → q. Then, we naturally

define ĝ(p) = q which is continuous by construction. Notice that the restriction of ĝ

to ∂S defines a continuous and onto map from collection of loops (∂S) to E−E ′, i.e.
ĝ : ∂S → (E − E ′)
Let xT : inf{x ∈ [0, 1] | (x, 1) ∈ E}, and xB : inf{x ∈ [0, 1] | (x, 0) ∈ E}. Note

that xB, xT ∈ (0, 1), because of the intermediate value theorem. Also, because f is
continuous, f(xT , 1) = f(xB, 0) = 0, and also for any (x, y) ∈ (E − E), f(x, y) = 0.
Let γ be the component of ∂S where ĝ(γ) ⊃ YR. Since xT and xB are connected to

YR in E−E ′ and ĝ : ∂S → (E−E ′) is onto, then xT , xB ∈ ĝ(γ). Then, let pT , pB ∈ γ
with ĝ(pT ) = xT and ĝ(pB) = xB. As γ is a loop, there are two closed arcs τ

+ and τ−

in γ with endpoints {pT , pB}, i.e. τ+ ∪ τ− = γ and ∂τ± = {pT , pB}. Let τ+ be the
arc where ĝ(τ+) is not containing YR. Then, α = ĝ(τ

+) is a continuous arc in E −E
with ∂α = {xT , xB}. As the arc τ+ is homeomorphic to an interval I, ĝ provides a
continuous parametrization of α. As α ⊂ E − E and f = 0 along E − E, the proof
follows. �
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