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Abstract: Most of the literature that studies frictional search-and-matching models

with heterogeneous agents and random search investigates steady-state equilibria. Steady-

state equilibrium requires, in particular, that the flows of agents into and out of the popu-

lation of unmatched agents balance. We investigate the structure of this balance condition,

taking agents’ matching behavior as given. Building on the “fundamental matching lemma”

for quadratic search technologies in Shimer and Smith (2000), we establish existence, unique-

ness, and comparative-static properties of the solution to the balance condition for any

search technology satisfying minimal regularity conditions. Implications for the existence

and structure of steady-state equilibria are noted.
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Philipp Kircher, Mihai Manea, and Larry Samuelson for helpful comments and discussions. Financial support
from the German Research Foundation (DFG) through SFB-TR 224, Project B01 (Tröger), SFB-TR 224,
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1 Introduction

Search-and-matching models with heterogeneous agents are the cornerstone of the literature

investigating the economic causes and consequences of sorting and mismatch in labor mar-

kets (Marimon and Zilibotti, 1999; Teulings and Gautier, 2004; Eeckhout and Kircher, 2011;

Hagedorn, Law, and Manovskii, 2017). More generally, such models, surveyed by Burdett

and Coles (1999), Smith (2011) and Chade, Eeckhout, and Smith (2017, Section 4), have

provided key insights into the functioning of decentralized markets with trading frictions.

Examples include the conditions for assortative matching with transferable utility (Shimer

and Smith, 2000), block segregation with nontransferable utility (Burdett and Coles, 1997;

Smith, 2006), the emergence of the law of one price (Gale, 1987; Lauermann, 2013), and

the convergence of equilibria to stable matches as frictions vanish in marriage markets with

nontransferable utility (Lauermann and Nöldeke, 2014). With few exceptions (e.g., Smith,

2009), the literature considers steady-state equilibria.

As emphasized in Burdett and Coles (1999), identifying a steady-state equilibrium in

a search-and-matching model involves solving two distinct problems. First, taking a time-

invariant population of unmatched agents as given, determine stationary equilibrium strate-

gies in the induced strategic interaction between the agents. Such a “partial equilibrium”

(Burdett and Coles, 1997) specifies, in particular, who would like to match with whom.

Second, taking such stationary matching behavior as given, determine a time-invariant

population of unmatched agents by the “balance condition” that the outflow from the pop-

ulation of unmatched agents (due to the formation of matches or exit) is equal to the

corresponding inflow (due to match dissolution or entry) for every type of agent. A steady-

state equilibrium obtains if the partial-equilibrium condition and the balance condition both

hold.

Much can be learned about the structure of steady-state equilibria from considering the

partial-equilibrium condition in isolation.1 For instance, all of the descriptive theory devel-

oped in Shimer and Smith (2000) and Smith (2006) is implied by the partial-equilibrium

condition and holds independently of whether or not the balance condition is satisfied. For

other purposes, the interaction between the partial-equilibrium condition and the balance

condition takes center stage. For instance, multiple steady-state equilibria may arise in the

model of Burdett and Coles (1997) even though (as they show) partial equilibrium is unique

for a given unmatched population and (as we show) their balance condition has a unique

solution for any given specification of matching behavior. Lauermann (2013) demonstrates

that the balance condition plays a key role in ensuring convergence of steady-state equilib-

rium outcomes to competitive outcomes for vanishing search frictions, both because it is

1Indeed, there are many papers (e.g., McNamara and Collins, 1990; Morgan, 1998; Bloch and Ryder, 2000;
Chade, 2001; Adachi, 2003; Chen, 2005; Coles and Francesconi, 2019), which do exactly this by assuming
that agents who leave the pool of unmatched agents are immediately replaced by identical clones. In such
cloning models, the balance condition is trivially satisfied for any population of unmatched agents. Thus,
the conditions for a steady-state equilibrium reduce to the partial-equilibrium condition for an exogenously
given population of unmatched agents.
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the counterpart to a market clearing condition, ensuring the feasibility of the resulting out-

comes given any specification of the agents’ matching behavior, and because it ensures that

individuals who are less likely to match than others are overrepresented in the unmatched

population.

In this paper, we focus on the balance condition, thereby complementing the extensive

literature that has considered the behavioral implications of the partial-equilibrium condi-

tion. Our main motivation for focussing on the balance condition comes from the elegant,

modular proof of existence of steady-state equilibrium in Shimer and Smith (2000).2 In

particular, provided that the conditions determining partial equilibrium (which are inde-

pendent of the balance condition) are sufficiently well-behaved (as they are not only in

Shimer and Smith (2000) but also in Smith (2006)), existence of steady-state equilibrium is

assured as long as the so-called “fundamental matching lemma” (Shimer and Smith, 2000,

Lemma 4) holds. This lemma asserts that there is a unique unmatched population solving

the balance condition for any given specification of matching behavior and, further, that

this solution is continuous in the matching behavior. Unfortunately, establishing the funda-

mental matching lemma is “the hardest step” (Smith, 2011, p. 355) in the existence proof

from Shimer and Smith (2000) and the authors only succeed in doing so for the special case

of a quadratic search technology, which “seems a poor approximation” unless one deals with

“an economy with a low density of potential partners” (Diamond and Maskin, 1979, p.283).

In the years since the publication of Shimer and Smith (2000) almost no progress has been

made in extending the fundamental matching lemma to other search technologies.3

Our main results show that the fundamental matching lemma does not require the

assumption that the search technology is quadratic. Rather, the fundamental matching

lemma holds whenever the search technology induces an aggregate meeting rate that is

continuous and non-decreasing in the mass of unmatched agents and satisfies the boundary

condition that the aggregate meeting rate is zero if there are no unmatched agents. These

regularity conditions on the behavior of the aggregate meeting rate are not only natural; we

also show (cf. Remark 2) that they are minimal in the following sense: if any one of these

three conditions (continuity, monotonicity, boundary behavior) fails, examples featuring

either no or multiple solutions to the balance condition can be constructed.

Section 2 introduces the balance condition that we study in this paper. This condition

coincides with the balance condition from the search-and-matching models with random

2For search-and-matching models with a finite number of types, Lauermann and Nöldeke (2015) and
Manea (2017) present alternative proofs for the existence of steady-state equilibrium that dispense with many
of the structural assumptions on the search technology and the production function maintained in Shimer
and Smith (2000) and Smith (2006). Manea (2017, p. 219) discusses the formidable technical difficulties of
generalizing his arguments to a setting with a continuum of types and concludes that “extending our results
to settings with a continuum of types in order to obtain an exact generalization of Shimer and Smith’s (2000)
existence theorem” is an “open problem.” (Manea, 2017, p. 220). Similarly, the combination of continuity
and compactness properties required for the proof from Lauermann and Nöldeke (2015) is difficult to obtain
in a setting with a continuum of types, stymieing any straightforward extension of their arguments.

3In a precursor to the work reported here, Nöldeke and Tröger (2009) show that the fundamental matching
lemma holds for linear search technologies.
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search, a one-dimensional continuum of types, and exogenous separation of matches con-

sidered in Shimer and Smith (2000) and Smith (2006), except that we allow for general

search technologies rather than restricting attention to quadratic search technologies. We

thus refer to our balance condition as the “general balance condition” and to the one from

Shimer and Smith (2000) and Smith (2006) as the “quadratic balance condition.” These

two balance conditions are closely linked. Indeed, every solution to the general balance

condition is also a solution to the quadratic balance condition for a suitable choice of a pa-

rameter that scales the velocity of the underlying quadratic search technology (Lemma 1).

Together with the fundamental matching lemma for quadratic search technologies (that we

restate as Lemma 2) this simple observation provides the starting point for our subsequent

analysis.

Section 3 provides three comparative-statics results that describe how the solution to

the quadratic balance condition behaves as a function of the velocity parameter. The most

important of these results are Lemmas 3 and 5. Lemma 3 shows that for any given matching

pattern an increase in the velocity of a quadratic search technology cannot cause the number

(formally: the density) of unmatched agents of any type to increase. In particular, the mass

of unmatched agents does not increase when the velocity of a quadratic search technology

is increased. On the other hand, Lemma 5 shows that the unmatched mass cannot decrease

so quickly as to offset the positive effect of an increase in the velocity on the aggregate

meeting rate.

Section 4 leverages the comparative-statics properties for the quadratic search technol-

ogy established in Section 3 to show our main result: the fundamental matching lemma

holds for the general class of search technologies described above (Propositions 1 and 2). In

addition, we find that all the comparative-statics properties we have established for solu-

tions of the quadratic balance condition carry over to the solutions of the general balance

condition (Proposition 3).

While our analysis in Sections 2 - 4 considers a general class of search technologies, it

otherwise retains the structure of the search-and-matching process in Shimer and Smith

(2000). Section 5 shows that this isn’t required by considering three extensions. The most

important and difficult of these is to the case in which—as in most applied work—there are

two distinct groups of agents (workers and firms, or women and men) and agents in one

group only meet agents from the other group.

Section 6 discusses the implications of our analysis for steady-state equilibria. We ex-

plain in detail how the arguments proving the existence of steady-state equilibrium in Shimer

and Smith (2000) and Smith (2006) carry over from the special case of the quadratic search

technology considered in those papers to general search technologies. We also note im-

plications for the existence of steady-state equilibria in more general models (e.g., with

imperfectly transferable utility or multi-dimensional types), as well as for the structure of

the set of steady-state equilibria, and their uniqueness. Section 7 concludes.
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2 The Balance Condition

We consider a search-and-matching process akin to the one considered in Shimer and Smith

(2000) and Smith (2006). Time is continuous and there is a continuum of infinitely lived

agents. Agents are characterized by their types x ∈ X = [0, 1]. For any measurable X ⊂ X ,

the mass of agents with types in this set is given by
∫

X
ℓ(x)dx, where the (exogenous)

population density ℓ : X → (0,∞) is measurable, bounded, and bounded away from zero.

Let ℓ =
∫

ℓ(x)dx > 0 denote the total mass of agents.4

Agents are either unmatched or are matched with a single partner. The mass of un-

matched agents with types in X is given by
∫

X
u(x)dx, where the (endogenous) unmatched

density u : X → (0,∞) is measurable and satisfies u(x) ≤ ℓ(x) for all x ∈ X . The mass of

matched agents with types in X is
∫

X
(ℓ(x)− u(x))dx.

Unmatched agents search for partners and meet other unmatched agents, drawn at

random from the population of all unmatched agents. The mass of unmatched agents

involved in meetings per unit of time—the aggregate meeting rate—is determined by the

search technology as a function of the mass of unmatched agents ū =
∫

u(x)dx and a

velocity parameter σ ≥ 0. Let D denote the set of real-valued functions on X that are

positive, measurable, and bounded.5

Assumption 1 (General Search Technology). For any unmatched density u ∈ D, the

aggregate meeting rate is given by σ·m(ū), where σ ≥ 0 is the velocity parameter of the search

technology and the contact function m : (0,∞) → (0,∞) is continuous, non-decreasing, and

satisfies limū→0m(ū) = 0.

As meetings are random, every unmatched agent meets other unmatched agents with

types in X at the rate σ · r(ū)
∫

X
u(x)dx, where

r(ū) =
m(ū)

ū2
. (1)

We refer to r : (0,∞) → (0,∞) as the rate function and to σ · r(ū) · ū, i.e., the rate at which
an unmatched agent meets some other unmatched agent, as the individual meeting rate.

Matches form whenever two unmatched agents meet and agree to match with each other.

We describe the proportion of meetings between agents with types x and y that lead to a

match by a symmetric measurable function α : X×X → [0, 1] and refer to α as the matching

affinity.6 Let A denote the set of all such functions. We treat α ∈ A as exogenous, thereby

taking the behavior of agents as given.

4When no confusion can arise, we use the unadorned integral
∫
to denote integration over the entire type

space X .
5We follow the convention of using terms such as positive, negative, increasing, and decreasing in the

strict sense, with a prefix “non-” indicating the opposite weak sense.
6 The symmetry condition α(x, y) = α(y, x) is an accounting identity: every instance in which an agent

of type x meets an agent of type y is also an instance in which an agent of type y meets an agent of type x
with α(x, y) and α(y, x) both denoting the fraction of such meetings leading to a match.
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All matches dissolve at an exogenous rate δ > 0. At the moment a match is dissolved,

both agents return to the pool of unmatched agents.

In a steady state, the flow creation and flow destruction of matches for every type of agent

must balance. The flow of matches that are created and involve type x is the product of the

unmatched density u(x) of type x and the individual matching rate σ · r(ū)
∫

α(x, y)u(y)dy

for agents of type x. The flow of matches that are destroyed and involve type x is the

product of the dissolution rate δ and the matched density ℓ(x)−u(x) of type x. Therefore,

steady state requires

δ [ℓ(x)− u(x)] = u(x) · σ · r(ū)
∫

α(x, y)u(y)dy ∀x ∈ X . (2)

From equation (2), it is obvious that there is no loss of generality in normalizing the disso-

lution rate δ to 1. We do so throughout the following and rewrite (2) as

ℓ(x) = u(x)

[

1 + σ · r(ū)
∫

α(x, y)u(y)dy

]

∀x ∈ X . (3)

We refer to (3) as the general balance condition.

Remark 1 (Finite Number of Types). The counterpart to (3) for a model with a finite

number of types x = 1, . . . , n is

ℓ(x) = u(x)



1 + σ · r(ū)
n
∑

y=1

α(x, y)u(y)



 ∀x = 1, . . . , n, (4)

where ℓ(x) > 0 is now the mass of agents of type x in the population and u(x) is the

corresponding unmatched mass. It is easily verified that all of our subsequent analysis and

results carry over to (4).

A broad class of search technologies is compatible with Assumption 1, including the

quadratic search technology considered in Shimer and Smith (2000) and Smith (2006).

Assumption 2 (Quadratic Search Technologies). For any unmatched density u ∈ D, the

aggregate meeting rate is given by

m(ū) = ρ · ū2 (5)

with ρ ≥ 0.

In Assumption 2, we have embedded a velocity parameter ρ ≥ 0 in the description of

the contact function m, while setting the velocity parameter premultiplying the contact

function m in Assumption 1 to σ = 1. This proves convenient in formulating Lemma 1

below.

From equations (1) and (5), the rate function associated with a quadratic search tech-

nology is simply given by its velocity (i.e., r(ū) = ρ holds for all ū > 0). Thus, under

5



Assumption 2 the general balance condition (3) simplifies to

ℓ(x) = u(x)

[

1 + ρ

∫

α(x, y)u(y)dy

]

∀x ∈ X . (6)

We refer to (6) as the quadratic balance condition.

Comparing (3) and (6), the following lemma is immediate:

Lemma 1. An unmatched density u ∈ D solves the general balance condition (3) if and

only if u solves the quadratic balance condition (6) for ρ satisfying

ρ = σ · r(ū). (7)

Lemma 1 provides a tight link between the solutions to the general balance condition

and the solutions to the quadratic balance condition. In the next two sections, we show how

this link can be exploited to leverage results for quadratic search technologies (Section 3) to

obtain corresponding results for general search technologies (Section 4). Before turning to

these tasks, we restate Lemma 4 from Shimer and Smith (2000), the so-called “fundamental

matching lemma” (Smith, 2006) for quadratic search technologies, in a form suitable for

our subsequent analysis:7

Lemma 2 (Fundamental Matching Lemma for Quadratic Search Technologies). There

exists a unique unmatched density u ∈ D solving the quadratic balance condition (6) and

this solution is a jointly continuous function of ρ and α.

3 Quadratic Search Technologies

In this section, we investigate the comparative statics of the solution to the quadratic

balance condition as a function of the velocity parameter ρ (taking α as given). To simplify

notation, we thus write uρ for the solution of (6). By Lemma 2, uρ is uniquely defined for

all ρ ≥ 0.

Our first result asserts that the solution to the quadratic balance condition is non-

increasing in the velocity of the search technology. The proof is in Appendix A.1.

Lemma 3. The map ρ → uρ(x) is non-increasing for all x ∈ X .

To see the intuition behind Lemma 3, it is instructive to consider an example with a

finite number of types (cf. Remark 1). Suppose, for instance, that the velocity ρ increases

7 The continuity claim in the statement of Lemma 2 means that limn→∞

∫ ∫
|αn(x, y) − α(x, y)|dxdy +

|ρn−ρ| = 0 implies limn→∞

∫
|uρn,αn

(x)−uρ,α(x)|dx = 0, where (ρ, α) → uρ,α is the map from [0,∞)×A to
the unmatched density implied by (6). For fixed ρ, this is equivalent to the continuity claim in Shimer and
Smith (2000, Lemma 4), who show that the map α → uρ,α is continuous with respect to the pseudometrics
on A and D induced by the L1-norms. While Shimer and Smith (2000) do not consider the (joint) continuity
in ρ, this is immediate upon noting that (i) their arguments do not require α to be bounded above by 1
and, therefore, show that the solution to (6) is continuous in α̂ = ρ · α, and that (ii) the map (ρ, α) → α̂ is
continuous, too.
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by 5 percent. As there is a finite number of types, there must be some type x′ for whom the

associated percentage change in uρ(x
′) is maximal. Now suppose that, contrary to what is

asserted in Lemma 3, the increase in velocity leads to an increase in uρ(x
′) by, say, 1 percent.

To maintain the balance condition, such an increase in the unmatched mass of type x′ by

1 percent requires that the matching rate for type x′ decreases by more than 1 percent

(as, otherwise, the right side of (6) increases). Given that the velocity has increased by 5

percent, this, in turn, requires the unmatched mass uρ(y) of some other type y to decrease

by more than 6 percent. Similar reasoning to the one just given shows that this is only

possible if there is some further type x′′ whose unmatched mass uρ(x
′′) has increased by

more than 1 percent. But the existence of such a type x′′ contradicts the hypothesis that

the percentage change in the unmatched mass is maximal for type x′. Thus, uρ(x) must be

non-increasing in ρ for all types x.8

For a given unmatched density u, it is trivial that an increase in ρ causes an increase in

ρ · u(x) for all types x. The point of the following lemma is that the countervailing effect

of an increase in the velocity ρ on the unmatched density uρ identified in Lemma 3 cannot

overturn this direct effect:

Lemma 4. The map ρ → ρ · uρ(x) is increasing for all x ∈ X .

The proof of Lemma 4 is in Appendix A.2. It is straightforward from the arguments

proving Lemma 3.

Obviously, Lemma 4 implies that the individual meeting rate ρ · ūρ is increasing in ρ.

For our subsequent analysis we require more, namely that the aggregate meeting rate ρ · ū2ρ
is also increasing in ρ.

Lemma 5. The map ρ → ρ · ū2ρ is increasing in ρ.

The proof of Lemma 5 is in Appendix A.3. It proceeds in two steps. The first step uses

a transformation of the unmatched density to replace uρ by the unique solution zγ ∈ D of

the condition

ℓ(x) = z(x)

[

γ +

∫

α(x, y)z(y)dy

]

∀x ∈ X (8)

and shows that the claim in Lemma 5 is equivalent to the claim that the mass z̄γ is decreasing

in γ. The second step adapts an argument that Decker, Lieb, McCann, and Stephens

(2013) have developed in a related context.9 It shows that (8) corresponds to the first-order

condition of a convex minimization problem to infer that z̄γ is indeed decreasing in γ.10

8Analogous reasoning can be used to infer the uniqueness claim in the fundamental matching lemma for
the quadratic search technology. See the remark at the end of the proof of Lemma 3 in Appendix A.1.

9 Decker, Lieb, McCann, and Stephens (2013) establish the existence of a unique equilibrium in the
model of a marriage market from Choo and Siow (2006) and derive comparative-statics properties of this
equilibrium. These results are generalized in Galichon and Salanié (2015).

10In light of the fact that Lemmas 3 and 4 provide monotone comparative statics results that hold pointwise
(i.e., for all types), it is natural to consider the question whether a pointwise counterpart to Lemma 5,
asserting that ρ · uρ(x) · uρ(y) is increasing in ρ for all (x, y) ∈ X 2, holds. As we show in an earlier version
of this paper (Lauermann, Nöldeke, and Tröger, 2018), this is not true in general.
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4 General Search Technologies

Consider a general search technology satisfying Assumption 1 and, as before, denote the

unique solution to the quadratic balance condition as a function of ρ by uρ ∈ D. The

function F : [0,∞) → [0,∞) given by

F (ρ) =
ρ

r(ūρ)
(9)

is then well-defined because ūρ > 0 holds for all ρ ≥ 0 and ūρ > 0 implies r(ūρ) > 0. Now,

suppose the equality

F (ρ) = σ (10)

holds. It is then immediate from Lemma 1 that uρ solves the general balance condition (3).

Hence, to establish existence of a solution to the general balance condition, it suffices to

show that equation (10) has a solution. In the same vein, Lemma 1 implies that the general

balance condition has a unique solution if (10) has a unique solution. Consequently, to

establish existence and uniqueness of the solution to the general balance condition, which

is infinite dimensional, it suffices to show that for every σ ≥ 0 there exists a unique ρ ≥ 0

solving the one-dimensional equation (10), i.e., to show that the function F is a bijection.

Lemmas 2 – 5 provide us with all the tools to do so:

Proposition 1. Let Assumption 1 hold. Then there exists a unique unmatched density

u ∈ D solving the general balance condition (3).

Proof. As we have already argued, it suffices to show that F : F : [0,∞) → [0,∞) is a

bijection. We clearly have F (0) = 0. Hence, the desired result follows if F is continuous,

increasing, and satisfies limρ→∞ F (ρ) = ∞. To show these properties, it is convenient to

use (1) to rewrite (9) as

F (ρ) =
ρ · ū2ρ
m(ūρ)

. (11)

By Assumption 1, m is continuous. From Lemma 2, ūρ is continuous in ρ. Hence, both

the numerator and the denominator of the fraction on the right side of (11) are continuous

in ρ. Thus, F is continuous.

Lemma 3 implies that ūρ is non-increasing in ρ. Assumption 1 then implies that m(ūρ)

is a non-increasing function of ρ. From Lemma 5, ρ · ū2ρ is increasing in ρ. It follows from

(11) that F is increasing.

We have already noted that m(ūρ) is non-increasing in ρ, so that limρ→∞m(ūρ) is finite.

Hence, limρ→∞ F (ρ) = ∞ follows from (11) if limρ→∞ ρ · ū2ρ = ∞ holds. Suppose, then, that

ρ · ū2ρ does not diverge to infinity. Because ρ · ū2ρ is increasing in ρ, it then converges to a

finite limit a∗ > 0. Observing that limρ→∞ ρ · ū2ρ = a∗ implies limρ→∞ ūρ = 0, Assumption

1 yields limρ→∞m(ūρ) = 0. Hence, (11) implies limρ→∞ F (ρ) = ∞ in this case, too.

8



Remark 2 (Necessity of Assumption 1). The regularity conditions in Assumption 1 are the

minimal conditions under which Proposition 1 can be obtained. Specifically, the condition

that the aggregate meeting rate is non-decreasing is necessary to exclude the possibility of

multiple solutions to the general balance condition. Given that the aggregate meeting rate is

non-decreasing, the other two conditions (continuity and boundary behavior) are necessary

to exclude the possibility that there is no solution to the general balance condition; Appendix

A.4 exhibits simple examples that validate these claims.

Having established the existence and uniqueness of a solution to the general balance

condition, we next generalize the continuity claim in Lemma 2, thereby showing that the

fundamental matching lemma from Shimer and Smith (2000) holds for all search technolo-

gies satisfying Assumption 1.11 The idea underlying the proof of the following proposition

is straightforward, namely to use Lemma 1 (and the uniqueness result from Proposition 1)

to transfer the continuity result for quadratic search technologies to general search tech-

nologies. Some care is required in implementing this idea because we cannot rely on the

monotonicity results from Section 3 as we are now considering the effect of changes in the

matching affinity α.

Proposition 2. Let Assumption 1 hold. The unique solution u ∈ D to the general balance

condition (3) is a jointly continuous function of σ and α.

Proof. Consider any sequence {σn, αn, un} in [0,∞)×A×D satisfying the general balance

condition (3) for all n ∈ N. Let ρn = σn · r(ūn) for all n. By Lemma 1, the sequence

{ρn, αn, un} satisfies the quadratic balance condition (6) for all n. As we show in Appendix

A.5, we have

Lemma 6. ρn → ∞ holds if and only if σn → ∞ holds.

Now suppose that {σn, αn} converges to (σ0, α0) ∈ [0,∞) × A. From Lemma 6, this

implies that the sequence {ρn} is bounded. Consider any converging subsequence {ρnk
}

of {ρn} and denote its limit by ρ0 ∈ [0,∞). Lemma 2 then implies that {ρnk
, αnk

, unk
}

converges to (ρ0, α0, u0), where u0 is the unique unmatched density such that (ρ0, α0, u0)

satisfies the quadratic balance condition. As m is continuous (Assumption 1), so is the rate

function r defined by (1). Hence, from the convergence of {ρnk
, unk

} to {ρ0, u0} and the

equality ρn = σn · r(ūn), we obtain that σ0 satisfies

ρ0 = σ0 · r(ū0). (12)

From Lemma 1, (12) implies that the limit (σ0, α0, u0) of the sequence {σnk
, αnk

, unk
}

satisfies the general balance condition. From Proposition 1, u0 is uniquely determined, so

that (12) implies that all converging subsequences of {ρn} converge to the same limit ρ0.

Consequently, the bounded sequence {ρn} itself converges to ρ0. Hence, we have shown

that the convergence of {σn, αn} to (σ0, α0) implies that the associated sequence {un} of

11The continuity notion in Proposition 2 is the same as in Lemma 2; see footnote 7.
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solutions to the general balance condition converges to the unique solution u0 of the general

balance condition for (σ0, α0), which is the desired result.

Finally, we consider the counterparts of the comparative static results in Lemmas 3 to

5 for general search technologies. Using vσ to denote the solution to the general balance

condition (3) as a function of the parameter σ, the counterpart to Lemma 3 is the claim that

the density vσ(x) is non-increasing in σ, the counterpart to Lemma 4 is that σ · r(v̄σ) ·vσ(x)
is increasing in σ, and the counterpart to Lemma 5 is that the aggregate meeting rate

σ · m(v̄σ) is increasing in σ. All of these statements are true if the search technology

satisfies Assumption 1:

Proposition 3. Let Assumption 1 hold and let vσ ∈ D denote the unique solution to the

general balance condition (3) for given values of the other parameters. Then

1. The map σ → vσ(x) is non-increasing for all x ∈ X .

2. The map σ → σ · r(v̄σ) · vσ(x) is increasing for all x ∈ X .

3. The map σ → σ ·m(v̄σ) is increasing.

Proof. Let σ1 > σ2 ≥ 0. From Lemma 1, there exists ρ1 and ρ2 such that vσ1
= uρ1 and

vσ2
= uρ2 holds, where (as before) uρ denotes the solution of the quadratic balance condition

as a function of ρ. Further, ρi = σi · r(ūρi) holds. As shown in the proof of Proposition

1, the function F (ρ) is increasing, so that σ1 > σ2 implies ρ1 > ρ2. The first claim in the

statement of the proposition is then immediate from Lemma 3 and the identity vσi
= uρi .

Using this identity and ρi = σi · r(ūρi), we have ρi ·uρi(x) = σi · r(v̄σi
) · vσi

(x) for all x ∈ X ,

so that the second claim in the statement of the proposition follows from Lemma 4. By

analogous reasoning, we obtain ρi · ū2ρi = σi · r(v̄σi
) · v̄2σi

. Upon recalling (1), the third claim

in the statement of the Proposition is thus implied by Lemma 5.

5 Extensions

We have framed our analysis of the balance condition in the context of a search model that

differs from the one considered in Shimer and Smith (2000) only in that it replaces their

quadratic search technology with general search technologies satisfying our Assumption 1.

Our arguments apply more generally, though. To illustrate, we consider three extensions.

Multidimensional type spaces. Our proofs do not use the assumption that the type

space X is the closed unit interval [0, 1] rather than any (measurable) subset of Rn with

positive and finite Lebesgue measure. The same is true for the arguments proving the

fundamental matching lemma in Shimer and Smith (2000). Hence, all of our results are

applicable when types are multidimensional as in Goussé, Jacquemet, and Robin (2017) or

Coles and Francesconi (2019).
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Exogenous entry and exit. We have followed Shimer and Smith (2000) in supposing

that there is an exogenous population of infinitely lived agents who exit the unmatched pool

only if they have found a partner and return to this pool when their partnership dissolves due

to exogenous separation. Alternatively, we could have followed Burdett and Coles (1997)

and others in supposing that (i) there is a constant exogenous inflow of “newborn” agents

into the pool of unmatched agents given by a density ℓ̂, (ii) matches are permanent, so that

matched partners never return to the pool of unmatched agents, and (iii) all unmatched

agents abandon the search for a partner with an exogenous exit rate δ > 0. Balancing in-

and outflows for such a model yields the condition

ℓ̂(x) = u(x)

[

δ + σ · r(ū)
∫

α(x, y)u(y)dy

]

, ∀x ∈ X . (13)

Upon defining ℓ(x) = ℓ̂(x)/δ, it is immediate that (13) is equivalent to (2). Thus, all of our

results carry over to this alternative specification of the search-and-matching process.

Matching with two groups. We have also followed Shimer and Smith (2000) in as-

suming that the search technology generates random meetings between all agents. This is

in contrast to much of the theoretical and applied literature on search-and-matching that

considers scenarios in which there are two distinct groups of agents (workers and firms, or

men and women); the only meetings that are accounted for in these model are those that

feature a pair of agents from distinct groups. All of our results can be extended to this

case. We explain how this can be done in Appendix A.6. In particular, the fundamental

matching lemma holds for all continuous aggregate meeting rates that are non-decreasing in

the unmatched masses of both groups and satisfy the boundary condition that there are no

meetings if either of the two groups has no unmatched agents. With the singular exception

of the two-group version of the linear search technology (discussed in detail and dismissed

as a reasonable model in Stevens, 2007), these conditions are satisfied for all specifications

of the aggregate meeting rate considered in the extensive literature studying random search

models in labor markets (Petrongolo and Pissarides, 2001; Rogerson, Shimer, and Wright,

2005), including search technologies with constant returns to scale and the Cobb-Douglas

specification with arbitrary positive exponents.

6 Implications for Steady-State Equilibrium

So far we have considered the balance condition in isolation. To develop implications of

our analysis for steady-state equilibrium, requires us to spell out the partial-equilibrium

conditions. These are, of course, model-specific. To fix ideas, we begin by discussing the

transferable utility model from Shimer and Smith (2000), while noting extensions to other

settings thereafter.
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6.1 General Search Technologies in the Shimer-Smith Model

In Shimer and Smith (2000), partial equilibrium requires two conditions: First, the opti-

mality condition,

α(x, y) =

{

0 if w(x) + w(y) > f(x, y),

1 if w(x) + w(y) < f(x, y),
(14)

where w(x) is the equilibrium flow value of an unmatched agent of type x and f(x, y) is

the flow output generated when agents with types x and y are matched. Second, the value

condition,

w(x) =
ρ

2τ
·
∫

max{f(x, y)− w(x)− w(y), 0}u(y)dy, (15)

where ρ is the velocity of the quadratic search technology and τ > 0 is the sum of the

interest rate and the match dissolution rate. The optimality condition reflects the efficiency

of the matching decision in every meeting and the value condition reflects an equal split of

the available surplus (Nash bargaining). A steady-state equilibrium in the Shimer-Smith

model is a tuple (u, α,w) that satisfies the quadratic balance condition (6) and the two

partial equilibrium conditions, (14) and (15).

Throughout their analysis, Shimer and Smith (2000) assume that the type space X
is the unit interval and that the symmetric production function f(x, y) is continuously

differentiable, strictly increasing, and either strictly supermodular or strictly submodular.

Replacing the assumption of a quadratic search technology with Assumption 1 has

no effect on the optimality condition (14). The only effect on the value condition arises

because individual meeting rates are no longer governed by ρ but by σ · r(ū), so that the

value condition becomes

w(x) =
σ · r(ū)

2τ
·
∫

max{f(x, y)− w(x)− w(y), 0}u(y)dy. (16)

Hence, a steady-state equilibrium in the Shimer-Smith model with a general search tech-

nology is given by a tuple (u, α,w) that satisfies the general balance condition (3), the

optimality condition (14), and the value condition (16).

Existence of Steady-State Equilibrium. Shimer and Smith (2000) obtain existence in

their model from three results: The first, Lemma 3 in Shimer and Smith (2000), shows that

the map from value functions into matching affinities defined by the optimality condition

(14) is continuous. In the following we will refer to this result as the optimality lemma. The

second result is the fundamental matching lemma, Lemma 4 in Shimer and Smith (2000),

which shows that the quadratic balance condition (6) defines the unmatched density as a

continuous function of the matching affinity. These two results together provide continuity

of the map w → uw that accounts for the endogenous determination of the unmatched

density in steady-state equilibrium. The third result, which follows from a fairly standard
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application of Schauder’s fixed point theorem, is that there exists a value function w solving

the value condition when the unmatched density u on the right side of (15) is replaced by

uw whenever w → uw is continuous. In the following we refer to this result, shown in the

proof of Proposition 1 in Shimer and Smith (2000), as the value proposition.

Now, consider the Shimer-Smith model with a general search technology satisfying As-

sumption 1. Because the optimality lemma only refers to the optimality condition (14), it

continues to hold. We have shown in Propositions 1 and 2 that the fundamental matching

lemma holds for the general balance condition (3). Further, the value proposition continues

to hold for the value condition (16).12 Hence, existence of steady-state equilibrium in the

Shimer-Smith model with a general search technology is assured, with the generalization of

the fundamental matching lemma being the key (and hardest) step in obtaining this result.

Structure of Steady-State Equilibria. We have observed (cf. Lemma 1) that an

unmatched density u solves the general balance condition if and only if it solves the quadratic

balance condition with ρ = σ · r(ū). As the same equality ensures that the value condition

(16) holds if and only if (15) is satisfied, steady-state equilibria inherit this property: a

tuple (u, α,w) is a steady-state equilibrium in the Shimer-Smith model with a general

search technology if and only if it is a steady-state equilibrium in the Shimer-Smith model

for a quadratic search technology with ρ = σ · r(ū). This is useful because the quadratic

search technology is often easier to analyze as it rules out certain crowding externalities

(the rate at which an unmatched agent meets agents with types in X is independent of the

mass of unmatched agents with types not in X). We note two implications:

First, for any contact function m satisfying the conditions in Assumption 1, the set

of tuples (u, α,w) that are steady-state equilibria for some velocity σ ≥ 0 coincides with

the set of steady-state equilibria that arise for the quadratic search technology for some

velocity ρ ≥ 0. Assuming the quadratic search technology is thus without loss of generality

if the aim is, say, to characterize the set of matching patterns that can possibly arise in

steady-state equilibrium for a given production function f .

Second, using the equivalence result in Lemma 6, we can infer that a tuple (u, α,w) is

the limit of steady-state equilibria for the quadratic search technology as ρ → ∞ if and

only if it is the limit of steady-state equilibria as σ → ∞ for any search technology with

contact function m satisfying Assumption 1. Consequently, for the purpose of studying

whether steady-state equilibria approximate the outcomes arising in a frictionless market

when search frictions disappear (in the sense that the velocity of the search technology goes

to infinity), it is without loss of generality to assume that the search technology is quadratic.

Uniqueness of Steady-State Equilibrium Very little is known about the conditions

under which steady-state equilibrium is unique, not only in the Shimer-Smith model but

12It is straightforward to verify that the proof of Proposition 1 in Shimer and Smith (2000) carries over
provided that the rate function r is continuous. Continuity of r is immediate from Assumption 1 and the
definition of the rate function in (1).
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in general.13 We will not resolve this issue here. Rather, we point out that the same logic

that allowed us to infer uniqueness of the solution to the general balance condition from the

uniqueness of the solution to the quadratic balance condition is applicable for steady-state

equilibria. Specifically, suppose that for any ρ ≥ 0 there is a unique steady-state equilibrium

in the Shimer-Smith model with associated unmatched mass ū∗ρ. Consider a general search

technology with contact function m (satisfying Assumption 1) and let G(ρ) = ρ/r(ū∗ρ). It

is then immediate from the observations in the first paragraph in our discussion of the

structure of steady-state equilibria that steady-state equilibrium is unique for every choice

of the velocity parameter σ ≥ 0 of the general search technology if and only if the function

G is increasing. Further, the same arguments as in the proof of Proposition 1 are applicable

to provide simple sufficient conditions for G to be increasing. Namely, it suffices that ū∗ρ is

non-increasing and ρ · (ū∗ρ)2 is increasing.

6.2 Going Beyond the Shimer-Smith Model

Our observations about the structure of the set of steady-state equilibria and the conditions

for their uniqueness in Section 6.1 do not hinge on the particular structure of the Shimer-

Smith model. Rather, all that is required is that the partial-equilibrium conditions can be

expressed in terms of an optimality condition that is independent of the search technology

and that the relationship ρ = σ · r(ū) ensures the equivalence between the value condition

for a quadratic search technology and a general search technology.14 These requirements

are satisfied in all of the models we consider in the following, so that we focus our discussion

on the existence of steady-state equilibrium.

Smith (2006) shows the existence of steady-state equilibrium in the case of nontrans-

ferable utility (NTU) by utilizing the fundamental matching lemma for quadratic search

technologies and proving counterparts to the optimality lemma (under the assumption that

the production function is strictly increasing) and the valuation proposition. For reasons

analogous to the ones explained above, our generalization of the fundamental matching

lemma implies that his existence result extends to all search technologies satisfying As-

sumption 1. In a similar vein, the validity of the fundamental matching lemma for general

search technologies in models with two groups and exogenous exit and entry (cf. Section

5) yields the existence of steady-state equilibrium in the NTU model considered in Burdett

and Coles (1997).15

The valuation proposition (either for quadratic or general search technologies) in the

Shimer-Smith model does not require their particular assumptions on type spaces and the

13For notable exceptions see the uniqueness results in Burdett and Coles (1997), Burdett and Wright
(1998), and Lauermann and Nöldeke (2014).

14In models with two distinct groups of agents the corresponding relationship is ρ = σ · r(ūA, ūB); see
Appendix A.6.

15Burdett and Coles (1997) establish the existence of steady-state equilibrium under restrictive assump-
tions, including the requirement that both groups have identical masses, that the search technology has
constant returns to scale, and that the type distributions are log-concave. In related work, Eeckhout (1999)
establishes uniqueness of partial equilibrium for any given unmatched density.
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production function. For instance, it suffices to assume that X ⊂ R
n is compact and

f is Lipschitz continuous on X 2. As the validity of the fundamental matching lemma is

independent of any assumptions on the production function and holds (as discussed in Sec-

tion 5) for multidimensional type spaces, the only difficulty in generalizing the existence

result from Shimer and Smith (2000) in this direction lies in establishing the validity of

the optimality lemma. This, to the best of our knowledge, is an unsolved problem. We

note, however, that the optimality lemma will hold quite generally if there is a (continu-

ously distributed) match-specific “bliss shock” as in the random-search models of Goussé,

Jacquemet, and Robin (2017) and Coles and Francesconi (2019) or the empirical matching

literature more generally (Chiappori and Salanié, 2016). Hence, we conjecture that exis-

tence of a steady-state equilibrium for general search technologies can be established for

such models by following the scheme of the existence proof in Shimer and Smith (2000) and

using our generalized fundamental matching lemma.

Finally, we note that the counterparts to the optimality and value conditions from the

Shimer-Smith model with a general search technology when utility is imperfectly transfer-

able rather than (perfectly) transferable are

α(x, y) =

{

0 if w(x) > φ(x, y, w(y)),

1 if w(x) < φ(x, y, w(y)),
(17)

and,

w(x) =
σ · ρ(ū)

2τ
·
∫

max{φ(x, y, w(y))− w(x), 0}u(y)dy. (18)

Here, the function φ describes, as in Legros and Newman (2007), the utility frontier by

specifying the maximal utility an agent of type x can obtain when matched with an agent

of type y receiving utility w(y). For such an ITU model, the optimality lemma and the

value proposition follow from arguments analogous to the ones in Shimer and Smith (2000) if

the appropriate counterpart to their assumptions are made, i.e, types are one-dimensional

(X = [0, 1]), the function φ is continuously differentiable, strictly increasing in x and y,

strictly decreasing in in its third argument, and satisfies a strict single-crossing property

that generalizes the strict super- or submodularity condition from the TU case (cf. Nöldeke

and Samuelson, 2018, Section 7). As the fundamental matching lemma holds, too, existence

of a steady-state equilibrium in such a model is ensured.

7 Concluding Remarks

We have investigated the balance condition in a search-and-matching model with heteroge-

nous agents, treating agents’ matching behavior as arbitrary but given. We have obtained

novel comparative-static results for the quadratic search technology and, using these results,

have shown that both the fundamental matching lemma and these comparative-statics re-

sults carry over from the quadratic search technology to the broad class of search tech-
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nologies satisfying our Assumption 1. Combined with the observation that the conditions

determining partial equilibrium are largely independent of the search technology, our gen-

eralization of the fundamental matching lemma can be used as a lever to extend arguments

proving the existence of steady-state equilibrium for the quadratic search technology to

general search technologies.

Our analysis builds on a simple but essential insight, namely that any solution to the

general balance condition is a solution to the quadratic balance condition for a suitable

choice of the velocity parameter ρ. As we have noted in Section 6, this insight extends

immediately to steady-state equilibria, that is, every steady-state equilibrium in a model

for a general search technology is, with a suitable choice of the velocity parameter, a steady-

state equilibrium in a model with a quadratic search technology. There is a sense, then,

in which the study of steady-state equilibria for general search technologies can be reduced

to the study of the comparative statics of steady-state equilibria for the quadratic search

technology in ρ. While much work remains to be done, we believe that this observation

and our comparative-statics results for the quadratic search technology will prove useful in

investigating the uniqueness and comparative statics of steady-state equilibrium.

Appendix

A.1 Proof of Lemma 3

We proceed in three steps. The first step establishes that an unmatched density solving

the quadratic balance condition (6) is not only bounded above but also bounded away from

zero. This ensures that all expressions considered in the following two steps are finite. The

second step shows that for any two velocities ρ1 and ρ2 the corresponding solutions to (6),

denoted by u1 and u2 for simplicity, are ordered, that is, either u1(x) ≥ u2(x) holds for all

x ∈ X or the reverse inequality holds for all x ∈ X . The third step excludes the possibility

that a higher velocity leads to an increase in the density solving the quadratic balance

condition, thereby finishing the proof that uρ(x) is non-increasing in ρ.

Throughout the proof we eschew making use of the uniqueness result from Lemma 2,

thereby clarifying that this property plays no role in our argument. Rather, as we explain in

a remark at the end of proof, uniqueness of the solution to the quadratic balance condition

(6) can be inferred from our argument.

Step 1: Consider any (ρ, α) ∈ [0,∞)×A and let u ∈ D be an unmatched density solving

(6). As the population density ℓ is bounded above and bounded away from zero, there

exist l and L such that 0 < l ≤ ℓ(x) ≤ L < ∞ holds for all x ∈ X . As u satisfies

0 < u(x) ≤ ℓ(x) for all x ∈ X , it is immediate that u(x) ≤ L holds for all x ∈ X . Further,

because 0 ≤ α(x, y) ≤ 1 holds for all (x, y), we also have

∫

α(x, y)u(y)dy ≤ ℓ ∀x ∈ X . (19)
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Hence, (6) implies ℓ(x) ≤ u(x)
[

1 + ρℓ
]

for all x. Thus,

0 <
l

1 + ρℓ
≤ u(x) ≤ L < ∞ ∀x ∈ X . (20)

Step 2: Let u1 ∈ D and u2 ∈ D be solutions to the quadratic balance conditions (6) for

velocities ρ1 ≥ 0 and ρ2 ≥ 0 respectively:

ℓ(x) = u1(x)

[

1 + ρ1

∫

α(x, y)u1(y)dy

]

∀x ∈ X , (21)

ℓ(x) = u2(x)

[

1 + ρ2

∫

α(x, y)u2(y)dy

]

∀x ∈ X . (22)

From (20) in Step 1 we have that

λ1 = sup
x∈X

u1(x)

u2(x)
, (23)

λ2 = sup
x∈X

u2(x)

u1(x)
(24)

are both finite and positive. We now argue that at most one of these two numbers can be

strictly greater than 1, which implies that u1 and u2 are ordered, i.e., either u1(x) ≤ u2(x)

holds for all x ∈ X or u2(x) ≤ u1(x) holds for all x ∈ X .

Suppose λ2 > 1 holds. The following shows that this implies λ1ρ1 > λ2ρ2. Suppose not,

so that we have λ2ρ2 ≥ λ1ρ1. Then

u2(x)

[

1 + ρ2

∫

α(x, y)u2(y)dy

]

= u1(x)

[

1 + ρ1

∫

α(x, y)u1(y)dy

]

≤ u1(x)

[

1 + λ1ρ1

∫

α(x, y)u2(y)dy

]

≤ u1(x)

[

1 + λ2ρ2

∫

α(x, y)u2(y)dy

]

,

for all x ∈ X , where the equality in the first line is from (21) and (22), the first inequality

holds because (23) implies λ1u2(y) ≥ u1(y), and the second inequality is from the hypothesis

λ2ρ2 ≥ λ1ρ1. Consequently, we obtain

u2(x)

u1(x)
≤ 1 + λ2ρ2

∫

α(x, y)u2(y)dy

1 + ρ2
∫

α(x, y)u2(y)dy

for all x ∈ X and thus
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λ2 ≤ sup
x∈X

[

1 + λ2ρ2
∫

α(x, y)u2(y)dy

1 + ρ2
∫

α(x, y)u2(y)dy

]

. (25)

On the other hand, using the hypothesis λ2 > 1 and (19), we have

1 + λ2ρ2
∫

α(x, y)u2(y)dy

1 + ρ2
∫

α(x, y)u2(y)dy
≤ 1 + λ2ρ2ℓ

1 + ρ2ℓ
< λ2 ∀x ∈ X . (26)

From (26) we obtain

λ2 > sup
x∈X

[

1 + λ2ρ2
∫

α(x, y)u2(y)dy

1 + ρ2
∫

α(x, y)u2(y)dy

]

.

and thereby a contradiction to (25). Consequently, λ2 > 1 implies λ1ρ1 > λ2ρ2.

Exchanging the roles of λ1 and λ2 in the above argument yields that λ1 > 1 implies

λ2ρ2 > λ1ρ1. As at most one of the inequalities λ1ρ1 > λ2ρ2 and λ2ρ2 > λ1ρ1 can hold, it

follows that λ1 ≤ 1 or λ2 ≤ 1 (or both) must hold.

Step 3: Suppose ρ2 ≥ ρ1. If λ1 > 1 holds, then λ2 ≤ 1 is immediate from the conclusion

of Step 2. By the definition of λ2 in (24) this implies u2(x) ≤ u1(x) for all x ∈ X , which is

the desired result.

It remains to consider the case λ1 ≤ 1. From the definition of λ1 in (23) this implies

u2(y) ≥ u1(y) for all y ∈ X . Together with the inequality ρ2 ≥ ρ1 this yields

ρ2

∫

α(x, y)u2(y)dy ≥ ρ1

∫

α(x, y)u1(y)dy ∀x ∈ X .

It is then immediate from (21) and (22) that u2(x) ≤ u1(x) holds for all x ∈ X , finishing

the proof.

Remark: Applying the argument from Step 3 to the case ρ1 ≥ ρ2 yields u1(x) ≤ u2(x) for

all x ∈ X . Consequently, for ρ1 = ρ2 we have u1(x) = u2(x) for all x ∈ X , showing that (6)

cannot have more than one solution for given ρ (and α).

A.2 Proof of Lemma 4

We use the same notation as in the proof of Lemma 3.

Suppose ρ · uρ(x) is not increasing in ρ for all x ∈ X . There then exists ρ2 > ρ1 > 0

and x′ ∈ X such that ρ2 · u2(x′) ≤ ρ1 · u1(x′) holds. We then have u1(x
′) > u2(x

′)

and therefore λ1 > 1. From Step 2 in the proof of Lemma 3 this implies λ2 ≤ 1 and

λ2ρ2 > λ1ρ1. In particular, we have ρ2 > λ1ρ1. From the definition of λ1 in (23) this

yields ρ2 · u2(x) > ρ1 · u1(x) for all x ∈ X , contradicting the hypothesis that the inequality

ρ2 · u2(x′) ≤ ρ1 · u1(x′) holds for some x′ ∈ X .
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A.3 Proof of Lemma 5

As ρ · ū2ρ is equal to zero for ρ = 0 and positive otherwise, it suffices to consider ρ > 0. We

proceed in two steps.

Step 1: For any ρ > 0 define sρ ∈ D by

sρ(x) =
√
ρ · uρ(x), ∀x ∈ X . (27)

Using that uρ is the unique positive solution to (6), it is immediate from (27) that sρ is

the unique positive solution to (8) for γ = 1/
√
ρ > 0. From (27) we also have

s̄ρ =
√

ρ · ū2ρ.

Therefore, using zγ to denote the unique positive solution to (8) as a function of γ, it

suffices to show that the map γ → z̄γ from (0,∞) to (0,∞) is decreasing in γ to establish

the lemma.

Step 2: Let V be the subspace of essentially bounded functions in L2(X ). For all v ∈ V
and γ > 0 define

H(v, γ) = γ

∫

ev(x)dx+
1

2

∫ ∫

α(x, y)ev(x)+v(y)dxdy −
∫

v(x)ℓ(x)dx. (28)

The function H is convex in v. It is also continuous in v. Its derivative (with respect to v)

is the bounded linear operator Hv on L2(X ) defined by

Hv(v, γ)(h) = lim
t→0

H(v + th, γ)−H(v, γ)

t

= γ

∫

ev(x)h(x)dx+
1

2

∫ ∫

α(x, y)ev(x)+v(y) [h(x) + h(y)] dxdy

−
∫

ℓ(x)h(x)dx.

Using the symmetry condition α(x, y) = α(y, x), we obtain

Hv(v, γ)(h) = γ

∫

ev(x)h(x)dx+

∫ ∫

α(x, y)ev(x)+v(y)h(x)dxdy −
∫

ℓ(x)h(x)dx. (29)

Because H is convex, it follows from (29) that v minimizes H(v, γ) over V if and only if the

first order condition

γev(x) + ev(x)
∫

α(x, y)ev(y)dy − ℓ(x) = 0 (30)

holds for almost all x ∈ X .
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Applying the transformation z = ev to (28) and (30) and comparing the resulting first

order condition with (8) we obtain that zγ minimizes

G(z, γ) = γ

∫

z(x)dx+
1

2

∫ ∫

α(x, y)z(x)z(y)dxdy −
∫

ℓ(x) ln(z(x))dx (31)

over the set of all positive, essentially bounded functions in L2(X ). Further, as zγ is uniquely

determined, any other such minimizer of G(z, γ) must agree with zγ for almost all x ∈ X .

Consider now γ2 > γ1 > 0. Because (i) zγ1 minimizes G(z, γ1) and zγ2 minimizes

G(z, γ2), (ii) these minimizers are essentially unique, and (iii) equation (8) precludes the

possibility that zγ1 = zγ2 holds for almost all x ∈ X , we have

[G(zγ1 , γ1)−G(zγ2 , γ1)] + [G(zγ2 , γ2)−G(zγ1 , γ2)] < 0. (32)

Substituting from (31) into (32) yields

[γ2 − γ1] [z̄γ2 − z̄γ1 ] < 0.

Hence, as was to be shown, z̄γ is decreasing in γ.

A.4 Proof for the Claims in Remark 2

Suppose that the population density is equal to l > 0 for all x ∈ X = [0, 1]. Suppose,

in addition that all meetings lead to matches, so that the matching affinities are given by

α(x, y) = 1 for all (x, y). The general balance condition (3) then simplifies to

l = u(x) [1 + σ · r(ū) · ū] , ∀x ∈ X .

This condition is satisfied if and only if u(x) = ū holds for all x ∈ X and, using (1), the

mass ū of unmatched agents solves

l = ū+ σ ·m(ū). (33)

In particular, a solution to (3) exists (is unique) if and only if a solution to (33) exists (is

unique). Therefore, to validate the claims in the main body of the paper, it suffices to show

that (i) for suitable choices of the parameters σ > 0 and l > 0, condition (33) has multiple

solutions if the aggregate meeting rate fails to be non-decreasing, and, if the aggregate

meeting rate is non-decreasing, the parameters σ and l can be chosen such that no solution

to (33) exists if (ii) m fails the boundary condition or (iii) m fails to be continuous.

i) Suppose that m fails to be non-decreasing. Then, there exist û and u† satisfying û >

u† > 0 and m(u†) > m(û). Setting σ = [û− u†]/[m(u†)−m(û)] > 0 and l = û+ σ ·m(û),

it is immediate that û satisfies (33) and easily verified that u† does so, too.

ii) Suppose that m is non-decreasing and limū→0m(ū) > 0 holds. Then, as the right side

of (33) is increasing in ū, equation (33) has no solution for σ > 0 and l > 0 satisfying
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0 < l/σ < limū→0m(ū).

iii) Suppose that m is non-decreasing but not continuous. There then exists û > 0 and

M 6= m(û) such that ū < û implies m(ū) < M and ū > û implies m(ū) > M . Fix such û

and M and let σ > 0 and l > 0 be such that l = û + σM . By construction, we then have

that û does not solve (33). Further, as the right side of (33) is increasing in ū and ū > û

implies m(ū) > M , also no ū > û solves (33). An analogous argument shows that (33) also

has no solution with ū < û.

A.5 Proof of Lemma 6

Suppose ρn → ∞, whereas {σn} is bounded. From the relationship ρn = σn · r(ūn), we then
have that r(ūn) → ∞must hold. Due to the monotonicity condition in Assumption 1, m(ūn)

is bounded above by m(ℓ̄). From (1), we thus obtain that r(ūn) → ∞ implies ūn → 0. Using

Assumption 1 again, ūn → 0 implies m(ūn) → 0. Hence, we have ūn+σn ·m(ūn) → 0. But

this is impossible because, by hypothesis, (αn, σn, un) satisfies the general balance condition

for all n, which in turn implies ūn + σn ·m(ūn) ≥ ℓ̄ > 0 for all n:

0 < ℓ̄ = ūn + σn · r(ūn)
∫ ∫

αn(x, y)un(y)vn(x)dydx

≤ ūn + σn · r(ūn) · ū2n
= ūn + σn ·m(ūn),

where the equality in the first line is from integrating (3) with respect to x, the inequality

in the second line uses 0 ≤ αn(x, y) ≤ 1, and the equality in the third line is from (1).

Hence, if ρn → ∞, then the sequence {σn} cannot be bounded. As the same argument is

applicable to any subsequence, it follows that ρn → ∞ implies σn → ∞.

Suppose σn → ∞, whereas {ρn} is bounded. From the relationship ρn = σn · r(ūn),
we then have that r(ūn) → 0 must hold. Because ūn is bounded above by ℓ̄, (1) then

implies m(ūn) → 0. From Assumption 1, this in turn implies ūn → 0. Hence, we have

ūn + ρnū
2
n → 0. On the other hand, by an argument analogous to the one given in the

preceding paragraph, we have ūn + σnū
2
n ≥ ℓ̄ > 0 for all n because (αn, ρn, un) satisfies the

quadratic balance condition (6) for all n. Hence, if σn → ∞, then the sequence {ρn} cannot

be bounded and it follows that σn → ∞ implies ρn → ∞.

A.6 Random Meetings between Two Groups

We modify the search-and-matching process from Section 2 to incorporate two groups as

follows: First, we suppose that the type space X is partitioned into two measurable sets

A and B such that ℓ̄A =
∫

A
ℓ(x)dx > 0 and ℓ̄B =

∫

B
ℓ(x)dx > 0 holds. Agents with types

in A are the members of group A and agents with types in B are the members of group

B. Second, the aggregate meeting rate only accounts for meetings featuring unmatched
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agents from distinct groups and depends on the unmatched masses ūA =
∫

A
u(x)dx and

ūB =
∫

B
u(x)dx rather than just on ū. The counterpart to Assumption 1 is

Assumption 3 (General Search Technology with Two Groups). For any unmatched density

u ∈ D, the aggregate meeting rate is given by σ ·m(ūA, ūB), where σ ≥ 0 and m : (0,∞)2 →
(0,∞) is continuous, non-decreasing in both arguments, and satisfies limūB→0m(ūA, ūB) =

limūA→0m(ūA, ūB) = 0.

Let r : (0,∞)2 → (0,∞) be given by

r(ūA, ūB) =
m(ūA, ūB)

ūA · ūB . (34)

The assumption of random meetings between the unmatched members of the two groups

implies that each unmatched agent from group A meets some unmatched agent from group

B at the individual meeting rate σ·r(ūA, ūB)·ūB, whereas each unmatched agent from group

B meets some unmatched agent from group A at the individual meeting rate σ·r(ūA, ūB)·ūA.
With these modifications, the counterpart to the general balance condition (3) is

ℓ(x) = u(x)

[

1 + σ · r(ūA, ūB)
∫

B

α(x, y)u(y)dy

]

∀x ∈ A, (35a)

ℓ(x) = u(x)

[

1 + σ · r(ūA, ūB)
∫

A

α(x, y)u(y)dy

]

∀x ∈ B, (35b)

where 0 ≤ α(x, y) = α(y, x) ≤ 1 is the probability that a meeting between a pair of

agents with types (x, y) leads to a match, for (x, y) ∈ (A × B) ∪ (B × A).16 Extending

the definition of the matching affinities α to X 2 by setting α(x, y) = α(y, x) = 0 for all

(x, y) ∈ (A×A) ∪ (B ×B), the balance conditions (35) can also be written as

ℓ(x) = u(x)

[

1 + σ · r(ūA, ūB)
∫

X

α(x, y)u(y)dy

]

∀x ∈ X , (36)

which provides us with a more natural counterpart to (3).

Quadratic search technologies. With a quadratic search technology, the aggregate

meeting rate is equal to the contact rate (i.e., we again set σ = 1 for quadratic search

technologies) and given by

m(ūA, ūB) = ρ · ūA · ūB. (37)

Using (34) and σ = 1, this implies that σ · r(ūA, ūB) is constant and equal to ρ for such

technologies. Hence, for quadratic search technologies (36) is identical to (6). Consequently,

all results from Section 3 hold as stated for the model with two groups. This, however, does

16Recall that A and B partition X . Hence, (A× B) ∩ (B × A) = ∅ and (x, y) ∈ A× B ⇔ (y, x) ∈ B × A
hold. As in Section 2, the symmetry condition α(x, y) = α(y, x) thus does not impose any restrictions on
behavior but is an accounting identity (cf., footnote 6).
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not suffice to obtain counterparts to Propositions 1 – 3 for the model with two groups.

Rather, we require the following variant of Lemma 5.

Lemma 7. In the model with two groups, the map ρ → ρ · ūAρ · ūBρ is increasing.

Proof. Because matches only occur between agents of distinct groups the quadratic balance

condition can be written as (cf. (35))

ℓ(x) = u(x)

[

1 + ρ

∫

B

α(x, y)u(y)dy

]

∀x ∈ A, (38a)

ℓ(x) = u(x)

[

1 + ρ

∫

A

α(x, y)u(y)dy

]

∀x ∈ B. (38b)

For ρ > 0 let

γA(ρ) =

√

ūAρ
√

ρ · ūBρ
> 0 and γB(ρ) =

√

ūBρ
√

ρ · ūAρ
> 0, (39)

and define sρ ∈ D by

sρ(x) =

{

uρ(x)/γ
A(ρ) if x ∈ A,

uρ(x)/γ
B(ρ) if x ∈ B.

(40)

Arguments analogous to those in Step 1 of the proof of Lemma 5 in Appendix A.3 then

show that sρ is the unique solution to

ℓ(x) = z(x)

[

γA(ρ) +

∫

B

α(x, y)z(y)dy

]

∀x ∈ A, (41a)

ℓ(x) = z(x)

[

γB(ρ) +

∫

A

α(x, y)z(y)dy

]

∀x ∈ B. (41b)

In addition, considering the function

H(v, γA, γB) = γA
∫

A

ev(x)dx+ γB
∫

B

ev(y))dy +

∫

X

∫

X

α(x, y)ev(x)+v(y)dxdy

−
∫

X

v(x)ℓ(x)dx

as a starting point, arguments analogous to the ones in Step 2 of the proof of Lemma 5 in

Appendix A.3 show that, for ρ2 > ρ1 > 0, we have

[

γA(ρ2)− γA(ρ1)
] [

s̄Aρ2 − s̄Aρ1
]

+
[

γB(ρ2)− γB(ρ1)
] [

s̄Bρ2 − s̄Bρ1
]

< 0. (42)
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Observing that Lemmas 3 and 4 imply that the expressions defining γA(ρ) and γB(ρ) in

(39) are decreasing in ρ and that (40) implies

s̄Aρ (x) = s̄Bρ (x) =
√

ρ · ūAρ · ūBρ , (43)

the inequality in (42) yields that ρ · ūAρ · ūBρ is increasing in ρ.

General search technologies. Using (36) in lieu of (3), the counterpart to (7) for the

two-group model is

ρ = σ · r(ūA, ūB). (44)

Lemma 1 holds for the model with two groups if condition (7) is replaced by (44).

Because the map ρ → ρ · ūAρ · ūBρ is increasing by Lemma 7, the proofs of Propositions

1 and 2 then go through with minor modifications to show that these results hold when

Assumption 3 and the balance condition (36) rather than Assumption 1 and the balance

condition (3) are used.17 Similarly, the natural counterpart to Proposition 3, asserting

monotonicity of the maps σ → vσ, σ → σ · r(v̄Aσ , v̄Bσ ) · vσ, and σ → σ · m(v̄Aσ , v̄
B
σ ) for the

solution vσ to the balance condition (36), follows from Assumption 3.
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n , ū
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Lauermann, S., and G. Nöldeke (2014): “Stable Marriages and Search Frictions,”

Journal of Economic Theory, 151, 163–195.

25
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