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Abstract

Psychologists emphasize two aspects of habit formation: (i) habits arise when the

history of a decision process correlates with optimal continuation actions, and (ii) habits

alleviate cognition costs. We ask whether serial correlation of optimal actions alone

induces habits or if habits form as optimal adaptations. We compare lab treatments

that differ in the information provided to subjects, holding fixed the serial correlation

of optimal actions. We find that past actions affect behavior only in the treatment in

which this habit is useful. The result suggests that caution is warranted when modeling

habits via a fixed utility over action sequences.

keywords : habit formation, rational inattention.

JEL codes : C91, D8, D9

∗This paper builds on a dissertation chapter of Ludmila Matyskova entitled “Habit Formation: An Exper-
imental Study”. We thank Mark Dean, Emir Kamenica, and Colin Stewart for comments. Steiner gratefully
acknowledges the financial support of the Czech Science Foundation grant 16-00703S and the ERC grant
770652. Matyskova gratefully acknowledges the funding by the German Research Foundation (DFG) through
CRC TR 224 (Project B02).

†email: lmatysko@uni-bonn.de
‡email: brogers@wustl.edu
§email: jakub.steiner@cerge-ei.cz
¶email: sun.k@wustl.edu

1



1 Introduction

Habits play an important role in economic discourse. Economists employ them to explain

diverse phenomena ranging from inertia of consumption to brand loyalty. The standard mod-

eling approach represents habits via a fixed time-nonseparable utility function, thus leaving

the issues of when and why habits form, and their responses to counterfactual environments,

unanswered. Psychologists offer a view on both the purpose of and the mechanism under-

lying habit formation. They define habits as automated responses triggered by cues, where

cues are elements of the decision history that empirically correlate with optimal continuation

choices. In this view the purpose of habits is to alleviate cognition costs.1

We ask whether habits originate by mechanically following a cue that empirically corre-

lates with well-performing choices or whether, instead, habits are second-best adaptations.

Our main experimental result supports the latter hypothesis. We view the finding as good

news for the predictability of habits. An understanding of habit formation rooted in opti-

mization can inform analysts which cues, out of several available cues, a decision-maker will

leverage. Modeling habits as optimal adaptations also permits counterfactual predictions of

habit strength under various policies.

To discriminate between the mechanical and optimization origins of habits, we compare

treatments from a lab experiment in which subjects face a sequence of tasks generated by a

given stochastic process. The compared treatments differ only in the information feedback. If

habits form mechanically whenever past cues and optimal continuation choices correlate, then

the variation in feedback should not impact habit formation and the selection of cues. Our

data, however, show that subjects form distinct habits across these treatments; moreover,

the cues selected are naturally rationalized as adaptations to the information provided.

Our basic experimental task is to recognize a binary state variable presented visually on a

computer screen. Correctly identifying the state requires moderate cognitive effort. Subjects

face two periods of this state-recognition task, across which the state evolves according

to a known stochastic process with positive serial correlation. In the treatment without

feedback, we reveal both realized states to the subjects only at the conclusion of the two-

period sequence. We find that subjects form a habit: the first-period outcome predicts the

second-period choice (controlling for the second-period state) in this treatment. The cue

that subjects leverage is their first-period action; the first-period state does not predict the

second-period action. In other words, the behavioral pattern exhibits action inertia. The

habit alleviates the subject’s cognitive burden since, due to the serial correlation of the

states, the first-period action contains useful information about the second-period optimal

1See Andrews (1903), Lally et al. (2010), and Wood & Neal (2007).
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choice, and the subjects utilize this information.

In the other treatment, with information feedback, we employ the same state-generating

process, but we reveal the first-period state in between the two periods. Subjects again form

a habit in this treatment: payoff-irrelevant elements of the history predict the continuation

choice (controlling for the second-period state). However, importantly, the cue changes rel-

ative to the previous treatment. The first-period action is no longer predictive; all of the

predictive power is associated with the first-period state, which contains superior informa-

tion about the optimal continuation action relative to the first-period action. This finding

is inconsistent with the view that habits arise as a mechanistic consequence of the serial

correlation of optimal actions. Rather, the result suggests that our subjects choose cues

optimally, according to their informational content. As a further check, we ran additional

treatments (with and without information feedback) in which the states were serially inde-

pendent. As expected, subjects do not form habits in these treatments; the second-period

choice is independent of all first-period variables.

If habits are, as our results suggest, optimal adaptations, then their strength should

vary predictably with the decision environment, in particular, with the incentive stakes and

the serial correlation of states. When stakes are decreased or correlation increased, the

trade-off between reliance on the cues and the acquisition of new information shifts in favor

of the cues. Thus, we predict that habits become stronger—cues become more predictive

of continuation behavior—when stakes are lower and correlation is greater. We test this

hypothesis experimentally. We first confirm that when states are uncorrelated then a change

of stakes has no impact: habits are not formed. For the correlated treatments, changes in

stakes and correlation have no impact on the cue selection, but they do affect the strength

of habits. We obtain strong statistical evidence in favor of the predicted comparative statics

when the selected cue is the past action. When the cue is the past state, the evidence

continues to support the prediction, although it is less conclusive.

We supplement the experiments with a model that derives habit formation from primitive

assumptions on the information-processing friction. In the model, a decision-maker chooses

information structures (i.e., a strategy for how to acquire information about the states) and

trades off the accuracy of her information against an acquisition cost. The model allows us

to formalize the above intuitive predictions about habit formation, cue selection, and the

comparative statics of habit strength. In Section 6, we discuss how such a model can provide

counterfactual predictions for habit formation disciplined by optimization arguments in a

general setting.

Although our subjects use information sophisticatedly, we also find indirect evidence of

myopia in information acquisition. When states are correlated and feedback is not provided
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then information is relatively valuable in the first period since it is useful in both periods.

In contrast, with feedback that reveals the first-period state, the first-period information

ceases to be useful in the second period, and hence, relative to treatments without feedback,

accuracy of choice should decrease. Since we do not observe differences in the accuracy of

choice across treatments with and without feedback, we conjecture that the subjects may

not fully internalize the continuation value of information.

Popular macroeconomic models explain the empirically observed inertia of consumption

by imposing a time-nonseparable utility function u (ct − ct−1), where ct−1 is an aggregate of

the consumption history, e.g. Pollak (1970) and Abel (1990). When u is concave, high past

consumption triggers high current consumption; i.e., ct−1 becomes the cue for a consumption

habit. Since the assumed utility representation is exogenous, the modeling choice of ct−1

is not obvious and specifications in the literature include aggregates of past population-

wide consumption, past individual consumption, and past individual consumption of specific

categories of goods; see Schmitt-Grohé & Uribe (2007) for a review. While time-nonseparable

utility functions capture the causes of action inertia in applications with adaptation frictions

or with dependencies akin to smoking, this paper focuses on an alternative explanation that

is compatible with time-separable payoffs.

Laibson (2001) proposes a model of habit formation rooted in psychology that, like us,

focuses on the endogenous selection among several available habit cues, albeit, unlike in our

case, the cue selection is not rooted in the optimization of cognition costs. Camerer et al.

(n.d.) study a model of habit formation inspired by neuroeconomics and advocate for the

optimization-based origin of habits. Angeletos & Huo (2018) prove observational equivalence

between a model featuring higher-order uncertainty, and a model of a representative agent

with consumption habits.

Our model of habit formation belongs to the rational-inattention literature originating

in Sims (2003). It is a special case of the discrete dynamic rational-inattention model by

Steiner et al. (2017), which in turn extends a related static model by Matějka & McKay

(2015). Rational inattention models have been used to derive inertia of behavior in a macroe-

conomic context, see Mackowiak & Wiederholt (2009) for a theoretical contribution and

Khaw et al. (2017) for an experimental exploration. ? find that lab subjects develop action

inertia in a consumption/saving problem and, like us, the authors interpret the observed

inertia as habits.
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2 Habits and cues

We study habit formation in the simplest possible setting. A decision-maker (DM) chooses

a binary action at ∈ {0, 1} in each of two periods to maximize
∑2

t=1 u(at, θt). The binary

state θt ∈ {0, 1} evolves according to a stochastic process known to the DM. The first-period

state attains value 1 with prior probability p1, and θ2 = θ1 with probability γ ≥ 1
2
for each

value of θ1. The two states are independent when γ = 1
2
, and they are positively correlated

if γ > 1
2
. The DM’s task in each period is to match the action to the state; u(a, θ) = s if

a = θ and zero otherwise; s > 0 is the stake.

An analyst collects data on the states and actions across many repetitions of the two-

period sequence. In its idealized form, the analyst observes the joint probability distribution

π(θ1, a1, θ2, a2) over the quadruples of states and chosen actions. Our data extends the state-

dependent stochastic-choice data introduced by Caplin & Dean (n.d.) in a static setting to

the dynamic context considered here.

We say that the DM forms a habit if there exists a triple (θ1, θ2, a1) ∈ {0, 1}3 such

that π(a2 | θ2, θ1, a1) 6= π(a2 | θ2). Otherwise, if a2 is independent of (θ1, a1) conditional

on θ2, we say that the DM does not form a habit. Thus, the DM forms a habit if the

history of the process – which is irrelevant to the continuation payoff – predicts continuation

behavior. Our definition of habits is behavioral in nature and distinct from the commonly

used non-separable utility approach. Our analyst knows that the DM’s utility is, in fact,

time-separable; she attributes any correlation between the history and continuation behavior

to imperfections in the decision process, and refers to the predictive power of the history

as a habit. Our definition is related to the concept from Camerer et al. (n.d.) who define

habits as a lack of adaptation to evolving incentives. When, as in our definition, the history

predicts the continuation behavior controlling for the current state, then the DM has not

fully adapted to the evolving state.

Additionally, we define cues that drive the habitual behavior. Is the habitual behavior

in the second period, if it arises, triggered by the past state θ1, or by the past action a1?

Let z be one of the two random variables in the set {θ1, a1} and w be the complementary

variable from this set. We say that z is the cue for the habit if (i) π(a2 = 1 | θ2, z = 1) >

π(a2 = 1 | θ2, z = 0), and if (ii) π(a2 = 1 | θ2, z, w) = π(a2 = 1 | θ2, z). Thus, for instance,

the past action a1 is the cue for the habit if the probability that the DM chooses the high

action in the second period increases with a1 given θ2, and θ1 has no additional predictive

power. The latter condition prevents a spurious identification of cues. Since θ1 and a1 may

be correlated (and indeed are correlated in our data), it may happen that they both correlate

with continuation behavior, but all the predictive information is contained in only one of
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them.2

Habits exhibit a continuous range of strength since the correlation between cues and con-

tinuation behavior varies with the DM’s environment. We capture this as follows. Suppose

that the DM has developed a habit with cue z ∈ {θ1, a1}. For a state value θ ∈ {0, 1}, we

define the habit strength φz(θ) at state realization θ2 = θ to be

φz(θ) =
π(a2 = θ | θ2 = θ, z = θ)

π(a2 = θ | θ2 = θ, z = 1− θ)
,

which measures how strongly the probability that the DM chooses the correct a2 varies with

the cue value in the state θ2 = θ.

Based on the hypothesis that habits are useful adaptations, we predict that the DM

does not form a habit when the states are independent. When states are persistent and θ1

is not revealed then we predict that the DM forms a habit with the cue a1. In this case,

a1 contains useful information about the optimal a2, and the DM may reduce her cognitive

costs by partially relying on this information. When θ1 is revealed (and states are persistent)

then we predict that the habit cue is θ1, since θ1 contains information about θ2 superior to

the informational content of a1.

To test the comparative statics predictions arising from the DM’s optimization problem,

we study two specifications of stakes and state correlations. Stakes are low and state per-

sistence is high in the strong-habit treatments, whereas stakes are high and persistence is

low in the weak-habit treatments. As the labels suggest, we predict the habit strength to be

high in the strong-habit treatments and low in the weak-habit treatments. In the former,

the habit cue is highly predictive of the optimal continuation action and, additionally, the

incentive to resolve uncertainty is low. In the latter case, the cue is less informative and

incentive to acquire information is high.

Altogether, the experimental treatments vary along three dimensions: (i) we consider

independent or positively serially correlated states, (ii) we reveal or do not reveal θ1 before

the second period, and (iii) we vary the stakes and the state correlation. The resulting eight

treatments, summarized in Table 1, allow us to test all the above hypotheses.

2Our definition of cues has roots in cognitive psychology and neuroscience. These fields conceptualize
habits as tendencies to choose actions that have been previously rewarding (e.g. ?). Since our first-period
cues correlate with the optimal first-period actions, conditioning on the cues correlates the second-period
choices with the first-period optimal choices.
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Weak treatments Strong treatments

high stakes no feedback feedback

state independence no habit no habit

low persistence
weak habit
with cue a1

weak habit
with cue θ1

low stakes no feedback feedback

state independence no habit no habit

high persistence
strong habit
with cue a1

strong habit
with cue θ1

Table 1: Hypotheses on habit formation for the eight experimental treatments.

3 A rational-inattention model of habit formation

The model we present here deviates from the typical modeling of habits in that it retains the

standard assumption of time-separable utility and explains habits as optimal second-best

adaptations to an information-processing friction. The model is a special case of Steiner

et al. (2017).

The DM solves the two-period binary decision problem with an evolving state from the

beginning of Section 2. We now formalize how the DM acquires information. She conducts

a costly statistical experiment that produces a signal xt in periods t = 1, 2. Additionally, in

between periods 1 and 2, she receives an exogenous signal y. In each period t, she chooses

an action according to a (pure) action strategy σt that maps the observed signals up to

period t to at; that is, a1 = σ1(x1) and a2 = σ2(x1, x2, y). The DM controls the experiments

that generate xt and can condition the employed experiment on all the available information

at the given period: Let X, |X| ≥ 2, be a fixed signal space. The DM can choose any

experiment f1(x1 | θ1) and any system of experiments f2(x2 | θ2, x1, y) that govern the

conditional probability distribution of the signals xt ∈ X for each combination of the values

of the random variables specified in the condition.3

We consider two distinct processes that generate the exogenous signal y. In one case, y

perfectly reveals the first state; y = θ1, and we say that the DM receives feedback. In the

other case, y = y0, where y0 is an arbitrary constant, and we say that the DM does not

receive feedback.

The DM chooses the experiments and the action strategies to maximize her expected

payoff net of the information cost:

max
f1,f2,σ1,σ2

Eθ1,θ2,x1,x2,y [u (σ1 (x1) , θ1) + u (σ2 (x1, x2, y) , θ2)− λ (I (θ1; x1) + I (θ2; x2 | x1, y))] .

(1)

The cost of the first signal is proportional to the mutual information I(θ1; x1) that measures

3The signal x1 is constrained to be independent from θ2 conditional on θ1. Similarly, x2 is constrained
to be independent from θ1 conditional on (θ2, x1, y); the DM learns about θt only in period t.
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the informativeness of x1 about θ1. The cost of the second signal is proportional to the

conditional mutual information I(θ2; x2 | x1, y) that measures informativeness of x2 about θ2

relative to the information contained in x1 and y. We provide formal definitions in Appendix.

The parameter λ > 0 scales information costs.

Let π(θ1, a1, θ2, a2) be the joint distribution of the states and actions generated by the

optimal experiments f ∗

1 and f ∗

2 and action strategies σ∗

1, σ
∗

2. We impose a regularity condition

that all quadruples (θ1, a1, θ2, a2) are attained with positive probabilities.4

Lemma 1. The optimal joint distribution π of states and actions is unique.

The proofs are in Appendix.

The next two propositions confirm the hypotheses from the end of the previous section.

Proposition 1. 1. If states are independent then the DM does not form a habit.

2. If states are positively correlated and the DM does not receive feedback, then she forms

a habit with the cue a1.

3. If states are positively correlated and the DM receives feedback, then she forms a habit

with the cue θ1.

Proposition 2. The habit strength decreases with stakes and increases with the state persis-

tence. That is, for each value θ2 ∈ {0, 1}, φa1(θ2) in the setting without feedback, and φθ1(θ2)

in the setting with feedback, decreases with s and increases with γ.

4 Experimental design and data

Our experimental design follows Caplin & Dean (2015). Subjects were presented with images

of a 10× 10 matrix of red and blue dots on a computer screen. In each matrix, either 51 red

and 49 blue (state θ = 1) or 51 blue and 49 red dots (θ = 0) are displayed. The positions

of the colored dots are random conditional on the state; see the screenshot in Appendix

A.3. Subjects are incentivized to determine the majority color and do not face any explicit

information cost; any perception errors stem from frictions in the cognitive process. When

a subject is ready, she enters her choice by clicking one of two radio buttons marked “Red”

and “Blue”.5 To ensure a reasonable duration of the experiment, each image disappeared

4The condition holds when λ is sufficiently low, and is satisfied in our experimental data.
5Since we are interested in serial correlations that arise in the absence of real switching costs, we set

the positions of the blue and red radio buttons to randomly vary across tasks. Thus, provision of the same
answer in consecutive periods does not arise from a mental or physiological advantage.
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Weak treatments Strong treatments

high stakes: $10 no feedback feedback

persistence γ = .5 INW IFW
persistence γ = .75 CNW CFW

low stakes: $7 no feedback feedback

persistence γ = .5 INS IFS
persistence γ = .9 CNS CFS

Table 2: Experimental treatments.

after 45 seconds. The experiments were implemented using z-tree (?). We refer to the above

one-period decision problem as the counting task.

We recruited 76 subjects from the University of California, Santa Barbara over 4 sessions

during May 2018. In each session, subjects faced 4 treatments. Each treatment consisted

of 12 iterations and each iteration consisted of the two-period decision problem described

above, with one counting task per period. Thus, each subject faced 96 = 4×12×2 counting

tasks in total. At the conclusion of the session, the software randomly chose a single counting

task for each subject, and the subject’s payment was based only on the outcome of that task.

An “iteration” is our basic unit of observation. In each iteration, both state realizations

were equally likely in the first period. The four treatments per session are defined by the

combinations of: (i) the state persistence, where I denotes independent and C denotes

correlated states,6 and (ii) whether θ1 was revealed in between the two periods, where F

denotes the provision of information feedback and N denotes no provision. In addition,

in two of the sessions we used parameters that we hypothesized to induce strong habits;

treatments in these two sessions are denoted by S, and the treatments in the other two

sessions are labeled by W . We thus have 8 treatments {I, C} × {N,F} × {W,S}; see Table

2.7 Additionally, we ran a preliminary session prior to the 4 regular sessions. The results

from this session are consistent with those from the regular sessions. We omit this session

from the analysis due to a minor error in the experimental procedure; see Appendix A.2.

Each session lasted approximately 90 minutes. In all cases, subjects received a $10 show-

up fee. Average total earnings per subject were $17.27 paid in cash at the conclusion of

the experiment. The expected additional payoff for each correct answer was $10
96

≈ $.1 in W

treatments and it was $ 7
96

≈ $.07 in S treatments which is comparable to incentives in Caplin

& Dean (2013) that varied from $.01 to $.15. See Appendix A.3 for our experimental

instructions.

6Within a treatment, each subject faced the same sequence of images.
7The treatments were ordered either IF,CF, IN,CN or IN,CN, IF,CF , once each for the two strong

(S) and two weak (W ) parameter sessions.
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Frequency of a1 = θ1 Frequency of a2 = θ2 Frequency of a2 = a1 Frequency of a1 = θ2

INW .84 .86 .51 .50
IFW .85 .85 .60 .61
CNW .87 .86 .78 .74
CFW .89 .90 .78 .77
INS .87 .85 .51 .50
IFS .82 .82 .53 .55
CNS .84 .85 .91 .84
CFS .86 .87 .75 .73

Table 3: Data summary

5 Results

We present basic summary statistics in Table 3. The aggregate accuracy of choices is high

and homogeneous across both treatments and periods. Accuracy is heterogenous at the

individual level; the number of correctly answered tasks per subject varied from 46 to 96

out of 96 tasks. (Mild action persistence in the treatment IFW , in which the frequency of

a1 = a2 is 0.60, is caused by the realized frequency of θ1 = θ2 being 0.67 and by the subjects’

attentiveness to the state realizations.)

We proceed to test for the presence of habits and to identify the cues. To examine how

θ1 and a1 predict a2, we run separate logit regressions for all 8 treatments of the form:

an2,i =







1 if β0 + βθ2θ
n
2 + βθ1θ

n
1 + βa1a

n
1,i + βsesession+ βscscore

n
i + βscθ2score

n
i θ

n
2 + εni > 0,

0 otherwise,
(2)

with robust standard errors clustered at the subject level, where ant,i is the action taken by

subject i in iteration n = 1, . . . , 12 and period t = 1, 2; θnt is the realized state in iteration n

and period t; and session is a dummy variable indicating session (each of the 8 treatments

occurs in exactly two sessions).8 Finally, we include the interaction term scoreni θ
n
2 (and the

term scoreni ), where scoreni is a subject-specific proxy for counting ability. It is the total

number of correct answers by subject i in all treatments (excluding the two choices from

iteration n of the considered treatment to avoid endogeneity). The interaction term scoreni θ
n
2

captures the idiosyncratic sensitivity of the subject to the variation in θ2.

Table 4 reports the estimated average marginal effects, their standard errors and p-values

of the explanatory variables of interest. We draw the following conclusions from these results.

8In the treatment CNS, the state realizations satisfied θn
1
= θn

2
for all n, and thus we dropped θ1.
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IFW INW CFW CNW

a1
-.021 (.036)

.548
.034 (.041)

.406
.017 (.032)

.603
.191 (.051)

.000

θ1
.071 (.043)

092
-.026 (.049)

.596
.258 (.058)

.000
.002 (.036)

.948

θ2
.681 (.032)

.000
.692 (.054)

.000
.611 (.046)

.000
.629 (.067)

.000

IFS INS CFS CNS

a1
-.031 (.037)

.401
.037 (.045)

.416
-.033 (.026)

.204
.511 (.110)

.000

θ1
.009 (.040)

.817
-.034 (.044)

.430
.498 (.098)

.000
omitted

θ2
.632 (.045)

.000
.700 (.036)

.000
.425 (.121)

.000
.367 (.098)

.000

Table 4: Average marginal treatment effects, (their standard errors), and the p-values in the
second lines. Bold values indicate significance at the 1% level.

Result 1. 1. Subjects pay attention to θ2: θ2 predicts a2 in all treatments.

2. When the states are independent, the subjects do not form habits: neither a1 nor θ1

predict a2 in treatments IFW , INW , IFS, and INS.

3. When the states are persistent and feedback is not provided, the subjects form a habit

with cue a1: a1 predicts and θ1 does not predict a2 in treatments CNW and CNS.

4. When the states are persistent and the feedback is provided, the subjects form a habit

with cue θ1: θ1 predicts and a1 does not predict a2 in treatments CFW and CFS.

To analyze the comparative statics of habit strength, we focus on the four treatments

with persistent states in which habits occur, and we compare the habit strength across the

weak and strong treatments. Namely, for the treatments without feedback, we pool the data

from CNW and CNS and create a dummy variable δ ∈ {0, 1} to indicate treatment S. We

run the same logit specification as in (2) with the inclusion of the additional variables δ,

δθn2 , δa
n
1,i, δscore

n
i , and δscoreni θ

n
2 .

9 Since empirically the habit cue is a1, we estimate the

difference between the average marginal effect of a1 conditional on δ = 1 (S) and its average

9We have excluded the interaction term δθ1
n
, since the state realizations satisfied θn

1
= θn

2
for all n in

CNS.
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marginal effect conditional on δ = 0 (W ),

∆CN = EX [Pr(a2 = 1 | a1 = 1, X, δ = 1)− Pr(a2 = 1 | a1 = 0, X, δ = 1)

−
(

Pr(a2 = 1 | a1 = 1, X, δ = 0)− Pr(a2 = 1 | a1 = 0, X, δ = 0)
)]

,

where X stands for all explanatory variables other than a1 and δ. We obtain a point estimate

∆̂CN = .31 with standard error .12, which is highly significant (p-value .009).

Analogously, for the treatments with feedback, we pool the data from treatments CFW

and CFS and create a dummy variable δ ∈ {0, 1} to indicate the strong treatment. We

run the regression model (2) with the inclusion of δ, δθn2 , δθ
n
1 , δa

n
1,i, δscore

n
i , and δscoreni θ

n
2 .

Since the habit cue is θ1, we estimate the difference between the average marginal effect of

θ1 conditional on δ = 1 (S) and its average marginal effect conditional on δ = 0 (W ),

∆CF = EX [Pr(a2 = 1 | θ1 = 1, X, δ = 1)− Pr(a2 = 1 | θ1 = 0, X, δ = 1)

−
(

Pr(a2 = 1 | θ1 = 1, X, δ = 0)− Pr(a2 = 1 | θ1 = 0, X, δ = 0)
)]

.

Here, we obtain the point estimate ∆̂CF = .23 with standard error .12, which is marginally

significant (p-value .06).

Result 2. The level of persistence and incentives has no impact on the selection of the cues.

Additionally, we find conclusive (inconclusive) statistical evidence that the habit formed in the

correlated treatments without (with) feedback is stronger in the treatment with high persistence

and low incentives than in the treatment with low persistence and high incentives.

6 Discussion

Our experimental findings speak against habit formation based on simple reinforcement

learning that consists of repeating past successful actions.10 In our treatments with informa-

tional feedback subjects do not repeat past actions (successful or not) once the first-period

state is controlled for. We interpret action inertia that we observe in the correlated treat-

ments without feedback as an adaptation that alleviates information-processing cost.

Relative to models of exogenous habit formation, optimization-based models may predict

how cues are selected, and how the strength of the habits change with the decision-making

environment. The static rational inattention model of Matějka & McKay (2015) and its

dynamic extension by Steiner et al. (2017) provide a simple optimization-based representa-

10For comparison of Bayesian and reinforcement learning see ? from an economics perspective and ? for
a neuroscience study.
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tion of habits that can be fruitfully combined with structural-estimation techniques. The

optimal stochastic-choice rules in these models are the static logit of ? and its dynamic

counterpart by Rust (1987), respectively, modified by a system of endogenous “habits”,

where the habits depend on the rational-inattention problem being solved. That is, relative

to the standard logit choice rules, the rationally inattentive DM experiences an information-

processing penalty whenever she makes an ex ante surprising choice at any given decision

node. Each such penalty represents the information cost of the surprising information needed

to rationalize the surprising choice. These penalties increase the relative attractiveness of

the modal—habitual—actions. Since the rational inattention formulation predicts how the

system of endogenous “habits” changes with policy interventions, these models provide coun-

terfactual predictions on habit formation.

We found that people utilize information contained in the history of the decision process

when they make continuation choices. We conclude the paper with a brief discussion of

a complementary question. Do decision-makers in early stages of their decision processes

internalize the continuation value of the information they acquire? In particular, when states

are persistent and θ1 is not revealed in between the periods, then information acquired in the

first period of our lab task has a positive continuation value deriving from its use in the second

period. If decision-makers internalize this continuation value, then their choices in the first

period should be more accurate in the treatments CN relative to other treatments. We do not

observe significant differences in the accuracy of the first-period choices across treatments,

which we interpret as suggestive evidence of myopia in the information acquisition choices,

and we leave this topic for future research.

A Appendix

A.1 Proofs

Entropy of a r.v. W that attains values w with probabilities q(w) is

H(W ) = −
∑

w

q(w) log q(w),

where 0 log 0 = 0 by convention. Mutual information I(X;Y ) of two r.v.’s X and Y is

I(X;Y ) = H(X)− EY [H(X | Y )].
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Conditional mutual information I(X;Y | Z) is

I(X;Y | Z) = EY,Z [H(X | Z)−H(X | Y, Z)] .

We first review the posterior approach to static rational-inattention (RI) problems from Caplin

& Dean (2013). The DM chooses a ∈ {0, 1} and receives u(a, θ) = s×1a=θ. Thus, an optimiz-

ing DM who assigns probability q to θ = 1 receives expected value v(q) = smax{q, 1−q}. The

DM assigns prior probability p ∈ (0, 1) to θ = 1. She chooses a statistical experiment that

generates signal values x ∈ X, |X| ≥ 2, with probabilities f(x | θ). We let q(x) = Pr(θ = 1 |

x) denote the posterior. The DM chooses f to maximize Ex

[

v(q(x))− λH̃(p) + λH̃(q(x))
]

,

where H̃ : [0, 1] −→ R is a concave function that represents information cost.

The optimal experiment f attains two signal values. Thus, the posterior q̂ = q(x) is a

r.v. attaining two values q, q ∈ [0, 1] that solves

max
q̂′

Eq̂′

[

v(q̂′) + λH̃(q̂′)
]

(3)

s.t.: Eq̂′ q̂
′ = p,

where the optimization is over all binary r.v.s q̂′ attaining values in [0, 1]. We refer to (3)

as to the static RI problem with generalized entropy H̃. It has a unique solution, and if

q, q 6= p then the support {q, q} of the posterior q̂ does not depend on the prior p, and

q > 1/2, q < 1/2. Additionally, due to the symmetry u(a, θ) = u(1 − a, 1− θ), the optimal

posterior values are symmetric: q = 1− q.

Next, we establish a structure of the solution of Problem (1) and prove its uniqueness.

Proof of Lemma 1. Steiner et al. (2017) prove that the support of the optimal experiments

f ∗

1 (x1 | θ1) and f ∗

2 (x2 | θ2, x1, y) is at most as large as the action set. Since, by our regularity

condition, at attains both values with positive probabilities for t = 1, 2, the posterior assigned

to θ1 at the end of period 1, q̂1 = Pr(θ1 = 1 | x1), is a r.v. that attains two values q
1
and

q1. By our regularity condition, both values of a1 are attained with positive probabilities,

and thus q
1
≤ 1/2 ≤ q1. Similarly, the prior belief at the beginning of period 2, p̂2 =

Pr(θ2 = 1 | x1, y), is a binary r.v., where p̂2 = γθ1 + (1 − γ)(1 − θ1) with feedback, and

p̂2 = γq̂1+(1−γ)(1− q̂1) without feedback. Finally, for each pair (q̂1, y), the posterior at the

end of period 2, q̂2(q̂1, y) = Pr(θ2 = 1 | x1, x2, y), is a binary r.v. attaining values q
2
(q̂1, y) and

q2(q̂1, y).
11 Since a2 attains both values with positive probabilities, q

2
(q̂1, y) ≤ 1/2 ≤ q2(q̂1, y)

11Both the support and the distribution of q
2
(q̂1, y) are allowed to depend on (q̂1, y) since the DM may
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for each (q̂1, y).

Recall that v(q) = smax{q, 1 − q} and that p1 is the prior probability of θ1 = 1. The

posteriors in the problem with feedback solve

max
q̂′
1
,q̂′

2
(·,·)

E [v (q̂′1) + v (q̂′2 (q̂
′

1, y))− λ (H(p1)−H(q̂′1) +H(γy + (1− γ)(1− y))−H (q̂′2 (q̂
′

1, y)))] ,

s.t.: E q′1 = p1, and E q′2(q̂
′

1, y) = γy + (1− γ)(1− y) for all realizations of (q̂′1, y).

The posteriors in the problem without feedback solve

max
q̂′
1
,q̂′

2
(·)
E [v (q̂′1) + v (q̂′2 (q̂

′

1))− λ (H(p1)−H(q̂′1) +H (γq̂′1 + (1− γ) (1− q̂′1))−H (q̂′2 (q̂
′

1)))] ,

s.t.: E q′1 = p1, and E q′2 (q̂
′

1) = γq̂′1 + (1− γ) (1− q̂′1) for all realizations of q̂′1.

The expectations are with respect to q̂′1, q̂
′

2, and y.

We observe that q̂1 and q̂2(q̂1, y) in the setting with feedback, and q̂2(q̂1) in the setting

without feedback all solve the static RI problem (3) with H̃ = H. Therefore, they all have

the same unique support {q
H
, qH} given by the solution of the static RI problem with the

entropy cost.

We now analyze q̂1 in the setting without feedback. Since the support of the second-

period posteriors is independent of the first-period posterior, q̂1 solves the static RI problem

(3) with generalized entropy function

H̃(q) = H(q)−H(γq + (1− γ)(1− q)),

where H̃ is concave. Therefore, q̂1 attains values q
H̃
, qH̃ given by the unique solution of the

static RI problem with the generalized entropy H̃.

The joint distribution π(θ1, θ2, a1, a2) is unique since it is uniquely determined by the

unique posterior values q
H
, qH , qH̃ , qH̃ attained by the random first- and second-period

posteriors.

Proof of Proposition 1. Statement 1.: The support of the random second-period posterior is

independent of the first-period posterior and of y. Since θ1 and θ2 are independent, the prior

at the beginning of period 2 is independent of θ1 and a1. Thus, the random second-period

posterior (and hence a2) is independent of θ1 and a1, conditionally on θ2, as needed.

adjust the experiment in t = 2 to her information set.
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Statement 2.:

π(a2 = 1 | θ2, a1 = 1, θ1) = Pr (q̂2 (q̂1) = qH | θ2, q̂1 = qH̃) ,

π(a2 = 1 | θ2, a1 = 0, θ1) = Pr
(

q̂2 (q̂1) = qH | θ2, q̂1 = q
H̃

)

.

The right-hand sides do not depend on θ1, as needed. It suffices to prove that for each

θ2 ∈ {0, 1}, the first expression exceeds the latter. We consider the case θ2 = 1; the

computation for θ2 = 0 is analogical.

π(a2 = 1 | θ2 = 1, a1 = 1) = Pr (q̂2 (q̂1) = qH | θ2 = 1, q̂1 = qH̃)

= Pr (θ2 = 1 | q̂2(q̂1) = qH , q̂1 = qH̃)
Pr (q̂2(q̂1) = qH | q̂1 = qH̃)

Pr (θ2 = 1 | q̂1 = qH̃)

= qH

q
H̃
γ+(1−q

H̃
)(1−γ)−q

H

qH−q
H

qH̃γ + (1− qH̃)(1− γ)

=
qH

qH − q
H

qH̃γ + (1− qH̃)(1− γ)− q
H

qH̃γ + (1− qH̃)(1− γ)

= ϕ (qH̃γ + (1− qH̃)(1− γ)) ,

where ϕ(p2) =
qH

qH−q
H

p2−q
H

p2
. An analogical computation implies that π(a2 = 1 | θ2 = 1, a1 =

0) = ϕ
(

q
H̃
γ + (1− q

H̃
)(1− γ)

)

, and the claim follows from the monotonicity of ϕ.

Statement 3.: When the DM receives feedback, then her belief at the beginning of period

2 is p2 = γθ1 + (1 − γ)(1 − θ1). Since p2 and the values of the second-period posteriors qH

and q
H

do not depend on a1, π(a2 | θ2, θ1, a1) does not depend on a1, as needed.

Let us consider θ2 = 1 (θ2 = 0 is again analogical). The values of the second-period

posteriors, qH and q
H
, are the same as in the setting without feedback. Thus again, as in

the proof of Statement 2,

π(a2 = 1 | θ2 = 1, θ1 = 1) = ϕ(γ) > ϕ(1− γ) = π(a2 = 1 | θ2 = 1, θ1 = 0).

The next lemma is an auxiliary result that we use in the proof of Proposition 2. It

characterizes the habit strength as a function of the posterior values. To economize on

notation, we write from now on q2 ∈ [1/2, 1) = π(θ2 = 1 | a2 = 1) = qH for the higher of the

two realizations of the second-period posterior, and we note that π(θ2 = 1 | a2 = 0) = 1− q2

both in the setting with and without feedback. Similarly, we write q1 ∈ [1/2, 1) for the high

realization of the first-period posterior π(θ1 = 1 | a1 = 1) and note that π(θ1 = 1 | a1 =
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0) = 1 − q1 in the both settings. We recall that the value of q1 depends on the feedback

specification; it is q1 = qH̃ without feedback, and it is q1 = qH with feedback. Finally, in the

setting without feedback, we let p2 stand for the belief at the beginning of period 2 of the

DM who chose a1 = 1 in period 1. It is p2 = π(θ2 = 1 | a1 = 1) = γq1 + (1− γ)(1− q1). We

recall that the belief at the beginning of period 2 is γθ1 + (1− γ)(1− θ1) in the setting with

feedback.

Lemma 2. 1. In the setting without feedback, the habit strength is

φa1(θ2) =
p2 + q2 − 1

q2 − p2

1− p2
p2

. (4)

2. In the setting with feedback, the habit strength is

φθ1(θ2) =
γ + q2 − 1

q2 − γ

1− γ

γ
. (5)

(Observe that habit strength is independent of θ2 in both cases.)

Proof of Lemma 2. Statement 1.: By its definition, habit strength when the cue is the first-

period action is,

φa1(θ) =
π(a2 = θ | θ2 = θ, a1 = θ)

π(a2 = θ | θ2 = θ, a1 = 1− θ)

=
π(θ2 = θ | a2 = θ, a1 = θ)π(a2 = θ | a1 = θ)/π(θ2 = θ | a1 = θ)

π(θ2 = θ | a2 = θ, a1 = 1− θ)π(a2 = θ | a1 = 1− θ)/π(θ2 = θ | a1 = 1− θ)
.

Since the posterior π(θ2 = θ | a2 = θ, a1) is independent of a1,

φa1(θ) =
π(a2 = θ | a1 = θ)/π(θ2 = θ | a1 = θ)

π(a2 = θ | a1 = 1− θ)/π(θ2 = θ | a1 = 1− θ)

=
(p2 + q2 − 1)/p2
(q2 − p2)/(1− p2)

,

where we have used the martingale condition imposed on the second-period posteriors to

derive π(a2 = θ | a1 = θ) = p2+q2−1
2q2−1

and π(a2 = θ | a1 = 1 − θ) = q2−p2
2q2−1

, and we have noted

that π(θ2 = θ | a1 = θ) = p2 and π(θ2 = θ | a1 = 1− θ) = 1− p2.
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Statement 2.: When the cue is the first-period state then the habit strength is defined as

φθ1(θ) =
π(a2 = θ | θ2 = θ, θ1 = θ)

π(a2 = θ | θ2 = θ, θ1 = 1− θ)

=
π(θ2 = θ | a2 = θ, θ1 = θ)π(a2 = θ | θ1 = θ)/π(θ2 = θ | θ1 = θ)

π(θ2 = θ | a2 = θ, θ1 = 1− θ)π(a2 = θ | θ1 = 1− θ)/π(θ2 = θ | θ1 = 1− θ)
.

Since the posterior π(θ2 = θ | a2 = θ, θ1) is independent of θ1,

φθ1(θ) =
π(a2 = θ | θ1 = θ)/π(θ2 = θ | θ1 = θ)

π(a2 = θ | θ1 = 1− θ)/π(θ2 = θ | θ1 = 1− θ)

=
(γ + q2 − 1)/γ

(q2 − γ)/(1− γ)
,

where we have used the martingale condition imposed on the second-period posteriors to

derive that π(a2 = θ | θ1 = θ) = γ+q2−1
2q2−1

and π(a2 = θ | θ1 = 1− θ) = q2−γ

2q2−1
.

Proof of Proposition 2. No feedback setting : Since the value and the entropy functions are

symmetric, q2 ≥ 1/2 solves the first-order condition

s = −λH ′(q2). (6)

Because −H ′(q2) increases on [1/2, 1) and attains values in [0,∞), (6) has a unique solution

q2 ∈ (1/2, 1) that increases with the stake s. Similarly, q1 ≥ 1/2 solves

s = −λH̃ ′(q1) = −λ (H ′(q1)− (2γ − 1)H ′(γq1 + (1− γ)(1− q1))) . (7)

Again, −H̃ ′(q1) increases on [1/2, 1) and attains values in [0,∞), and thus also (7) has a

unique solution q1 ∈ (1/2, 1) that increases with s. Additionally, q2 < q1 because −H ′(q) >

−H̃ ′(q) for all q ∈ [1/2, 1).

We first analyze comparative statics with respect to γ. Posterior q2 is independent of

γ. Posterior q1 increases with γ since −H̃ ′(q) decreases with γ for all q ∈ [1/2, 1). Hence

p2 = γq1 +(1− γ)(1− q1) increases with γ too. We notice from (4) that
∂φa1

∂p2
> 0. Thus, φa1

increases in γ, as needed.

We now examine comparative statics with respect to s. We combine (6) and (7) to get

H ′(q2) = H ′(q1)− (2γ − 1)H ′ (γq1 + (1− γ)(1− q1)) ,
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and we express q2 as an increasing function of q1. Using that H ′(q) = log 1−q

q
, we get

q2(q1) =
1

1 + x
,

with x = 1−q1
q1

(

p2
1−p2

)2γ−1

> 0, where we remind that p2 = γq1 + (1− γ)(1− q1) is a function

of q1. We prove that d2q2
dq2

1

is positive.

dq2
dq1

=
−1

(1 + x)2
dx

dq1

=
−1

(1 + x)2

(

−1

q21

(

p2
1− p2

)2γ−1

+
1− q1
q1

(

p2
1− p2

)2γ−2
(2γ − 1)2

(1− p2)2

)

=
−1

(1 + x)2
1− q1
q1

(

p2
1− p2

)2γ−1(
−1

q1(1− q1)
+

(2γ − 1)2

p2(1− p2)

)

=
x

(1 + x)2

(

1

q1(1− q1)
−

(2γ − 1)2

p2(1− p2)

)

.

d2q2
dq21

=
(1− x)

(1 + x)3
dx

dq1

(

1

q1(1− q1)
−

(2γ − 1)2

p2(1− p2)

)

+
x

(1 + x)2

(

2q1 − 1

q21(1− q1)2
− (2γ − 1)3

2p2 − 1

p22(1− p2)2

)

= −
(1− x)x

(1 + x)3

(

1

q1(1− q1)
−

(2γ − 1)2

p2(1− p2)

)2

+
x

(1 + x)2

(

2q1 − 1

q21(1− q1)2
− (2γ − 1)3

2p2 − 1

p22(1− p2)2

)

= −
(1− x)x

(1 + x)3

(

1

q1(1− q1)
−

(2γ − 1)2

p2(1− p2)

)2

+
x

(1 + x)2

(

2q1 − 1

q21(1− q1)2
− (2γ − 1)4

2q1 − 1

p22(1− p2)2

)

>
x(2q1 − 1)

(1 + x)2

(

−

(

1

q1(1− q1)
−

(2γ − 1)2

p2(1− p2)

)2

+

(

1

q21(1− q1)2
−

(2γ − 1)4

p22(1− p2)2

)

)

=
x(2q1 − 1)

(1 + x)2

(

1

q1(1− q1)
−

(2γ − 1)2

p2(1− p2)

)

2(2γ − 1)2

p2(1− p2)
> 0,

where we have used (2γ− 1)(2q1− 1) = (2p2− 1) in the third step, 1−x
1+x

= 2q2− 1 < (2q1− 1)

in the fourth step, and q1 > p2 in the last step.

We notice from (4) that φa1 decreases with s if p2+q2−1
q2−p2

decreases with s (since 1−p2
p2
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decreases with q1 and hence with s). Thus, φa1 decreases with s if

0 >
d

ds

p2 + q2 − 1

q2 − p2

=
(2q2 − 1)dp2

ds
− (2p2 − 1)dq2

ds

(q2 − p2)2

=

(

(2q2 − 1)
dp2
dq1

− (2p2 − 1)
dq2
dq1

) dq1
ds

(q2 − p2)2

=

(

(2q2 − 1)(2γ − 1)− (2p2 − 1)
dq2
dq1

) dq1
ds

(q2 − p2)2

=

(

2q2 − 1− (2q1 − 1)
dq2
dq1

)

(2γ − 1)dq1
ds

(q2 − p2)2
,

where we have used dp2
dq1

= (2γ − 1) for the third equality, and 2p2−1
2γ−1

= 2q1 − 1 to establish

the fourth equality. Therefore, it suffices to prove that

2q2 − 1 < (2q1 − 1)
dq2
dq1

.

We observe that q2 = 1/2 when q1 = 1/2. Thus, by the Mean value theorem, there exists

1/2 < q̃1 < q1 such that,

2q2 − 1 = (2q1 − 1)
dq2
dq1

∣

∣

∣

∣

q̃1

< (2q1 − 1)
dq2
dq1

∣

∣

∣

∣

q1

,

where the inequality follows from the fact that dq2
dq1

increases with q1.

Feedback setting : Again, q2 solves (6) and thus q2 increases with s and it is independent

of γ. It follows from (5) that φθ1 increases with γ. Finally, φθ1 decreases with q2, and hence

with s.
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Frequency of a1 = θ1 Frequency of a2 = θ2 Frequency of a2 = a1 Frequency of a1 = θ2

IF .73 .66 .54 .55
IN .79 .79 .52 .49
CF .82 .81 .73 .70
CN .79 .74 .79 .70

Table 5: Preliminary session: Data summary

IF IN CF CN

a1
-.029 (.091)

.748
.037 (.056)

.501
.037 (.055)

.500
.449 (.083)

.000

θ1
.129 (.101)

.203
-.023 (.046)

.617
.408 (.203)

.000
−.095 (.065)

.144

θ2
.267 (.065)

.000
.552 (.072)

.000
.317 (.082)

.000
.436 (.099)

.000

Table 6: Preliminary session: Average marginal treatment effects, (their standard errors),
and the p-values in the second lines. Bold values indicate significance at the 1% level.

A.2 Preliminary Session

We ran a preliminary session prior to the regular sessions. Sixteen participating subjects

obtained a $15 show-up fee and an additional $5 for a correct answer to the counting task

(randomly selected at the end of the experiment). The parameters were: γ = .5 in treatments

with independent states (I) and γ = .75 in treatments with correlated states (C). As in the

regular sessions, θ1 was revealed in between periods in the treatments F with feedback and

it was not revealed in treatments N without feedback. The treatment order was IF , CF ,

IN , CN .

The basic data description in Table 5 and the estimated average marginal treatment

effects in Table 6 are consistent with the results from the regular sessions. However, in this

session, the subjects were free to leave immediately once they finished all their counting

tasks in the last treatment (CN), which affected their information processing costs in an

uncontrolled manner, and thus we omit the pilot data from the main analysis.
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Figure 1: A scaled-down screenshot of the counting task.
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A.3 Experimental instructions

Instructions

Welcome to the experiment! Please take a record sheet at the front if you don't have one already. 

Please do not use the computers during the instructions.  When it is time to use the computer, please 

follow the instructions precisely.(Repeat if necessary.) 

 

Please raise your hand if you need a pencil. Please put away and silence all your personal belongings, 

especially your phone. We need your full attention during the experiment.  

 

Raise your hand at any point if you cannot see or hear well. 

 

The experiment you will be participating in today is an experiment in decision making. At the end of 

the experiment, you will be paid for your participation in cash. The amount you earn depends on your 

decisions and on chance. You will be using the computer for the experiment, and all decisions will be 

made through the computer. DO NOT socialize or talk during the experiment. 

 

All instructions and descriptions that you will be given in the experiment are accurate and true. In 

accordance with the policy of this lab, at no point will we attempt to deceive you in any way. 

 

If you have any questions, raise your hand and your question will be answered out loud so everyone 

can hear.  

 

After you have completed all the tasks, please wait while everyone else finishes his or her tasks.  Once 

everyone has completed the experiment, I will ask you to fill in the questionnaire. After the 

questionnaire you will collect your earnings and leave. 

 

//////////////////////////////////////////////////////////////////////////////////////////////////// 

 

I will now describe the main features of the experiment and show you how to use the software. Again, 

if you have any questions during this period, please raise your hand. 

 

You will be presented with a series of choices to make. There will be four SETS of choices in today's 

experiment. Each set contains twelve ITERATIONS, and each iteration has two PERIODS. In each period, 

you will be shown a picture of 100 dots. Each dot will be either RED or BLUE. We have displayed an 

example of such a screen on your computer monitor. (show an example screen) 

 

This is an example of the screens you will see during the experiment. In every period, the picture will 

contain either 51 red dots and 49 blue dots, or instead, 51 blue dots and 49 red dots. We will call these 

two cases MAJORITY RED and MAJORITY BLUE, respectively.  In each case, the dots are randomly 

allocated to the positions in the matrix.  In each period the computer will choose randomly between 

MAJORITY RED and MAJORITY BLUE. You will be told in advance how likely each case is to happen.   

 

In each period, you will be asked to determine if the image is MAJORITY RED or MAJORITY BLUE. While 

you may take as much time as you need to make your choice, the image will disappear after 45 

seconds. 
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I am now going to describe the details of the experiment.   

 

The experiment is divided into four SETS. In each set, you will be presented with twelve iterations, and 

each iteration consists of two periods, each with its own image.  The rules for the 12 iterations within 

each set are identical, but the rules are different in different sets.   

 

In PERIOD 1 of each iteration, the image is always generated so that there is an equal chance of 

MAJORITY RED and MAJORITY BLUE, meaning that there is a 50% chance of MAJORITY RED and a 50% 

chance of MAJORITY BLUE. 

 

In period 2 of each iteration, the image will be generated in a way that differs across sets.  In some sets, 

the majority color for period 2 is chosen in a way that is completely separate from the period 1 image, 

and is randomly generates so that there is an equal chance of MAJORITY RED and MAJORITY BLUE, just 

like the period 1 image.  But in other sets, the period 2 image depends on the majority color of the 

period 1 image.  In these sets, the computer generates the period 2 image so that there is a 75% 

chance that the majority color matches the period 1 majority color, and a 25% chance that the majority 

color is different from the period 1 majority color.   

 

 

It is important to remember that while the periods within each iteration may be related to each other, 

the periods across iterations are never related. 

 

After making your choices, you will always be told what the majority color was, but the timing of this 

differs from set to set. In some sets, the majority colors will be revealed after every period. In other 

sets, the majority colors for an iteration will not be revealed until you complete both periods. Before 

each set, you will be told about the timing of the feedback you will receive. 

 

The amount of money you will receive at the end of the experiment depends on your choices. After we 

have completed all four sets, you will have made 96 choices (4 sets times 12 iterations times 2 periods).  

The computer software will randomly select one of these 96 periods.  Your payment will be 

determined by your choice in that single period.  If your choices in the randomly chosen period 

matches the majority color, you will earn an additional $5 dollars on top of the $15 show-up fee. 

Otherwise, you will receive no additional payment, but you will still receive the show-up fee. 

 

After you complete the last set, please wait until we start the questionnaire part. After you finish the 

questionnaire, please fill your record sheet on the desk. I will pay one by one to keep everyone’s 

privacy. 

 

To summarize, remember that we have four sets in the experiment today. Each set consists of 12 

iterations, and each iteration consists of two periods. The sets will vary in how likely it is that the 

majority colors are the same for both periods within an iteration, and in the timing that the majority 

colors are revealed. Please raise your hand if you have any questions. 
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(1) FI/FC/NI/NC 

Feedback/IID:  

In the next set of twelve iterations, the majority color for period 2 is randomly generated so that there is 

an equal chance of MAJORITY RED and MAJORITY BLUE, and it does not depend on the majority color in 

the first period. 

The majority colors will be revealed after every period, so that you will be told the majority color from 

period 1 before you see the image for period 2. Please raise your hand if you have any question. 

 

Feedback/Corr.: 

In the next set of twelve iterations, the majority color for period 2 is randomly generated so that there is 

a 75% chance that the majority color matches the majority color from period 1, and a 25% chance that 

the majority color is different from period 1. 

The majority colors will be revealed after every period, so that you will be told the majority color from 

period 1 before you see the image for period 2. Please raise your hand if you have any question. 

 

No Feedback/IID: 

In the next set of twelve iterations, the majority color for period 2 is randomly generated so that there is 

an equal chance of MAJORITY RED and MAJORITY BLUE, and it does not depend on the majority color in 

the first period. 

The majority colors for both periods of an iteration will be revealed only at the end of each iteration, so 

that you will see the period 2 image before being told the majority color from period 1.   Please raise 

your hand if you have any question. 

 

No Feedback/Corr.: 

In the next set of twelve iterations, the majority color for period 2 is randomly generated so that there is 

a 75% chance that the majority color matches the period 1 majority color, and a 25% chance that the 

majority color is different from the period 1 majority color. 

The majority colors for both periods of an iteration will be revealed only at the end of each iteration, so 

that you will see the period 2 image before being told the majority color from period 1.   Please raise 

your hand if you have any question. 
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(2) NI/NC/FI/FC 

No Feedback/IID: 

In the next set of twelve iterations, the majority color for period 2 is randomly generated so that there is 

an equal chance of MAJORITY RED and MAJORITY BLUE, and it does not depend on the majority color in 

the first period. 

The majority colors for both periods of an iteration will be revealed only at the end of each iteration, so 

that you will see the period 2 image before being told the majority color from period 1.   Please raise 

your hand if you have any question. 

 

No Feedback/Corr.: 

In the next set of twelve iterations, the majority color for period 2 is randomly generated so that there is 

a 75% chance that the majority color matches the period 1 majority color, and a 25% chance that the 

majority color is different from the period 1 majority color. 

The majority colors for both periods of an iteration will be revealed only at the end of each iteration, so 

that you will see the period 2 image before being told the majority color from period 1.   Please raise 

your hand if you have any question. 

 

Feedback/IID:  

In the next set of twelve iterations, the majority color for period 2 is randomly generated so that there is 

an equal chance of MAJORITY RED and MAJORITY BLUE, and it does not depend on the majority color in 

the first period. 

The majority colors will be revealed after every period, so that you will be told the majority color from 

period 1 before you see the image for period 2. Please raise your hand if you have any question. 

 

Feedback/Corr.: 

In the next set of twelve iterations, the majority color for period 2 is randomly generated so that there is 

a 75% chance that the majority color matches the majority color from period 1, and a 25% chance that 

the majority color is different from period 1. 

The majority colors will be revealed after every period, so that you will be told the majority color from 

period 1 before you see the image for period 2. Please raise your hand if you have any question. 
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