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Efficient Sequential Screening∗

Boaz Zik†

Abstract

A seller of an item faces a potential buyer whose valuation depends on mul-

tiple private signals. When there are informational externalities and the buyer’s

private signals arrive all at once efficient implementation is impossible. We show

that if the buyer’s private signals arrive over time in a particular order then

the seller can implement efficiency even in the presence of informational exter-

nalities. (Keywords: Efficient mechanisms; Sequential screening; Interdependent

valuations; Multidimensional information; Informational externalities)

1 Introduction

When a government is considering selling an item to a potential buyer, whether it is

a permit, a license, or a physical asset, it wants to implement an efficient allocation.

That is, it wants to sell the item to the buyer if and only if the social welfare in the case

where the buyer receives the item is greater than the social welfare in the case where

the government keeps the item. Many times the buyer receives private information that

affects social welfare and hence the efficient allocation. It is often the case where the

buyer’s information is multidimensional and where there are informational externalities,

i.e., situations where the buyer receives private information about multiple parameters
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Perry, Phil Reny, Assaf Romm, and participants of various seminars for their valuable comments.
Funding by the German Research Foundation (DFG) through CRC TR 224 (Project B01) is gratefully
acknowledged.

†Institute for Microeconomics, University of Bonn.
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that affect social welfare not only by affecting the buyer’s valuation but also by affecting

other aspects of social welfare. The externalities may be pecuniary. For example,

consider a firm asking for a production right license in an oligopolistic market that

has private information about its marginal cost and about its fixed cost. The firm’s

information about its costs affects the equilibrium price which in turn affects not only

the firm’s profits but also the profits of other firms and the consumer surplus. The

externalities may be real. For example, an energy factory that applies for a drilling

permit and holds private information about the amount of waste and air pollution it

will produce. This information affects not only the firm’s profit but also the quality of

the environment. Externalities also arise in the presence of interdependent valuations,

i.e., in environments where the buyer’s private information also affects the payoff of

the government if it decides to keep the item. Unfortunately, Maskin (1992), Dasgupta

and Maskin (2000), and Jehiel and Moldovanu (2001) have shown that in environments

with multidimensional information and informational externalities it is (generically)

impossible to implement an efficient sale.1

In this paper we show that this result corresponds to the case where the buyer knows

all of her private information before the selling mechanism can be activated. We show

that if the buyer’s private information arrives over time and if the selling mechanism can

be activated before the buyer is exposed to all of her private information, then efficiency

can be implemented in natural environments with informational externalities.

Our model considers a seller of an item facing a potential buyer. The buyer receives

two payoff-relevant signals in a sequential manner. We first show that in static envi-

ronments (i.e., environments where the buyer knows all of her signals) a decision rule

is implementable if and only if it is monotonic with respect to the buyer’s valuation.

This means that a necessary condition for implementation is that the buyer’s valuation

does not change along the boundary of the decision rule (i.e., the boundary between

the set of signals that maps “do not sell” and the set of signals that maps “do sell.”).

We then show that a decision rule is implementable in a sequential environment if and

only if it is monotonic with respect to each of the buyer’s signals and, in addition, the

buyer’s valuation moves monotonically along the boundary of the decision rule.

1Jehiel and Moldovanu (2001) show a more general impossibilty result that includes the setting of
the allocation of an indivisible good as a special case.
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We use these results to compare the possibility of efficient implementation between

static and sequential environments. For this purpose we examine the effect of the

buyer’s information on the social welfare. In situations where the effect of the buyer’s

information on the social welfare is limited to its effect on the buyer’s value, efficiency is

implementable in both static and sequential environments. This is because the bound-

ary of the efficient decision rule coincides with one of the buyer’s isovalue curves. By

contrast, in situations where the buyer’s information has other externalities on the

social welfare, efficient implementation is typically impossible in static environments.

This is because the boundary of the efficient decision rule does not coincide with any

of the buyer’s isovalue curves. Nonetheless, efficiency can be implemented in sequential

environments. This happens in cases where the ratio between the effects of the first

and the second signals is greater with respect to the social welfare than with respect

to the buyer’s valuation. In such cases the buyer’s valuation is monotonic along the

boundary of the efficient decision rule and efficiency is implementable.

When the buyer’s valuation moves monotonically along the boundary of the efficient

decision rule, efficient sequential implementation is possible if and only if the buyer’s

signals arrive in a particular order. When the buyer’s signals do not arrive in the

right order we show that although the sequential arrival of the buyer’s information

relaxes the incentive compatibility constraints it does not improve efficiency, i.e., we

show that the second-best decision rule of the sequential environment provides the

same expected social welfare as the second-best decision rule of the static environment.

When the buyer’s valuation is not monotonic along the boundary of the efficient decision

rule, we present sufficient conditions for the second-best decision rule of the sequential

environment to provide a higher expected social welfare than the second-best decision

rule of the static environment.

This paper focuses on environments with a single buyer. Nonetheless, it is straight-

forward to extend the analysis to the case of multiple buyers. We discuss how the

analysis in the paper can be carried through to the case of multiple buyers but we do

not provide a formal analysis for the sake of not overextending the paper. Most of the

proofs are relegated to appendix B.
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Related Literature

This work connects the literature on sequential screening see, e.g., Courty and Li (2000),

Esö and Szentes (2007a, b), and Krähmer and Strausz (2011, 2015a, b, 2017),2 to the

literature on the impossibility of efficient implementation in environments with multi-

dimensional information and informational externalities, see, Maskin (1992), Dasgupta

and Maskin (2000), and Jehiel and Moldovanu (2001). The current sequential screening

literature focuses on profit maximization. The standard model is introduced in Courty

and Li (2000) who derive a revenue equivalence result and provide regularity conditions

that guarantee the implementability of the optimal decision rule. The maximal revenue

that the seller can achieve depends on how the information of the buyer in the first

period is distributed and on how it affects the distribution that the buyer assigns to

her final valuation. The implementation of efficiency, on the other hand, is determined

by the relationship between the variation of the buyer’s valuation and the variation of

the social welfare with respect to both of the buyer’s signals. That is, it depends on

the payoff effect of both of the buyer’s signals and on the order in which they arrive.

Our paper also relates to other works that present positive results on efficient im-

plementation in environments with multidimensional information and informational

externalities. Mezzeti (2004) shows that in settings where it is possible to condition

transfers on realizations of payoffs, efficiency can be implemented in static environ-

ments. Our results show that in sequential environments it is possible to implement

efficiency even in settings that require both the allocation and transfers to depend only

on agents’ signals. Johnson, Miller, and Zeckhauser (2003) show that in static environ-

ments where agents’ signals are correlated such that different values of an agent’s signal

imply different distributions of the other agents’ signals, efficient Bayesian implemen-

tation is (approximately) possible. Our results show that in sequential environments it

is possible to implement efficiency even when the buyer’s information is independent of

2More works on sequential screening include Baron and Besanko (1984), Dai, Lewis, and Lopomo.
(2006), Hoffmann and Inderst (2011), Nocke, Peitz, and Rosar (2011), Bergemann and Wambach
(2015), Deb and Said (2015), Li and Shi (2017). More general models of dynamic mechanism design
include Battaglini (2005), and Pavan, Segal, and Toikka (2014). For works on efficient dynamic
mechanism design in environments with private values see Bergemann and Valimaki (2010) and Athey
and Segal (2013).
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any other source of information that may be available for the seller. The methods to

implement efficiency in static settings that appear in the aforementioned papers have

been extended to dynamic settings. Liu (2017) uses correlation among types and He and

Li (2016) use transfers that are contingent on payoff realizations, to induce efficiency

in dynamic settings.

2 The model

Consider a seller (he) of a single item facing a potential buyer (she). There are two

periods, 1 and 2. The buyer receives a private signal θ1 ∈ [0, 1] in period 1, and a

private signal θ2 ∈ [0, 1] in period 2. These signals are distributed by a probability

distribution F (θ1, θ2), and F is commonly known. We assume that {F (θ2|θ1)}θ1∈[0,1]
are ordered by first order stochastic dominance, i.e., F (θ2|θ1) is strictly decreasing in θ1.

The buyer’s valuation V is a function of her signals V : [0, 1]2 → R+. We assume that

V is continuously differentiable and strictly increasing in θ1 and θ2. We also consider

the case where V is independent of θ1, and the case where F (θ2|θ1) is independent of3

θ1. The buyer’s payoff is minus her payment to the seller, plus, in case she gets the

item, her value of the item. We denote by A the set of feasible allocations A = {0, 1},

where 1 is the allocation that assigns the item to the buyer, and 0 is the allocation that

assigns the item to the seller. A decision rule is a function4 q : Θ → A. A social choice

function, s, assigns an allocation and a payment to the seller for every realization of

signals, i.e., s(θ) = (q (θ) , t (θ)), where q(θ) ∈ A and t (θ) ∈ R.

3 Implementation

In this section we characterize and compare the sets of implementable decision rules

in static and sequential environments. We start with an analysis of static mechanisms.

Static mechanisms are mechanisms that are activated after the buyer has been exposed

3The first case is the standard setting of sequential screening, see, e.g., Courty and Li (2000) and

Krähmer and Strausz (2011, 2017). The second case corresponds with Es
′′

o and Szentes (2007a).
4We consider deterministic mechanisms because we focus on efficiency, and efficient decision rules

are deterministic. In Appendix A we discuss the implications of our focus on deterministic mechanisms.
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to both her signals θ1 and θ2. By the revelation principle (e.g., Myerson 1981) we restrict

our attention to direct mechanisms. We say that a social choice function (q (θ) , t (θ))

is implementable by a static mechanism if for every (θ1, θ2) we have

(

θ1, θ2
)

∈ argmax
(θ̂1,θ̂2)∈[0,1]2

V
(

θ1, θ2
)

· q
(

θ̂1, θ̂2
)

− t
(

θ̂1, θ̂2
)

We say that a decision rule q (θ) is implementable by a static mechanism if there exists

a transfer function t (θ) such that (q (θ) , t (θ)) is implementable by a static mechanism.

Claim 1. A decision rule q (θ) is implementable by a static mechanism if and only if it

is of the following form:

q (θ) =



















1 if V (θ1, θ2) > C

0 or 1 if V (θ1, θ2) = C

0 otherwise

for some C ∈ R.

We proceed to analyze sequential mechanisms. A sequential mechanism maps a

pair of the buyer’s actions, one in each period, to an allocation and a transfer. By the

revelation principle for sequential games (e.g., Myerson 1986) we restrict our attention

to direct mechanisms. We say that a social choice function (q (θ) , t (θ)) is implementable

by a sequential mechanism if the following conditions hold:

(i)

Eθ2
[

V
(

θ1, θ2
)

· q
(

θ1, θ2
)

− t
(

θ1, θ2
)

|θ1
]

≥

Eθ2

[

V
(

θ1, θ2
)

· q
(

θ̂1, θ̂2
(

θ2
)

)

− t
(

θ̂1, θ̂2
(

θ2
)

)

|θ1
]

for every θ1 ∈ [0, 1] and θ̂1 ∈ [0, 1] and every θ̂2 : [0, 1] → [0, 1].

(ii)

V
(

θ1, θ2
)

· q
(

θ1, θ2
)

− t
(

θ1, θ2
)

≥

V
(

θ1, θ2
)

· q
(

θ1, θ̂2
)

− t
(

θ1, θ̂2
)

for every (θ1, θ2) ∈ [0, 1]2 and θ̂2 ∈ [0, 1].
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We say that a decision rule q (θ) is implementable by a sequential mechanism if there

exists a transfer function t (θ) such that (q (θ) , t (θ)) is implementable by a sequential

mechanism.

Consider the set C := {C : [0, 1] → [0, 1] s.t. C is decreasing}. For each C ∈ C we

denote θ1,C := inf {θ1 s.t. C(θ1) < 1} and θ
1,C

:= sup {θ1 s.t. C(θ1) > 0}.

Theorem 2. A decision rule q (θ) is implementable by a sequential mechanism if and

only if there exists a function C ∈ C such that

q (θ) =



















1 if θ2 > C (θ1)

0 or 1 if θ2 = C (θ1)

0 otherwise

and in addition V (θ1, C (θ1)) is a decreasing function of θ1 in the segment5
[

θ1,C , θ
1,C

]

.

67The argument of the proof is as follows. Assume the buyer reports her first type

θ1 truthfully. Then in the second period we are facing an implementation problem with

respect to a unidimensional signal θ2, where the buyer’s valuation is V (θ1, θ2). Since

V is strictly monotone in θ2, implementability holds if and only if the decision rule is

monotonic with respect to θ2. The threshold is set at C (θ1) and the payment to the

seller in case of a sale is

τ
(

θ1
)

:=







V (θ1, C (θ1)) if θ1,C ≤ θ1 ≤ θ
1,C

V
(

θ
1,C

, 0
)

if θ
1,C

< θ1 ≤ 1

This implies that each report of θ1 in the first period sets a price for the item in the

5For every θ1 < θ1,C we have C
(

θ1
)

= 1 and q
(

θ1, 1
)

= 0. For every θ
1,C

< θ1 we have C
(

θ1
)

= 0

and q
(

θ1, 0
)

= 1. That is, for these θ1 the decision rule q
(

θ1, ·
)

is a constant function.
6The standard sequential screening model à la Courty and Li (2000) assumes that V

(

θ1, θ2
)

= θ2

and F (θ2|θ1) is strictly decreasing in θ1. The characterization of the set of deterministic decision rules
in this setting is established in Krähmer and Strausz (2011). In this case we get that any decreasing
threshold function C

(

θ1
)

∈ C is implementable by a sequential mechanism.
7The characterization of Theorem 2 holds in any environment where V is increasing in θ1 and θ2,

and where the effects of θ1 on V and on F
(

θ2|θ1
)

constitute a surrounding where higher types in the
first period are facing higher probabilities of receiving higher valuations.
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second period. In addition, the buyer is charged a fee p (θ1) for participating in the

mechanism that sets the price τ (θ1). Thus, the transfer function is set as

t (θ) =







p (θ1) + τ (θ1) if q (θ) = 1

p (θ1) if q (θ) = 0

We get that an implementable sequential mechanism provides the buyer in the first

period with a menu of options, each sets a strike price, τ (θ1), for the item in the second

period. All types of the buyer agree on the ordinal order of these strike prices: the lower

the strike price, the better. However, they differ in the intensity of their preferences,

such that higher θ1 types are more willing to pay for lower strike prices. In such a

single crossing environment a necessary and sufficient condition for implementation is

that higher types are assigned with lower strike prices, i.e., the property that τ (θ1) is

decreasing is necessary and sufficient for implementation.

We now present the necessary and sufficient conditions for implementation in both

static and sequential environments in terms of the variation of the buyer’s valuation

along the boundary of the decision rule. Without loss of generality we restrict attention

to the set decision rules that are monotonic with respect to each of the buyer’s signals,

and denote this set by D . Each decision rule in D is identified with a function C ∈ C

that maps each type in
[

θ1,C , θ
1,C

]

to a threshold type in the second period. We denote

the boundary of a decision rule q(θ) ∈ D by q(C), i.e., q(C) := (θ1, C (θ1))
θ1∈

[

θ1,C ,θ
1,C

]

where C ∈ C. Using the above characterizations we reach the following conclusion:

Corollary 3. A decision rule q (θ) ∈ D with a boundary q(C) is implementable by a

static mechanism if and only if for any θ̃1 < θ̇1 ∈
[

θ1,C , θ
1,C

]

we have

V
(

θ̃1, C
(

θ̃1
))

= V
(

θ̇1, C
(

θ̇1
))

and it is implementable by a sequential mechanism if and only if for any θ̃1 < θ̇1 ∈
[

θ1,C , θ
1,C

]

we have

V
(

θ̃1, C
(

θ̃1
))

≥ V
(

θ̇1, C
(

θ̇1
))
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In words, the decision rule is implementable by a static mechanism if and only if its

boundary coincides with one of the buyer’s isovalue curves and is implementable by a

sequential mechanism if and only if the buyer’s valuation weakly decreases as we move

rightward along its boundary.

V
(

θ̇1, C
(

θ̇1
))

V
(

θ̃1, C
(

θ̃1
))

θ̇1

C
(

θ̇1
)

θ̃1

C
(

θ̃1
)

q(C)

θ1

θ2

Figure 1: The buyer’s valuation decreases along the boundary of the decision rule.

Remark. In an implementable sequential mechanism higher types in the first period are

facing higher expected utilities. Therefore, individual rationality is satisfied whenever

the lowest type in the first period is willing to participate in the mechanism. For

example, when the price for the option that offers the highest strike price in the second

period is zero.

4 Efficiency

This paper considers a seller whose objective is to implement efficiency, namely, who

wants to implement the allocation that would produce the greatest social welfare. In

situations where the buyer’s information affects the social welfare only by its effect on

the buyer’s valuation, efficiency is implementable in static environments. When there

9



are informational externalities on the social welfare the possibility of implementing

efficiency in static settings depends on the dimensionality of the information. When

the buyer’s information is unidimensional efficiency is implementable if a single-crossing

condition is satisfied.8 If, however, the buyer’s information is multidimensional then it is

typically impossible to implement efficiency.9 In this section we show that in sequential

environments efficiency can be implemented even in the latter case.

We consider efficient decision rules that take the following form. There exists a

function U : [0, 1]2 → R such that

qe (θ) =



















1 if U (θ1, θ2) > C

0 or 1 if U (θ1, θ2) = C

0 otherwise

where C ∈ R and U (θ1, θ2) is continuously differentiable and strictly increasing in

θ1 and θ2. We define the set Ū to be the boundary of the efficient decision rule,

i.e., Ū := {(θ1, θ2) s.t. U (θ1, θ2) = C}. We denote by [u, u] the segment of all θ1

such that there exists θ2 where (θ1, θ2) ∈ Ū . We define θ̃2 (θ1) to be the function

that assigned to any θ1 ∈ [u, u] the threshold type it inflicts with respect to θ2, i.e.,

θ̃2 (θ1) := θ2 s.t. (θ1, θ2) ∈ Ū . Using the results of Section 3 we deduce the main result

of the paper.

Proposition 4. The efficient decision rule qe (θ) is implementable by a static mecha-

nism if and only if
∂V/∂θ1

∂V/∂θ2

(

θ1, θ2
)

=
∂U/∂θ1

∂U/∂θ2

(

θ1, θ2
)

for every (θ1, θ2) ∈ Ū , and is implementable by a sequential mechanism if and only if

∂V/∂θ1

∂V/∂θ2

(

θ1, θ2
)

≤
∂U/∂θ1

∂U/∂θ2

(

θ1, θ2
)

for every (θ1, θ2) ∈ Ū .

8See, for example, Cremer and McLean (1985), Maskin (1992), Dasgupta and Maskin (2000), Jehiel
and Moldovanu (2001), and Perry and Reny (2002).

9See, Maskin (1992), Dasgupta and Maskin (2000), and Jehiel and Moldovanu (2001).
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Consider the case where
∂V/∂θ1

∂V/∂θ2
(θ1, θ2) ≥

∂U/∂θ1

∂U/∂θ2
(θ1, θ2), this inequality is equivalent

to
∂V/∂θ2

∂V/∂θ1
(θ1, θ2) ≤

∂U/∂θ2

∂U/∂θ1
(θ1, θ2) which implies:

Corollary 5. If the seller controls the order of the buyer’s signals, then the monotonic-

ity of the buyer’s valuation along the boundary of the efficient decision rule (increasing

or decreasing) is a necessary and sufficient condition for implementing efficiency.

4.1 Applications

In this subsection we discuss applications where efficiency is not implementable in a

static environment but is implementable in a sequential environment. When we refer to

a sequential environment we assume that the order in which the buyer’s signals arrive

is commonly known and that the seller can activate the selling mechanism before the

buyer has learned all of her information. These assumptions are naturally satisfied in

environments where the seller can control the timing, and sometimes even the order,

in which the buyer is exposed to her private information. For example, environments

where the buyer’s information arrives from tests conducted on the item. The seller can

decide when the buyer would carry out these tests. Or environments where the seller

holds some information that only the buyer can infer its meaning. The seller can decide

when to release this information to the buyer.

4.1.1 Multidimensional Valuation and a Uni-dimensional Externality

An important set of economic environments where efficiency cannot be implemented

by static mechanisms but can be implemented by sequential mechanisms is where the

buyer’s valuation is multidimensional but the social externality is uni-dimensional, i.e.,

environments where the buyer receives private information that affects her valuation,

but only part of this information affects the social welfare. Among the possible examples

are: A private firm asking for a license to join an oligopolistic market and has private

information about its marginal cost and about its fixed cost. Only the marginal cost

affects the equilibrium price which in turn affects the profits of other firms and the

consumer surplus. An oil company applying for a drilling license that receives private

11



information about its drilling cost and about the potential oil spills. The potential oil

spills incur potential damages to the quality of the environment.

We denote the part of the buyer’s information that affects both the buyer’s valuation

and the social welfare by θe and the part of the buyer’s information that affects only the

buyer’s valuation by θb. The social welfare in the case where the buyer gets the item is

equal to the sum of the buyer’s valuation and the externality, Φ (θe), i.e., U
(

θe, θb
)

=

V
(

θe, θb
)

+Φ (θe). We assume that the social welfare in the case where the seller keeps

the item is known and we denote it by C. The efficient decision rule is

qe (θ) =



















1 if U
(

θe, θb
)

> C

0 or 1 if U
(

θe, θb
)

= C

0 otherwise

now
∂U

∂θe
=

∂V

∂θe
+

∂Φ

∂θe
and

∂U

∂θb
=

∂V

∂θb

when ∂Φ
∂θe

> 0 we have that

∂V/∂θe

∂V/∂θb

(

θ1, θ2
)

<
∂U/∂θe

∂U/∂θb

(

θ1, θ2
)

when ∂Φ
∂θe

< 0 we have that

∂V/∂θb

∂V/∂θe

(

θ1, θ2
)

<
∂U/∂θb

∂U/∂θe

(

θ1, θ2
)

By Proposition 4 efficiency can be implemented by a sequential mechanism as long as

signals arrive in the right order, and cannot be implemented by a static mechanism.

4.1.2 Interdependent Valuations

Perhaps the most common and important case of informational externalities is the case

of interdependent valuations, i.e., where the information of one buyer also affects the

12



valuation of other potentials buyers.10 To analyze the case of interdependent valuations

we consider a seller who can allocate an item to one of two potential buyers, A and B,

and wants to allocate it to the buyer who values it the most. Buyer A has private infor-

mation, while buyer B does not. The signals of buyer A, (θ1, θ2), affect the valuations

of both buyers. We assume that the buyers’ valuations functions are drawn from a set

of valuation functions that are ordered in the following two ways. The first is that for

every two valuation functions, for every realization of signals, the partial derivatives of

one function are bigger than the partial derivatives of the other. The second is that for

every two valuation functions, for every realization of signals, one has a weakly smaller

MRS than the other. We assume that buyer A is assigned with a valuation that has

the higher partial derivatives.11 An implication of the results in Jehiel and Moldovanu

(2001) is that it is generically impossible to implement efficiency in such an environ-

ment. Our results imply that in a sequential environment it is possible to implement

efficiency on a set of valuations of a positive measure. Moreover, if the seller can control

the order in which signals arrive then he can always implement efficiency.

To illustrate this point we consider the set of linear valuations. Assume that the

valuation function of buyer A is VA (θ1, θ2) = α1θ1+α2θ2+a and the valuation function

of buyer B is VB (θ1, θ2) = β1θ1+ β2θ2+ b, where b > a and αk > βk > 0 for k ∈ {1, 2}.

We define U (θ1, θ2) := (α1 − β1) θ1 + (α2 − β2) θ2. The efficient decision rule is

qe (θ) =



















1 if U (θ1, θ2) > b− a

0 or 1 if U (θ1, θ2) = b− a

0 otherwise

By Proposition 4 efficiency is implementable by a static mechanism if and only if
β1

β2 = α1

α2 . This condition is met only for a set of parameters of measure zero in R
4
+,

and so efficiency is generically impossible. Efficiency is implementable by a sequential

10There is an extensive literature on mechanism design with interdependent valuations. See, for
example, Cremer and McLean (1985), Dasgupta and Maskin (2000), Perry and reny (2000), Jehiel and
Moldovanu (2001), Jehiel, Meyer-ter-Vehn, Moldovanu, and Zame (2006), Bikhchandani (2006), Siegel
(2014), and Mclean and Postelwaite (2015).

11This is a generalization of the single crossing property in the case of a uni-dimensional signal, see
Dasgupta and Maskin (2000).
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mechanism if and only if β1

β2 ≤ α1

α2 . This condition is met for a set of parameters of a

positive measure in12
R

4
+. In addition, Corollary 5 implies that if the seller can control

the timing in which buyer A’s signals arrive, then he can always implement efficiency.

4.2 Second-best Analysis

In this subsection we consider the case where the necessary and sufficient condition for

implementing efficiency by a sequential mechanism does not hold and analyze whether

the use of sequential mechanisms can still enhance the social welfare.13 We first con-

sider the case where the buyer’s valuation is increasing as we move rightward along the

boundary of the efficient decision rule. We show that in this case the social welfare can-

not increase from applying sequential mechanisms. This means that when the buyer’s

valuation is monotonic along the boundary of the efficient decision rule and signals do

not arrive in the right order, then not only that full efficiency cannot be implemented

but the sequential arrival of the buyer’s signals does not even improve the second-best

outcome.

Theorem 6. Assume that
∂V/∂θ1

∂V/∂θ2
(θ1, θ2) >

∂U/∂θ1

∂U/∂θ2
(θ1, θ2) for every (θ1, θ2) ∈ Ū . Then

there exists a second-best decision rule with the property that τ (θ1) = τ , where τ ∈ R;

namely, it sets a single price in the second period.

Proof. We show in Appendix B that there exists a second-best sequential mechanism

whose boundary intersects with the boundary of the efficient decision rule, i.e., there

exists a type θ̃1 ∈ [u, u] for which τ
(

θ̃1
)

= V
(

θ̃1, θ̃2
(

θ̃1
))

. Let’s consider this mech-

anism. For every θ1 < θ̃1, sequential implementability implies that τ (θ1) ≥ τ
(

θ̃1
)

.

For any such θ1, if τ (θ1) > τ
(

θ̃1
)

, then {θ2 s.t. V (θ1, θ2) ≥ τ (θ1)}, the set of signals

for which a sale is executed, is strictly contained in
{

θ2 s.t. V (θ1, θ2) ≥ τ
(

θ̃1
)}

, the

set of signals for which a sale would have been executed if the price had been τ
(

θ̃1
)

.

Since the MRS of V is steeper than the MRS of U , these two sets are contained in

12Same conditions for implementing efficiency also hold in the case of Cobb Douglas valuations, i.e.,

where VA

(

θ1, θ2
)

=
(

θ1
)α1

(

θ2
)α2

+ a and VB

(

θ1, θ2
)

=
(

θ1
)β1

(

θ2
)β2

+ b.
13We still restrict our analysis to deterministic mechanisms.
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{θ2 s.t. U (θ1, θ2) ≥ C}, the set of signals for which a sale should be executed accord-

ing to the efficient decision rule. Therefore, if τ (θ1) > τ
(

θ̃1
)

, then the set of signals

where a sale does not happen but should happen increases with respect to the case where

τ (θ1) = τ
(

θ̃1
)

and the expected social welfare decreases. For every θ1 > θ̃1 sequen-

tial implementability implies that τ (θ1) ≤ τ
(

θ̃1
)

. For any such θ1, if τ (θ
1) < τ

(

θ̃1
)

then {θ2 s.t. V (θ1, θ2) ≥ τ (θ1)} strictly contains the set
{

θ2 s.t. V (θ1, θ2) ≥ τ
(

θ̃1
)}

and since the MRS of V is steeper than the MRS of U these two sets contain the set

{θ2 s.t. U (θ1, θ2) ≥ C}. Therefore, if τ (θ1) < τ
(

θ̃1
)

then the set of signals where

a sale does happen but should not happen increases with respect to the case where

τ (θ1) = τ
(

θ̃1
)

and the expected social welfare decreases. We conclude that there

exists a second-best mechanism that sets a single price in the second period. Such

a mechanism is also implementable in a static environment; hence, the social welfare

cannot increase from applying sequential mechanisms.

0 1

θ̃2
(

θ̃1
)

θ̃1θ̊1 θ̈1

V
(

θ̃1, θ̃2
(

θ̃1
))

Ū

Figure 2: Second-best analysis

The above argument is illustrated in Figure 2. The area above (below) the solid

line is where a sale is efficient (inefficient). If τ (θ1) = τ
(

θ̃1
)

for every θ1, then a

sale occurs for every signal in the area above the dashed line. If for types θ̊1 < θ̃1 we

have τ
(

θ̊1
)

> τ
(

θ̃1
)

, then a sale occurs for every signal in the area above the dotted

line, and the intersection of the area where the sale is efficient and the area where the
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sale is carried out decreases. If for types θ̃1 < θ̈1 we have τ
(

θ̃1
)

> τ
(

θ̈1
)

, then the

intersection of the area where the sale is inefficient and the area where the sale is carried

out increases.

We proceed to the case where the buyer’s valuation is not monotonic along the

boundary of the efficient decision rule. We present sufficient conditions for the second-

best solution to provide a higher expected social welfare in a sequential environment

than in a static environment. The improvement upon the static second-best mecha-

nism is achieved through the construction of a decision rule whose boundary differs

from the boundary of the static second-best decision rule in a way that provides a

welfare-improving allocation while maintaining sequential implementability. Consider

the second-best decision rule of the static environment. We denote it by qSB (θ). This

decision rule takes the form of

qSB (θ) =



















1 if V (θ1, θ2) > CSB

0 or 1 if V (θ1, θ2) = CSB

0 otherwise

We denote by V̄ SB the boundary of the second-best static decision rule qSB (θ), i.e.,

V̄ SB :=
{(

θ1, θ2
)

s.t. V
(

θ1, θ2
)

= CSB
}

We note that the boundary of the second-best static decision rule V̄ SB and the boundary

of the efficient decision rule Ū intersect.14 We denote by θ̇1 the rightmost point at which

these boundaries intersect, i.e.,

θ̇1 := max
{

θ1 s.t.
(

θ1, θ̃2
(

θ1
)

)

∈ V̄ SB ∩ Ū
}

We denote by θ̈1 the leftmost point at which these boundaries intersect, i.e.,

θ̈1 := min
{

θ1 s.t.
(

θ1, θ̃2
(

θ1
)

)

∈ V̄ SB ∩ Ū
}

14In Appendix A we characterize the second-best mechanism in a static environment and show that
this property holds.
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We now present sufficient conditions for improving the second-best solution by a se-

quential mechanism.

Theorem 7. Assume one of the following conditions holds: (1) for every θ1 > θ̇1

we have that V
(

θ̇1, θ̃2
(

θ̇1
))

> V
(

θ1, θ̃2 (θ1)
)

or (2) for every θ1 < θ̈1 we have that

V
(

θ1, θ̃2 (θ1)
)

> V
(

θ̈1, θ̃2
(

θ̈1
))

. Then there exists a decision rule that is sequentially

implementable and provides a higher expected welfare than qSB (θ).

The idea of the proof is as follows. Assume for example that (1) holds. This means

that at any point that is to the right of θ̇1, the boundary of the second-best static

decision rule lies above the boundary of the efficient decision rule. Therefore, we can

construct a decision rule q̃ (θ) with two properties. The first is that to the left of θ̇1

the boundary of the decision rule q̃ (θ) coincides with the boundary of qSB (θ), while

to the right of θ̇1 the boundary of the decision rule q̃ (θ) is below the boundary of

qSB (θ) and above the boundary of the efficient decision rule. This property implies

that q̃ (θ) provides a higher expected welfare than qSB (θ). The second property is that

the buyer’s valuation is decreasing as we move rightward along the boundary of q̃ (θ).

This property implies that q̃ (θ) is sequentially implementable. Such a construction is

illustrated in Figure 3.

E

θ̇1

V̄ SB

Ū

0 1

Figure 3: The set where qSB (θ) and q̃ (θ) do not coincide is denoted by E.
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5 Discussion

We have considered the problem of efficient allocation of a single item in environments

with two periods where the buyer receives a uni-dimensional signal in each period. We

characterized necessary and sufficient conditions for implementation in terms of simple

monotonicity, and used this characterization to deduce tractable necessary and sufficient

conditions for implementing efficiency. A straightforward way to extend the analysis in

this paper to the case of multiple buyers is to define a notion of ex-post implementation

by a sequential mechanism that requires that the conditions of sequential implementa-

tion in the single buyer case would hold for every buyer, for every realization of signals

of the other buyers. The set of ex-post implementable decision rules in the multiple

buyers case is characterized as the set of decision rules for which the necessary and

sufficient conditions for implementation in the single-buyer case apply for every buyer

for every realization of signals of the other buyers.

A natural direction for future research is to explore how the sequential arrival of

information affects the possibility of implementing efficiency in other environments

with multidimensional information and informational externalities. In environments

with two periods where the buyer receives multidimensional information in each period

it seems that the logic of the impossibility result of Jehiel and Moldovanu (2001) holds

and that typically full efficiency cannot be implemented. In environments with more

than two periods and\or with more than one item, the set of types in the first period

does not entail a single crossing structure (unless strong assumptions are made) and

the characterization of the set of implementable decision rules becomes less tractable.

Another direction is to consider detail-free mechanisms, i.e., mechanisms that are,

in the spirit of Wilson’s critique (see Wilson 1987), independent of the agents’ valuation

functions and of the joint distribution of their private information.15 Our work provides

the theoretical insight that in the environments we have considered there exist efficient

sequential mechanisms, and opens the way for the investigation of efficient detail-free

mechanisms in these environments.

15Dasgupta and Maskin (2000) and Perry and Reny (2002) present efficient detail-free mechanisms
in environments of interdependent valuations where each agent’s information is uni-dimensional.
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Appendix

A Generality of the Results

In the present paper we have restricted our attention to direct deterministic mecha-

nisms. In this appendix we analyze for which results of this paper this restriction is

without loss of generality. We consider two generalizations. The first is to the set of

indirect deterministic mechanisms. In an indirect deterministic mechanism if agents

play mixed strategies then the direct mechanism, that mimic the equilibrium strategies

of the indirect mechanism, is not deterministic (see Strausz 2003). We find that all the

results of the paper still hold even if we consider indirect deterministic mechanisms.

This outcome is based on the observation that for every implementable indirect deter-

ministic mechanism there exists an implementable direct deterministic mechanism that

yields equal or greater social welfare.

An implementable deterministic static mechanism yields two alternatives to the

buyer (buy the item or don’t buy the item) and assigns to each alternative a single

price. Therefore, the only set of signals where the buyer can be indifferent between

the two alternatives (and play mixed strategies) is the isovalue curve where the buyer’s

valuation equals the difference in transfers. This set is of measure zero and does not

affect the expected social welfare. Hence, a direct mechanism that arbitrarily assigns

to the signals in this set a single alternative yields the same expected welfare. An

implementable sequential deterministic mechanism yields two alternatives in the second

period (buy the item or don’t buy the item) and assigns to each alternative a single

price. Therefore, there is a single signal in the second period where the buyer can

be indifferent between the two alternatives. Of course, allowing for mixed strategies

at this point would not change the expected social welfare. In the first period of

an implementable sequential deterministic mechanism every type of the buyer may

randomize between several options that this type is indifferent among. Each option is

composed of a single price in the second period and a payment today. Denote by I (θ1)

the support of options that type θ1 is mixing. Implementability implies that every

a ∈ I (θ1) is preferred by type θ1 to every b ∈ I
(

θ̃1
)

and every b ∈ I
(

θ̃1
)

is preferred
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by type θ̃1 to every a ∈ I (θ1). Therefore, every mechanism that offers some arbitrary a

in I (θ1) to type θ1 is implementable by a direct mechanism. Now, each second-period

price sets an expected social welfare given θ1. Consider the option a∗ (θ1) ∈ I (θ1) that

sets the second-period price that maximizes this expected social welfare given θ1 out of

all the options in16 I (θ1). The deterministic mechanism for which a∗ (θ1) = I (θ1) yields

equal or greater expected welfare than the original mechanism and is implementable by

a direct mechanism.

The second generalization is to stochastic mechanisms.17 A deterministic decision

rule is implementable by a stochastic mechanism if and only if it is implementable

by a deterministic mechanism. Since efficient decision rules are (almost everywhere)

deterministic, all the result about the possibility of implementing full efficiency are

without loss of generality. We now show that the second-best decision rule in a static

environment is also deterministic. This implies that Theorem 7 is without loss of

generality. Denote the valuation of the seller if he keeps the item by Vs and the valuation

of the buyer if she gets the item by Vb. We assume that the following condition holds:

Vb (θ
′) − Vb (θ) > Vs (θ

′) − Vs (θ) for every θ′ > θ where18 θ′, θ ∈ [0, 1]2 . Consider the

buyer’s isovalue curves in [0, 1]2 and let

VI (V ) =
{

θ ∈ [0, 1]2 s.t Vb (θ) = V
}

16Such an option exists because the support of the second-period prices in I
(

θ1
)

is a closed set.

Denote by Ih
(

θ1
)

the set of options in I
(

θ1
)

that set a price that is greater than or equal to the price

that is set by the efficient decision rule. Denote by Il
(

θ1
)

the set of options in I
(

θ1
)

that set a price

that is less than or equal to the price that is set by the efficient decision rule. We have that a∗
(

θ1
)

is

either the option that sets the minimum price in Ih
(

θ1
)

or the option that sets the maximal price in

Il
(

θ1
)

.
17The restriction to deterministic mechanisms can be justified by practical considerations that derive

from the commitment assumption. Laffont and Martimort (2002) note that: “Ensuring this verifiability
is a more difficult problem than ensuring that a deterministic mechanism is enforced, because any
deviation away from a given randomization can only be statistically detected once sufficiently many
realizations of the contracts have been observed. [...] The enforcement of such stochastic mechanisms
is thus particularly problematic.”

18Let x′ > x denote that x′ is at least as large as x in every coordinate and x′ 6= x.
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We define the following function:

W (V ) := E θ ∈ VI (V ) [Vb (θ)− Vs (θ)]

This function is strictly increasing in V.We denote by V ∗ the value for which19 W (V ∗) =

0. In that case we get that the second-best decision rule out of the set of all stochastic

decision rules is

q (θ) =



















1 if θ ∈ VI (V ) s.t. V > V ∗

r ∈ [0, 1] if θ ∈ VI (V
∗)

0 if θ ∈ VI (V ) s.t. V < V ∗

where r is the probability that the item is assigned to the buyer. That is, the second

best decision rule is (almost everywhere) deterministic.

B Proofs

Proof of Claim 1

Implementability implies that the buyer pays one price if she wins the item, t(1), and

another price if she does not win the item, t(0). Let θ and θ
′

be two pairs of signals on the

same buyer’s isovalue curve such that q (θ) = 1 and q
(

θ
′
)

= 0; then implementability

implies that V (θ)− t (1) ≥ −t (0) and V
(

θ
′
)

− t (1) ≤ −t (0) and so V (θ) = V
(

θ
′
)

=

t (1)−t (0). That is, there can be at most one isovalue curve for which two pairs of signals

that lie on this isovalue curve are assigned with different alternatives. This means that

the decision rule maps according to values of V . Assume that there exists a valuation

V (θ) such that q (θ) = 1 and a valuation V (θ′) such that q (θ′) = 0 and V (θ′) > V (θ).

Implementability implies that V (θ)− t (1) ≥ −t (0) and V (θ′)− t (1) ≤ −t (0) and so

we get V (θ) ≥ V (θ′), a contradiction. This proves necessity. We now prove sufficiency.

We set t (0) = 0 and t (1) = C; then we get that for every θ such that V (θ) < C we

have V (θ)− t (1) < 0 and for every θ such that V (θ) ≥ C we have V (θ)− t (1) ≥ 0. �

19If no such value exists then the efficient decision rule is trivial and implementable.
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Proof of Theorem 2

Lemma. Condition (ii) in the definition of “implementation by a sequential mecha-

nism” is satisfied iff for every θ1 there exists C (θ1) such that

q (θ) =



















1 if θ2 > C (θ1)

0 or 1 if θ2 = C (θ1)

0 otherwise

and the transfers t (q (θ) , θ1)+p (θ1) are set as follows: t (1, θ1) = V (θ1, C (θ1))+p (θ1)

and t (0, θ1) = p (θ1)

Proof. Consider some C (θ1) ∈ [0, 1]. If the buyer reports θ2 > C (θ1) then she receives

a utility of V (θ1, θ2) − V (θ1, C (θ1)) − p (θ1) and if the buyer reports θ2 < C (θ1) she

receives a utility of −p (θ1). By the monotonicity of V we have that if θ2 > C (θ1)

then V (θ1, θ2) − V (θ1, C (θ1)) − p (θ1) > −p (θ1) and if θ2 < C (θ1) then V (θ1, θ2) −

V (θ1, C (θ1)) − p (θ1) < −p (θ1). Assume that the mechanism is incentive compatible

in the second period. Then for every θ2 such that q (θ1, θ2) = 1 we have V (θ1, θ2) ≥

t (1, θ1)−t (0, θ1), and for every θ2 such that q (θ1, θ2) = 0 we have V (θ1, θ2) ≤ t (1, θ1)−

t (0, θ1). Since V is continuous and monotonic there exists a single number C (θ1) that

satisfies V (θ1, C (θ1)) = t (1, θ1)− t (0, θ1). IC and the monotonicity of V imply that if

θ2 > C (θ1) then q (θ1, θ2) = 1 and if θ2 < C (θ1) then q (θ1, θ2) = 0.

We now proceed to prove that given that the condition in the above Lemma is satisfied,

it is necessary and sufficient for implementation that V (θ1, C (θ1)) := τ (θ1) is a de-

creasing function of θ1 in the segment
[

θ1,C , θ
1,C

]

. We show that given the assumptions

of the model the set of types of the first period entails a single crossing structure, i.e.,

all types prefer lower second period prices and higher types are more willing to pay for

lower prices. Consider some type θ1 facing a price τ in the second period, this type’s

expected valuation is
∫ 1

V −1(θ1,τ)

(

V (θ1, s)− τ
)

f(s|θ1)ds

this function is decreasing in τ , i.e., all types prefer lower τ ’s. We now move on to show
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that higher θ1 have higher willingness to pay for lower τ ’s. Consider some type θ1 and

two prices τ ′ < τ we define the following function

hτ,τ ′
(

θ1, θ2
)

:=



















0 if θ2 < V −1(θ1, τ ′)

(V (θ1, s)− τ ′) if V −1(θ1, τ ′) ≤ θ2 ≤ V −1(θ1, τ)

τ − τ ′ if V −1(θ1, τ) <θ2≤ 1

We now define the function WTP (θ1, τ, τ ′) which is type θ1 willingness to pay from

moving from price τ to price τ ′

WTP
(

θ1, τ, τ ′
)

=

∫ 1

0

hτ,τ ′
(

θ1, s
)

f(s|θ1)ds

Consider two types θ̊1 < θ̃1 we have that F
(

θ2|θ̃1
)

strictly first order stochastically

dominates F
(

θ2 |̊θ1
)

and since hτ,τ ′ (θ
1, θ2) is a non-constant increasing function in θ2

we get that
∫ 1

0

hτ,τ ′

(

θ̊1, s
)

f(s|θ̃1)ds >

∫ 1

0

hτ,τ ′

(

θ̊1, s
)

f(s|̊θ1)ds

in addition hτ,τ ′ (θ
1, θ2) is increasing in θ1 and therefore

∫ 1

0

hτ,τ ′

(

θ̃1, s
)

f(s|θ̃1)ds ≥

∫ 1

0

hτ,τ ′

(

θ̊1, s
)

f(s|θ̃1)ds

we conclude that

WTP
(

θ̃1, τ, τ ′
)

> WTP
(

θ̊1, τ, τ ′
)

In the case where V (θ1, θ2) is strictly increasing in θ1 and where F (θ2|θ1) = F (θ2) we

get that hτ,τ ′ (θ
1, θ2) is a non-constant increasing function in θ1 and so for two types

θ̊1 < θ̃1 we get that

∫ 1

0

hτ,τ ′

(

θ̃1, s
)

f(s)ds >

∫ 1

0

hτ,τ ′

(

θ̊1, s
)

f(s)ds
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so in this case we also get

WTP
(

θ̃1, τ, τ ′
)

> WTP
(

θ̊1, τ, τ ′
)

Given that the set of types of the first period entails a single crossing structure the

monotonicity of τ (θ1) is necessary and sufficient for implementation (see, Theorem

2.1.3 in Vohra 2007)

Proof of Theorem 6

We show that there exists a sequential second-best mechanism in which there exists

θ̃1 ∈ [u, u] for which τ
(

θ̃1
)

= V
(

θ̃1, θ̃2
(

θ̃1
))

. That is, the boundary of the second-

best decision rule intersects with the boundary of the efficient decision rule. Consider

a mechanism in which there is no θ1 such that τ (θ1) = V
(

θ1, θ̃2 (θ
1)
)

. I.e., we are in

one of the four following cases:

(a) τ (θ1) > V
(

θ1, θ̃2 (θ
1)
)

for every θ1 ∈ [u, u]. Consider the price function τ ′ (θ1):

τ ′ (θ1) :=







τ (θ1) if θ1 < u

V
(

u, θ̃2 (u)
)

if θ1 ≥ u

(b) τ (θ1) < V
(

θ1, θ̃2 (θ
1)
)

for every θ1 ∈ [u, u]. Consider the price function τ ′ (θ1):

τ ′ (θ1) :=







V
(

u, θ̃2 (u)
)

if θ1 ≤ u

τ (θ1) if θ1 > u

(c) There exists θ̂1 ∈ (u, u) such that τ
(

θ̂1
)

> V
(

θ̂1, θ̃2
(

θ̂1
))

and for every θ̂1 < θ1

we have that τ (θ1) < V
(

θ1, θ̃2 (θ1)
)

< V
(

θ̂1, θ̃2
(

θ̂1
))

. Consider the price function

τ ′ (θ1):

τ ′ (θ1) :=







V
(

θ̂1, θ̃2

(

θ̂1
))

if θ1 = θ̂1

τ (θ1) otherwise
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(d) There exists θ̂1 ∈ (u, u) such that τ
(

θ̂1
)

< V
(

θ̂1, θ̃2
(

θ̂1
))

and for every θ1 < θ̂1

we have that V
(

θ̂1, θ̃2
(

θ̂1
))

< V
(

θ1, θ̃2 (θ1)
)

< τ (θ1). Consider the price function

τ ′ (θ1):

τ ′ (θ1) :=







V
(

θ̂1, θ̃2
(

θ̂1
))

if θ1 = θ̂1

τ (θ1) otherwise

In all of the four cases the mechanism that set τ ′ (θ1) is sequentially implementable. In

addition, it yields an expected social welfare that is at least as high as the expected

social welfare in the original mechanism. This implies that there exists a second best

mechanism with the property that there is θ1 such that τ (θ1) = V
(

θ1, θ̃2 (θ
1)
)

. The

rest of the proof appears in the body of the text.

Proof of Theorem 7

We now show the formal proof for the case where (1) holds; the case where (2) holds

is proven by a similar argument. First, we denote by [v, v] the segment of all θ1 such

that there exists θ2 where (θ1, θ2) ∈ V̄ SB. We define θ̊2 (θ1) to be the function that

assigns to any θ1 ∈ [v, v] the threshold type it inflicts with respect to θ2, i.e., θ̊2 (θ1) :=

θ2 s.t. (θ1, θ2) ∈ V̄ SB. Assume that (1) holds and consider some ε such that θ̇1+ε < ū.

Let

V ′ := max
θ1∈[θ̇1+ε,ū]

V
(

θ1, θ̃2
(

θ1
)

)

and we have that V ′ < V
(

θ̇1, θ̃2
(

θ̇1
))

. We define θ̂2 (θ1) as follows:

θ̂2
(

θ1
)

=







θ2 s.t. Vi (θ
1, θ2) = V ′ if such θ2 exists

0 otherwise
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Define the function C̃ (θ1) as follows:

C̃
(

θ1
)

=































1 if 0 ≤ θ1 < v

θ̊2 (θ1) if v ≤ θ1 ≤ θ̇1 + ε

θ̂2 (θ1) if θ̇1 + ε < θ1 ≤ u

0 if u < θ1 ≤ 1

Consider a decision rule q̃ (θ) that takes the following form:

q̃ (θ) =







1 if θ2 ≥ C̃ (θ1)

0 otherwise

The function V
(

θ1, C̃ (θ1)
)

is decreasing in the segment
[

θ1,C̃ , θ
1,C̃

]

and therefore q̃ (θ)

is implementable by a sequential mechanism. To see that the social welfare under q̃ (θ)

is greater than under qSB (θ), note that qSB (θ) and q̃ (θ) coincide except for a set of

positive measure that lies above the boundary of the efficient decision rule in which

q̃ (θ) allocates the item to the buyer and qSB (θ) allocates the item to the seller.
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[13] P. Eső and B. Szentes. The price of advice. The Rand Journal of Economics, 38(4):863–880, 2007.

[14] W. He and J. Li. Efficient dynamic mechanisms with interdependent valuations. Games and

Economic Behavior, 97:166–173, 2016.

[15] F. Hoffmann and R. Inderst. Pre-sale information. Journal of Economic Theory, 146(6):2333–

2355, 2011.

[16] P. Jehiel, M. Meyer-ter Vehn, B. Moldovanu, and W. R. Zame. The limits of ex post implemen-

tation. Econometrica, 74(3):585–610, 2006.

[17] P. Jehiel and B. Moldovanu. Efficient design with interdependent valuations. Econometrica,

69(5):1237–1259, 2001.

[18] S. Johnson, N. H. Miller, and R. Zeckhauser. Efficient design with multidimensional, continuous

types, and interdependent valuations. Research Programs, John F. Kennedy School of Govern-

ment, Harvard University, 2003.

[19] D. Krähmer and R. Strausz. Optimal procurement contracts with pre-project planning. The

Review of Economic Studies, 78(3):1015–1041, 2011.

[20] D. Krähmer and R. Strausz. Ex post information rents in sequential screening. Games and

Economic Behavior, 90:257–273, 2015.

[21] D. Krähmer and R. Strausz. Optimal sales contracts with withdrawal rights. The Review of

Economic Studies, 82(2):762–790, 2015.

[22] D. Krähmer and R. Strausz. Sequential versus static screening: An equivalence result. Games

and Economic Behavior, 106:317–328, 2017.

27



[23] J. Laffont. J. and d. martimort (2002) the theory of incentives: The principal! agent model.

[24] H. Li and X. Shi. Discriminatory information disclosure. American Economic Review,

107(11):3363–85, 2017.

[25] H. Liu. Efficient dynamic mechanisms in environments with interdependent valuations: the role

of contingent transfers. Theoretical Economics, 2017.

[26] E. Maskin and H. Siebert. Auctions and privatization. Privatization, 1992.

[27] R. P. McLean and A. Postlewaite. Implementation with interdependent valuations. Theoretical

Economics, 10(3):923–952, 2015.

[28] C. Mezzetti. Mechanism design with interdependent valuations: Efficiency. Econometrica,

72(5):1617–1626, 2004.

[29] R. B. Myerson. Optimal auction design. Mathematics of operations research, 6(1):58–73, 1981.

[30] R. B. Myerson. Multistage games with communication. Econometrica: Journal of the Econometric

Society, pages 323–358, 1986.

[31] V. Nocke, M. Peitz, and F. Rosar. Advance-purchase discounts as a price discrimination device.

Journal of Economic Theory, 146(1):141–162, 2011.

[32] A. Pavan, I. Segal, and J. Toikka. Dynamic mechanism design: A myersonian approach. Econo-

metrica, 82(2):601–653, 2014.

[33] M. Perry and P. J. Reny. An efficient auction. Econometrica, 70(3):1199–1212, 2002.

[34] R. Siegel. Asymmetric all-pay auctions with interdependent valuations. Journal of Economic

Theory, 153:684–702, 2014.

[35] R. Strausz. Deterministic mechanisms and the revelation principle. Economics Letters, 79(3):333–

337, 2003.

[36] R. Vohra. Paths, cycles and mechanism design. Preprint, 2007.

[37] B. Wilson. Game-theoretic analysis of trading processes. In: Advances in Economic Theory:

Fifth World Congress. Cambridge University Press, Cambridge, pages pp. 33–70, 1987.

28


