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Abstract

For many products, platforms enable sellers to transact with buyers. We show

that the competitive conditions among sellers shape the market structure in plat-

form industries. If product market competition is tough, sellers avoid competitors

by joining different platforms. This allows platforms to sustain high fees and ex-

plains why, for example, in some online markets, several homogeneous platforms

segment the market. Instead, if product market competition is soft, agglomeration

on a single platform emerges, and platforms fight for the dominant position. These

insights give rise to novel predictions. For instance, market concentration and fees

are negatively correlated in platform industries, which inverts the standard logic of

competition.
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1 Introduction

In many industries, platforms offer intermediation services and play the essential role of

enabling transactions between buyers and sellers—more prominently so, with the migra-

tion of trade from physical venues to the Internet. The market structure for intermedia-

tion services, however, differs considerably across industries.

While, for example, Ebay is by far the most popular online auction portal in the U.S.,1

other markets are often more segmented, and two (or more) platforms have significant

market shares. For example, in the housing market, two major platforms perform the

main bulk of matching landlords and tenants in e.g., the UK and Germany.2 Other ex-

amples for market segmentation include the used car market in which multiple platforms

are active (such as Autotrader, Cargurus, and Carsdirect in the U.S., or mobile.de and

Autoscout24 in Germany),3 or the market for hospitality services in which Airbnb and

Homeaway share the market.

In this paper, we provide a theoretical framework to examine these differences in plat-

form market structure. We find that the market structure is shaped by the competitive

conditions in the product market. These conditions are responsible for the fees set by

platforms and, thus, for platforms’ profits and the number of active platforms.

As is well-known from the theoretical literature, platform markets have the tendency

to tip due to positive cross-group external effects between buyers and sellers (i.e., each

buyer benefits from more sellers on the same marketplace, and vice versa). This has

been shown in the seminal work by Caillaud and Jullien (2001, 2003) and rationalizes

the phenomenon of market agglomeration, in which all users locate on a single platform.4

However, in several industries, two or more platforms have non-negligible market shares,

and users join different platforms. The existing literature explains market segmentation

with platforms offering differentiated matching services (e.g., Rochet and Tirole, 2003;

Armstrong, 2006).

In the above examples, and more broadly for many Internet platforms, there is little

room for service differentiation—that is, platforms offer services that often appear to be

1See Bajari and Hortaçsu (2003) or Hasker and Sickles (2010).
2In the UK, these are the portals Rightmove and Zoopla, with together more than 175 mil-

lion visits per month, which is by far larger than the aggregated number of visits of all other
portals (see https://hoa.org.uk/advice/guides-for-homeowners/i-am-selling/rightmove-zoopla-which-is-
best/, last accessed June 4, 2019). In Germany, the two portals Immobilienscout24 and Immowelt have a
joint market share of more than 85% (http://immobiliencommunity.de/2016/10/27/immobilienscout24-
preise/, last accessed June 4, 2019).

3See, for example, https://www.digitaltrends.com/cars/best-used-car-websites/ and
https://www.dtgv.de/tests/5875/ for comparisons of the different portals in the two countries
(both sites last accessed June 4, 2019).

4Using field experiments on Ebay and Yahoo Auctions, Brown and Morgan (2009) find evidence for
market tipping on online auction sites.
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quite the same. Therefore, it appears a puzzle how competing platforms share the market

and earn positive profits.

Our answer to this puzzle is that multiple homogeneous platforms can serve the role

of relaxing competition between sellers in the product market. In a nutshell, if sellers

decide to be active on different platforms, some buyers will not be informed about all

offers, which, in turn, relaxes competition between sellers. Platforms benefit from this

provision of endogenous segmentation by charging sellers larger fees. Thus, multiple

homogeneous platforms earn positive profits.

We identify the competitive conditions in the product market as the key driver of the

arising market structure. If product market competition is soft (e.g., because sellers offer

highly differentiated products), agglomeration forces dominate. Then, platforms follow

a strategy of “play hard and fight it out” to become the dominant platform, which leads

to low fees (at least in the short term, when the number of platforms is exogenous). If,

instead, product market competition is tough, multiple platforms segment the market to

relax seller competition. Platforms then “play soft” and charge high fees.

Dudey (1990) and Ellison and Fudenberg (2003) demonstrate that under tough prod-

uct market competition, sellers benefit from allocating at different marketplaces. In those

papers, however, marketplaces are not managed by platforms and do not charge fees to

sellers. Our analysis advances this literature by confirming that market segmentation can

arise even with fee-setting platforms. Yet, we find that fees are strictly positive under

market segmentation.

Overall, our paper provides testable predictions of how the competitive environment

faced by sellers drives the equilibrium market structure and the platforms’ equilibrium

choice of listing fees. Tough competition between sellers implies high platform fees and

profits. Therefore, the correlation between competition in the product market and com-

petition in the market for intermediation services is negative. In addition, a low market

concentration in platform markets due to multiple active platforms goes together with

high listing fees. This implies that the relation between the Hirshman-Herfindahl Index

and the markup is reversed in platform markets versus standard oligopoly markets.

In the next section, we present descriptive evidence for market segmentation using

data from German online real estate platforms.5 In Web Appendix A, we provide further

evidence from the market for Spanish holiday homes and the daily deals market in the

U.S.. We also point to an example outside e-commerce to which our theory applies (i.e.,

the market for modem standards in the 1990s).

In our baseline model, multiple platforms compete on listing fees charged to sellers.

Buyers prefer platforms with many sellers, and vice versa. Sellers offer a single product

5We note that this is purely motivating evidence and not intended as a formal empirical test of our
theory and its predictions.
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that belongs to one out of many different product categories, and there are multiple sellers

within the product category competing with each other. To present the results in the

simplest way, we focus on the case with only two platforms and two sellers per category.

All of our results extend to a general number of platforms and sellers. After platforms

set their fees, sellers and buyers decide simultaneously which platform to join and, thus,

play a coordination game. We show that the selection criterion of coalition-proofness, in

combination with profit dominance of sellers, gives clear-cut equilibrium predictions in

this coordination game. This allows us to establish necessary and sufficient conditions

when either agglomeration or segmentation emerges.

A tipping equilibrium prevails if the degree of competition between sellers is low.

Buyers are then informed about all offers, implying that sellers are in competition with

each other. However, demand is also higher as all buyers are on the same platform. The

effect of increased demand dominates increased competition. Platforms compete fiercely

to win the market, which leads to a Bertrand-style competition between platforms, and

their listing fees are driven down to marginal cost.6

By contrast, if competition between sellers in a product category is sufficiently intense,

sellers prefer to be active on different platforms. Buyers will split between the two plat-

forms and do not become informed about all offers. Thus, platforms segment the market,

and competition between sellers is relaxed. This finding is in line with the example of the

German housing market (see Section 2). Segmentation then allows platforms to obtain

strictly positive profits. If a platform were to deviate from the associated equilibrium

listing fees by charging a slightly lower fee, sellers would not have an incentive to switch

to this platform, as this would intensify competition among them.

If the degree of competition between sellers is moderate, the equilibrium in listing

fees is in mixed strategies, and platforms segment the market with positive probability.

Confirming the result described above, if the degree of competition between sellers gets

larger, the probability for segmentation increases, and so does the expected profit of

platforms, as they charge higher fees.

While our baseline model features single-homing of users on both sides, we subse-

quently allow for multi-homing buyers and sellers and show that our solution to the

puzzle that multiple platforms share the market carries over. We find that platform

profits are non-monotonic in the share of multi-homing buyers, exhibiting an inverted

U-shape relationship. Instead, platform profits are unambiguously lower if sellers can

multi-home because multi-homing makes agglomeration more likely. Existing literature

with differentiated platforms has shown that seller multi-homing allows competing plat-

6Agglomeration, therefore, does not imply that a platform acts as a monopolist. Instead, another
constraining platform is present, but this platform has a negligible market share. We discuss this in
more detail in Section 8.
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forms to exert monopoly power over sellers, which possibly increases platform profits.

By contrast, we find that seller multi-homing may affect the market structure and has,

thereby, a different effect: due to multi-homing, sellers may profitably deviate from seg-

mentation by becoming active on both platforms and, thus, making offers to all buyers.

This might render segmentation unstable. Then, agglomeration occurs, and platforms

receive lower profits.

We also allow for per-transaction fees and revenue shares as alternative price instru-

ments and show the robustness of our results. Endogenizing the platform fee structure,

we find that, in a segmentation equilibrium, per-transaction fees are dominated by a com-

bination of revenue shares and listing fees. This resembles the fee structure commonly

used by trading platforms such as Amazon Marketplace.7 In addition, we show that

revenue shares are a more-important source of platform profits relative to listing fees if

the heterogeneity of product categories is larger.

From a welfare perspective, segmentation is inefficient. The reason is that matching

quality is lower, as buyers are not informed about all offers, and the deadweight loss is

higher than under agglomeration due to higher product market prices. As a consequence

for competition policy, restraints such as exclusive dealing contracts, which platforms

may impose on sellers, are welfare-reducing, as they prevent seller multi-homing and,

thus, are likely to induce segmentation.

In the remainder of this section, we discuss the related literature. In Section 2,

we provide descriptive evidence for market segmentation using data from real estate

platforms in Germany and point to additional examples. In Section 3, we set out the

baseline model and, in Section 4, characterize the equilibrium. In Section 5, we analyze

the effects of multi-homing by buyers and sellers. In Section 6, we allow for alternative

price instruments and consider an alternative equilibrium selection criterion. In Section

7, we discuss policy implications and empirical predictions. Section 8 concludes. All

proofs are relegated to the Appendix and Web Appendix H.

Related Literature. Our paper contributes to the literature on competition in two-

sided markets, pioneered by Caillaud and Jullien (2001, 2003), Rochet and Tirole (2003,

2006), and Armstrong (2006). Caillaud and Jullien (2001, 2003) analyze homogeneous

platforms and show that the market tips to one platform under relatively general condi-

tions. Rochet and Tirole (2003, 2006) and Armstrong (2006), by contrast, consider suf-

ficiently differentiated platforms such that no tipping occurs. The focus of these papers

7For example, the recommended plan for sellers on Amazon Marketplace en-
tails a monthly subscription fee of $39.99 and a referral fee, which is a percentage
charge varying by product category (i.e., a revenue share); for the majority of cate-
gories, it ranges between 8% and 15%. However, there is no per-transaction fee (see
https://sellercentral.amazon.com/gp/help/external/200336920?language=en US&ref=efph 200336920
cont 201822160, last accessed June 4, 2019).
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is on cross-group externalities between two user groups but not on competition between

users within a group. Armstrong (2006) considers seller competition in an extension, and

shows that platforms may restrict seller competition to obtain higher profits. In contrast

to our paper, in his framework, all platforms are active due to exogenous differentiation.

A few papers in the two-sided markets literature analyze competition between sellers.

Nocke, Peitz and Stahl (2007), Galeotti and Moraga-González (2009), and Gomes (2014)

analyze platform ownership, search, and optimal auction design, respectively, but consider

a monopoly platform, whereas Belleflamme and Toulemonde (2009) study competition

between a for-profit and a not-for-profit platform. Dukes and Gal-Or (2003) and Hagiu

(2006) consider competition between for-profit platforms and analyze either exclusivity

contracts or price commitment by platforms.8 None of these papers analyzes how the

market structure depends on seller competition.9

Ellison, Fudenberg, and Möbius (2004) consider competition between two auction

sides. They derive conditions for sellers to be active on different platforms, as this lowers

the seller-buyer ratio on each platform and leads to higher prices. Ellison and Fudenberg

(2003) provide general conditions such that tipping does not occur in markets with cross-

group external effects. The key difference to our paper is that they do not consider

fee-setting by platforms (i.e., fees are zero in their setup).10

The literature on firms’ location decisions analyzes the benefits and costs of clustering

from a different angle. For example, Dudey (1990) shows that sellers prefer agglomeration

in one marketplace over segmentation, as lower product prices are more than offset by

increased demand. Stahl (1982) demonstrates that a similar effect arises if buyers are

attracted by a greater variety of goods. Church and Gandal (1992) analyze a related

model applied to the software market. In contrast to our paper, marketplaces are open

platforms in the sense that access is free. Instead, we are interested in markets with

fee-setting platforms and the resulting market structure.11

Our paper also contributes to work on price comparison websites. Baye and Morgan

(2001) show how homogeneous sellers obtain positive profits, even if a website informs

buyers about all prices. Sellers still cater to their local market, in which buyers are

8In line with the previous literature, Hagiu (2006) shows that if commitment is not possible and users
single-home, an agglomeration equilibrium with zero profits emerges.

9An exception is Halaburda, Piskorski and Yilidrim (2018) who consider a matching market with
heterogeneous users. In contrast to our paper, they obtain segmentation due to sorting as a result of
user heterogeneity.

10Ellison, Fudenberg, and Möbius (2004), in their Section 7, briefly analyze platform pricing. However,
since they do not make assumptions on equilibrium selection in the coordination game between sellers
and buyers, they do not provide a unique mapping from fees to market structure.

11An exception is Gehrig (1998), who considers Hotelling competition between marketplaces and com-
petition on the circle (Salop, 1979) between sellers. He shows that agglomeration equilibria may emerge
(with positive platform profits), despite platform differentiation.



Segmentation versus Agglomeration 6

not informed about all prices. This leads to price dispersion. This result has been tested

empirically (e.g., Brown and Goolsbee, 2002; Baye and Morgan, 2004) and the theoretical

framework has been extended (e.g., Ronayne, 2019). In contrast to these papers, we focus

on competition between websites in addition to competition between sellers.

2 Descriptive Evidence for Segmentation

In this section, we provide descriptive evidence for market segmentation, using data from

German online real estate platforms for sales of single-family houses. We make the follow-

ing observations: (i) more than one platform carries a positive volume of trade; (ii) the

matching services that platforms offer appear to be homogenous (i.e., neither horizontally

nor vertically differentiated); (iii) a large fraction of sellers single-home and, in particular,

each platform hosts some single-homing sellers. In Web Appendix A, we demonstrate

very similar findings in the market for rental apartments in Germany. Furthermore, we

make the same observations in two other markets: the market for renting holiday homes

in Spain, and the market for daily deals in the United States.

In many countries, housing offers for sale are predominantly posted on internet portals.

This holds for any type of building (new vs. old construction; apartment vs. single-family

home). In Germany, the two leading platforms are Immobilienscout24 and Immowelt.

Both platforms charge listing fees that depend on the time window the offer will be

listed. Immobilienscout24 charges approximately 70 Euro for a basic 2-week offer for

sale, while Immowelt charges approximately 45 Euro. A listing for one month is available

at approximately 120 Euro at Immobilienscout24, while a 4-week listing is available at

approximately 70 Euro at Immowelt.12

The two platforms are very similar in appearance and allow for the same type of

qualifiers in the search queries.13 In addition, platforms do not serve different specific

audiences (i.e., they do not cater to separate submarkets): first, in our dataset, the price

range of offers appears to be similar on the two platforms, which provides evidence that

there is no self-selection of sellers into platforms based on price and associated quality.

Thus, there is no indication for vertical differentiation. Second, both platforms host

sellers from all product categories, that is, none of the platforms has specialized in a

particular subset of categories (i.e., regional or style of buildings). Therefore, in our data

set, we do not see evidence for horizontal differentiation between platforms.

We document the prevalence of seller single-homing relative to multi-homing. For

12We obtained price information for December 2017 on Immobilienscout24 and Immowelt from
https://www.test-der-immobilienboersen.de/immobilienbörsen/, last accessed June 4, 2019.

13See https://www.immobilienscout24.de/ and https://www.immowelt.de/, both last accessed June
4, 2019.
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this purpose, we generated a dataset by taking a snapshot of a particular segment of

the housing market. Specifically, we carried out a search for selling single-family homes

in German cities with more than 100,000 inhabitants. These are 125 cities in total.

We use the search criterion “distance to the center less than 3 kilometers”. We treat a

property listed on only one platform as a single-homing offer, and a property listed on

both platforms as a multi-homing offer.14 The descriptive statistics are reported in Table

1. The first two lines give the absolute number of offers by sellers on either platform in

a city. The last three lines report the shares of single-homing sellers on either platform

and the share of multi-homing sellers in a city (“SH” stands for single-homing, “MH” for

multi-homing, and we abbreviate Immobilienscout24 by Immoscout).

Table 1: Descriptive Statistics

Variable Obs Mean Std. Dev. Min Max
Sellers Immoscout 125 32.92 18.73 4 115
Sellers Immowelt 125 24.57 13.63 5 106
Share of SH Sellers Immoscout 125 0.489 0.153 0.105 0.795
Share of SH Sellers Immowelt 125 0.346 0.155 0.088 0.886
Share of MH Sellers 125 0.165 0.094 0 0.523

As shown in the table, Immobilienscout24 hosts on average more sellers than Immow-

elt. This turns out to be true for larger and smaller cities.15 Yet, for all sizes, there

are some examples for which the opposite holds—that is, Immowelt hosts more sellers

than Immobilienscout24.16 Both platforms are active in all cities, which shows that tip-

ping does not occur. The table also documents that the share of multi-homing sellers is

limited.

Figure 1 reports the share of multi-homers and single-homers on each platform in

ascending order of the share of multi-homers in the 125 cities. The reading of the fig-

ure is as follows. The bright vertical bars represent the share of single-homing offers

on Immobilienscout24 and the dark gray vertical bars the share of single-homing offers

on Immowelt. As both bars exist in all cities, there is no city in which one platform

hosts all sellers. Depending on the city, between 0 and 52.3% of sellers multi-home.

In approximately 75% of cities, less than 20% of sellers multi-home, and, in more than

90%, less than 25% multi-home. This provides evidence of segmentation and that seller

14Some owners place offers themselves, whereas others use one or, in very few cases, multiple agencies
for placing an offer.

15The correlation coefficient between city size and the share of single-homing sellers on both platforms
is not significantly different from zero.

16For example, for the two largest German cities, Berlin and Hamburg, there are 12, respectively 13,
listings on Immobilienscout24 but 13, respectively 23, on Immowelt.
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Figure 1: German housing market: Single- and multi-homing sellers.

multi-homing is modest.

Finally, we address two potential concerns: first, it could be that multi-homing of

offers is primarily observed in cities with a large number of offers. This would imply that

multi-homing is more prominent than what is suggested by the unweighted average of

16.5% over 125 cities (cf. Table 1). To address this concern, we test for the correlation

between the multi-homing share and the number of offers per city. We find that there

is no correlation—the correlation coefficient is -0.001—and, hence, the share of multi-

homing is not systematically associated with the number of offers in a city. In fact, the

average share of multi-homing offers in the total sample is 16.48%.

Second, it could be that the vast majority of buyers are active on both platforms. This

would imply that a seller can reach most buyers with a single listing. Unfortunately, no

data are available to us that document the overlap on the buyer side. However, the

German Federal Cartel Office analyzed the market of online housing platforms (due

to a merger) around 3 years ago. In the report, the presence and relevance of single-

homing consumers was explicitly mentioned (see Bundeskartellamt, 2016). Furthermore,

the fact that some sellers are multi-homing indicates that they expect to reach additional

potential buyers when being active on both platforms—this would not be profitable (given

the additional fees charged by the second platform) if many buyers multi-homed. These

points suggest that multi-homing of buyers is not a first-order issue in this market.
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3 The Setup

We consider markets in which buyers and sellers trade via platforms. In what follows,

we describe the three types of actors—platforms, sellers, and buyers.

Platforms. Two homogeneous platforms A and B offer listing services to sellers. The

platforms enable transactions between sellers of products or services and their prospective

buyers. To be listed on platform i, a seller has to pay a listing fee fi, i ∈ {A,B}. Such

listing fees are prevalent in markets in which platforms cannot or do not monitor the

sale of a product (such as the housing or rental market). Buyers can access platforms for

free.17 For simplicity, we assume that all platform costs are zero.

Sellers. Sellers have to decide which, if any, platform to join. In the baseline model,

they cannot be active on both platforms (i.e., sellers single-home)—in Section 5.2, we

show that our results carry over to the case with multi-homing sellers.18 The product of

each seller belongs to a product category. There is a mass 1 of such categories, indexed

by k ∈ [0, 1].

For simplicity, we assume that there are two sellers in each product category.19 Sellers

are symmetric and obtain a per-buyer profit πd in duopoly. If only one seller is listed on

the platform, the seller makes a monopoly profit πm per buyer, with πm ≥ πd. We denote

the symmetric equilibrium duopoly price by pd and the monopoly price by pm. According

to our formulation, the per-buyer profit in duopoly and monopoly is independent of the

number of buyers. At the end of this section, we mention several microfoundations that

fulfill this property.20 However, we explain at the end of Section 4 that our qualitative

results hold more generally.

In the baseline model, categories are independent.21 This captures the fact that,

although platforms usually list many items (a continuum in our model), there is compe-

tition between only a few of them. For example, a price comparison website often has

thousands or even millions of listed products, but only a few items match a buyer’s search

request and are displayed to the buyer. Similarly, housing platforms are host to many

houses and apartments, but a buyer seeking a house of a particular size in her preferred

city is not interested in listings in other categories.

17We discuss the case of two-sided pricing in Web Appendix G.
18In some industries, single-homing is a natural assumption. For example, in the market for private

accommodations, apartment owners have difficulties synchronizing the calendars when they are active on
more than one platform. This favors single-homing. Another example is the modem market for Internet
access in which each ISP can use only one modem for technological reasons.

19In Web Appendix F, we show that all our results carry over to the situation with a general number
of sellers per category and a general number of platforms.

20Our formulation is also in line with that used in the empirical literature on market entry, starting
with the classic work by Bresnahan and Reiss (1990, 1991).

21We discuss several possible interactions between categories in Web Appendix G.
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Buyers. Each buyer single-homes—that is, she decides to be active on at most one

platform. In Section 5.1, we provide an analysis with multi-homing buyers and demon-

strate that our main insights remain valid. Each buyer is interested in a single product

category and derives a positive gross utility only from products in this category—see,

e.g., Burguet, Caminal, and Ellman (2016) for a similar structure. There is mass 1 of

buyers per product category. When visiting a platform, a buyer becomes informed about

her preferred product category and the price of all products listed on the platform.22 If a

platform lists sellers’ products from a fraction α ∈ [0, 1] of all categories, a buyer expects

to find a product from her preferred category with probability α.

A buyer’s (indirect) utility depends on whether one or two sellers are listed in her

preferred category. Prior to observing her idiosyncratic taste realization within this

category, the buyer obtains an expected utility of V d if she expects two sellers to be

listed in her preferred category. If she expects only one seller to be listed, her expected

utility is V m < V d. The reason for this inequality is twofold: first, if two sellers are listed,

they charge the duopoly price pd, which, in many instances, is less than pm. Second, if

sellers are differentiated, a buyer will find a product closer to her preferences or may

enjoy greater variety if two sellers are listed instead of only one.

Timing. The timing is as follows:

1. Platforms A and B set listing fees fA and fB, respectively.

2. Sellers and buyers make a discrete choice between platforms A and B, and the

outside option (normalized to zero).

3. Sellers in each category set product prices.

4. Buyers observe all offers on the platform they are visiting and make their purchasing

decisions.

We make three remarks about our setup. First, according to our timing, sellers decide

where to list before setting prices on the product market. This is the relevant timing in

most applications because the choice of platform is typically longer-term than the pricing

decision. Hence, sellers set prices after learning about the number of competitors in the

product market. In addition, listing fees are often paid on a subscription basis, which

makes them lumpy, while prices charged by the sellers are flexible.

Second, listing fees do not enter the pricing decisions of sellers in the third stage

because they are “fixed” costs for sellers (which are, in addition, sunk when sellers set

prices). As we show in Section 6.1, our results still hold with per-transaction fees and

revenue shares, which affect sellers’ pricing decisions.

22The assumption that a buyer learns her preferred category only after deciding which platform to
visit is only made to simplify the analysis. All results would also hold if buyers knew their preferred
category already at the outset.
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Third, we do not impose a particular model of buyer-seller interaction for the sub-

games starting in stage 3 and, instead, use a reduced-form approach. We provide a

microfoundation at the end of this section and two further microfoundations in Web

Appendix B.

Payoffs. The profit of platform i is the number of sellers active on platform imultiplied

by the listing fee fi. The profit of a seller who is listed on platform i is βiπ − fi, where

βi is the fraction of buyers in the seller’s category that are active on platform i, and π

is either πm if the rival seller is not listed on platform i or πd if the rival also lists on

platform i. As mentioned above, the utility of a buyer is V d or V m and, thus, depends

on the number of sellers listed in the buyer’s preferred category; the utility is 0 if none

of those sellers is listed on the platform where the buyer is active.

Solution Concept. Our solution concept is subgame perfect Nash equilibrium. We

assume the following tie-breaking rule. If buyers expect one seller in each category to list

on platform A and the other seller on platform B, half of the buyers in each category

join platform A and the other half platform B. A natural interpretation is that each

buyer mixes with equal probability to be active on either platform A or B. Since there

is a continuum of buyers, both platforms will, in fact, be patronized by one half of the

buyers.23 As we point out below, this assumption is not crucial for the results and can

be relaxed, allowing for unequal distributions of buyers in the case of indifference.

In the second stage, buyers and sellers face a coordination game on which platform(s)

to be active, which may lead to a multiplicity of equilibria. To deal with this well-known

issue in two-sided markets, we impose the refinement of coalition-proofness (see e.g.,

Bernheim, Peleg, and Whinston, 1987a, 1987b). That is, we select only Nash equilibria

that are stable against deviations by coalitions of sellers and buyers; and, within the

coalition, no subset of sellers and buyers benefits from a further deviation.24 In addition,

when coalition-proofness is not sufficient to obtain equilibrium uniqueness, we select

equilibria that are profit-dominant for sellers. We will show that the joint application of

these refinements leads to a unique equilibrium outcome in stage 1.

A justification of the refinement is that the outcome is equivalent to the outcome

of a sequential game in which sellers decide which platform to join before buyers do,

as considered, for example, by Hagiu (2006), and sellers play a coalition-proof Nash

23Another interpretation is that platforms are differentiated by different platform designs but that
this differentiation is negligibly small. For example, platforms are differentiated along a Hotelling line,
and the transport cost parameter t goes to zero. This means that buyers ex ante have lexicographic
preferences, in the sense that they prefer the platform with a larger number of sellers. Buyers decide
according to their preference for different platform designs only if they expect this number to be the
same across platforms.

24In our game, in stage 2, a coalition-proof Nash equilibrium is equivalent to a Strong Nash equilibrium
(Aumann, 1959), which ignores deviations by subcoalitions. This is due to buyers being ex ante identical
and sellers benefiting from the presence of more buyers.
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equilibrium. In Section 6.2, we analyze the mirror case, in which the payoff-dominant

equilibrium for buyers is selected, and demonstrate that the main insights of our analysis

will be unchanged. In Web Appendix C, we discuss under which conditions one or the

other refinement is more likely, and how our equilibrium selection mechanism might

operate in reality.

Summary statistic. As will become clear in the next section, the key summary statistic

for our equilibrium characterization is the ratio πd/πm, which is an inverse measure of

the degree of product market competition and takes values in [0, 1]. It is determined by

the buyer-seller interaction in stages 3 and 4.

Microfoundation of the Buyer-Seller Interaction. Buyers’ choices in stage 4 and sellers’

pricing decisions in stage 3 are straightforward: in the fourth stage, depending on the

number of listed sellers in her preferred product category, a buyer buys nothing, or a

certain amount of one or both products, according to her demand function. In the third

stage, sellers set pd in case they face a competitor in their product category on the

platform and pm in case of monopoly.

In the next paragraph, we provide a simple microfoundation of the buyer-seller in-

teraction based on the Hotelling model and determine per-buyer profits πd and πm. In

Web Appendix B, we provide two additional examples. First, we analyze a represen-

tative consumer model with linear demand (Bowley, 1924, or Singh and Vives, 1984).

Other discrete-choice and representative consumer models—for instance, with CES or

logit demand—would work as well. Second, we analyze a simple model of thin markets

in which there is only a small number of buyers and capacity-constrained sellers (as in

the housing market). Another microfoundation that we do not develop here but that also

fits our assumptions are models of sequential product search (e.g., Wolinsky, 1986, and

Anderson and Renault, 1999).

Consider Hotelling competition in each product category. Each seller is located at

one of the extreme points of the unit interval in a particular category—i.e., a seller j is

characterized by its category kj and its location lj on the unit interval, (kj, lj) ∈ [0, 1]×

{0, 1}. The buyers’ valuation of a product at the ideal location in the preferred category

equals v. If a buyer likes category k and is located at xk (with (k, xk) ∈ [0, 1]× [0, 1]), her

utility from buying one unit of seller j’s product in this product category is v−t|xk−lj|−plj

where t > 0 captures the degree of product differentiation. Her utility is zero for products

in all categories that are not equal to k. Price competition among Hotelling duopolists

leads to equilibrium prices c+t and equilibrium profits πd = t/2 per unit mass of buyers.25

A monopoly seller sets price pm = (v+ c)/2, and its profit is πm = (v− c)2/(4t) per unit

mass of buyers if the market is not fully covered. This is the case if t ≥ (v− c)/2. In this

25The upper bound on t is 2(v − c)/3, as the buyer who is indifferent between both sellers would not
obtain a positive utility otherwise.
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parameter range, pm ≤ pd. For t < (v − c)/2, there is full coverage, and the monopolist

sets pm = v − t. Its profit is πm = v − t− c.

In the Hotelling model, the ratio πd/πm is therefore given by 2t2/(v−c)2 if (v−c)/2 ≤

t ≤ 2(v − c)/3 and by t/[2(v − t − c)] if t < (v − c)/2. It follows that πd/πm ≥ 1/2 for

t ≥ (v− c)/2, and vice versa. That is, if products are sufficiently differentiated, twice the

duopoly profit is larger than the monopoly profit.

4 Segmentation versus Agglomeration

In this section, we characterize the equilibrium of the 4-stage game. In particular, we

provide conditions for segmentation or agglomeration to be an equilibrium outcome.

In the last section, we analyzed stages 3 and 4. We now turn to the location decisions

of buyers and sellers in stage 2. Here, multiple Nash equilibria may exist, given the listing

fees set by platforms in the first stage. We first determine the set of Nash equilibria in

stage 2. We then explain how our equilibrium selection criteria ensure a unique prediction.

A detailed analysis is provided in Web Appendix D.

There exist two types of Nash equilibria. In the first one, all buyers and all active

sellers are on one platform and trade takes place only on this platform. In the second

one, both platforms are active and each one hosts half of sellers and buyers.

We start by describing the equilibria that can occur in the first type. If a platform

charges a fee below πd, an agglomeration equilibrium exists in which both sellers (and

all buyers) list on this platform. In addition, if a platform charges a fee between πd and

πm, an equilibrium exists in which one seller in each category is active on this platform

(and all buyers are on this platform). We call an equilibrium of this type stand-alone

equilibrium.

In the second equilibrium type—i.e., the segmentation equilibrium—each platform

hosts one seller in all categories.26 The equilibrium exists only if sellers obtain non-

negative profits, which implies that both fees cannot be above πm/2 and no seller on

platform i prefers to be active on platform −i. The latter is ensured by the condition

πm/2 − fi ≥ πd/2 − f−i. This implies that the segmentation equilibrium exists if and

only if fi ≤ max
{

(πm − πd)/2− f−i, π
m/2

}

.

The set of Nash equilibria is visualized in Figure 2—we focus on the relevant range

(fA, fB) with fA ≤ πm and fB ≤ πm because a fee above πm leads to zero demand

and, in the equilibrium of the full game, no platform will set such a fee. The left panel

of the figure displays the case πd/πm < 1/2, and the right panel displays the opposite

26We show in Web Appendix D that there does exist a segmentation equilibrium with a different seller
composition.
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case. In the figure, agglomeration on platform i is denoted by AGGi (and by AGGAB if

agglomeration on each platform is an equilibrium); the stand-alone equilibrium is denoted

by STAi; and segmentation is denoted by SEG. As can be seen in the left panel, there

are regions in which three equilibrium configurations coexist.

✲

✻

✲

✻

fA

fB

fA

fB

πm

2
πd

πm

2

πd

πd

2

πd

2

πm−πd

2

πm−πd

2

AGGA

AGGB
AGGAB

STAB

STAA

STAAB

SEG

SEG

STAAB

SEG

AGGB

STAA

SEG

AGGA

STAB

πm

2
πd

πm

2

πd

πd

2

πd

2

πm−πd

2

πm−πd

2

STAAB

SEG

AGGAB

AGGAB

STAA

AGGB

STAB

AGGA

Figure 2: Possible equilibrium configurations in stage 2 : πd/πm < 1/2 on the

left-hand side and πd/πm ≥ 1/2 on the right-hand side

We turn to the equilibrium selection accomplished through our refinement. First,

consider the situation in which two agglomeration (or two stand-alone) equilibria exist,

and, thus, sellers and buyers need to coordinate on which platform to be active. Applying

coalition-proofness eliminates the multiplicity of agglomeration equilibria off the diagonal.

The reason is that a coalition of sellers and buyers will always choose to be active on

the platform with the lower fee. The same reasoning holds if there is a multiplicity of

stand-alone equilibria.

Second, consider the situation in which the segmentation equilibrium or the agglom-

eration co-exist with the stand-alone equilibrium. The stand-alone equilibrium is then

never coalition-proof. The reason is that all inactive sellers can then form a coalition with

all buyers and trade on the inactive platform. This deviation is neutral for the buyers

but strictly profitable for the inactive sellers. Therefore, when co-existing with another

equilibrium, the stand-alone equilibrium is always eliminated.

Third, we turn to the region in which the agglomeration and segmentation equilibrium

co-exist. The joint use of coalition-proofness and profit dominance of sellers singles out a

unique equilibrium in this case.27 First, for πd/πm ≥ 1/2, the segmentation equilibrium

is not stable to the deviation of a coalition of sellers and buyers who are active on

a platform with a weakly higher fee. If this coalition switches to the rival platform,

27In Web Appendix D, we show that the two refinements are never in conflict with each other.
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buyers are better off because they observe the offers of all sellers, and sellers are weakly

better off because they now serve all buyers instead of only half of them. Thus, all

segmentation equilibria are eliminated when πd/πm ≥ 1/2, as can be seen in the right

panel of Figure 3. Instead, if πd/πm < 1/2, the same argument singles out a unique

equilibrium only if fi − f−i ≥ πm/2 − πd. Then, the coalition of sellers and buyers

active on the platform with the higher fee can profitably deviate to the rival platform.

By contrast, if fi − f−i < πm/2 − πd, coalition-proofness has no bite, as the deviation

is no longer profitable for sellers. Using seller dominance, however, now singles out

a unique equilibrium because segmentation is more profitable than agglomeration for

sellers. Hence, as illustrated in the left panel of Figure 3, segmentation is the unique

equilibrium if fi and f−i are sufficiently close to each other (and lower than πm/2). The

region for segmentation shrinks as πd gets larger and vanishes if πd → πm/2.
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Figure 3: Selected equilibrium configurations in stage 2: πd/πm < 1/2 on the

left-hand side and πd/πm ≥ 1/2 on the right-hand side

We now turn to platform pricing in the first stage. Although platforms are homo-

geneous, the Bertrand logic does not necessarily apply because sellers may benefit from

segmentation, which implies that a platform does not necessarily attract all sellers and

buyers when undercutting the rival’s fee. In four propositions, we characterize the equi-

librium listing fees for the different parameter regions and provide precise conditions for

platforms to sustain positive fees.

If the ratio of duopoly to monopoly profits is large (i.e., πd/πm ≥ 1/2), agglomeration

occurs. From a seller’s point of view, the effect that agglomeration reduces profits due

to competition is dominated by the demand expansion effect that all buyers (instead

of only half of them) observe the seller’s offer. Since each platform attracts the entire

demand by setting a fee lower than its rival, platforms “play hard” and fight fiercely to
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become dominant. Thus, in this region, the standard Bertrand argument applies, and

homogeneous platforms charge fees equal to marginal cost in equilibrium.

Proposition 1. Agglomeration. If πd/πm ≥ 1/2, in equilibrium, the listing fees are

f ⋆
A = f ⋆

B = 0, and platforms’ profits are Π⋆
A = Π⋆

B = 0.

By contrast, if the ratio of duopoly to monopoly profits is small (i.e., πd/πm ≤ 1/4),

segmentation occurs. Sellers avoid competition by listing on different platforms, which,

in turn, is exploited by platforms. To see this, suppose that both platforms charge a fee

of zero. If πd is lower than πm/2, sellers choose to segment. But then a platform can

raise its fee slightly without reducing its demand. Thus, the platform with the higher fee

remains active and raises strictly positive profits.

Proposition 2. Segmentation. If πd/πm ≤ 1/4, in the unique equilibrium, the listing

fees are f ⋆
A = f ⋆

B = πm/2, and platform profits’ are Π⋆
A = Π⋆

B = πm/2.

The proposition shows that platforms not only obtain a strictly positive profit, but

even extract the entire surplus from sellers. The argument is as follows. If a platform

deviates from the equilibrium listing fee f ⋆
i = πm/2 to a listing fee slightly below πd,

this induces sellers and buyers to agglomerate on the deviating platform. The deviant

platform then obtains a profit of 2πd. Instead, the equilibrium profit is πm/2, which is

larger than 2πd if πd/πm ≤ 1/4. Hence, no platform has an incentive to deviate from the

listing fee πm/2—platforms “play soft” and do not fight for the dominant position. To

sum up, if competition between sellers is sufficiently intense, platforms obtain positive

profits by inducing sellers to segment the market. Interestingly, fierce competition among

sellers enables platforms to sustain high profits in equilibrium.

In the intermediate range 1/4 < πd/πm < 1/2, platforms randomize over listing fees.

The intuition for the non-existence of a pure-strategy equilibrium in this range is as

follows: for any fee set by platform i, platform −i’s best response is to either set a fee

that is lower by a discrete amount to induce agglomeration or to set a fee that is higher

by a discrete amount leading to segmentation. This creates a cycle in best responses.

Suppose that platform i sets a relatively high fee. Platform −i’s best response is then

to set a lower fee, so as to just induce agglomeration. The best response of platform i is

to lower its fee slightly and induce segmentation again. This sequence of best responses

continues until the fee of platform i reaches such a low level that platform −i, instead of

setting a lower fee, prefers to set a fee higher than that of platform i, so as to just induce

segmentation. In turn, platform i’s best response is to reduce its fee slightly to induce

agglomeration, and so on. Therefore, the sequence continues and does not converge.

The logic behind the mixed-strategy equilibrium in the range 1/4 < πd/πm < 1/2

is reminiscent of, but distinct from, Bertrand-Edgeworth cycles. In the latter, the best-

response dynamic involves a marginal undercutting of the rival’s fee, as long as fees
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Figure 4: First mixed-strategy equilibrium: Cumulative distribution
function with parameters πm = 5 and πd = 2.

are sufficiently high (see, for example, Edgeworth, 1925; Maskin and Tirole, 1988). By

contrast, in our model, for any fee charged by the rival, the best response is to set a fee

that is higher or lower by a discrete amount.28 In fact, the range of subscription fees

over which platforms mix can be divided into two intervals, a lower and an upper one. In

the lower interval, fees are set with the intention to induce agglomeration. In the upper

interval, fees are set with the intention to induce segmentation. This leads to mass points

in the mixing distribution and potentially disjoint mixing sets.

In the region of 3/8 ≤ πd/πm < 1/2, the upper bound of the lower interval in which

a platform aims to induce agglomeration coincides with the lower bound of the upper

interval in which a platform aims to induce segmentation. This implies that platforms

randomize over a convex set.

Proposition 3. Probabilistic segmentation and agglomeration with listing fees chosen

from a convex set. If 3/8 ≤ πd/πm < 1/2, there is a unique mixed-strategy equilibrium, in

which platforms set fees in the domain fi ∈ [πm−2πd, 2πm−4πd]. The mixing probability

is characterized by the cumulative distribution function

G1(f) =

{

f−(πm−2πd)
f+1/2(πm−2πd)

, if f ∈ [πm − 2πd, 3/2πm − 3πd);
2f−5/2(πm−2πd)
f−1/2(πm−2πd)

, if f ∈ [3/2πm − 3πd, 2πm − 4πd],

with a mass point at f = 3/2πm−3πd, which is chosen with probability 1/4. The expected

profit is Π⋆
A = Π⋆

B = 3πm/2− 3πd.

The cumulative distribution function G1(f) is illustrated in Figure 4 using values

πm = 5 and πd = 2. The mass point is at the fee that separates the two intervals.

Therefore, setting such a fee induces segmentation with probability (almost) 1. Since the

28In this respect, our equilibrium also differs from those found in papers in the search literature, such
as Varian (1980) or Janssen and Moraga-González (2004).



Segmentation versus Agglomeration 18

1.4 1.6 1.8 2.0 2.2 2.4

f

0.2

0.4

0.6

0.8

1.0

G2(f)

Figure 5: Second mixed-strategy equilibrium: Cumulative distribution
function with parameters πm = 5 and πd = 7/4.

event that both platforms choose this fee occurs with strictly positive probability, the

expected equilibrium profit in this regime must equal 3/2πm − 3πd.

The highest fee that platforms can charge to obtain positive demand is πm/2. If

πd/πm is at the lower bound of the mixing region of Proposition 3 (i.e., πd/πm = 3/8),

the highest fee in the mixing range, 2πm−4πd, reaches this level. It follows that if πd/πm

is lower, the equilibrium will be different. In particular, as a fee of πm/2 must be the

upper bound, probability mass will be shifted to this point, and the distribution will

entail a mass point at the highest fee. In addition, the best response to this highest fee

(i.e., the largest fee in the lower interval) no longer coincides with the fee that induces

segmentation with probability (almost) 1. The latter fee is the lowest one in the upper

interval, and the support of the mixing region becomes non-convex. This is stated in

Proposition 4.

Proposition 4. Probabilistic segmentation and agglomeration with listing fees chosen

from a non-convex set. If 1/4 < πd/πm < 3/8, there is a unique mixed-strategy equilib-

rium, in which platforms set fees in the domain fi ∈ [πm/4, πd) ∪ [3πm/4 − πd, πm/2].

The mixing probability is characterized by the cumulative distribution function

G2(f) =















f−1/4πm

f+1/2(πm−2πd)
, if f ∈ [πm/4, πd);

2f−1/4πm−3/2(πm−2πd)
f−1/2(πm−2πd)

, if f ∈ [3πm/4− πd, πm/2);

1, if f = πm/2;

with two mass points, one at the highest fee in the support f = πm/2, which is chosen

with probability (3/4πm− 2πd)/πd, and the other at the lower bound of the upper interval

f = 3πm/4− πd, which is chosen with probability (2πd − 1/2πm)/πm. The expected profit

is Π⋆
A = Π⋆

B = 3πm/4− πd.

Figure 5 illustrates G2(f) in the second mixing regime using values πm = 5 and



Segmentation versus Agglomeration 19

1
4
π

m

1
4
π

m

3
8
π

m

3
8
π

m

1
2
π

m

1
2
π

m π
d

Π
∗

j(π
d)
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j as a function of πd. The solid black line is

relevant for Section 4 in which consumers are single-homing. The solid gray line and
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πd = 7/4. The support of the distribution is then [5/4, 7/4) ∪ [2, 5/2]. The intuition for

the lower mass point (at f = 3πm/4− πd) is the same as that in the first mixed regime.

The intuition for the mass point at f = πm/2 is, as explained above, that πm/2 is an

upper bound on profits in any mixing equilibrium.

As follows from Proposition 4, the gap between the two intervals widens as πd falls. In

the limit, as πd → πm/4, all probability mass is shifted to πm/2. As πd falls, expected fees

rise continuously, as do platform profits. The expected equilibrium platform profit is a

continuous function but has kinks at the boundary points of the four regions, as displayed

in Figure 6. In this figure, only the solid black curve—i.e., the highest one—is relevant

for this section; the other two curves correspond to a situation with buyer multi-homing,

which we discuss in Section 5.1.

From the analysis, it is easy to see that the assumption of buyers splitting evenly

between platforms when being indifferent is not crucial for the results. If this split

is more in favor of platform i, the pure-strategy segmentation equilibrium exists for a

smaller range: as this equilibrium is less attractive for platform −i, this platform has a

stronger deviation incentive. However, for any asymmetric split, if πd is sufficiently small,

a deviation to agglomeration is not profitable for platform −i. Thus, an asymmetric

segmentation equilibrium prevails.

A welfare comparison of the different possible outcomes includes buyers’ surplus.

There are two reasons why segmentation is worse for buyers than agglomeration. First,

because buyers are not informed about all offers, they, on average, buy products with

a greater mismatch than when they are informed about all offers. Second, if pm > pd,
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buyers suffer from the higher price under monopoly, implying that the quantities bought

by buyers under segmentation are lower than under agglomeration. As a consequence,

whereas platforms enjoy profits when they induce segmentation with positive probability,

buyers suffer from this market structure, and welfare tends to be lower. In Section 7, we

discuss some policy implications that arise from our analysis.

We can express the equilibrium regions in terms of the underlying parameter describ-

ing seller competition in the microfoundation laid out in the previous section. In the

Hotelling model, a lower degree of product differentiation t decreases the sufficient statis-

tic πd/πm. We obtain that the agglomeration region applies if 2(v− c)/3 ≥ t ≥ (v− c)/2,

the first mixing region if (v − c)/2 > t ≥ 3(v − c)/7, the second mixing region if

3(v − c)/7 > t > (v − c)/3, and the segmentation region if (v − c)/3 ≥ t ≥ 0.

Finally, we note that our results do not rely on a constant per-buyer profit. If this

profit was not constant, the equilibrium characterization would be more involved, as the

boundaries of the regions then depend on the mass of buyers on each platform in addition

to the profit per buyer. However, under standard regularity assumptions on demand, the

qualitative results are the same as in our analysis.

5 Multi-Homing

In the baseline model, we focus on the case in which both buyers and sellers are single-

homing. In this section, we consider multi-homing of buyers and sellers. We will show

that in both cases, our qualitative results continue to hold.

5.1 Multi-Homing of Buyers

Suppose that a fraction λ ∈ [0, 1] of buyers joins both platforms. A natural reason is

that buyers incur heterogeneous time costs to be active on a second platform. Then, only

buyers with sufficiently low time costs are active on both platforms. A higher λ here

corresponds to lower time costs in the population.29

Multi-homing of buyers affects seller profits. In fact, a seller will never obtain the

monopoly profit when a positive fraction λ of buyers multi-home and is therefore informed

about both offers. In a segmentation equilibrium, half of the single-homing buyers are

active on platform A and the other half on platform B. Because there is a mass 1 − λ

of single-homing buyers, each platform has a total buyer mass of (1 + λ)/2, out of which

(1 − λ)/2 are single-homers and λ are multi-homers. Suppose that sellers do not know

which buyers single-home and which ones multi-home and, thus, set a single price in the

29For example, if a distribution of time costs among buyers first-order stochastically dominates another
one, the latter distribution leads to a larger fraction λ of multi-homing buyers.
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product market. The equilibrium price will depend on λ because multi-homers’ demand

may differ from that of single-homers’ demand. Therefore, in a segmentation equilibrium,

we can write the average seller profit per buyer (assuming constant marginal costs c of

sellers) as

π(λ) ≡ (p(λ)− c)

(

1− λ

1 + λ
Dm(p(λ)) +

2λ

1 + λ
Dd(p(λ))

)

.

In this expression, Dm(·) is the seller’s monopoly demand per buyer, which depends only

on the seller’s own price—i.e., p(λ)—and Dd(·) is duopoly demand per buyer, which

depends on the seller’s price and that of its competitor, abbreviated by the vector p(λ).

A seller receives a demand of Dm(·) from a single-homing buyer and that of Dd(·) from a

multi-homing one. The demand weights are the masses of both groups, adjusted by the

total buyer mass per platform (1 + λ)/2. It is evident that π(0) = πm and π(1) = πd.

Naturally, π′(λ) ≤ 0, which implies that for all λ ∈ [0, 1], π(λ) ∈ [πd, πm].30 Since the

share of multi-homing and single-homing buyers affects seller competition, the average

per-buyer profit is a function of λ, denoted in reduced form by π(λ).

The equilibrium with multi-homing buyers is characterized by the following proposi-

tion.

Proposition 5. All results of Propositions 1 through 4 carry over to the case of buyer

multi-homing, after replacing πm/2 by (1 + λ)π(λ)/2.

The proposition states that the qualitative results of the previous section remain

valid if some, but not all buyers multi-home. Even though segmentation does not give

monopoly power to sellers, it nevertheless lowers the competitive pressure because some

buyers are not informed about all sellers’ offer, and platforms exploit this.

Do platforms benefit from buyer multi-homing? If we are in the range of the agglom-

eration equilibrium, nothing changes compared to buyer single-homing because platforms

are engaged in Bertrand competition. However, this is not true for the regions in which

the segmentation equilibrium occurs with positive probability. There are two oppos-

ing forces. First, sellers benefit from a demand-expansion effect as they have access to

multi-homing buyers, regardless of the platform they are active on. In equilibrium, each

platform provides access to mass (1+λ)/2 of buyers instead of 1/2 when all buyers single-

home. Second, there is a countervailing competition effect, as multi-homing buyers are

informed about both offers. The average per-buyer profit is then π(λ) < πm.31 The next

proposition states that either effect can dominate.

30In an agglomeration equilibrium, a seller’s profit is unchanged since all buyers see both offers. This
leads to a per-buyer profit of πd for each seller.

31We observe that multi-homing consumers exert a positive externality on single-homing ones. As
product prices are lower with more multi-homers, single-homers benefit as well. This implies that devices
which foster multi-homing, such as metasearch engines, also benefit consumers who do not use them.
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Proposition 6. Suppose that sellers’ products are differentiated and there is an extensive

demand margin, that is, the product market is not fully covered in monopoly at price

pm(λ). Then, under segmentation,

(i) platform profits strictly increase with λ in the vicinity of λ = 0.

(ii) platform profits in the vicinity of λ = 1 are below those at λ = 0.

It follows from the proposition that, when segmentation occurs with positive proba-

bility, under mild conditions, platform profits are non-monotonic in λ—i.e., they are first

increasing and then decreasing. For the microfoundations that satisfy the conditions of

this proposition, we obtain that profits as function of λ are inversely U-shaped.32

The intuition behind the result is as follows: if λ is close to zero, an increase in

λ has only a second-order effect on the seller’s price. The reason is that p(0) is chosen

optimally, given that the seller is a monopolist in its product market, and, by the Envelope

Theorem, a small increase in λ affects the optimal price only by a negligible amount.

Instead, the demand increase is of first order, which implies that the demand-expansion

effect dominates the competition effect if sellers’ products are differentiated.33 Hence, an

increase in the number of multi-homing buyers leads to higher platform profits if only

few buyers multi-home.

By contrast, for λ close to 1, the opposite result holds. For λ → 1, we have (1 +

λ)π(λ)/2 → πd as almost all consumers observe both offers. This implies that there

is no longer a difference between the segmentation and the agglomeration equilibrium.

Platforms can no longer exploit that they reduce seller competition, and Bertrand style

competition between platforms occurs. Therefore, platforms obtain zero profits and, thus,

are worse off than with single-homing buyers.

The exact shape how platform profits change in λ depends on the concrete demand

function. This is not the case if sellers can distinguish between single-homing and multi-

homing buyers in the price-setting stage and, thus, price discriminate between the two

groups. This applies if sellers track the behavior of buyers on the web and obtain the

information whether a specific buyer is a single- or a multi-homer. In this case, sellers set

price pm to a single-homer and price pd to a multi-homer; hence, the average seller profit

per buyer is (1−λ)/(1+λ)πm+2λ/(1+λ)πd. Then, a platform’s profit is (1−λ)/2πm+λπd,

which is strictly decreasing in λ, whenever the segmentation equilibrium emerges with

32In the Hotelling model, the proposition does not apply because the product market is fully covered
in monopoly whenever segmentation occurs with positive probability. In this case, profits are globally
decreasing in the share of multi-homing consumers.

33If products are homogeneous, we cannot pursue the analysis in the same way because Dd(p(0))
changes discontinuously in prices. Competition plays out as in a situation in which each seller has some
captive buyers (i.e., the single-homing ones) but buyers informed about both prices (i.e., the multi-
homing ones) purchase the cheaper product—see, e.g., Varian’s (1980) model of sales. In the resulting
(mixed-strategy) equilibrium, expected seller profits decrease in the share of multi-homers, regardless of
the level of λ.
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positive probability. Thus, platforms are unambiguously worse off the larger is λ. The

expected platform profit for λ = 1/3 and λ = 2/3 is depicted in Figure 6 (see Section 4).

5.2 Multi-Homing of Sellers

In this section, we consider the effects of seller multi-homing. Two pricing scenarios by

a multi-homing seller are possible; either a multi-homing seller sets the same price on

both platforms (uniform pricing) or it can set different prices on the two platforms (price

discrimination). We start with the first scenario. In some markets, sellers cannot price

discriminate among platforms. This is the case if platforms impose a most-favored nation

clause in their contracts with sellers, which forces multi-homing sellers to set the same

price on the platforms. Such contracts have been in place, for example, in the e-book

or the online hotel bookings market.34 In other markets, platforms lead the consumer

traffic to the website of the seller, and the seller cannot or, for reputation reasons, does

not want to condition its price on the consumer’s lead-in site. As we show towards the

end of the section, the analysis with price discrimination is a special case of that with

uniform pricing.

In contrast to buyers, sellers need to pay for being active on a platform. Therefore,

even without any exogenous costs of using a second platform, sellers do not necessarily

find it profitable to multi-home—introducing such costs for a second listing would not

change the main result. We investigate the conditions under which seller multi-homing

affects the platform market structure and whether platforms benefit. This focus is dif-

ferent from that in previous literature on two-sided markets (see, e.g., Armstrong, 2006,

Hagiu, 2006, or Belleflamme and Peitz, 2019), which investigated the effect of seller

multi-homing on the price structure but took the platform market structure as given.

With multi-homing sellers, in the second stage new potential equilibrium configura-

tions may occur. First, both sellers in a category may multi-home. In that case, all

buyers are exposed to both offers, implying that each seller receives the duopoly profit

πd per buyer. The profit per buyer is then equivalent to the profit when both sellers ag-

glomerate on one platform. But, in the latter case, sellers have to pay only one listing fee.

Therefore, the configuration in which both sellers multi-home is never coalition-proof.

Second, a configuration is possible in which one seller in a category single-homes and

the other one multi-homes—a situation we refer to as partial multi-homing. If in one

half of the categories, the single-homing seller is on platform A and in the other half

on platform B, buyers are indifferent between both platforms and are willing to split

evenly between the platforms. In this situation, competition in the product market is

34See, for example, U.S. v. Apple Inc., 12 Civ. 2826 (2015) on the e-book market, and Skyscanner

Ltd. v. Competition and Markets Authority, 1226/2/12/14 (2014), on the online hotel booking market.
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asymmetric. In each category, half of buyers are active on the platform in which only

the multi-homing seller is present and observe only the offer of this seller, whereas the

other half observes the offers of both sellers. Let us denote the per-buyer profit of the

multi-homing seller by πMH and that of the single-homing seller by πSH . As the multi-

homing seller can act as a monopolist to one half of the buyers but faces competition for

the other half, its uniform price pMH will be between pm and pd. The same holds for the

price of the single-homing seller pSH , as this seller faces competition from a rival who has

some “exclusive” buyers and, therefore, will set a price higher than pd. For the sellers’

profits, we assume that

πd ≤ πSH ≤ πMH ≤ πm,

which follows from the sellers’ pricing decisions. The next proposition characterizes the

equilibrium with multi-homing sellers.

Proposition 7. Suppose that multi-homing sellers cannot price discriminate. Then,

• for πd/πm ≥ 1/2 and πd/πm ≤ 1/4, the equilibrium is the same as the one charac-

terized in Propositions 1 and 2, respectively.

• For 3/8 ≤ πd/πm < 1/2, the equilibrium is the same as the one characterized in

Proposition 3 if πMH ≤ 3/2πm − 2πd.

Similarly, for 1/4 < πd/πm < 3/8, the equilibrium is the same as the one charac-

terized in Proposition 4 if πMH ≤ 3/4πm.

• Instead, for (i) 3/8 ≤ πd/πm < 1/2 and πMH > 3/2πm − 2πd and for (ii) 1/4 <

πd/πm < 3/8 and πMH > 3/4πm, respectively, in equilibrium, platforms set fees of

f ⋆
A = f ⋆

B = 0, and sellers play an agglomeration equilibrium if πd > πSH/2 and a

partial multi-homing equilibrium if πd ≤ πSH/2.

The proposition shows that for some parameter constellations, the equilibrium derived

in Propositions 1 to 4 remains unchanged. Foremost, if competition between sellers is

relatively fierce, the segmentation equilibrium still exists. Although sellers can multi-

home, doing so would reduce their profits by too large an amount; hence, they prefer

segmentation. Platforms exploit this by extracting the entire seller surplus. Hence,

our insight that segmentation leads to high platform profits, even though platforms are

homogeneous, is robust to seller multi-homing.

The proposition also shows that the mixed-strategy equilibrium, which involves seg-

mentation with some probability and features positive platform profits, emerges for a

smaller parameter range than in the case of single-homing sellers. It is replaced by an

equilibrium in which platforms charge zero listing fees. Thus, we obtain the unambiguous

result that platforms set (weakly) lower fees to sellers and earn (weakly) lower profits
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if the latter can multi-home instead of single-home. This contrasts with the standard

intuition in the two-sided markets literature with two-sided pricing, which finds that

platforms exert monopoly power on the seller side and, in equilibrium, may set higher

fees to sellers and earn higher profits under seller multi-homing.

The intuition behind our result is as follows: if sellers can multi-home, segmentation

may break down because sellers have an additional deviation possibility from the seg-

mentation equilibrium. Instead of being active only on the other platform, they can now

join both platforms. This deviation is particularly profitable if πMH is large. As a result,

platforms can no longer charge high fees. The homogeneity of the platforms then drives

fees and profits down to zero.

Interestingly, this also implies that agglomeration is more likely if sellers can multi-

home. The general notion in the antitrust economics of platform markets is that multi-

homing inhibits market tipping because it is more likely that multiple platforms will

obtain positive demand (see, e.g., Evans and Schmalensee, 2007). In our model, a different

mechanism is at work—that is, the possibility of multi-homing can break the segmentation

equilibrium in which multiple platforms are active.

In addition, a partial multi-homing equilibrium occurs under some conditions.35 In

particular, if πSH and πMH are relatively large, neither the single-homing nor the multi-

homing seller has an incentive to deviate to an agglomeration or a segmentation equi-

librium. The partial multi-homing equilibrium is in between pure agglomeration and

pure segmentation and has features of both equilibria. While buyers segment, half of

them are still informed about both offers due to the multi-homing of one seller in each

category. In contrast to the pure segmentation equilibrium, platforms cannot exploit

this in equilibrium. The intuition is similar to the one developed for the agglomeration

equilibrium: when slightly undercutting the listing fee of the rival, a platform can get the

single-homing seller in each category (and not only in one half of the categories). This

leads to an agglomeration equilibrium on the platform with the lower fee, which gives

this platform an upward jump in demand, and is, therefore, always profitable. Hence,

the standard Bertrand logic applies, and fees are driven down to zero.36

So far, we assumed that a multi-homing seller sets the same price on each platform.

If price discrimination is possible, the seller sets pd on the platform where the rival is

also present and pm on the platform where the seller is in a monopoly position. Using

the notation above, this implies that πMH = (πd + πm)/2 and πSH = πd. Hence, the

situation with price discrimination is a special case of the analysis above. We then obtain

35Partial multi-homing of sellers can often be observed on price comparison websites. Some sellers list
their offers on several platforms at the same time, whereas others use only one.

36In Web Appendix E, we show how the partial multi-homing equilibrium generalizes to the case with
more than two sellers.
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the following corollary:37

Corollary 1. Suppose that multi-homing sellers can price discriminate. Then,

• for πd/πm ≥ 1/2 and πd/πm < 3/8, the equilibrium is the same as the one charac-

terized in Propositions 1, 2, and 4, respectively;

• for 3/8 ≤ πd/πm < 1/2, the equilibrium is the same as the one characterized in

Proposition 3 if 3/8 ≤ πd/πm ≤ 2/5 but for 2/5 < πd/πm < 1/2, platforms set fees

of f ⋆
A = f ⋆

B = 0, and an agglomeration equilibrium occurs.

The corollary shows that also with price discrimination, an agglomeration equilibrium

emerges for a larger parameter range. As platforms obtain zero profits in this equilibrium,

they are hurt from the possibility of multi-homing also with price discrimination. In

contrast to the case with uniform pricing, an equilibrium with partial multi-homing does

not occur. The intuition is that single-homing sellers obtain a per-buyer profit of πd,

regardless of whether segmentation or agglomeration occurs. These sellers are therefore

better off when tipping occurs (as they then interact with the double amount of buyers),

which destroys the partial multi-homing equilibrium.

Finally, we note that although we analyzed multi-homing of buyers and sellers sepa-

rately, a combination of the two gives similar insights. In particular, fierce competition

between sellers (i.e., πd close to zero) will drive sellers away from agglomeration to seg-

mentation.

6 Generalizations

In this section, we generalize the baseline model by considering alternative pricing instru-

ments on the seller side (Section 6.1) and briefly discuss the alternative selection criterion

of buyer-preferred equilibrium (Section 6.2). We show that our results are robust to these

extensions. In Web Appendices F and G, we discuss, in addition, the robustness of our

results to a general number of platforms and sellers, the case of two-sided pricing, as well

as some further extensions.

6.1 Platform Pricing Instruments

6.1.1 Per-Transaction Fees and Revenue Shares

In the baseline model, we consider the case in which platforms charge listing fees to

sellers. This pricing instrument is the only feasible one if platforms cannot monitor the

37The corollary can be easily shown by inserting the values πMH = (πd + πm)/2 and πSH = πd in
Proposition 7. Therefore, we omit the proof.
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transaction between buyers and sellers, as is the case, e.g., in housing markets. However,

in other markets, monitoring is possible at relatively low costs. For example, price com-

parison websites usually charge per-transaction fees (in terms of per-click fees) and many

booking services and marketplaces, such as Amazon Marketplace, ask for a percentage

of the price charged by sellers—that is, they engage in revenue-sharing.38 In this section,

we show that our results are robust to any of those two pricing instruments.

Per-transaction fees. Suppose that the game is the same as the one laid out in

Section 3 but that platforms instead of charging listing fees demand a fee per transaction,

denoted by φi, i ∈ {A,B}. That is, every time a consumer buys a product from a

seller, the seller has to pay φi to the platform. A listing fee constitutes a fixed cost

for the seller and, therefore, does not affect the pricing choice in the product market.

By contrast, a per-transaction fee increases the marginal cost of each seller, and will

affect the price that the seller charges. We denote the resulting duopoly equilibrium

price in the product market by pd(φi), with ∂p
d(φi)/∂φi > 0, and the associated demand

by Dd(φi). The resulting duopoly profit (assuming a constant marginal cost of c) is

πd(φi) = Dd(φi)(p
d(φi) − φi − c), with ∂πd(φi)/∂φi ≤ 0.39 Similarly, in the monopoly

case, the resulting price is pm(φi), with ∂p
m(φi)/∂φi ≥ 0,40 the demand is Dm(φi), and

the profit is πm(φi) = Dm(φi)(p
m(φi)− φi − c), with ∂πm(φi)/∂φi ≤ 0. We maintain the

assumption from the main model that πd(φi)/π
m(φi) ≤ 1 for all i.

In addition, we assume that an increase in the per-transaction fee reduces the monopoly

profit by more than the duopoly profit, and the same holds true for the monopoly demand

compared to duopoly demand; that is,

∂πm(φi)

∂φi

≤
∂πd(φi)

∂φi

≤ 0 and
∂Dm(φi)

∂φi

≤
∂Dd(φi)

∂φi

≤ 0.

These properties hold in standard oligopoly models, including those in our examples.

We can then solve the model as in the case with listing fees. The details are provided

in the proof of Proposition 8 in Web Appendix H. As we demonstrate there, also with

per-transaction fees, our selection criterion singles out a unique type of equilibrium in

stage 2.41 Turning to the full game, with per-transaction fees, platforms cannot extract

38For example, as reported by Hunold et al. (2018), the online travel agents Booking and Expedia usu-
ally charge hotels a base commission rate of 10% to 15%. For the fees charged by Amazon Marketplace,
see footnote 7.

39The inequality in ∂πd(φi)/∂φi is only weak because in covered markets (as, for example, in the
Hotelling model), an increase in φi leads to an increase in the product price by the same amount without
affecting equilibrium demand, implying that profits are unchanged.

40The weak inequality here is due to the fact that in markets with rectangular demand, the monopoly
price is independent of cost.

41We recall that we assumed that buyers decide on which platform to be active according to the
expected number of sellers. This assumption is natural in the context of listing fees, as these fees do
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the full profit from sellers. Nevertheless, we can formulate the analogue to a listing fee

of πm/2, which is the highest profit a platform can make in a segmentation equilibrium.

With per-transaction fees, we therefore denote by φm ≡ argmaxφi
φiD

m(φi)/2. We

obtain the following result:

Proposition 8. If πd(0)/πm(0) ≥ 1/2, in equilibrium, both platforms set φ⋆
A = φ⋆

B = 0,

and buyers and sellers agglomerate on either platform A or platform B. If πd(0)/πm(0) <

1/2 and either

φ̃Dd(φ̃)

φmDm(φm)
≤

1

4
,

where φ̃ is defined by πd(φ̃) = πm(φm)/2 or πd(φ) < πm(φm)/2 for all φ, in the unique

equilibrium, both platforms set φ⋆
A = φ⋆

B = φm, and buyers and sellers segment. If

πd(0)/πm(0) < 1/2 and

φ̃Dd(φ̃)

φmDm(φm)
>

1

4
,

there is a unique mixed-strategy equilibrium with similar properties as those in case of

listing fees, and agglomeration and segmentation occur with positive probability.

The mixed-strategy equilibrium is fully characterized in the proof of Proposition 8 in

Web Appendix H. As is evident from the proposition, the outcome with per-transaction

fees resembles that with listing fees. First, if competition between sellers is weak (that is,

the ratio of duopoly to monopoly profit is relatively high), a pure-strategy agglomeration

equilibrium results with either type of fees, and platforms compete each other down to fees

equal to marginal cost. We note that the conditions for the agglomeration equilibrium to

occur coincide in Propositions 1 and 8: with listing fees, the condition is πd/πm ≥ 1/2,

which is the same as that with per-transaction fees, πd(0)/πm(0) ≥ 1/2.

Second, if competition between sellers is fierce, segmentation occurs. Here, plat-

forms set the fee equal to φm to obtain the largest per-buyer profit—similar to the case

of listing fees. The conditions also have a similar interpretation. With listing fees,

the condition for the segmentation equilibrium to exist is πd/πm ≤ 1/4, as a platform

should have no incentive to attract both sellers and all buyers in each category instead

of only one seller and half of the buyers. With per-transaction fees, the condition is

[φ̃Dd(φ̃)]/[φmDm(φm)] ≤ 1/4, which rests on the same idea: given the rival’s fee φm, in

not affect product market prices. If buyers were to infer product market prices from platforms’ pricing
decisions, a platform could attract all buyers by offering a lower per-transaction fee (or revenue share),
which would destabilize the segmentation equilibrium. In the real world, however, buyers often do not
observe the platforms’ pricing decisions and, therefore, cannot make such inferences. As mentioned in
Section 3, our analysis and equilibrium refinement then applies to a sequential model in which sellers
decide which platform to join before buyers do, and buyers (when deciding which platform to join) only
observe the sellers’ listing decisions but neither their nor the platforms’ prices.
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any category, a platform would attract both sellers and all buyers with a fee of φ̃. The

condition precludes that such a deviation is profitable.

Finally, in the remaining region, a unique mixed-strategy equilibrium exists. As we

show in the proof of Proposition 8, this mixed-strategy equilibrium has properties similar

to those with listing fees, involving mixing either on a convex or on a non-convex set.

We illustrate the result with the Hotelling example. For t ≥ (v − c)/2, the condition

πd(0)/πm(0) ≥ 1/2 is fulfilled, and a pure-strategy agglomeration equilibrium occurs with

fees equal to 0. By contrast, for t ≤ (v− c)/4, the above segmentation equilibrium is the

unique equilibrium. In the intermediate range, the mixed-strategy equilibrium occurs.

Therefore, mixing occurs for a larger range of parameters than with listing fees—in the

latter case, a mixed-strategy equilibrium emerges only for (v − c)/3 < t < (v − c)/2.

Revenue shares. Another pricing instrument that platforms often use is a percentage

fee on the revenue made by sellers. For example, application platforms such as the App

Store or Google Play usually charge a percentage fee of 30% on the seller’s revenue.42

Such revenue sharing can also be incorporated into our model. Suppose, again, that

the game proceeds as laid out above, but that each platform i ∈ {A,B} extracts a revenue

share ri ∈ [0, 1] on each transaction it enables. The seller’s profit is then

πd(ri) =
[

(1− ri)p
d(ri)− c

]

Dd(ri)

in duopoly, and

πm(ri) = [(1− ri)p
m(ri)− c]Dm(ri)

in monopoly, where Dm(ri) (respectively, D
d(ri)) is the demand in the seller’s monopoly

solution (respectively, the sellers’ duopoly solution) if platform i demands revenue share

ri. Applying the Implicit Function Theorem, it is easy to show that under standard

assumptions on demand, pd(ri) and pm(ri) are increasing in ri, as long as costs are

strictly positive; if c = 0, prices are independent of ri. In addition, profits and demands

are decreasing in ri.

We impose that

∂πm(ri)

∂ri
≤
∂πd(ri)

∂ri
≤ 0 and

∂Dm(ri)

∂ri
≤
∂Dd(ri)

∂ri
≤ 0,

which is fulfilled in our examples. The model with revenue sharing can be analyzed

in the same way as the one with per-transaction fees. Although the conditions for the

boundaries of the equilibrium regions have to be modified, the results closely resemble

42See https://www.theregister.co.uk/2018/08/29/app store duopoly 30 per cent/ for the App Store,
and https://support.google.com/googleplay/android-developer/answer/112622?hl=de for Google Play,
last accessed June 4, 2019.
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those with per-transaction fees. Also under revenue sharing, platforms do not extract the

entire profits of sellers in the segmentation equilibrium if c > 0: platforms set r = rm,

with rm = argmaxri rip
m(ri)D

m(ri)/2—that is, they obtain the highest profit compatible

with segmentation in stage 2. Thus, our main insight carries over to the setting with

revenue sharing between platforms and sellers.

6.1.2 Endogenous Fees

In this section, we endogenize the fee structure in a (pure-strategy) segmentation equi-

librium, given that all three types of fees can be used, and demonstrate how the fee

structure depends on the product market conditions. At the end of this section, we

relate our results to platform revenue models.

We extend our model to allow for heterogeneous categories. Specifically, we assume

that per-consumer demand in category k is vkD(·), where category value vk is distributed

on [v, v], with a continuously differentiable density function h(v) and an associated cdf

H(v) if v < v. Thus, categories are ranked with v being the most valuable one and v the

least valuable one. The multiplicative interaction between v and D(·) provides enough

structure to show our results for general demand functions that satisfy the following three

assumptions:

(i) There exists a choke price, denoted by p̄, such that D(p) = 0 for all p ≥ p̄;

(ii) D′(p) +D′′(p)p < 0 for all p < p̄;

(iii) D′′′(p) is positive or not too negative.

Assumption (i) states that demand becomes zero if the price a seller sets is very high.

Assumption (ii) ensures that the seller’s maximization problem in the product market

has an interior solution. Assumption (iii), together with Assumption (ii), guarantees

that the same holds true for a platform’s maximization problem.

As above, we denote the listing fee of platform i by fi ≥ 0, the per-transaction

fee by φi ≥ 0, and the revenue share by ri ∈ [0, 1]. In the first stage, the platforms

simultaneously choose the levels of the three fees.

As mentioned above, we focus on the pure-strategy segmentation equilibrium—this

equilibrium always exists if competition between sellers is fierce (i.e., the duopoly profit is

sufficiently low). Regarding the other equilibria, we note the following: first, in the mixed-

strategy equilibrium, the fees set by the platforms have a similar structure as in the pure-

strategy segmentation equilibrium but are lower in absolute terms—we confirmed this by

numerical simulation. Second, analyzing the pure-strategy agglomeration equilibrium

with an endogenous fee structure does not yield additional insights because, for the same

reason as in the baseline model, all three fees will be zero in equilibrium.

In a segmentation equilibrium (i.e., in each category, there is one seller on platform
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i ∈ {A,B}), the profit of a seller in category k active on platform i is

βivkD(p(φi, ri)) [(1− ri)p(φi, ri)− φi − c]− fi,

where, as above, βi is the fraction of buyers active on platform i. Note that fi does not

affect the price a seller charges, but φi and ri may do so; the revenue share ri is neutral

if c = 0. Platform i’s profit is accordingly βivkD(p(φi, ri)) (rip(φi, ri) + φi) + fi. We

obtain the result that, in the segmentation equilibrium, platforms will never use all three

instruments but only a tariff consisting of listing fees and revenue shares.

Proposition 9. In the (pure-strategy) segmentation equilibrium, both platforms i ∈

{A,B} optimally set the per-transaction fee φi equal to zero.

The intuition behind this result is as follows: a per-transaction fee and a revenue

share have a distortionary effect on the product market price. The difference between

the two fees is that a per-transaction fee increases a seller’s marginal cost by an absolute

amount (equal to the level of the fee), whereas, with a revenue share, the payment a

seller makes to the platform is conditional on the seller’s product price. A revenue share

therefore allows the seller to adjust its price to the product market conditions in a less

distortionary way. As a consequence, if revenue shares are available, platforms optimally

set the per-transaction fee to zero. The listing fee is positive in equilibrium (as long as

v > 0 and c > 0) because it does not distort the product price.

We next determine how the tariff is shaped by the product market conditions of

sellers. We start with two special cases: in the first case, all categories are identical and,

in the second case, sellers’ have zero marginal costs.

Proposition 10. (i) If v = v and c > 0, then fi = vD(pm) (pm − c) /2 and ri = 0. (ii)

If c = 0 and v > v, then fi = 0 and ri = 1.

In both cases, platforms extract the entire profits from sellers in the pure-strategy

segmentation equilibrium. In case (i), in which categories are homogeneous, we are

back in our baseline model. Platforms then use only listing fees—that is, revenue-shares

are zero in equilibrium. As listing fees do not distort the equilibrium price, only this

instrument is used to appropriate sellers’ profits. Thus, our baseline model is consistent

with endogenous fee setting, that is, even if we allowed for different fees in the baseline

model, platforms will endogenously use only listing fees. This result points to the property

that a small amount of heterogeneity between categories implies that listing fees are more

important relative to revenue shares, as we will show in the next proposition.

Case (ii) of Proposition 10 shows that if sellers’ marginal costs are zero but product

categories are heterogenous, platforms extract the sellers’ profit by relying on revenue-

shares only—that is, listing fees will be zero. The intuition is that if sellers have zero
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marginal costs, revenue shares do not distort the seller’s pricing decision—that is, sellers

in all categories charge the undistorted monopoly price. By contrast, with heterogeneous

categories, fixed fees cannot fully extract each seller’s profit.43

The following comparative-statics results shed light on the question how product

market conditions affect the fee structure.

Proposition 11. (i) A mean-preserving spread of the distribution of v (that changes

its support) leads to an increase in ri and a decrease in fi. (ii) An increase in c leads

to a decrease in ri and affects fi non-monotonically with fi increasing for small c but

decreasing for large c.

Part (i) of the proposition states that, as already alluded to above, listing fees are

large and revenue shares small if categories are similar whereas the reverse holds true if

categories are different in value.

Part (ii) shows that the larger are marginal costs of sellers, the lower are revenue

shares. This result is intuitive because the distortionary effect of revenue shares increases

with the level of marginal costs. By contrast, listing fees change non-monotonically with

c. There are two opposing effects on listing fees when sellers’ marginal costs rise. First,

revenue shares become more distortionary, which implies that platforms do better relying

relatively more on listing fees. Second, seller’s profits fall when their costs rise, which

implies that platforms have to lower their listing fees. If c increases from a small level, the

first effect dominates, whereas if c increases from a high level, the second effect prevails.

We can show numerically that the relationship between c and fi is indeed an inverted

U-shaped one.

Platform revenue models. We relate our results of this section to various platform

revenue models, which occur in different market environments. As pointed out above,

the following two dimensions are important drivers of the fee structure: (i) observability

of transactions and (ii) heterogeneity of product categories.

First, in platform markets in which the value of the transaction is observable, our

result is consistent with the fact that per-transaction fees are rare. Platforms usually

charge a tariff consisting of a fixed fee and a revenue share (such as Amazon Market-

place, as reported in the Introduction). This example is also consistent with our model

prediction that if product categories of different value are offered, revenue shares become

the most important profit source of platforms. Second, if platforms can observe whether

a transaction was initiated but cannot observe the value of the transaction (e.g., because

there is uncertainty whether the transaction was consummated), they set a tariff con-

sisting of a per-transaction fee and a fixed fee. The perhaps most prominent example is

43If v = v and c = 0, there is a continuum of combinations of listing fee and revenue share that allow
a platform to fully extract the sellers’ profits.
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the market of price comparison websites, where tariffs include a per-click fee,44 which is

an absolute monetary amount and, presuming a constant conversion rate, equivalent to

a per-transaction fee. Our model can be used to predict that per-click fees are the more

prominent relative to fixed fees the more heterogeneous product categories are.45 Third,

if no monitoring of transactions is possible, platforms can only set pure listing fees as,

for example, in the housing market.

6.2 Buyer-Preferred Equilibrium

In this subsection, we show how our results change if we use the concept of payoff-

dominance of buyers (instead of sellers) in the second stage, in addition to coalition-

proofness. Because V d > V m, buyers prefer an agglomeration equilibrium over a seg-

mentation or stand-alone equilibrium. This implies that whenever the refinement of

coalition-proofness alone does not suffice to select a unique equilibrium, it is payoff-

dominant for buyers to be in an agglomeration equilibrium whenever it exists—as above,

the two refinements are never in conflict with each other.
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Figure 7: Selected equilibrium configurations with payoff-dominance

of buyers

Figure 7 shows the different equilibrium regions with this selection rule. As long as

at least one platform sets a fee below πd, an agglomeration equilibrium exists and will be

selected. However, if both fees are larger than πd, an agglomeration equilibrium does not

exist, as sellers would obtain negative profits. The selected equilibrium is then the same

44For instance, Amelio et al. (2018, p. 659) report that “retailers typically pay a pay-per-click fee for
the comparison shopping services.”

45While this section does not contain this result, it follows the same intuition as part (i) of Proposition
11. The analysis is available from the authors upon request.
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as in Section 4 because buyers are indifferent between the segmentation and a stand-alone

equilibrium, and, if both exist, only the segmentation equilibrium is coalition-proof.

Turning to the first stage, there is now always an equilibrium in which platform fees

are equal to 0. Given that platform i sets fi = 0, an agglomeration equilibrium exists and

will be selected. Hence, platform −i cannot do better than to also set f−i = 0. However,

this equilibrium is not the only one if πd/πm ≤ 1/4. By the same logic as in Section 4, if

each platform charges a fee of πm/2, no platform has a profitable deviation. Therefore,

a segmentation equilibrium in which platforms extract the entire profits from sellers also

exists and is profit-dominant for platforms. Invoking profit-dominance in stage 1 (which

is implied by coalition-proofness), the same segmentation equilibrium as in Section 4

emerges. Therefore, our result does not hinge on the selection criterion in stage 2.

If a buyer-preferred equilibrium is selected, no mixed-strategy equilibrium exists. The

reason is as follows: if πd/πm > 1/4, a platform has an incentive to deviate from the

equilibrium candidate fA = fB = πm/2 and to set a fee below πd to induce agglomeration.

The best response of the rival platform is then to undercut this fee slightly, as it cannot

induce segmentation with a higher fee (in contrast to the case with a seller-preferred

equilibrium in stage 2). Then, the standard Bertrand argument applies, leading to zero

fees in equilibrium. Therefore, if the buyer-preferred equilibrium is chosen, we obtain

f ⋆
A = f ⋆

B = 0 if πd/πm > 1/4 and f ⋆
A = f ⋆

B = πm/2 if πd/πm ≤ 1/4.

7 Policy Implications and Predictions

7.1 Policy Implications

Our paper has implications that can guide policy makers in regulating platform mar-

kets. These implications rest on the insight that market segmentation has undesirable

welfare properties: segmentation leads to lower total welfare and consumer welfare than

agglomeration due to less choice for buyers and higher product prices. However, plat-

forms benefit from segmentation, as this allows them to extract rents from sellers. The

conflict between what is in the interest of platforms and what is in the interest of society

may justify policy intervention.

We discuss two policy instruments—a ban of exclusive contracts and price caps. These

instruments are often discussed, not only in the context of platform markets but also

generally, as means to spur welfare. Our main question is whether these instruments

are effective in avoiding inefficient segmentation.46 We find that the first instrument is

46While our model focuses on segmentation to reduce seller competition, segmentation can also result
from inherent differentiation between platforms. Platforms then cater to different buyer (and possibly
seller) tastes, which, all else equal, is welfare-increasing.
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effective, but the second is not.

Ban of exclusive contracts. A widely-discussed issue in platform markets is the use of

exclusive contracts.47 Such contracts restrict sellers to offering their products exclusively

on one platform (in exchange for a favorable deal on the fee charged by the platform).

Therefore, these exclusive contracts rule out seller multi-homing. As shown in Section 5.2,

an agglomeration equilibrium is more likely to arise if sellers can multi-home instead of

being forced to single-home. Thus, our paper provides a new rationale for why exclusive

contracts are welfare-decreasing: they help sellers commit to a single platform, thereby

sustaining market segmentation. As a consequence, a ban of exclusive contracts is an

effective tool to reduce the possibility of inefficient segmentation.48

Price caps on listing fees. A policy instrument to curb firms’ market power is to set

price caps. At first glance, this might also look attractive as a way to tame the market

power of platforms vis-a-vis sellers because platforms charge strictly positive listing fees

only in a segmentation equilibrium. However, the fundamental problem is that even with

a low cap, sellers go for segmentation if they obtain higher profits with this configuration.

Thus, caps on listing fees do not destabilize segmentation and are merely a rent-shifting

device. This shows that, while price caps are intended to increase demand and thereby

welfare, they are not effective in inducing listing decisions on platforms that lead to

pro-competitive seller behavior.

7.2 Predictions

Our theory also leads to novel predictions that are empirically testable.

Correlation between market concentration and fee levels in platform markets. Our

theory predicts a negative correlation between market concentration and the level of list-

ing fees in platform markets.49 More precisely, for a given number of available platforms,

our theory predicts that the relation between market concentration, in terms of market

share, and the level of the (average) listing fee is negative. In markets that feature ag-

glomeration, platform fees are lower than in markets in which platforms have a more

equal market share. This reverses the prediction of standard theory. Our prediction is

testable, for example, by analyzing cross-industry or cross-country variation in the data.

47For example, in the video game industry, console platforms often impose console exclusivity, which
prevents game developers from selling a similar game on rival consoles (see Lee, 2013, for an in-depth
analysis). As another example, trading platforms sometimes require ‘special’ offers by sellers to be
exclusive on them.

48In practice, this positive effect needs to be weighed against potential welfare-enhancing features of
exclusive contracts, such as spurring or protecting investment by the parties (Bernheim and Whinston,
1998; Segal and Whinston, 2000; de Meza and Selvaggi, 2007).

49The negative correlation between market concentration and platform charges is not only predicted
in the baseline model but also in all extensions presented in this paper.
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To make a meaningful comparison, one would need to condition on the market character-

istics and then consider the correlation between the Hirshman-Herfindahl Index (HHI)

of active firms and the level of the listing fee. There would be support for our theory if

platform fees were larger in markets with a smaller HHI.

Correlation between market characteristics in the product market and concentration in

platform markets. Our theory provides a prediction concerning the relation between the

conditions in the intermediated product market and the market outcome in the platform

market. Specifically, if competition in the intermediated market is weak, the platform

market will be more concentrated (measured by the HHI). Possible sources for different

degrees of competitiveness in the product market are manifold. They could be due to

differences in the degree of product differentiation or differences of the ratio between

sellers and buyers in thin markets. The prediction can be tested, for example, by looking

at different regional markets within the same industry and country or by considering

different broadly defined product categories. As platforms often operate country-wide

and across broad product categories, the same number of platforms may well be present,

but concentration may vary across different regions or categories. If a product market has

characteristics that are unfavorable to strong competition between sellers—i.e., profits are

relatively high even if sellers compete—our theory predicts agglomeration. Thus, reduced

competition among sellers tends to lead to market tipping.

As an example, consider price comparison websites. Suppose that buyers consider a

purchase within a broad product category and do not yet know which specific product

they like. In broad product categories in which there is little room for differentiation

between sellers’ offers, competition between sellers is intense, and, thus, it is likely that

sellers segment. The opposite holds in the broad product categories in which product

differentiation between sellers is pronounced.

8 Conclusion

In this paper, we have proposed a theory of competing platforms that enable trade

between buyers and sellers. Platforms are homogeneous and charge fees to sellers, and

sellers compete in the product market. We have analyzed how the competitive conditions

in the seller market affect platform market structure.

Can multiple platforms co-exist and earn positive profits even if there is no differenti-

ation between them? We show that the function of multiple platforms as an endogenous

segmentation device for competing sellers can explain such an outcome. Sellers choose

to be active on different platforms to avoid fierce competition. Platforms exploit this by

setting positive fees, and obtain strictly positive profits. Thus, multiple homogeneous
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platforms have a positive market share. Such a segmentation equilibrium exists if com-

petition between sellers is sufficiently strong. If, by contrast, there is little competition

between sellers, the standard intuition is confirmed: the equilibrium features agglomera-

tion, and platform fees are low. As a consequence of these results, the relation between

market concentration and fees is negative. Platform fees are low in concentrated markets

but high if market shares are similar.

Our main insights are robust to several different model formulations—namely, they do

not depend on the possibility of buyer and seller multi-homing, the pricing instruments

available to platforms, and the number of platforms and sellers. In addition, our frame-

work generates several policy implications and predictions that are empirically testable.

In our analysis, we did not consider entry of platforms. If entry costs are negligi-

ble, our analysis applies and agglomeration appears in a favorable light compared to

segmentation. In reality, agglomeration then corresponds to a situation in which one

platform has high market share (such as Ebay for online auctions), while several com-

petitors (such as Ubid and Catawiki) have small market shares.50 Our analysis suggests

the following interpretation: a single platform carries most of the trade, but fees are

below monopoly levels since small competitors impose a competitive constraint on the

large platform. Thus, the presence of small competitors keeps the leading platform at

bay.51 If, instead, platforms incur substantial entry costs, either only one platform will

enter (akin to agglomeration) or there will be segmentation such that several platforms

will enter and jointly carry all the trade. The welfare comparison between agglomeration

versus segmentation would then need to be reconsidered because the single platform in

the agglomeration situation operates as a monopolist, charges a high fee, and possibly

reduces the number of sellers.

We placed our analysis in a static context and focused on platform pricing and subse-

quent subscription decisions of buyers and sellers. We leave extensions such as dynamic

platform competition and the platforms’ innovation incentives for future research.

Appendix

Proof of Proposition 1. First, we consider the case πd/πm ≥ 1/2. From the discussion

towards the beginning of Section 4, we know that an agglomeration equilibrium on plat-

form i exits only if fi ≤ πd and fi ≤ f−i. The latter condition occurs because, in the

50Ubid is operating as an online auction site since 1997 currently allowing professional sellers to offer
consumer merchandise through auctions and at fixed price; see http://www.ubid.com/, last accessed June
4, 2019. Catawiki runs online auctions mainly on collectibles since 2011; see https://www.catawiki.com/,
last accessed June 4, 2019.

51This is in line with the policy conclusion by Brown and Morgan (2009) that competition authorities
should scrutinize the acquisition of small online auction platforms by bigger ones.
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second stage, sellers and buyers will coordinate on the equilibrium in which they all join

the platform with the lower fee. This implies that, in the first stage, for all f−i ≤ πd,

platform i gains from undercutting the competing platform. This induces agglomeration

on platform i. The standard Bertrand logic then applies and platforms set f ⋆
A = f ⋆

B = 0

in equilibrium.

Second, we consider the case πd/πm < 1/2. It is evident from the discussion before

the proposition that a segmentation equilibrium is played if the two fees are the same

or similar. As a consequence, in a candidate agglomeration equilibrium, the inactive

platform must set a sufficiently high fee. But this platform then has the incentive to

lower its fee (but still keep it strictly positive) and induce segmentation. By doing so, it

obtains a strictly positive profit, as half of the sellers join the platform. This argument

holds for any fees (fA, fB) that induce agglomeration in the second stage. Hence, no

agglomeration equilibrium exists for πd/πm < 1/2.

Proof of Proposition 2. Consider the case πd/πm < 1/2. In a segmentation equilibrium,

a seller on platform i obtains a profit of πm/2−fi. Therefore, the highest possible fee that

a platform can charge equals πm/2, leaving sellers with zero profits. We first determine

the conditions under which an equilibrium with listing fees πm/2 exists. If both platforms

charge fi = πm/2, segmentation occurs in stage 2. This holds because the seller’s gross

profit under agglomeration is πd, which is less than the listing fee.

Suppose that platform i deviates to induce an agglomeration equilibrium in the second

stage. To do so, it has to charge fdev
i = πd − ǫ, where ǫ > 0 can be arbitrarily small.

Since all buyers will agglomerate on platform i if all sellers do, sellers earn a small positive

profit when agglomerating on platform i but zero in the segmentation equilibrium. The

deviation profit of platform i is then (letting ǫ→ 0) Πdev
i = 2πd since it obtains πd from

each seller. Therefore, a deviation is not profitable if πm/2 ≥ 2πd or πd/πm ≤ 1/4.

It follows that in this region, a segmentation equilibrium with listing fees (f ⋆
A, f

⋆
B) =

(πm/2, πm/2) is the unique equilibrium. Each platform’s equilibrium profit is πm/2.

There cannot exist a segmentation equilibrium in which platforms charge fees less

than πm/2. The reason is that a platform could increase its fee slightly, still induce

segmentation, and obtain a higher profit.

Proof of Proposition 3. We first show the non-existence of a pure-strategy equilibrium.

Consider the region 1/4 < πd/πm < 1/2. From the discussion at the beginning of Section

4, we know that in this region a segmentation equilibrium will be played in the second

stage if both platforms charge the same listing fees (conditional on these fees being lower

than πm/2, which will always be fulfilled in equilibrium). From Proposition 2, it follows

that platforms cannot extract the full profit from sellers because this would give each

platform an incentive to deviate to a lower fee and induce agglomeration. We proceed by
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first determining the highest fee that platforms could charge to make such a downward

deviation unprofitable. Suppose that both platforms charge a fee of πm/2 − x. Each

platform’s profit is then πm/2 − x, and a seller’s profit is x. If platform i deviates in

order to attract all sellers and buyers in the second stage, it must set a fee such that

πd − fdev
i > x. The deviation fee fdev

i = πd − x− ǫ leads to a deviation profit of 2πd − 2x

(letting ǫ→ 0). Such a deviation is unprofitable if πm/2− x ≥ 2πd − 2x or, equivalently,

x ≥ 2πd−πm/2. Hence, with x equal to 2πd−πm/2, platforms prevent such a deviation.

The resulting fee is then fi = πm/2− x = πm − 2πd ≡ f̂i, and so is the platform’s profit.

To determine if listing fees f̂i = f̂j = πm−2πd can constitute an equilibrium, we need

to check if a platform has an incentive to deviate by charging a higher listing fee (upward

deviation). Suppose that platform i charges f̂i = πm − 2πd and platform j charges a

deviation fee fdev
j > f̂i such that segmentation is still the continuation equilibrium. To

induce segmentation, we must have πm/2 − fdev
j > πd − f̂i = 3πd − πm (i.e., a seller’s

profit with segmentation must be higher than with agglomeration). Thus, the highest

possible listing fee is fdev
j = 3πm/2 − 3πd − ǫ = 3(πm/2 − πd) − ǫ, which yields a larger

platform profit than f̂i = 2(πm/2− πd). Hence, a profitable upward deviation exists.

It follows that there is no equilibrium in pure strategies in the range of 1/4 < πd/πm <

1/2. The candidate equilibrium, which prevents downward deviations was f̂i = f̂j =

πm − 2πd, but then an upward deviation is profitable. In turn, for all listing fees above

πm − 2πd, a downward deviation is profitable.

Randomization domain. From the analysis above, we know that in the range 1/4 <

πd/πm < 1/2 for each fj, platform i has two best-response candidates: an upper best-

response candidate, denoted by f br+

i , which is higher than fj by a discrete amount and

induces segmentation, and a lower best-response candidate, denoted by f br−

i , which is

lower than fj by a discrete amount and induces agglomeration. We will now show that

there is a unique fj so that platform i obtains the same profit with either best-response

candidate. In addition, both candidates are increasing in fj. Due to platform symmetry,

this allows us to derive the randomization domain.

Suppose that platform j sets a fee fj. We now derive the best response of platform

i 6= j—for a graphical illustration of the best-response functions, see Web Appendix H.

The upper best response f br+

i is the largest fee compatible with segmentation. At this

fee, sellers weakly prefer segmentation to agglomeration on j, which implies that the

inequality πm/2 − f br+

i ≥ πd − fj is binding.52 This leads to a profit of f br+

i = πm/2 −

πd + fj. Instead, the optimal lower best response f br−

i is the largest fee compatible with

agglomeration on platform i. This can only occur if the seller profit with agglomeration

is larger than with segmentation, which implies πd−f br−

i > πm/2−fj. The lowest upper

52We presume that if sellers are indifferent between segmentation and agglomeration, they choose
segmentation. As we will show below, this is consistent with equilibrium behavior.
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bound of platform i’s profit is then 2f br−

i = 2(πd − πm/2 + fj).

The two profits reported above are equal at fj = 3/2πm−3πd. Thus, if fj ≤ 3/2πm−

3πd, platform i prefers the upper to the lower best-response candidate, whereas for fj >

3/2πm − 3πd the opposite holds true. Platform i’s best response to fj ≤ 3/2πm − 3πd

is to induce segmentation by setting its fee equal to f br+

i = πm/2 − πd + fj, which is

increasing in fj. Vice versa, for fj > 3/2πm−3πd, platform i’s profit from the lower best-

response candidate is larger than that from the upper best-response candidate because

2(πd − πm/2 + fj) > πm/2− πd + fj for π
d < πm/2. This implies that its best response

to fj > 3/2πm − 3πd is f br−

i = πd − πm/2 + fj, which is also increasing in fj. Hence,

platform i’s highest fee that constitutes a best-response to any fj is 2πm − 4πd; it is

the best response to fj = 3/2πm − 3πd. By symmetry, this leads to an upper interval

of the randomization domain equal to fi ∈ [3/2πm − 3πd, 2πm − 4πd]. Analogously, the

minimum of platform i’s best response to any fj is given by πm − 2πd. This leads to a

lower interval of the randomization domain equal to fi ∈ [πm − 2πd, 3/2πm − 3πd).

We can write the best-response functions as follows: let δ ≡ πm/2−πd. Denote f ≡ 2δ,

f̃ ≡ 3δ, and f ≡ 4δ. Thus, the domain over which platforms mix is [f, f ] = [2δ, 4δ]. For

i, j ∈ {A,B} and i 6= j, the platforms’ best response functions are given by53

f br
i (fj) =

{

fj + δ, if fj ∈ [f, f̃ ];

fj − δ − ǫ, if fj ∈ (f̃ , f ],

where −ǫ stands for an incremental reduction. Thus, the mixed-strategy equilibrium fea-

tures (fi, fj) ∈ [πm−2πd, 2πm−4πd]2. The expected profit is 3πm/2−3πd because, when

charging a fee equal to this profit, a platform induces segmentation with a probability

of (almost) 1. In the mixed-strategy equilibrium, the highest listing fee is 2πm − 4πd.

However, to ensure participation of sellers, the highest fee a platform can charge (in a

segmentation equilibrium) is πm/2. Therefore, the equilibrium determined above is only

valid if 2πm − 4πd ≤ πm/2 or, equivalently, πd/πm ≥ 3/8.

Mixing probabilities. We derive the mixing probabilities in Web Appendix H—they

are characterized by the cumulative distribution function

G1(f) =

{

f−2δ
f+δ

, if f ∈ [2δ, 3δ);
2f−5δ
f−δ

, if f ∈ [3δ, 4δ].

53As sellers choose segmentation in the second stage when being indifferent between segmentation and
agglomeration, the best response to fj infinitesimally above f̃ is f , and the best response to fj = f̃ is f .
Hence, the boundaries of the mixing region are well defined. By contrast, if sellers chose agglomeration
when indifferent, the upper bound would not be well defined, as f is never a best response (only f − ǫ
is). Therefore, sellers choosing segmentation as a continuation equilibrium when indifferent is consistent
with equilibrium play of the full game.
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As the distribution is not absolutely continuous with respect to the Lebesgue measure,

it fails to have a density. We define a generalized density, which is a generalized function

(which comprises a Dirac delta) such that integration against this function yields the

cumulative distribution function from above. The generalized density is given by g1(f) =

G′
1(f) + δD(f − 3δ)/4, where G′

1(f) = 3δ/ (f + δ)2 if f ∈ [2δ, 3δ) and 3δ/ (f − δ)2 if

f ∈ [3δ, 4δ], and δD(f − f0) denotes the Dirac delta, which is 0 everywhere except for f0

where it is ∞. Inserting δ = πm/2− πd yields the result stated in the proposition.
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A More Descriptive Evidence for Segmentation

The purpose of this appendix is to present three further empirical examples with the

features described in Section 2. In each example, we provide information on platform

pricing and report fractions of multi-homing and single-homing sellers on the two leading

platforms.

Before doing so, we would like to point out that our framework also applies to in-

dustries beyond e-commerce. A case in point are industry standards; for example, the

modem standard for end-user Internet access in the 1990s: Augereau, Greenstein, and

Rysman (2006) find that two different, but functionally equivalent modem standards

were used by Internet Service Providers (ISPs, which would be the sellers in our model)

despite positive effects of standardization. This helped ISPs reduce competition (by cre-

ating switching costs for consumers). As a result, the two modem standards obtained

similar market shares and, thus, segmented the market.

Example 1: Platforms in the German rental market. As a first example, we follow up

on the German housing market and consider the same two platforms as in Section 2 (i.e.,

Immobilenscout24 and Immowelt) but now focus on the rental market. We demonstrate

that segmentation is also much more common than agglomeration in the rental market,

that is, our finding for the housing market is not an exception but commonly occurs. We

keep this example short, as most industry details were already discussed in Section 2.

In the rental market, the two platforms charge listing fees that again depend on the

time window of the listed offer. Immobilienscout24 charges approximately 50 Euro for a

basic 2-week offer for rent, while Immowelt charges approximately 40 Euro. A listing for

one month is available at approximately 80 Euro at Immobilienscout24, while a 4-week

listing is available at approximately 60 Euro at Immowelt.

In the rental market, we generated a dataset by carrying out a search for rental

apartments in the 125 German cities with more than 100,000 inhabitants. We use the

following search criteria: “at least 3 rooms”; “at least 100 m2”; and “distance to the

center less than 1 kilometer” for the 10 biggest cities and “distance to the centre less

than 3 kilometers” for the remaining cities. The descriptive statistics are reported in

Table 2.1

The table shows that Immobilienscout24 is on average larger than Immowelt also in

the rental market.2 Yet, for all city sizes, there are some examples for which the opposite

1We removed two cities as outliers from our sample: the first is Leipzig because it is known to be a city
with many empty apartments. In fact, Leipzig had on both platforms a number of offers 10 times larger
than cities of comparable size (214 on Immobilienscout24 and 178 on Immowelt). The presumption is
that many offers are on the platform for a long time and sellers obtain discounts, which is not the case
in other cities. The second city we excluded is Salzgitter, which does not have a single offer on any of
the two platforms, given our search criteria.

2This is again true for larger and smaller cities—i.e., the correlation coefficient between city size and
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Table 2: Descriptive Statistics: German Rental Market

Variable Obs Mean Std. Dev. Min Max
Sellers Immoscout 123 19.98 21.53 0 142
Sellers Immowelt 123 10.63 13.32 0 98
Share of SH Sellers Immoscout 123 0.614 0.240 0 1
Share of SH Sellers Immowelt 123 0.274 0.240 0 1
Share of MH Sellers 123 0.112 0.106 0 0.444

holds and Immowelt hosts more sellers than Immobilienscout24.3 There are a few cities

in which one platform is not active conditional on our search criteria.

Figure 8 reports the share of multi-homers and single-homers on each platform in

ascending order of the share of multi-homers in the 123 cities. The reading of the figure

0
.2

.4
.6

.8
1

MH Sellers SH Sellers at Immoscout
SH Sellers at Immowelt

Figure 8: German rental market: Single- and multi-homing sellers.

is the same as for the figure in Section 2. In contrast to the housing market, in the rental

market, in some cities all sellers are on one platform. In our sample, this appears in 11 out

of 123 cities (7 cities in favor of Immobilienscout24 represented by the bright vertical bars

and 4 cities in favor of Immowelt represented by the dark gray vertical bars). Depending

on the city, between 0 and 44.4% sellers multi-home. In approximately 80% of the cities,

the share of single-homing sellers is not significantly different from zero.
3For example, for the largest German city Berlin, there are 11 listings on Immobilienscout24 but 22

on Immowelt.
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less than 20% of sellers multi-home. This again provides evidence that segmentation

occurs more often than agglomeration and that seller multi-homing is modest also in the

rental market.

Example 2: Platforms for rural Spanish holiday homes. To rent out holiday homes, the

use of online intermediaries appears to be essential for owners, as this is the predominant

form by which tenants look for vacation places. A clearly defined submarket are vacations

in a rural setting. Spain is a country with a booming rural holiday tourism,4 and we

use the renting of rural vacation homes in Spain as our second example. The market

leaders as intermediaries are Escapadarural and Toprural (the latter is part of Homeaway

since 2012). According to its own websites, Escapadarural has more than 16,000 listed

properties, while Toprural claims to have “thousands” of listed properties. The market

has several similar features as that in Example 1: platforms match offers to consumers,

and consumers typically have rather specific needs and there is only a limited number

of offers satisfying those needs. Tenants are typically non-locals and are unlikely to

have information about how the relative number of offerings on the two platforms differs

across destinations. One difference to Example 1 is that sellers are repeatedly active on

a platform, as they regularly rent out the same place.

Escapadarural and Toprural charge monthly listing fees as part of a subscription.

Their amount depends on the type of seller (in particular, whether he rents out a single

or multiple units) and the services provided by the platform (in particular, the visibility

given to a particular property). In 2018, listing fees are not made public by the two

platforms. According to a blog entry in 2016, Toprural published different monthly fees

ranging from 13.75 Euros per month to 333.33 Euros, and Escapadarural charged listing

fees that were a bit lower than those of Toprural.5 A difference between the two portals

is that Escapadarural also offers a free rudimentary listing service. Finally, we note that

although both platforms charge monthly fees, sellers need to sign a long-term contract

(usually for one year).

On the buyer side, differences between platforms’ matching services appear to be

negligible: buyers can use similar search categories, and the presentation of each property

appears to be similar. The price range of offers is also very similar on the two platforms

in our dataset, and both platforms were active in all Spanish provinces. Thus, there are

no direct signs of vertical or horizontal differentiation between platforms.

In terms of absolute number of listings, Escapadarural is much larger. In our sample,

4For example, in recent years the newspapers Guardian and Telegraph in the UK featured stories
about rural vacation in Spain.

5Blog entry by a marketing consultancy specialized in rural tourism,
https://www.demomentsomtres.com/es/turismo-rural-analisis-de-toprural-y-escapada-rural/, accessed
June 4, 2019.
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the mean of offers per destination is 21.02 on Escapadrural but only 6.12 on Toprural.

Despite the difference in listing numbers, we observe that Toprural is an active competitor

in all submarkets, which implies that there is no tipping. The conjecture is that several

listings on Escapadarural are rarely rented.6 We confirmed this constructing an alterna-

tive dataset with searches for apartments and houses in “beautiful villages”, where the

market supposedly has a higher turnover—we then do not observe noticeable differences

in size between the two platforms.7

0
.2
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MH Sellers SH Sellers at EscapadaRural
SH Sellers at TopRural

Figure 9: Ratio of multihoming Sellers.

As in our first example, we investigate the prevalence of seller single- and multi-

homing. For this purpose, we consider the hypothetical demand of a group of four people

who want to rent an entire rural house for a week in one of the 50 provinces in Spain.

In this and all other searches, we focus on properties with photos as those without any

photo are arguably not a plausible alternative.8 In popular provinces (with more than 20

listings), we added the qualifier “swimming pool”to reduce the number of listings. We

did a search for renting the house in the first week of September with the request being

6In addition, as Escapadarural is cheaper than Toprural and sellers usually need to make a commit-
ment for one year, for owners who rent out their apartment or house only for a few months per year,
Escapadarural is the more-economic option.

7For a more detailed description, see below.
8Escapadarural has some listings without photos; however, these listings look inactive and appear at

the end of any search query.
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made around five weeks before the travel dates.9

Findings of our search are reported in Figure 9. The figure reflects the fact that

Escapadarural has many more listings; this holds in most provinces. We find that in 46

out of 50 provinces there are single-homing offers on both platforms and the fraction of

multi-homing sellers is less than 20% in 47 out of 50 provinces.

One concern could be that the search is defined too broadly, as consumers may search

for particular locations rather than whole provinces. The question then is whether seller

segmentation can still be observed in very narrowly defined markets. To shed some light

on this issue, we constructed another dataset. Here, we searched for any type of property

in small villages that are known for their beauty with a flexible date.10 The number of

offers is quite balanced over the two portals. We again find evidence that overall there

is segmentation and the data are compatible with the idea that, in many villages, sellers

are concerned with seller competition.11

Finally, as in Example 1, we do not have data on consumer behavior, but we see

the fact that some sellers multi-home as indication that the fraction of single-homing

consumers is not negligible.

Example 3: Daily deals platforms in the United States. We use the daily deals market

in the United States as a third example for segmentation. Sellers in the daily deals market

offer special deals in a metropolitan area to subscribers. The most prominent categories

are restaurants and beauty or fitness services. Sellers listing a deal on a platform specify

the product or service offered, the price, duration, and discount rate. Consumers who buy

a deal voucher can redeem it later from the seller offering it. In the period between 2010

to 2012, the daily deals market in the U.S. was dominated by two platforms, Groupon

and Livingsocial. Data on this period was used in the papers by Li, Shen and Bart (2017)

and Li and Zhu (2018), and we use their findings to provide evidence for segmentation.

As their pricing model, both platforms take a revenue share from sellers. This is

usually a 50/50 split between the platform and the seller, with few exceptions in which

either the platform or the sellers obtain a slightly higher share.

Groupon and Livingsocial can be seen as being close competitors during this period.

While Groupon tended to serve consumers who were, on average, younger than those on

Livingsocial, there was a large overlap in the age distribution (according to Comscore

9This week just falls outside of the standard vacation period in Spain. We also did a search for the
last week of August and found similar results. Yet, a larger fraction of properties were already booked.
The data are available upon request.

10We used the list provided by https://www.lospueblosmasbonitosdeespana.org, which contained 68
villages, last accessed June 4, 2019.

11In our sample, there are 45 villages with more than three offers. We observe pure seller single-
homing on either platform in ten villages and partial seller multi-homing in 22 villages. In the remaining
13 villages, there are no single-homing sellers on one of the two platforms; of these, in only three villages
all sellers have agglomerated on a single platform.



Segmentation versus Agglomeration 7

Media Metrix, April 2011). This suggests that platforms were not too differentiated and

catered to similar buyer profiles.

The importance of seller competition in this market is reflected by the fact that

Groupon lists only a fraction of the deals proposed by sellers and, thus, excludes a certain

fraction of them.12 Therefore, the platform actively manages seller participation. As Li,

Shen and Bart (2018, p. 1861) observed, “[w]hile more variety may often attract more

consumers [...], it can also create competition between deals in the same category, which

then may decrease sales of a deal.” Through the lens of our model, when Groupon and

Livingsocial actively manage seller participation, each of them should have an incentive

to limit the number of listings.

Li and Zhu (2018) have microdata on buyer and seller behavior on Groupon and

Livingsocial for the three-year period 2010 to 2012. We present their descriptive evidence

on the extent of single- and multihoming in Figure 10.13 It is evident that most sellers

as well as buyers are single-homers. Li and Zhu (2018) consider a seller to multi-home if

he offers a deal on one platform and has previously listed another deal on the competing

platform in the same product category. As can be seen in the upper graph of Figure

10, the fraction of sellers on Livingsocial that also list on Groupon (which is the larger

platform) is between zero and 12 percent. There is little multi-homing also on the buyer

side. Even though the market was quickly expanding in the 2010 to 2012 period, single-

homing is prevalent throughout on both sides. In particular, between around 10 and 20

percent of all buyers multi-home. Depending on the month, between around 50 and 70

percent of all buyers single-home on Groupon, whereas between around 15 and 40 percent

single-home on Livingsocial. Overall, we view this as strong evidence that a large fraction

of buyers and sellers single-home.

Finally, we note that the platforms merged in October 2016. However, both platforms

are still active nowadays (managed by the joint owner Groupon). This implies that the

owner viewed it as more profitable to keep both platforms alive instead of integrating

them in one brand label and enjoying the agglomeration benefits. This is consistent with

the idea that segmentation allows for higher rent extraction from sellers due to reduced

competition.

12According to Bari Weiss, “Groupon’s $6 billion gambler” Wall Street Journal, December 18, 2010,
Groupon accepted only one out of every eight proposed deals.

13We are very grateful that Hui Li and Feng Zhu generated the figure for us and allowed us to include
it here. The figure is a condensed version of Figures 2 and 5 in Li and Zhu (2018).
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Figure 10: Ratio of multi-homing sellers and multi-homing buyers.

B Further Microfoundations of the Buyer-Seller In-

teraction

In this section, we present two further microfoundations for the buyer-seller interaction

in stages 3 and 4: these are price competition with a representative consumer and a thin

market with only a small number of buyers and (capacity-constrained) sellers. The latter

example does not fulfill all assumptions set out in Section 3 (as there is only a finite

number of buyers). However, because only πd and πm are relevant for our results, we

can restate the model so that it is in line with this example. For both examples, we also

express the equilibrium region determined in Section 4 as a function of the underlying
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parameters.

Example 1: Price competition with a representative consumer with linear demand and

differentiated products.

Suppose that buyers with the same preferred category have an indirect utility function

of q1 + q2 − 1/2(q21 + q22) − γq1q2 − p1q1 − p2q2, with γ ∈ [0, 1] expressing the degree of

substitutability between products. This is a representative consumer setting in which each

buyer obtains utility from positive quantities of each product in her preferred category.

Maximizing this utility function with respect to q1 and q2, we obtain the inverse demand

functions pi = 1 − qi − γq−i, i ∈ {1, 2}. Inverting this demand system yields the direct

demand functions qi = (1− γ − pi + γp−i)/(1− γ2), for i ∈ {1, 2}.

Duopoly equilibrium profit per buyer is πd = [(1− γ)(1− c)2]/[(1+ γ)(2− γ)2]. For a

monopolist, the direct demand is qi = 1− pi and the per-buyer profit is πm = (1− c)2/4.

Thus, the ratio πd/πm is given by

4(1− γ)

(1 + γ)(2− γ)2
,

which is above 1/2 if γ is lower than approximately 0.62.

In this example, the boundaries of the regions are affected by γ ∈ [0, 1), with a higher

γ implying less differentiation and fiercer competition. Using the results of Section 4,

we obtain, that the agglomeration region applies approximately for γ ≤ 0.62, the first

mixing region for 0.62 < γ ≤ 0.74, the second mixing region for 0.74 < γ < 0.85, and the

segmentation region for γ ≥ 0.85.

Example 2: Thin markets.

In this example, we consider capacity-constrained sellers that each can offer only one unit

of a product—the analysis can be extended to allow for sellers with a finite number of

products to sell.

Suppose that, in each category, there are two sellers and finitely many buyersMB > 1.

The example differs from the baseline model, as there is no continuum of buyers. To keep

the exposition simple, suppose that there are two buyer types with valuation R ∈ {R,R},

with 0 ≤ R < R. The ratio of R-types is ρ ∈ (0, 1). Sellers observe buyers’ valuations in

the price-setting stage.14

Consider, first, the case in which both sellers and all buyers are located on platform i.

If, for example, there areMB = 2 buyers on platform i, there are four pairs of willingness-

to-pay that the sellers can encounter: (R,R), (R,R), (R,R) and (R,R). For any pair with

fewer R-type buyers than sellers, the unique equilibrium is that sellers set p∗ = R because

14This simplifying assumption implies that sellers can observe whether or not they are located in a
market with sufficiently many R-type buyers when they set their prices. Yet, in general, it suffices for
our argument that prices are increasing in the number of buyers.
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of Bertrand competition. Only if there are at least as many R-type buyers as sellers—i.e

(R,R) realizes—there is the unique equilibrium that sellers set p∗ = R. The probability

of this event equals ρ2. The expected profit of each seller is then π(2, 2) = ρ2R+(1−ρ2)R.

More generally, denoting the probability that the number of high-type buyers is larger

than the number of sellers (i.e., Pr{♯
{Rl=R}

MB
l=1

≥ 2}), by Q(MB, 2), we obtain

Q(MB, 2) =

MB
∑

k=2

(

MB

k

)

ρk(1− ρ)MB−k.

The expected profit can then be written as π(MB, 2) = Q(MB, 2)R + (1 − Q(MB, 2))R,

which corresponds to πd in the baseline model.

If, instead, one seller per category locates on platform A and the other on platform B,

and each buyer joins with probability 1/2 platform A and with probability 1/2 platform

B (which will happen in equilibrium), the expected profit of a seller on platform i is

π(l, 1) = Q(l, 1)R + (1 − Q(l, 1))R if l ∈ {1, ...,MB} buyers join platform i, as q(l, 1)

is the probability that there is at least one R-type buyer among the l buyers. The

probability that l ∈ {1, ...,MB} buyers locate on platform i is given by

P (l) =

(

MB

l

)(

1

2

)l (
1

2

)MB−l

.

Overall, the expected profit of a single seller located on a platform can then be written as
∑MB

l=1 P (l)π(l, 1). This expression corresponds to πm/2—that is, the monopoly profit of

a seller when reaching each buyer with probability 1/2. Table 3 illustrates how the ratio

πd/πm depends on the number of buyers per category. (Note that πd and πm depend on

the number of buyers MB.)

MB 1 2 3 4 5 6 7 8 9 10
πd/πm 0 0.1333 0.2367 0.3162 0.3769 0.4228 0.4570 0.4821 0.5002 0.5129

The ratio πd/πm as a function of the number of buyersMB per category and parameter values ρ = 1/4,
R = 0 and R = 1.

Table 3: Thin Markets

In this example, the number of buyers and the probability for a buyer being of high

valuation are the drivers for the platform market structure. With two buyers and R = 0,

agglomeration occurs if the probability of high-type buyers is ρ ≥ 4/5, whereas segmen-

tation occurs if ρ ≤ 4/9. A larger probability for the high type reduces competition, as

it is more likely that both sellers face a high-type buyer, which leads to an increase in

πd. Regarding the number of buyers, in our numerical example with ρ = 1/4 and R = 0,
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agglomeration occurs when there are more than eight buyers (cf. Table 3), whereas

segmentation occurs for three or less buyers. The first mixing region prevails for five

to eight buyers and the second mixing region for four buyers. When the probability of

the high type decreases, the boundaries for all regions shift upward, which implies that

segmentation becomes more likely.

C Discussion of Equilibrium Refinement

To obtain a unique equilibrium in the second stage of the game in which buyers and

sellers choose on which platform to be active, we impose the refinements of coalition-

proofness and profit dominance of sellers. The question may arise how this selection

mechanism operates in the reality. In this section, we address this question and also

discuss under which conditions payoff dominance of buyers might be better suited as a

selection mechanism.

First, as mentioned in the main body of the paper, a justification for profit dominance

of sellers as a refinement is that sellers decide which platform to join before buyers do.15

This is a realistic assumption in markets in which platforms enable or facilitate trade

between buyers and sellers. Those platforms can profitably operate only when securing

deals with sellers listing their products on the platform in the first place. Buyers make

their decisions only afterwards. In the real world, this is often a dynamic process in which

the number of sellers and buyers change over time.16 However, sellers are often fewer in

numbers and can coordinate their listing decisions more easily than buyers.

By contrast, markets in which it is more likely that buyers decide which platform to

join before sellers do are better described by profit dominance of buyers. This is usually

the case in industries, in which the main benefit of users is to enjoy content provided by

platforms but platforms obtain revenues via advertisements or sales of products. Buyers

then visit the platform foremost because of the content available. Examples of such

platforms are social networks, such as Facebook, or video sharing platforms, such as

YouTube or Vimeo. Users are attracted primarily because they can interact with their

friends or watch videos, respectively, and the advertisements are merely a by-product for

them (but are the revenue source of the platform). Therefore, it is natural that users

move first in these markets, and coordinate on the equilibrium which is best for them.

Advertisers or sellers of products then move second.

15For a general discussion how sequentiality in decisions solves the coordination problem in industries
with network effects, see Farrell and Klemperer (2007).

16In some non-digital markets in which sellers list in directories or magazines, such as yellow pages,
their decision must be taken before those of consumers. Similarly, as pointed out by Hagiu (2006), in
the software or video game industry, many application or game developers join a platform before buyers
do due to the long-term development process.
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Second, a natural question is how a coalition of agents coordinate their decisions.

Coordination within a group can be achieved in a relatively easy way (and only such

coordination is required when buyers and sellers move sequentially). For instance, on

the seller side, in most markets, some sellers offer their products through an agency (as

e.g., in the housing market). As this agency is responsible for the products of many

sellers, it acts as a pivotal seller and smaller sellers follow the pivotal ones in their listing

decisions. On the buyer side, word-of-mouth communication or rating reports of previous

purchasers allow buyers to transmit information between them, and then coordinate their

decisions.17

Coordination between the two groups of users can be achieved through interaction

between important players in each group or through mediation of the platforms. We start

with the first case. An important agent on the seller side can be an agency responsible

for the decision of many sellers or a multi-product firm;18 on the buyer side, an important

agent can be a marquee buyer, who influences other buyers. If the decisions of marquee

buyers become public, other users from both sides will follow, which allows to achieve

coordination between the two groups.

The second case is that a platform directly manages the coordination between both

groups. An important way to do so is through advertising. For instance, large platforms

often announce their market shares, thereby inducing users to follow the decisions of

previous users.19 Another possibility is that platforms actively support coordination. For

example, platforms may grant discounts to prestigious or well-known sellers to attract

buyers. This then also attracts more unknown sellers, thereby facilitating coordination

on agglomeration. An example of this pricing practice is demonstrated by Pashigian and

Gould (1998) and Gould, Pashigian, and Prendergast (2005) for the case of shopping

malls. They show that shopping malls offer rent subsidies to brand-name anchor stores

but a rent premium to small tenants, which are less known. Platforms may also assist

in fostering segmentation. This can be done by committing to limits in the number of

sellers per category, in the extreme, by guaranteeing a seller exclusivity in his category—a

practice that can be observed in the video game console industry.

Finally, as explained above, by requiring coalition-proofness, we do not leave room

for user miscoordination. In a dynamic context in which users occasionally revise their

decisions in a staggered manner, such miscoordination may be rather persistent. This

17For a recent formal exposition how word-of-mouth affects buyer migration between platforms, see
Biglaiser et al. (2018).

18An example is a large fashion manufacturer listing on an apparel platform, or a hotel chain listing
on a hotel booking platform.

19An example, discussed by Koski and Kretschmer (2002), is the software vendor Oracle, which brings
together users of software with certified application developers. Oracle regularly mentioned in its adver-
tising campaign that 98 out of the Fortune 100 companies use Oracle technologies.
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opens another avenue to explain segmentation that we do not explore in this paper.20

D Equilibrium Selection in Stage 2

In the first step, we determine all Nash equilibria in stage 2, given fees (fi, f−i). In a

second step, we show how the refinement of coalition-proofness plus profit dominance of

sellers singles out an essentially unique equilibrium. The qualification to the uniqueness

is that if fi = f−i, under some conditions two payoff-equivalent equilibria exist. As will

become evident below, these equilibria are agglomeration either on platform A or B, or

stand-alone either on platform A or B, dependent on the level of fi. However, as the

equilibria are payoff-equivalent, selecting among them is not necessary.

Suppose that the mass of sellers differs across platforms—αi sellers are on platform

i and α−i < αi sellers are on platform −i. Then all buyers will join platform i. This

implies that sellers on platform −i have a profitable deviation to either go to platform i

or be inactive for any f−i > 0. It follows that in equilibrium either one platform has no

sellers and no buyers, or αi = α−i, which makes buyers indifferent and induces them to

split equally between the two platforms under our tie-breaking rule.

We start with the situation, in which there is trade on only one platform. As sellers

are homogeneous across categories, there cannot be an equilibrium in which sellers in

different categories follow different strategies. The reason is that if it is profitable for

one or both sellers in some categories to list on the platform with a positive volume of

trade, this must also be true for sellers in the remaining categories. There can be two

equilibrium configurations in which only one platform carries a positive volume of trade.

The first configuration is an agglomeration equilibrium, in which all sellers and all

buyers agglomerate on one platform. A seller’s profit is then πd. Hence, an equilibrium

with agglomeration on platform i exists if fi ≤ πd, independent of f−i. The second

equilibrium configuration is a stand-alone equilibrium, in which in each category only

one seller is active on platform i and all buyers go to platform i. This configuration

occurs if πm ≥ fi > πd, independent of f−i. This equilibrium cannot occur with fi < πd,

as in this case both sellers in each category prefer to be active on platform i.

We now turn to the equilibrium configuration, in which αi = α−i. The following three

types of seller compositions give rise to αi = α−i.

(i) In each category, one seller lists on platform i and one seller lists on platform −i.

(ii) In 1/2 of the categories, both sellers list on platform i and in the other half both

sellers list on platform −i.

20On competing one-sided platforms, see Cabral (2011).



Segmentation versus Agglomeration 14

(iii) In 1/2 of the categories, one seller lists on platform i and in the other half one seller

lists on platform −i.

In addition, any convex combination of these three seller compositions (i.e., mixing be-

tween the three types) leads to αi = α−i. Note that it can never be an equilibrium that

in fewer than 1/2 of the categories both or one seller list on platform i and platform −i.

The reason is that non-active sellers have a profitable deviation to become active. This is

because platform fees must be such that the resulting profits are higher than the listing

fees as otherwise there can be no categories in which sellers are willing to list.

We now show that types (ii) and (iii) can never occur in equilibrium. Consider case

(ii). Since in 1/2 of the categories, both sellers are active on platform i, we must have

fi ≤ πd/2. If a seller active on platform −i then deviates to platform i, its profit changes

from πd/2− f−i to π
m/2− fi. By a similar argument, if a seller deviates from platform i

to platform −i, its profit changes from πd/2−fi to π
m/2−f−i. This implies that case (ii)

can only be an equilibrium if πd/2− f−i ≥ πm/2− fi and π
d/2− fi ≥ πm/2− f−i. Since

πd/πm < 1, both conditions cannot jointly hold, implying that there must be a profitable

deviation. Similarly, in case (iii) platform fees must be smaller than πm/2, which implies

that non-active sellers have a profitable deviation to list on the platform in which the

competitor is not active. Since those two types cannot be an equilibrium configuration,

mixing among the three types can be excluded by the same arguments.

As a consequence, the configuration in which both platforms are active can only be

such that each platform is host to one seller in each category. This equilibrium can only

occur if platform fees are below πm/2, and no seller has an incentive to deviate and

become active on the other platform. The latter condition implies

πm

2
− fi ≥

πd

2
− f−i

Rewriting this condition, we obtain that a segmentation equilibrium exists if and only if

fi ≤ min

{

πm − πd

2
+ f−i,

πm

2

}

. (1)

As illustrated in Figure 2, for any combination of listing fees (fi, f−i) with fi ≤ πm and

f−i ≤ πm, multiple equilibria exist in stage 2.

Finally, we note that for all (fi, f−i) a no-trade Nash equilibrium exists in which nei-

ther buyers nor sellers participate on either platform. However, this no-trade equilibrium

is not coalition-proof whenever some other equilibrium exists. We therefore disregard it

in the following discussion.

In the second step, we demonstrate how our selection rule singles out a unique equi-
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librium (unique subject to the qualification above). We start with the cases in which only

a single equilibrium configuration exists (i.e., agglomeration or stand-alone) but multiple

equilibria occur because agents can coordinate on either platform. First, consider the

case in which there are the two equilibria, where all sellers (and buyers) agglomerate on

platform A or platform B. If both platforms charge a fee below πd and fi 6= f−i, coalition-

proofness implies that all sellers and buyers coordinate on the platform with the lower

fee, that is, they agglomerate on platform i if fi ≤ f−i.
21 Within this coalition, there is

also no subcoalition that can improve by being active on platform −i. Similarly, if both

platforms charge a fee larger than πd and the two equilibria in which only half of the

sellers are active on platform A or on platform B exist (i.e., the stand-alone equilibria),

then sellers choose platform i if fi ≤ f−i.

Now we turn to cases in which multiple equilibrium configurations exist. First, con-

sider the case in which agglomeration and stand-alone equilibria exist. From the argu-

ments above, this occurs if one platform, say platform −i, charges a fee below πd whereas

the other one charges a fee above πd. However, the stand-alone equilibrium is then not

coalition-proof because a coalition consisting of all buyers and all inactive sellers has a

profitable deviation. If all these agents choose to be active on platform −i, then buyers

are indifferent (as one seller per category is then active on each platform) but the profits

of the formerly inactive sellers strictly increase from 0 to πm−fi > 0. In addition, no sub-

coalition can deviate and be strictly better off. By the same argument, if stand-alone and

segmentation equilibria exist, a stand-alone equilibrium is not coalition-proof, whereas a

segmentation equilibrium is. To see this, note that for these equilibrium configurations

to co-exist, we must have that πd/πm < 1/2 and that both fees are between πd and

πm/2. Thus, no coalition of sellers has the incentive to deviate from a segmentation

equilibrium.22

Finally, we turn to the region, in which segmentation and agglomeration equilibria

exist. The profit of each seller in an agglomeration equilibrium on platform i is πd − fi.

By contrast, in a segmentation equilibrium, the profit of a sellers is either πm/2 − fi or

πm/2− f−i dependent on which platform the seller is active. Let us first look at the case

πd/πm ≥ 1/2. It is evident that a coalition of all sellers active on the platform with the

higher fee, say platform i (i.e., fi ≥ f−i), and all buyers on this platform have a profitable

deviation to switch to platform −i. After such a deviation, the sellers are (weakly) better

off because πd − f−i ≥ πm/2 − fi due to the fact that πd/πm ≥ 1/2 and f−i ≤ fi, and

21This is also the profit-dominant equilibrium for sellers.
22In these regions, profit-dominance of sellers either selects the same equilibrium as coalition-proofness,

or profit-dominance has no bite as some sellers prefer stand-alone over agglomeration (or segmentation)
whereas others have the opposite preference. Hence, coalition-proofness and profit-dominance are not in
conflict with each other.
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buyers are better off because they observe the offers of both sellers and not only one.

Therefore, for πd/πm ≥ 1/2, the segmentation equilibrium is eliminated.23

We now turn to the case πd/πm < 1/2. We first show that a similar mechanism

as that in the previous paragraph does only partly work then. In particular, sellers on

platform i (i.e., the platform with the higher fee) prefer agglomeration on platform −i

over segmentation if and only if πd − f−i ≥ πm/2− fi or

fi ≥
πm

2
− πd + f−i.

If this inequality holds, the segmentation equilibrium is not coalition-proof because sellers

and buyers on platform i can profitably deviate and agglomerate on platform −i. This

shrinks the range for the segmentation equilibrium. In particular, for fees below πd, the

equilibrium exists for fi ≤ (πm − πd)/2 + f−i, whereas it survives the refinement only if

fi < πm/2 − πd + f−i.
24 If fi < πm/2 − πd + f−i, the refinement of coalition-proofness

has no bite. However, the refinement of profit-dominance for sellers then selects the

segmentation equilibrium as the unique equilibrium. In particular, the inequality ensures

that sellers on platform i are better off in the segmentation equilibrium than in the

agglomeration equilibrium, and the condition πd/πm < 1/2 guarantees that also sellers

on platform −i prefer segmentation over agglomeration because πm/2− f−i > πd − f−i.

Therefore, our equilibrium refinement selects the following equilibrium, given any

(fi, f−i) with fi ≤ πm and f−i ≤ πm:

(i) If πd/πm ≥ 1/2, then

– for fi, f−i ≥ πd, the equilibrium is STAi if fi ≤ f−i;

– for all other values, the equilibrium is AGGi if fi ≤ f−i.

(ii) If πd/πm < 1/2, then

– for fi, f−i ≤ πd, the equilibrium is SEG if f−i < πm/2− πd + fi, and AGGi if

f−i ≥ πm/2− πd + fi.

– for fi, f−i ∈ (πd, πm/2], the equilibrium is SEG.

– for fi > πd and f−i > πm/2, the equilibrium is STAi if fi ≤ f−i.

23Again, profit-dominance of sellers also eliminates the segmentation equilibrium.
24If both fees are above πd there is no restriction because the agglomeration equilibrium does not exist

then.
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E Seller Multi-Homing with Multiple Sellers

In Section 5.2, we considered the case of seller multi-homing with two sellers per product

category and we showed that, under some conditions, a partial multi-homing equilibrium

can occur in which one seller in each product category multi-homes and the other seller

single-homes. Half of the single-homing sellers are active on platform A and the other

half on platform B. In this section, we characterize partial multi-homing equilibria with

a general number of sellers M ≥ 2.25 As in Section 5.2, we consider the case with two

platforms. Following the main analysis of the baseline model, we assume that multi-

homing sellers set a uniform price across both platforms—that is, they do not price

discriminate. The equilibrium refinement in the second stage is the same as in the main

model (i.e., we select the seller-preferred, coalition-proof equilibrium).

In addition, we also impose an equilibrium selection criterion in the first stage. With

a general number of sellers, the equilibrium in the fee-setting game between platforms

may not be unique. Then, as a refinement, we assume that platforms choose the profit-

dominant equilibrium.

With M ≥ 2 and the possibility of seller multi-homing, a seller’s profit per buyer

depends on the size of three seller groups—the single-homing sellers on either platform

and the multi-homing sellers—since they determine how competition between sellers plays

out. To state the profits concisely, we write the per-buyer profit of a single-homing seller

on platform i as πSH
i (lSHi , lSH−i , l

MH), where lSHi is the number of single-homing sellers on

platform i, lSH−i is the number of single-homing sellers on platform −i, and lMH is the

number of multi-homing sellers. Since more intense competition leads to lower profits,

we assume that πSH
i is strictly decreasing in the first and third argument, constant

in the second argument for lMH = 0, and strictly decreasing in the second argument

for lMH > 0. In particular, an increase in the number of single-homing sellers on the

competing platform −i makes competition on that platform more intense. This then

spills over into competition on platform i because multi-homing sellers set the same

price on both platforms. In addition, we assume that πSH
i (l/2 − δ, l/2 + δ,M − l) >

πSH
i (l/2 + δ, l/2 − δ,M − l), with, for l even, 2 ≤ l ≤ M and δ = 1, 2, ..., l/2, and,

for l odd, 1 ≤ l ≤ M and δ = 1/2, 3/2, ..., l/2. That is, given that l sellers single-

home, the profit of a single-homing seller is larger when being active on the platform

with fewer active sellers. This assumption is natural because the single-homing seller

then competes directly only with a smaller number of other sellers (as buyers on that

platform only observe the offers of a smaller number of sellers). It is also fulfilled by our

25As explained in Section 5.2, full multi-homing will never occur in equilibrium, as the per-buyer profit
is then the same as in an agglomeration equilibrium, but sellers pay two fees in the partial multi-homing
equilibrium instead of only a single fee in the agglomeration equilibrium.
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microfoundations.26

Similarly, we denote the average per-buyer profit of a multi-homing seller by πMH(lSHi ,

lSH−i , l
MH), which, for lMH > 0, is assumed to be strictly decreasing in all arguments.27

Finally, in case all active buyers and sellers are on the same platform, we denote the

per-buyer profit of a seller competing with m−1 others sellers in its product category by

π(m), with m ∈ {1, ...,M}. In terms of the notation of the baseline model, π(1) = πm

and π(2) = πd. We also put some structure on this per-buyer profit by making the

following assumption: the difference π(m) − π(m + 1) ≥ 0 is decreasing in m—that

is, the negative impact on profits due to a larger number of competitors falls with the

number of competitors. This is a natural assumption which is fulfilled by many demand

functions (including the ones in our examples). We can then show the following result:28

Proposition 12. A partial multi-homing equilibrium exhibits the following properties:

(i) Platform fees are zero.

(ii) In all product categories, M − 1 sellers are multi-homing and one seller is single-

homing. In half of the categories, the single-homing seller is active on platform A and,

in the other half, on platform B. Buyers split evenly between platforms.

The proposition shows that, similar to the case with only two sellers, if a partial

multi-homing equilibrium occurs, platform fees are zero. The intuition is the same as

the one outlined in Section 5.2. If listing fees were positive, one platform can slightly

undercut the rival’s fee, thereby inducing all single-homing sellers to list on its platform

and induce agglomeration. This is always profitable as it increases the number of sellers

on the platform. The second statement of the proposition extends the partial multi-

homing result of Proposition 7. With a general number of sellers, a partial multi-homing

equilibrium features multi-homing of all but one seller. As a special case, in Proposition 7,

we obtained the result that with two sellers, a partial multi-homing equilibrium involves

one multi-homing and one single-homing seller. The proposition of this section shows

now that any additional seller will be multi-homing.

The intuition is as follows: if more than one seller single-homes on the one platform

and none single-homes on the other, in half of the categories on platform A and in the

other on B, at least one of these sellers has a profitable deviation to switch to the rival

platform, as this reduces competition. If, instead, in each category the same number of

sellers single-home on both platforms, either one single-homing seller in each category

26Loosely speaking, the assumption implies that ’direct’ competition is stronger than ’indirect’ com-
petition.

27As explained in the proof of Proposition 7, the per-buyer profit that a multi-homing seller obtains
per buyer can differ across platforms if the platforms differ in the number of single-homing sellers they
host. Therefore, πMH(·) is the average per-buyer profit.

28The proof of this proposition can be found in Web Appendix H.
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prefers to multi-home to benefit from increased demand or, as we show in the proof of

Proposition 12, competition between sellers is sufficiently intense such that platforms will

set positive fees in the first stage and induce a segmentation equilibrium (with positive

probability). As a consequence, a partial multi-homing equilibrium features multi-homing

of all but one sellers and platform fees of zero.

In the proposition, we do not state the conditions for the partial multi-homing equilib-

rium to exist. Yet, these conditions are similar to those in Proposition 7, adjusted to M

sellers. For example, the equilibrium exists only if the single-homing seller in each prod-

uct category has no incentive to multi-home, which holds if π(M) ≤ πSH
i (1, 0,M − 1)/2.

This condition is the generalization of condition πd ≤ πSH/2 of Section 5.2, as π(M) = πd

if M = 2.

The condition demonstrates that the extent of multi-homing is governed by the degree

of competition between sellers if all but one seller multi-home. Let us explore this in more

detail. The intuition why, in the partial multi-homing equilibrium, a single-homing seller

has no incentive to multi-home is not that it would face a larger number of competitors.

As all other sellers multi-home, this number in unchanged. Yet, the multi-homing sellers

compete with the single-homer on platform i only for half of the consumers. This makes

them less aggressive in their pricing decision than if the single-homer were also active on

the other platform. In the latter case, prices of multi-homing sellers would be lower, which

may dominate the effect that the seller reaches more buyers. Overall, the incentive to be

the only single-homing seller in a partial multi-homing equilibrium tends to be stronger if

there are fewer sellers. For example, withM = 2, the multi-homing seller is a monopolist

on the platform on which the single-homer is not active. Then, in many instances, the

multi-homing seller has an incentive to set a high price to extract surplus from buyers

on this platform. By contrast, if there is a large number of multi-homing sellers, an

additional one will not affect their prices to a large extent, and the condition for the

partial multi-homing equilibrium to exist is more difficult to satisfy. As a consequence,

the extent of multi-homing is driven by the total number of sellers. If this number is small,

multi-homing is more likely to occur in equilibrium than when the number is large.

This result is consistent with, for example, the market for flight search engines. For

each route, there is usually only a limited number of flights available, and most airlines

multi-home. In this market, several platforms, such as Kayak, Expedia, or Skyscanner,

operate with sizable market shares.29

Finally, we note that platform profits in the partial multi-homing are always zero.

As we will explain in the last subsection of Web Appendix G, a reason why platforms

obtain positive profits in case of multi-homing could be that each platform has some loyal

29See, for example, European Commission (2017).
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consumers. There, we relate our discussion to comparison shopping platforms, in which

consumer loyalty is prevalent.

F General Number of Sellers and Platforms

In this section, we extend our baseline model to a finite number of platforms and sellers

per category. Suppose that there are M sellers (per category) and N platforms, with

M,N > 1. As in Web Appendix E, we denote the per-buyer profit of a seller competing

with m − 1 others sellers by π(m), with π(m) ≥ π(m + 1) ≥ 0 ∀m ∈ {1, ...,M − 1}—

in terms of the notation of the baseline model, π(1) = πm and π(2) = πd. All other

assumptions and the equilibrium refinement in the second stage are the same as in main

model.

In addition, as in Web Appendix E, we impose an equilibrium selection criterion in

the first stage. With a general number of platforms and sellers, the equilibrium in the

fee-setting game between platforms may not be unique. Then, as a refinement, we assume

that platforms choose the profit-dominant equilibrium.

The main differences from our baseline model are twofold: first, with a general number

of sellers and platforms, the number of sellers is no longer necessarily a multiple of the

number of platforms. The question is, therefore, how sellers, in order to make buyers

indifferent, allocate if multiple platforms carry a positive volume of trade. Second, it may

be optimal for platforms in the first stage to exclude sellers via the choice of their listing

fees. As we will demonstrate below, this may occur in a segmentation equilibrium.

Following the same structure as with different pricing instruments, we characterize in

the next proposition the regions in which the different types of equilibria exist, thereby

pointing out the analogy to the simpler baseline model.30 To write the proposition in the

most concise form, we define k as the largest integer, such that M ≥ kN . For example,

if M = 11 and N = 4, then k = 2.

Proposition 13. Consider the case in which M ≥ N :

If
π(k + 1)

π(k)
≥

1

N
, (2)

in equilibrium f ⋆
i = 0, ∀i ∈ {1, ..., N}, platform profits are 0, and there is positive trade

only on a subset of platforms.

If for some l ∈ {1, ..., k}
m̂π(m̂)

lπ(l)
≤

1

N
, (3)

30The proof of this proposition can be found in Web Appendix H.
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with m̂ ∈ argmaxl<m≤M mπ(m), in the unique profit-dominant equilibrium f ⋆
i = π(l⋆)/N ,

with l⋆ ∈ argmaxl lπ(l) for all l ∈ {1, ..., k} that satisfy (3), platform profits are Π⋆
i =

l⋆π(l⋆)/N ∀i ∈ {1, ..., N}, and all platforms carry a positive volume of trade.

If neither (2) nor (3) is satisfied, there is a unique profit-dominant mixed-strategy

equilibrium, in which platforms make positive profits.

Consider the case in which M < N : In equilibrium, f ⋆
i = 0 ∀i ∈ {1, ..., N}, and

platform profits are 0.

If there are at least as many sellers (in each category) as platforms, the proposition

demonstrates that the qualitative features of the equilibrium are similar to those in the

baseline model. If competition between sellers is relatively moderate, a seller’s profit when

one additional seller joins the platform falls only by a small amount (i.e., π(k+1)/π(k) is

relatively large), which implies that condition (2) is satisfied. Thus, equilibrium platform

fees are zero.

In analogy to the baseline model, this equilibrium prevails if sellers prefer to be active

only on a subset of platforms, given that all platforms charge zero fees. To relate this

to condition (2), note that k is the largest number of sellers, so that all platforms have

positive trade volume, and each one hosts k sellers (so that buyers are willing to split

between platforms). Condition (2) states that such a configuration will not emerge in

the second stage, as sellers have an incentive to deviate.31 With trade occurring only on

a subset of platforms, no platform can charge a strictly positive fee as it loses its buyers

and sellers to a competitor with zero fee.

In contrast to the baseline model, such an equilibrium does not necessarily lead to

full agglomeration, as it may be optimal for some sellers to locate on one platform and

other sellers on another. Nevertheless, only a subset of platforms carry a positive volume

of trade, which implies at least partial agglomeration, and equilibrium fees of zero. This

must also be the equilibrium outcome if the number of platforms exceeds the number

of sellers in a category, as it implies that at least one platform will not have a positive

volume of trade.

By contrast, in a pure-strategy segmentation equilibrium, all platforms carry a pos-

itive volume of trade. In analogy to the baseline model, this equilibrium occurs if com-

petition between sellers is intense. From condition (3), the equilibrium exists if, in each

category, every platform hosts l sellers, and no platform can obtain a higher profit by

attracting a larger number of sellers (where attracting a number m̂ is the most profitable

one among these deviations). The condition for a segmentation equilibrium to exist in

the model with a general number of platforms and sellers resembles that of the baseline

model. In the baseline model, we have l = 1 and m̂ = 2, and, thus, condition (3) is

31In the baseline model, we have k = 1, and, thus, condition (2) is equivalent to πd/πm ≥ 1/2.
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equivalent to πd/πm ≤ 1/4.

The key difference from the baseline model is that the segmentation equilibrium may

lead to the exclusion of some sellers—that is, the equilibrium number of sellers on a

platform, l⋆, may be less than k. If M > kN , this must be the case, as a segmentation

equilibrium involves at leastM−kN inactive sellers. However, even ifM = kN , it can be

optimal for platforms to charge such a high fee that some sellers prefer to stay inactive.

The reason is that becoming active increases competition and, therefore, would not allow

the seller to recover the fee. In addition, with a general number of sellers, a segmentation

equilibrium may involve more than one seller in each category on a platform if this allows

platforms to obtain a higher profit. As in the baseline model, platforms extract the entire

profit from all active sellers.

Finally, in the region in which neither condition (2) nor condition (3) holds, a mixed-

strategy equilibrium occurs. The intuition and the properties are the same as in the

baseline model.

In our analysis, we consider the situation with a given number of sellers M with

positive profit (gross of the listing fee). Instead, if sellers incurred a fixed entry cost F ,

π(m) − F would become negative for m sufficiently large, as more intense competition

drives down margins. Then, even if platforms charge zero fees, no platform would be host

to an unlimited number of sellers. Yet, considering a game with free entry yields similar

results to those of Proposition 13. The conditions for the equilibrium regions differ, but

the qualitative results that buyers and sellers may segment and that platforms obtain

positive profits continue to hold. If there is a finite m′ as the solution to π(m′)/N−F > 0

and π(m′+1)/N−F < 0, the region in which the agglomeration equilibrium exists shrinks

and eventually vanishes as the number of available sellers M becomes sufficiently large.

The reason for this result is that with zero fees, each platform would host m′ sellers. A

seller’s profit is then strictly positive, which gives each platform an incentive to increase

its fee. To sum up, with entry, pure agglomeration cannot occur when the number of

sellers that may enter is large and, thus, segmentation becomes more likely.

G Two-Sided Pricing and Further Extensions

G.1 Two-Sided Pricing

In the baseline model, we considered the situation in which platforms can set fees only to

sellers. This is a common practice among most trading platforms. A main reason is that

buyers are often uncertain about whether or not they want to buy a product, and they

first inform themselves on the platform about available offers and product characteristics.

Thus, charging a subscription fee will deter many buyers. In addition, some buyers often
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obtain only a small surplus, and so platforms can charge only a very small fee to keep

these buyers on board. With small transaction costs from each payment (e.g., due to

fraud), it is more effective to charge sellers who are usually fewer in numbers.

Apart from these justifications for not charging buyers, which are outside the model,

we can demonstrate that the segmentation equilibrium derived in the baseline model is

robust to two-sided pricing (that is, platforms set a subscription fee to buyers, fb, on top

of the listing fee to sellers, fs), provided that negative fees are not possible.32

We focus on the situation πd/πm ≤ 1/4, in which the pure-strategy segmentation equi-

librium exists with one-sided pricing. Platforms then set a seller fee fs = πm/2 and ex-

tract the full seller surplus. With two-sided pricing, a fee combination of (fs = πm/2, fb = 0)

for both platforms is no longer an equilibrium under the refinement of coalition-proofness

and seller-dominant equilibrium. To see this, suppose that platform−i sets (fs = πm/2, fb = 0).

Platform i can then set fees equal to
(

fs = πd − ǫ, fb = V d − V m
)

and attract all sellers

and buyers because sellers obtain a profit of ǫ > 0 on platform i instead of 0 on plat-

form −i. Therefore, the coalition of all sellers and buyers on platform −i is better off

by moving to platform i, as buyers are indifferent and obtain a payoff of V m on both

platforms.33 The profit of platform i is then (almost) equal to 2πd + V d − V m. Although

we are in the region with πd/πm ≤ 1/4, the profit from deviating is larger than πm/2, as

4πd + 2(V d − V m) > πm due to the fact V d + πd > V m + πm.

Determining the equilibrium for the range πd/πm ≤ 1/4, we obtain (following ar-

guments similar to those in the baseline model) that the unique equilibrium under our

refinement is (f ⋆
s = 0, f ⋆

b = V m) and segmentation occurs. With these fees, no platform

can attract more sellers since this would lead to competition between them and, therefore,

to a reduction in sellers’ profits. Instead of extracting the sellers’ profits, platforms do not

leave surplus to buyers. Importantly, though, despite this difference in fees between one-

sided and two-sided pricing, the main intuition for the segmentation equilibrium to occur

is the same: sellers avoid competition by being active on both platforms, and platforms

exploit this role of segmenting the market by charging strictly positive fees.

If in stage 2 buyers and sellers play the equilibrium that buyers prefer (in addition to

coalition-proofness), the equilibrium fees would be the same as in the case of one-sided

pricing—that is, (f ⋆
s = πm/2, f ⋆

b = 0). Setting a strictly positive fee to buyers can never

32With negative fees, a divide-and-conquer strategy can destabilize the segmentation equilibrium.
Under divide-and-conquer, a deviating platform sets a sufficiently low fee on one side to ensure that
this side participates for sure. It can then use the fee on the other side to extract surplus on that side.
In particular, a platform deviating from the segmentation equilibrium can attract sellers with negative
fees and extract the full surplus generated on the buyer side. However, such negative fees are usually
not feasible, as they generate losses for platforms from otherwise uninterested participants who inflate
participation levels without generating any transaction opportunities.

33It can be shown that setting fees equal to
(

fS = πd − ǫ, fB = V d − V m
)

is, indeed, the most prof-
itable deviation.
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be profitable for a platform, as then all buyers prefer the rival platform. Given this, the

same arguments as in Section 6.2 apply. Although buyers prefer agglomeration, platforms

avoid this in equilibrium by setting listing fees to sellers above πd.

G.2 Further extensions

In our analysis, we assumed that there is no interdependence between categories and that

buyer behavior is not heterogeneous. In this section, we discuss what happens in richer

settings that allow for these features.

G.2.1 Interdependence between Categories

Competition across categories

In our analysis, we assumed that each buyer is interested in exactly one product

category. Suppose, instead, that a buyer receives a positive gross utility from buying a

product in a category other than her preferred one (which, by construction, is less than

from products in her preferred category). Then, products in different categories are sub-

stitutes. As a consequence, the demand for a product in the preferred category may be

lower if prices in different categories are lower. Sellers will take this into account in their

pricing decisions, implying that products from different categories may impose competi-

tive constraints. As a consequence, prices will be weakly lower than in our model. This

leads to lower values of πm and, possibly, of πd. Hence, in the segmentation equilibrium,

platforms’ fees will be weakly lower, and, depending on the profit ratio πd/πm, the re-

gions for the segmentation and agglomeration equilibrium will be affected by competition

across platforms. However, the main effects driving the results are still present, and our

main insights are robust.

We can restate our main conclusions in a different setting, in which there is only one

product (and, thus, one seller) per product category. With this simplification, since sellers

do not compete, the market necessarily features agglomeration. Introducing competition

between categories, the equilibrium switches to segmentation if segmentation sufficiently

reduces seller competition. In such a segmentation equilibrium, half of the categories are

listed on platform A and the other half on platform B. This result is in the same spirit

as our findings in the baseline model.

Platforms with diseconomies

Another source of interdependence between categories could be platform diseconomies

in the number of categories. Platforms experience such diseconomies if the number of

product categories on a platform has a direct and negative effect on buyer utility. Such

congestion externalities can be present because, for instance, it becomes more costly for

a buyer to find the preferred product category as the number of categories increases.
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This implies that a buyer experiences a utility loss if the number of listed categories

is large. If platforms can endogenously choose this number, then, to avoid repelling

buyers, they may not list some categories in equilibrium. This implies that even in an

agglomeration equilibrium, listing fees may be positive, as lowering the fee to zero induces

the participation of sellers in all categories, which is not attractive to buyers.34

Alternatively, the number of product categories may affect buyer utility indirectly.

This happens if the optimal presentation of products on a platform depends on the prod-

uct category. Suppose that a platform has to commit to a unique format for presenting

products (e.g., to avoid confusing buyers). Then, if very different product categories are

listed, the presentation format is not optimal for some products, and, thus, the utility

of buyers who prefer these products is reduced. As above, a consequence is that some

products will be delisted.35

G.2.2 Heterogeneous Buyer Behavior

In our model, buyers are ex ante identical. In particular, they do not prefer one platform

over the other. Although this assumption ensures that platforms are fully homogeneous

ex ante and, therefore, strengthens our theoretical contribution, it may not be in line with

the consumer behavior observed in some markets. For example, a fraction of buyers may

be loyal to a platform. A market in which consumer loyalty is prevalent is the market for

price comparison platforms, such as flight search engines or comparison shopping websites.

In a recent study, the UK competition authority (Competition & Market Authority,

2017) found that in this market around 58% of consumers use only one price comparison

platform when searching for a particular product or service, mainly due to loyalty reasons.

Similarly, some buyers may decide very quickly on which platform to be active and,

therefore, assign themselves randomly to a platform. Suppose that each platform has

a fraction β/2 of loyal buyers and that all other buyers are shoppers—i.e., they join

the platform that offers the highest expected utility as in our baseline model. To reach

loyal buyers, sellers have to list on both platforms. Thus, if sellers can multi-home, in

an equilibrium that corresponds to an agglomeration equilibrium, both platforms set

a positive listing fee equal to the duopoly profit that a seller earns from loyal buyers

so as to induce seller multi-homing. By contrast, in an equilibrium that corresponds

to a segmentation equilibrium—i.e., each platform attracts half of the shoppers—sellers

34One could also imagine that product categories differ by the probability of being the preferred
category. Then, popular categories will be listed, but less popular categories will be delisted.

35An example in which a platform did not cater well to buyer tastes with its presentation of particular
product categories is the market for handmade and vintage items on Ebay. Newer platforms, such as Etsy
and Dawanda, offered sellers the opportunity to offer more information, and this led to a quick migration
of buyers and sellers to these new platforms. This suggests that Ebay was subject to diseconomies in
the number of listed product categories and lost out to newcomers.
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single-home along the equilibrium path because the insights from Section 5.2 still hold.

H Relegated Proofs

This section contains the relegated parts of the proof of Proposition 3 and the (full)

proofs of Propositions 4 to 13.

Relegated Parts of the Proof of Proposition 3. In the main body of the paper, we derived

the best-response function f br
i (fj), with i, j ∈ {A,B}, i 6= j. Figure 11 depicts the

two best-response functions (using the definition from the main body of the paper that

δ = πm/2− πd). The blue line represents f br
A (fB) and the red line f br

B (fA). In the lower

part of f br
A (fB), starting at f br

A (0) = δ and ending at f br
A (3δ) = 4δ, platform A’s best

response induces segmentation. In this case, f br
A (fB) corresponds to the line separating

the segmentation region (SEG) from the agglomeration region on platform B (AGGB)

in Figure 3, that is, platform A just induces segmentation. Instead, in the upper part

of f br
A (fB)—that is, for all fB > 3δ—platform A’s best response leads to agglomeration.

The function f br
A (fB) is therefore just above the line separating the segmentation region

(SEG) from the agglomeration region on platform A (AGGA) in Figure 3. The best

response of platform B, f br
B (fA), can be derived in the same way.36

✲
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Figure 11: Best-response functions for 3/8 ≤ πd/πm < 1/2

We now derive the mixing probabilities. From the part of the proof in the main

body of the paper, we know that in the range 3/8 ≤ πd/πm < 1/2, platforms set fees

fi, fj ∈ [πm − 2πd, 2πm − 4πd], and the expected profit is Π⋆
A = Π⋆

B = 3πm/2− 3πd.

36In the mixed-strategy equilibrium, both platforms set fees in the range [2δ, 4δ], which is indicated
by the dashed lines.
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All fees in the mixing domain must give an expected profit of 3δ (with δ = πm/2−πd),

as otherwise platforms would not be indifferent between these fees. We need to distinguish

between two intervals, a lower and an upper one. The lower interval consists of fees

fi ∈ [2δ, 3δ) and the upper interval consists of fee fi ∈ [3δ, 4δ]. The reason for this

distinction is that in the lower interval, sellers may agglomerate on platform i (i.e., this

happens if fj > fi + δ) but will never agglomerate on platform j. That is, if fi is in

this lower interval, platform i will always obtain a positive profit. By contrast, if fi is an

element of the upper interval, with some probability sellers will choose to agglomerate

on platform j—this occurs if platform j charges fj < fi − δ—and platform i obtains no

profit. Platform i’s profit can then be written as

Πi(fi, fj) =











0, if fi ∈ (fj + δ, 4δ] ∧ fj ∈ [2δ, 3δ);

fi, if fi ∈ [max{2δ, fj − δ},min{fj + δ, 4δ}] ∧ fj ∈ [2δ, 4δ];

2fi, if fi ∈ [2δ, fj − δ) ∧ fj ∈ (3δ, 4δ].

Let us start with the case in which platform i charges a fee in the lower interval—that

is, fi ∈ [2δ, 3δ). Denote the cumulative density function with which platform j mixes by

G1(fj). Platform i’s profit with a fee in this lower interval is then given by (replacing fi

by f)

G1(f + δ)f + (1−G1(f + δ)) 2f.

In equilibrium, this expression must be equal to 3δ, yielding

G1(f + δ)f + (1−G1(f + δ)) 2f = 3δ. (4)

This equation determines the mixing probabilities of platform j in its upper interval.

This is because only if platform j sets a fee above f + δ (which happens with probability

1−G1(f + δ)), sellers will agglomerate on platform i. Such a fee must necessarily be in

the upper interval.

If platform i charges a fee in the upper interval—that is, fi ∈ [3δ, 4δ]—its profit is

G1(f − δ)0 + (1−G1(f − δ)) f = 3δ. (5)

This equation determines the mixing probability in the lower interval.

Let us first look at (4). We can substitute h ≡ f + δ to get

G1(h) (h− δ) + (1−G1(h)) 2 (h− δ) = 3δ. (6)

Recall that (4) was relevant for f in the lower range and, since h = f + δ, these are
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exactly the fees in the upper interval. Solving (6) for G1(h) gives

G1(h) =
2h− 5δ

h− δ
. (7)

It is easy to check that G1(4δ) = 1.

Now we turn to (5). Here, we can substitute h ≡ f − δ representing that h is now in

the lower interval. We obtain

(1−G1(h)) (h+ δ) = 3δ. (8)

Solving (8) for G1(h) gives

G1(h) =
h− 2δ

h+ δ
. (9)

It is easy to check that G1(2δ) = 0. Using (7) and (9), we obtain lim
G1(h)ց3δ

= 1/2 and

lim
G1(h)ր3δ

= 1/4. This implies the existence of a mass point with mass 1/4 at a fee equal

to 3δ.37

Proof of Proposition 4. As shown in the proof of the previous proposition, a pure-strategy

equilibrium in the region 1/4 < πd/πm < 1/2 does not exist. Furthermore, for 3/8 ≤

πd/πm < 1/2, there exists a mixed-strategy equilibrium which has an upper bound of the

randomization domain equal to 2πm − 4πd. This equilibrium cannot exist in the range

1/4 < πd/πm < 3/8 because 2πm − 4πd would then be larger than πm/2. We next derive

the randomization domain of the mixed-strategy equilibrium with an upper bound of

πm/2.

Randomization domain. Suppose that platform j sets fj = πm/2. The best response

of platform i is then to set fi to induce agglomeration in the second stage. To do so, it

needs to set fi = πd− ǫ. The best response of platform j is to marginally reduce its fee to

πm/2−ǫ and induce a segmentation again, and so on. This goes on until platform i sets the

lowest fee in the randomization domain, denoted by f l. This is the fee at which platform

i is better off by raising its fee to the highest fee πm/2 and induce segmentation instead

of marginally reducing it to induce agglomeration. Its segmentation profit is then πm/2.

Hence, the lowest fee f l is given by 2f l = πm/2 or, equivalently, f l = πm/4. This fee

makes sellers exactly indifferent between agglomeration on platform i and segmentation

if platform j charges a fee such that πd−f l = πm/2−fj or, equivalently, fj = 3πm/4−πd.

Finally, note that a fee πd − ǫ (i.e., the fee that induces agglomeration if the rival

platform charges the highest fee) is strictly lower than 3πm/4− πd (i.e., the fee at which

the rival stops lowering its fee and instead raises the fee to the highest one) since we are

37Intuitively, equation (5) requires a sufficiently high probability of f − δ being close to 3δ since, as
otherwise setting f close to 4δ would lead to zero profit “too often”.
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in the range πd/πm < 3/8. Therefore, the upper bound of the lower interval is below the

lower bound of the upper interval. It follows that there are two disjoint sets of mixing

intervals. The upper one [3πm/4−πd, πm/2], in which each fee is a best response to a fee

in the lower interval [πm/4, πd). In turn, each fee in the lower interval is a best response

to a fee in the upper interval.

To summarize the above analysis, in the range 1/4 < πd/πm < 3/8, there is a mixed-

strategy equilibrium with fees fi ∈ [πm/4, πd) ∪ [3πm/4− πd, πm/2]. For any chosen fee,

the expected profit in this range must be 3πm/4− πd. As above, this is because setting

a fee equal to 3πm/4− πd induces segmentation with a probability of (almost) 1.

Mixing Probabilities. Let η ≡ πd−πm/4, δ ≡ πm/2−πd and ǫ > 0 but infinitesimally

small. Denote f l ≡ πm/4, f
l
≡ πd, fu ≡ 3πm/4 − πd, and f

p
≡ πm/2 such that the

domain of interest can be expressed as fi ∈ [f l, f
l
) ∪ [fu, f

u
]. Using η and δ, the mixing

domain can be written as fi ∈ [η + δ, 2η + δ) ∪ [η + 2δ, 2η + 2δ]. For i, j ∈ {A,B} and

i 6= j, the corresponding best response function is given by

f br
i (fj) =











fj + δ, if fj ∈ [f l, f
l
);

fj + η, if fj = fu;

fj − δ − ǫ, if fj ∈ (fu, f
u
].

We know that all fees in the mixing domain must give an expected profit of fu =

(3/4)πm − πd = η + 2δ.

We now proceed analogously to the proof of Proposition 3. If platform i charges a

fee in the lower interval—that is, fi ∈ [f l, f
l
)—we obtain an equation analogous to (4),

given by

G2(f + δ)f + (1−G2(f + δ)) 2f = η + 2δ. (10)

This equation determines the mixing probabilities in the upper range.

In case platform i charges a fee in the upper range, that is, fi ∈ [fu, f
u
], the equation

is

G2(f − δ)0 + (1−G2(f − δ)) f = η + 2δ. (11)

This equation determines the mixing probability in the lower range.

Let us first look at (10). Substituting h ≡ f + δ and solving for G2(h) gives

G2(h) =
2h− 4δ − η

h− δ
.

It is easy to check that lim
fցfu

G2(f) = lim
fցη+2δ

G2(f) = η/(η + δ). Moreover, lim
fրf

u
G2(f) =

lim
fր2η+2δ

G2(f) = 3η/(2η + δ) < 1. The latter implies the existence of a mass point with
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mass 1− 3η/(2η + δ) = (δ − η)/(2η + δ) at a fee equal to f
u
= 2(η + δ).38

Consider (11). We substitute h ≡ f − δ. Thus, h is now in the lower range. Solving

for G2(h) gives

G2(h) =
h− η − δ

h+ δ
.

It is easy to check that G2(f
l) = G2(η + δ) = 0, whereas lim

fրf
l
G2(f) = lim

fր2η+δ
G2(f) =

η/(2(η + δ)). Note that lim
fրf

l
G2(f) = η/(2(η + δ)) < η/(η + δ) = lim

fցfu
G2(f), which

implies the existence of a second mass point with mass η/(2(η + δ)) at a fee equal to

fu = η + 2δ.

The resulting mixing probability is characterized by a cumulative distribution function

of

G2(f) =











f−η−δ
f+δ

, if f ∈ [η + δ, 2η + δ);
2f−η−4δ

f−δ
, if f ∈ [η + 2δ, 2(η + δ));

1, if f = 2(η + δ).

The corresponding generalized density is given by

g2(f) = G′
2(f) +

η

2(η + δ)
δD(f − (η + 2δ)) +

δ − η

2η + δ
δD(f − (2(η + δ))),

where

G′
2(f) =

{

η+2δ

(f+δ)2
, if f ∈ [η + δ, 2η + δ);

η+2δ

(f−δ)2
, if f ∈ [η + 2δ, 2(η + δ)),

and δD(f − f0) denotes the Dirac delta. Replacing η and δ by their respective definitions

yields the result stated in the proposition.

Proof of Proposition 5. In stage 4, both multi-homing and single-homing buyers make

their optimal buying decisions, given the prices charged by sellers in the third stage. In

the third stage, the pricing equilibrium in the product market may be different than with

single-homing buyers. If both sellers in a category are on the same platform, they will still

charge a price of pd in equilibrium and obtain a profit of πd per buyer. Similarly, if only

one seller is active, this seller sets its price equal to pm and earns πm per buyer. However, if

sellers segment and one is active on platform A and the other one on platform B, sellers no

longer charge pm. As explained in the main text, the reason is that a fraction λ of buyers

38Intuitively, in order to satisfy (10), there must be a positive probability of inducing an agglomeration

equilibrium and receiving 2f in the lower range even for f = f
l
. This is achieved by a mass point at

h = f
u
.
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(i.e., the multi-homers) are informed about both offers. Therefore, the price charged by a

seller depends on how many buyers are informed about both offers. We denote the price

charged by a seller in this situation by p(λ), with p(λ) ∈ [min{pd, pm},max{pd, pm}], and

the respective per-buyer profit by π(λ).

Turning to the second stage, we know that profits in an agglomeration and a stand-

alone equilibrium are unchanged. This is not true for the segmentation equilibrium. If

sellers segment, the total number of buyers for each seller is (1 + λ)/2. The profit of a

seller active on platform i is then π(λ)(1 + λ)/2− fi. If the seller deviates and becomes

active on platform −i, it obtains a profit of πd(1 + λ)/2− f−i. It follows that there is no

deviation incentive if

fi ≤ min

{

(

π(λ)− πd
) (1 + λ)

2
+ f−i, π(λ)

(1 + λ)

2

}

.

In contrast to the case with single-homing buyers where the relevant condition was given

by (1) in Web Appendix D, the buyer mass 1/2 is now replaced by (1 + λ)/2 and the

monopoly profit πm is replaced by π(λ). Proceeding in the same way as in Web Appendix

D, we obtain that in the second stage there is unique equilibrium and the conditions for

the agglomeration, the segmentation, and stand-alone equilibrium to occur are still the

same as given there, with πm/2 replaced by π(λ)(1 + λ)/2.

We can now move to the first stage. Following the same argument as in the proof of

Proposition 1, we obtain that in the range πd ≥ π(λ)(1 + λ)/2 an agglomeration equilib-

rium with fees fi = f−i = 0 is the unique equilibrium. Similarly, if both platforms charge

a fee of π(λ)(1+λ)/2, the only equilibrium is that sellers segment, and a platform’s profit

equals π(λ)(1 + λ)/4. A platform has no incentive to deviate from this fee combination,

if

πd ≤ π(λ)
1 + λ

4
.

Hence, in this range, the unique equilibrium involves fi = f−i = π(λ)(1 + λ)/2 and a

segmentation equilibrium occurs.

It is evident that the regions are the same as in case where λ = 0 with the difference

that πm/2 is replaced by π(λ)(1 + λ)/2. The same logic applies for the region

π(λ)
1 + λ

2
> πd > π(λ)

1 + λ

4
.

By following the same steps as in the proofs of Propositions 1 through 4, we obtain the

same results as in those propositions.

Proof of Proposition 6. From Proposition 5, with multi-homing consumers, platform prof-

its strictly increase in the share of multi-homing consumers λ if and only if ∂ (π(λ)(1 + λ)/2)
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/∂λ > 0, where π(λ) is given by

(p(λ)− c)

(

1− λ

1 + λ
Dm(p(λ)) +

2λ

1 + λ
Dd(p(λ))

)

.

We start with the case in which λ is close to 0. Taking the derivative of π(λ) (1 + λ) /2

with respect to λ and letting λ→ 0, we obtain, using the Envelope Theorem,

p(0)− c

2

[

2Dd(p(0))−Dm(p(0))
]

. (12)

As p(0) > c, the sign of (12) depends on the sign of 2Dd(p(0))−Dm(p(0)). If products

become homogeneous, in duopoly each firm sells half of the monopoly quantity, given

that the price is unchanged. In this case, 2Dd(p(0)) − Dm(p(0)) → 0. In addition, if

there is no extensive demand margin, for example, because the market is fully covered

in monopoly at price p(0), then 2Dd(p(0)) − Dm(p(0)) = 0. However, if products are

differentiated and an extensive margin exists, 2Dd(p(0))−Dm(p(0)) > 0, which implies

that platform profits increase.

We now turn to the case λ → 1. Then, π(λ) ((1 + λ)/2) → πd. As the segmentation

equilibrium emerges with positive probability only if π(λ) ((1 + λ)/2) > πd, it never

occurs at λ = 1. As a consequence, agglomeration occurs, which implies that platforms

obtain zero profits. Therefore, their profits are strictly lower than in the situation in

which segmentation occurs with positive probability. By continuity of the model, the

result also holds true in the vicinity of λ = 1.

Proof of Proposition 7. Stage 4 works in the same way as without multi-homing: given

sellers’ prices, buyers make their optimal purchasing decisions. In stage 3, due to the

possibility of multi-homing, new competition situations can occur. As mentioned in the

main text, these are that, in a category, either both sellers multi-home or that only

one seller multi-homes whereas the other single-homes on platform i. In the former

situation, regardless of the distribution of buyers, all buyers are informed about both

sellers’ offers. It follows that sellers in the third stage will set a price of pd, leading

to a profit of πd − fA − fB for both sellers. In the latter situation, sellers compete in

an asymmetric way, as the multi-homing seller reaches all buyers, whereas the single-

homing seller reaches only buyers on platform i. If platform i is host to x ∈ (0, 1) buyers,

we denote the prices set by the sellers in the third-stage equilibrium by pSH(x) for the

single-homing seller and by pMH(x) for the multi-homing seller. The per-buyer profits

are πSH(x) and πMH(x), respectively, which implies that the profits of the two sellers are

xπSH(x)− fi and π
MH(x)− fA − fB.

39

39The per-buyer profit of the multi-homing seller, πMH(x), is a weighted average of the profit obtained
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We turn to the second stage. We first determine the conditions under which the

different equilibrium configurations determined in the game with single-homing are still

Nash equilibria with multi-homing. First, as before, agglomeration on platform i is an

equilibrium if fi ≤ πd. As there is no buyer on the other platform, the possibility to multi-

home does not change the outcome. The same holds true for the stand-alone equilibrium

on platform i, which is a Nash equilibrium whenever πd < fi ≤ πm. Turning to the

segmentation equilibrium, in addition to the deviations considered in Web Appendix

D, a seller can now also choose to multi-home. This is not profitable if and only if

πm/2 − fi ≥ πMH − fi − f−i, where π
MH ≡ πMH(1/2). Therefore, the conditions under

which a segmentation equilibrium exists are more demanding than in the case of single-

homing; they are given by

fi ≤ min

{

πm − πd

2
+ f−i,

πm

2

}

and f−i ≥ πMH −
πm

2
. (13)

In addition to these equilibria which involve single-homing of sellers, there can also

be equilbria which involve multi-homing along the equilibrium path. One is a full multi-

homing equilibrium in which both sellers multi-home and buyers split evenly on platforms.

This is a Nash equilibrium if no seller has an incentive to deviate to single-homing—that

is, πd − fi − f−i ≥ πSH/2− fi and, thus, in equilibrium, f−i ≤ πd − πSH/2.

In addition, there can be a partial multi-homing equilibrium with the following struc-

ture: in each category, one seller multi-homes and the other one single-homes. A single-

homing seller is active on platform A in half of the categories and on platform B in the

other half of the categories. Buyers are indifferent, as each platform has, in expectation,

the same number of sellers in the buyers’ preferred category and, therefore, buyers will

split evenly. A multi-homing seller’s profit is πMH − fA − fB and the profit of a seller

single-homing on platform i is πSH/2− fi.

We determine the conditions under which this configuration is a Nash equilibrium.

First, any single-homing seller must earn non-negative profits—that is, πSH/2 − fi ≥ 0.

Second, it must be optimal for any such sellers to single-home on platform i instead of

single-homing on platform −i—that is, πSH/2− fi ≥ πSH/2− f−i. Third, single-homing

must be better than multi-homing for this seller—that is, πSH/2− fi ≥ πMH − fi − f−i.

Moreover, the multi-homing seller must be better off with multi-homing than with single-

homing on platform i or −i. These conditions are satisfied if πMH − fi − f−i ≥ πd/2− fi

and πMH − fi − f−i ≥ πm/2− f−i.

The same conditions must also hold with fi and f−i interchanged because, in the

partial multi-homing equilibrium, one half of the single-homing sellers are on platform A

from buyers on platform i who are informed about both offers and the profit from buyers on platform
−i who only observe the multi-homing seller’s offer.
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and the other half on platform B. Importantly, this implies that πSH/2−f−i ≥ πSH/2−fi.

Taken together with the condition πSH/2 − fi ≥ πSH/2 − f−i (which has been derived

above), this shows that a partial multi-homing equilibrium can only exist if fi = f−i.
40

Using fi = f−i together with all other conditions derived above, we obtain partial multi-

homing is a Nash equilibrium if and only if

fi = f−i, fi ≤
πSH

2
, and πd −

πSH

2
≤ fi ≤ πMH −

πm

2
. (14)

As follows from (13) and (14), the partial multi-homing equilibrium and the segmentation

equilibrium co-exist if and only if fi = f−i = πMH − πm/2.

Next, we apply our refinement. First, it is easy to see that the full multi-homing

equilibrium is never coalition-proof. Take the coalition of all sellers and all buyers on

platform i, and consider a deviation in which all buyers go to platform −i and sellers

single-home on platform −i. Then buyers get the same utility as with full multi-homing

but sellers are better off as they receive a profit of πd − f−i > πd − fi − f−i. Therefore,

full multi-homing never survives our refinement.

Turning to the partial multi-homing equilibrium, we determine the conditions for

coalition-proofness of this equilibrium. First, single-homing sellers on platform i can

form a coalition with buyers on platform i and deviate to be active only on platform −i.

Buyers are then better off, as they are informed about all offers on platform −i and sellers

compete in all categories whereas sellers are only better off if πd − f−i > πSH/2 − fi.

As the partial multi-homing Nash equilibrium only exists for fi = f−i, we obtain that

such a deviation is not profitable if πSH/2 ≥ πd. Second, multi-homing sellers can form

a coalition with all buyers on the platform where the sellers are monopolists (platform

i, say) and single-home on platform −i. Buyers are better off, as all sellers compete

on platform −i, whereas the originally multi-homing sellers are better off if and only if

πd − f−i > πMH − fi − f−i. Therefore, this deviation is not profitable if fi ≤ πMH − πd.

(The other deviations by sellers do not involve coalitions and, therefore, are already

captured by the conditions for the Nash equilibrium to exist.) We now combine these

conditions with the ones derived in (14). Since coalition-proofness requires πSH/2 ≥ πd,

the lower bound on fi derived in (14) would be weakly negative and, thus, can be replaced

by zero. In addition, from (14), the upper bound on fi is min{πSH/2, πMH − πm/2}. To

sum up, the partial multi-homing equilibrium is coalition-proof only if

fi = f−i,
πSH

2
≥ πd, and fi ≤ min

{

πSH

2
, πMH −

πm

2

}

. (15)

40Therefore, in the fA-fB-diagram presented in Figure 2, the partial multi-homing equilibrium can
only exist on the 45-degree line.
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Next, we determine whether the partial multi-homing equilibrium is in fact selected

in the second stage, given that other equilibrium configurations are coalition-proof as

well. From above, we know that it exists together with the segmentation equilibrium if

and only if fi = f−i = πMH −πm/2. The segmentation equilibrium is then also coalition-

proof and preferred by sellers over the agglomeration equilibrium if πm/2 > πd (see Web

Appendix D). The profit of a seller in the segmentation equilibrium is πm/2 − fi =

πm − πMH . Instead, in the partial multi-homing equilibrium, a single-homing seller’s

profit is πSH/2 − fi = (πSH + πm)/2 − πMH , which is strictly below the one in the

segmentation equilibrium. A multi-homing seller’s profit is πMH − 2fi = πm − πMH and,

therefore, the same as in the segmentation equilibrium. It follows that the segmentation

equilibrium profit-dominates the partial multi-homing equilibrium. Hence, if πm/2 > πd,

the partial-multi-homing equilibrium is selected in stage 2 only if (15) holds, with the

strengthening of the last condition to fi ≤ πSH/2 and fi < πMH − πm/2.

If instead πm/2 ≤ πd, the partial-multi-homing equilibrium may co-exist with the

agglomeration equilibrium. Because the partial multi-homing equilibrium exists only if

πSH/2 ≥ πd and both fees are the same, the single-homing seller is better off in the

partial multi-homing equilibrium. Since πMH ≥ πSH , the multi-homing seller is better

off as well. Hence, if πm/2 ≤ πd, the partial multi-homing equilibrium will be chosen in

the second stage whenever (15) is fulfilled.

If the partial multi-homing equilibrium does not exist, for fi, f−i ≥ πMH − πm/2, the

same analysis to select an equilibrium as in Web Appendix D applies, as in this case

the same equilibria exist as without multi-homing. If instead one or both fees are lower

than πMH − πm/2, it follows from (13) that a segmentation equilibrium does not exist.

However, we know from the analysis in Section D (see also Figure 2) that in this region

either an agglomeration or a stand-alone equilibrium prevails, depending on parameters.

It follows that, off the diagonal, there is a unique equilibrium in the second stage even

with seller multi-homing, given our selection criterion.

We turn to the first stage. Let us first consider the case πd/πm ≥ 1/2. This implies

that πd > πSH/2, as πm > πSH . Therefore, the partial multi-homing equilibrium does

not exist in this case. It follows that the analysis of the proof of Proposition 1 applies,

leading to fA = fB = 0 in equilibrium, and buyers and sellers play an agglomeration

equilibrium in the second stage.

Second, consider the case πd/πm ≤ 1/4. In the pure-strategy segmentation equilib-

rium of Proposition 2, platforms set fA = fB = πm/2. As πm/2 > πMH − πm/2, due

to the fact that πm > πMH , the segmentation equilibrium exists in this case. From the

analysis of the second stage, it follows that the partial multi-homing equilibrium does

not exist then, and from the proof of Proposition 2 it follows that the pure-strategy seg-

mentation equilibrium is the unique equilibrium in this case. This establishes the first
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part of the proposition.

Turning to the range 1/2 > πd/πm > 1/4, we first consider the situation in which

πd > πSH/2, that is, the partial multi-homing equilibrium does not exist. We know

from above that for πMH ≤ πm/2, the segmentation equilibrium exists, which implies

that the equilibrium is the same mixed-strategy equilibrium as the one characterized in

Propositions 3 and 4. By contrast, for πMH > πm/2, a segmentation equilibrium does

not exist. We will now check under which conditions the possibility to multi-home breaks

the mixed-strategy equilibrium of Propositions 3 and 4. This equilibrium exists if the

cycle of best responses described in the proofs of these propositions works in the same

way if sellers can multi-home. However, this cycle no longer operates if one of the fees in

the mixing range is below πMH − πm/2. The reason is as follows: suppose that platform

i sets a fee below πMH − πm/2. Platform −i’s best response in case of single-homing

sellers was to set a higher fee to induce segmentation. However, inducing segmentation

is no longer possible with multi-homing sellers. As a consequence, the best response of

platform −i to a listing fee of fi below πMH − πm/2 is to undercut this fee slightly to

induce an agglomeration equilibrium on platform −i in the second stage. The lowering

of fees then leads to the agglomeration equilibrium with fA = fB = 0.

It remains to be checked under which conditions the lowest fee in the mixing range

is below πMH − πm/2. Starting with the first mixing region, we obtain that this holds if

πMH − πm/2 > πm − 2πd or, equivalently,

πMH >
3πm

2
− 2πd.

If this inequality holds, then πMH is also larger than πm/2, implying that any equilibrium

features fA = fB = 0 and agglomeration prevails in the second stage. Instead, if πMH ≤

3πm/2−2πd, the unique equilibrium is the mixed-strategy one, as reported in Proposition

3.

Proceeding in the same way for the second mixing region, we obtain that for

πMH >
3πm

4

any equilibrium features fA = fB = 0 and agglomeration, whereas for πMH ≤ 3πm/4, the

unique equilibrium is the mixed-strategy one, as reported in Proposition 4.

Second, we consider the situation πd ≤ πSH/2. The partial multi-homing equilibrium

then exists for fees fA = fB, with fi ≤ πSH/2 and fi < πMH − πm/2, i ∈ {A,B}. The

profit of each platform is 3/2fi. However, each platform then has an incentive to lower its

fee slightly. This induces agglomeration (as the segmentation equilibrium does not exist

for fi < πMH − πm/2). The resulting profit of the platform with the lower fee (platform
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i, say) is then 2fi. Hence, undercutting is profitable. As a consequence, if a partial

multi-homing equilibrium exists in the full game, it can only occur with fA = fB = 0.

But, then, the same mechanism as described for the case πd > πSH/2 occurs. The mixed-

strategy equilibrium is the unique equilibrium in the first stage for the same region as in

case πd > πSH/2. In the other region, in equilibrium, platforms set their fees equal to

zero. However, in contrast to the case above, for πd ≤ πSH/2, buyers and sellers in the

second stage play the partial multi-homing equilibrium.

Proof of Proposition 8. The third and fourth stage play out similarly as in the case with

listing fees. In the fourth stage, buyers buy according to their demand functions, that

is, a buyer active on platform i either faces a seller price of pm(φi) or p
d(φi), depending

on the number on sellers on platform i, and then buys the respective number of goods

Dm(φi) or D
d(φi). In stage 3, a seller on platform i sets pm(φi) or p

d(φi), depending on

the number of rival sellers (either 0 or 1) active on the platform in the seller’s product

category.

We turn to the second stage. Following the same arguments as in case of listing fees,

there potentially exist three types of equilibria with per-transaction fees: agglomeration

equilibria, segmentation equilibria, and stand-alone equilibria. In an agglomeration equi-

librium on platform i, a seller’s profit is πd(φi), whereas in a segmentation equilibrium,

the seller’s profit is πm(φi)/2. In a stand-alone equilibrium on platform i, the profit of

an active seller is πm(φi) and the one of an inactive seller is 0. However, since platforms

charge per-transaction fees, if φi is such that Dm(φi) > 0 and thereby also πm(φi) > 0,

also the inactive seller in each category could make a positive profit by becoming active

on platform i. The reason is that for Dm(φi) to be positive, φi must be below the in-

tercept of the demand curve. This implies that also in duopoly sellers will charge prices

such that Dd(φi) > 0, leading to πd(φi) > 0. Since platforms in the first stage will never

optimally charge a fee which leads to zero demand for sellers, as this implies zero profits

also for platforms, we can restrict attention to those subgames in the second stage in

which fees satisfy Dd(φi) > 0.41 For such fees, a stand-alone equilibrium does not exist in

the second stage and, thus, will never occur along the equilibrium path of the full game.

Next, we determine the equilibrium that is played in the second stage, given our

selection criterion. First, consider the case πd(0)/πm(0) ≥ 1/2. Due to the assump-

tion ∂πm(φi)/∂φi ≤ ∂πd(φi)/∂φi ≤ 0, the condition πd(0)/πm(0) ≥ 1/2 implies that

πd(φi)/π
m(φi) ≥ 1/2 ∀φi. In this case, a segmentation equilibrium cannot exist in the

second stage. The reason is that a coalition of all sellers and buyers on the platform

with the higher fee have the incentive to deviate to the rival platform. It follows that for

41If the demand is unbounded (as, for example, with CES demand), implying that there is no demand
intercept, this argument holds true independent of the level of the fee.
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πd(0)/πm(0) ≥ 1/2 only an agglomeration equilibrium exists.

Second, suppose that πd(0)/πm(0) < 1/2. Then, for φi, φ−i > 0 but small enough,

we have πd(φ−i) < 1/2πm(φi). In this case, the segmentation equilibrium is the unique

equilibrium selected by our refinement. To see this, note that in a segmentation equi-

librium, sellers on platform i obtain a profit of 1/2πm(φi) and those on platform −i a

profit of 1/2πm(φ−i). A seller active on the platform with the larger fee—for instance,

platform i, so that φi ≥ φ−i—has no profitable deviation from this configuration if

1/2πm(φi) ≥ 1/2πd(φ−i). This implies that for πm(φi) ≥ πd(φ−i), segmentation is a

Nash equilibrium. In addition, agglomeration is a Nash equilibrium for all fees φi such

that Dd(φi) > 0. Therefore, multiple Nash equilibria exist in this range. Applying

coalition-proofness, it is evident from the same arguments as in the previous paragraph

that the segmentation equilibrium is eliminated if πd(φ−i) ≥ 1/2πm(φi). Thus, if fees

are such that πd(φ−i) ≥ 1/2πm(φi), the unique equilibrium selected by our refinement is

the agglomeration equilibrium on platform i because the segmentation equilibrium is not

coalition-proof.42

Instead, for πd(φ−i) < 1/2πm(φi), coalition-proofness does not destroy the segmen-

tation equilibrium. Applying, in addition, profit dominance of sellers, selects the seg-

mentation equilibrium as the unique equilibrium. The reason is that a seller’s profit

in a segmentation equilibrium is at least 1/2πm(φi), which is larger than the one in

the agglomeration equilibrium, where a seller obtains only πd(φ−i). Since the condition

πd(φ−i) < 1/2πm(φi) is stronger than π
d(φ−i) ≤ πm(φi) (i.e., the condition for a segmen-

tation equilibrium to exist), the segmentation equilibrium is selected by our refinement,

whenever the condition holds.

Given our refinement, the equilibrium in the second stage is summarized as follows:

suppose that φi ≥ φ−i. If π
d(0)/πm(0) ≥ 1/2, an agglomeration equilibrium on platform

−i occurs. If, by contrast, πd(0)/πm(0) < 1/2, the segmentation equilibrium is played for

1/2πm(φi) > πd(φ−i) and agglomeration on platform −i occurs for 1/2πm(φi) ≤ πd(φ−i).

We turn to the first stage. Following the same arguments as in the proof of Proposition

1, it is evident that for πd(0)/πm(0) ≥ 1/2, the unique equilibrium implies (φ⋆
A, φ

⋆
B) =

(0, 0), as sellers will coordinate on the platform with the lower per-transaction fee. This

establishes the first part of the proposition.

For πd(0)/πm(0) < 1/2, we establish next the constraints under which a pure-strategy

segmentation equilibrium exists. The highest platform profits that can be obtained in

a segmentation equilibrium is reached with fees φA = φB = φm. Then, platform i can

induce agglomeration only by setting a fee φi such that πd(φi) ≥ πm(φm)/2. There-

42Note that because ∂πm(φi)/∂φi ≤ ∂πd(φi)/∂φi ≤ 0, we can have πd(0)/πm(0) < 1/2 but πd(φ−i) ≥
1/2πm(φi) if fees are sufficiently high. Then, a segmentation equilibrium is played if fees are close to
zero but an agglomeration one for high fees.



Segmentation versus Agglomeration 39

fore, if πd(φi) < πm(φm)/2 for all φi, a pure-strategy segmentation equilibrium emerges.

In addition, denoting by φ̃ the largest fee φi such that πd(φi) ≥ πm(φm)/2 (as in the

proposition), a deviation to φi = φ̃ so as to induce agglomeration is not profitable

if φmDm(φm)/2 ≥ 2φ̃Dd(φ̃), or, equivalently, 1/4 ≥ φ̃Dd(φ̃)/(φmDm(φm)). This es-

tablishes the second part of the proposition, which reports equilibrium transaction fees

(φ⋆
A, φ

⋆
B) = (φm, φm).

Finally, by the same arguments as in Section 4, there is no pure-strategy equilibrium

in the range such that πd(0)/πm(0) < 1/2 and φmDm(φm) < 4φ̃Dd(φ̃). In this case,

the mixed-strategy equilibrium can be obtained in a similar way as in the proofs of

Propositions 3 and 4. In particular, there will again be two regions, one in which mixing

occurs on a convex set and the other in which mixing occurs on a non-convex set. Let us

characterize the mixed-strategy equilibrium in each of those two regions.

In the region in which mixing occurs on a convex set, we denote the upper and the

lower bound of the range by φ̄ and φ, respectively. A platform must be indifferent between

setting φ̄ and φ, which leads to

2Dd(φ)φ =
Dm(φ̄)φ̄

2
. (16)

In addition, following the same steps as in the proof of Proposition 3, there exists a fee,

denoted by φ̂, in the interior of the randomization domain, which induces segmentation

with probability (almost) 1. At this fee, sellers are indifferent between agglomeration and

segmentation if one platform charges φ̂ and the other φ, which yields

πd(φ) =
πm(φ̂)

2
. (17)

The same holds if one platform charges φ̂ and the other φ̄, which yields

πm(φ̄)

2
= πd(φ̂). (18)

The three equations (16), (17), and (18) determine the three fees φ̂, φ̄, and φ and, thus,

the mixing range. By our assumption that πm falls to a larger extent than πd with an

increase in the per-transaction fee and that the same relation holds true for Dm and Dd,

the three fees φ̂, φ̄, and φ are uniquely determined.

The best-response function φi(φj) is implicitly defined by

πm(φi)

2
= πd(φj) for φj = [φ, φ̂],
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and

πd(φi) =
πm(φj)

2
for φj = (φ̂, φ̄].

Using these best responses and determining expected profits, we derive the mixing prob-

abilities. We obtain that, in equilibrium,

G(φ) =
ξ(φ)Dm(ξ(φ))− φ̂Dm(φ̂)

ξ(φ)Dm(ξ(φ))
if φ = [φ, φ̂], (19)

with ξ(φ) ≡ (πm)−1 (2πd(φ)), and

G(φ) =
4ψ(φ)Dd(ψ(φ))− φ̂Dm(φ̂)

4ψ(φ)Dd(ψ(φ))− ψ(φ)Dm(ψ(φ))
if φ = (φ̂, φ̄], (20)

with ψ(φ) ≡
(

πd
)−1

(πm(φ)/2). The mixing probabilities given by (19) and (20), together

with the equations determining φ̂, φ̄, and φ characterize the mixed-strategy equilibrium,

which exists if φ̄ ≤ φm.

To see that G(φ) = 0, note that, from (17), we can write ξ(φ) = φ̂. Inserting this into

(19) yields G(φ) = 0. Similarly, from (18), we can deduce that ψ(φ̄) = φ̂. Inserting this

into (20) yields G(φ̄) = 1. To show that there is a mass point at φ = φ̂, we can use (19)

and (20) to get

lim
φրφ̂

G(φ) =
φ̄Dm(φ̄)− φ̂Dm(φ̂)

φ̄Dm(φ̄)

and

lim
φցφ̂

G(φ) =
4φDd(φ)− φ̂Dm(φ̂)

4φDd(φ)− φDm(φ)

Using (16), which implies that φ̄Dm(φ̄) = 4φDd(φ), it is evident that the numerator of the

right-hand side of the previous two equations is the same. Comparing the denominators,

we obtain φ̄Dm(φ̄) = 4φDd(φ) > 4φDd(φ) − φDm(φ). Therefore, the denominator of

lim
φրφ̂

G(φ) is larger than the one of lim
φցφ̂

G(φ), which yields lim
φրφ̂

G(φ) < lim
φցφ̂

G(φ). Hence,

there is a mass point at φ = φ̂.

If φ̄ > φm, this equilibrium cannot exist, as a platform will never find it optimal to set

a higher per-transaction fee than φm. In this region, we obtain an equilibrium with a non-

convex randomization domain. Following the proof of Proposition 4, the lower interval

is given by [φ′, φ̃], where φ′ is implicitly defined by 2Dd(φ′)φ′ = Dm(φm)φm/2, and φ̃

is defined as in the proposition. The upper interval is [φ′′, φm], where φ′′ is implicitly

defined by πd(φ′) = πm(φ′′)/2.43

The existence of mass points at φ = φ′′ and φ = φm can be shown as above. The

43Due to our assumptions on the shape of the profit and demand functions, all boundaries are unique.
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mixing probabilities can be derived in the same way as in the case with a convex set.

They are given by

G̃(φ) =
ξ(φ)Dm(ξ(φ))− φ′′Dm(φ′′)

ξ(φ)Dm(ξ(φ))
if φ = [φ′, φ̃),

G̃(φ) =
4ψ(φ)Dd(ψ(φ))− φ′′Dm(φ′′)

4ψ(φ)Dd(ψ(φ))− ψ(φ)Dm(ψ(φ))
if φ = [φ′′, φm),

and

G̃(φ) = 1 if φ = φm.

Proof of Proposition 9. Consider first the case that v = v. In a (pure-strategy) segmen-

tation equilibrium, sellers in all categories will be active. To extract the maximal revenue

from each seller, the platform maximizes its profits by avoiding to charge a fee φi, as a

positive per-transaction fee would reduce the surplus to be shared between seller and

platform and the platform can extract the full surplus through the listing fee.

Consider now the case that v < v. We first note that in a (pure-strategy) segmentation

equilibrium with positive listing fees, sellers in all categories will be active. Suppose that

sellers from a positive mass of categories are inactive. Then, there exists a category v̂ in

the interior of the distribution, i.e. v̂ ∈ (v, v), such that the sellers in this category are

indifferent between participating and not participating, given the fees charged by both

platforms. Hence, one seller is active on platform i and the other seller on platform j

in all categories v ∈ [v̂, v], but both sellers are inactive in categories v ∈ [v, v̂). Then,

in the second stage, the coalition of all buyers on platform j and one seller in categories

just below v̂ could go to platform i. Buyers are then better off as they can interact with

sellers from more categories. Also the sellers of the coalition are better off. The reason is

that in the segmentation configuration in which they were inactive, their profit from the

interaction with the buyers was just not large enough to cover the listing fee of platform

i. After the deviation of the coalition, they face a mass 1 of buyers instead of 1/2, which

implies that forming the coalition is strictly better for them. Because this argument holds

for all cut-off values v̂ > v, in a segmentation equilibrium with positive listing fees there

must be full seller participation.

Noting that the price of a seller active on platform i in a segmentation equilibrium is

pm(φi, ri), platform i’s profit (omitting the argument of pm) can be written as

∫ v

v

{

1

2
vD(pm) [pmri + φi] + fi

}

h(v)dv.

By the same arguments as in the baseline model, in the (pure-strategy) segmentation
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equilibrium, platforms set fees such that the profit of sellers in v are fully extracted. This

implies
1

2
vD(pm) [pm(1− ri)− φi − c]− fi = 0. (21)

For all sellers with v > v, being active on platform i is beneficial, which implies

1

2
vD(pm) [pm(1− ri)− φi − c]− fi ≥ 0 ∀v ≥ v. (22)

From (22), the first-order condition for pm is given by

D(pm)(1− ri) +D′(pm) [pm(1− ri)− φi − c] = 0. (23)

We will now show that for any fee combination (fi, φi, ri) with fi > 0, φi > 0, and

ri > 0, there exists another combination denoted by (f ′
i , φ

′
i, r

′
i) with f

′
i > 0, φ′

i = 0, and

r′i > 0, such that the platform obtains a strictly higher profit with the fee combination

(f ′
i , φ

′
i, r

′
i) than with (fi, φi, ri).

44 To do so, we consider a change in the fees that leaves pm

unchanged and ensures that the seller in the lowest category is still indifferent between

being active or not. We can use (23) to show how φi and ri must be adjusted to leave

pm unchanged. Differentiating (23) with respect to φi and ri and rearranging yields

dri
dφi

= −
D′(pm)

D(pm) +D′(pm)pm
< 0. (24)

The inequality in (24) results from (23), because (23) implies that the denominator of (24)

is strictly negative due to the fact that (D(pm) +D′(pm)pm) (1−ri) = D′(pm)(φi+c) < 0.

Second, to keep the seller in category v indifferent, from (21), we must have that

1

2
vD(pm) [−pmdri − dφi]− dfi = 0. (25)

Dividing (25) by dφi yields

1

2
vD(pm)

[

−pm
dri
dφi

− 1

]

−
dfi
dφi

= 0.

Using (24) and rearranging yields

dfi
dφi

= −
1/2v [D(pm)]2

D(pm) +D′(pm)pm
> 0. (26)

This implies that an increase in φi, which is compensated by a reduction in ri so that pm

stays unchanged, implies that fi can be increased.

44This holds regardless of the fee combination of platform −i.
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We can now determine the effect of the change in the fee structure on platform i’s

profit. This is given by

∫ v

v

{

1

2
vD(pm) [drip

m + dφi] + dfi

}

h(v)dv.

Considering a marginal reduction in φi and dividing by dφi yields

∫ v

v

{

1

2
vD(pm)

[

−
dri
dφi

pm − 1

]

−
dfi
dφi

}

h(v)dv.

Inserting the values from (24) and (26), and rearranging yields

−
1/2 [D(pm)]2

D(pm) +D′(pm)pm

∫ v

v

{v − v}h(v)dv > 0,

where the inequality comes from the fact that all categories have a value v larger than v.

Since this holds for any value of φi, the profit-maximizing φi equals zero.

Proof of Proposition 10. From Proposition 9, we know that in the segmentation equilib-

rium φi = 0 for i ∈ {A,B} and sellers in all categories will participate. As a consequence,

platform i’s profit is given by

∫ v

v

{

1

2
vD(pm(ri))p

m(ri)ri + fi

}

h(v)dv, (27)

with

fi =
1

2
vD(pm(ri)) [p

m(ri)(1− ri)− c] . (28)

Inserting (28) in (27) and denoting the expected value of v, which is
∫ v

v
vh(v)dv, by E[v],

we can write platform i’s profit as

1

2
{E[v]D(pm(ri))p

m(ri)ri + vD(pm(ri)) [p
m(ri)(1− ri)− c]} . (29)

The maximization problem of a seller in category v is given by

max
p

1

2
vD(p) [p(1− ri)− c]− fi.

The price that a seller charges, denoted by pm(ri) is then determined by the first-order
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condition.45 Hence, pm(ri) is implicitly determined by

D′(pm(ri)) [p
m(ri)(1− ri)− c] +D(pm(ri))(1− ri) = 0. (30)

Due to the multiplicative interaction between v and the demand, the monopoly price is

the same in all categories.

Taking the total derivative of (30) with respect to pm and ri to determine how pm

changes in ri, we obtain

sign

{

dpm

dri

}

= sign {− (D′(pm(ri))p
m(ri) +D(pm(ri)))} .

It is evident that, for any c > 0, the first-order condition (30) can only be fulfilled if

D′(pm(ri))p
m(ri)+D(pm(ri)) < 0. This implies that dpm/dri > 0, that is, if the platform

demands a higher revenue share, sellers will respond with higher product prices.

The profit-maximizing revenue share is determined as follows. Maximizing platform

i’s profit by taking the derivative of (29) with respect to ri and using the Envelope

Theorem yields (omitting the argument of pm)

(E[v]− v)D(pm)pm + E[v]ri
dpm

dri
(D′(pm)pm +D(pm)) = 0. (31)

The second-order condition is given by

(D′(pm)pm +D(pm))

(

(2E[v]− v)
dpm

dri
+ E[v]ri

d2pm

d (ri)
2

)

+E[v]ri

(

dpm

dri

)2

(2D′(pm) +D′′(pm)pm) .

(32)

It is possible to check that d2pm/d (ri)
2 is positive if D′′′(pm) is positive or not highly

negative, which is fulfilled because of Assumption (iii). Moreover, from Assumption (ii),

2D′(pm) + D′′(pm)pm < 0 and from (30) we know that D′(pm)pm + D(pm) < 0. Taken

this together yields that (32) is strictly negative. Therefore, the profit-maximizing value

of ri is implicitly defined by (31).

We are now in a position to determine ri and fi in the two special cases v = v and

c = 0. We start with the former. If v = v, then E[v] = v. This implies that the first term

of the left-hand side of (31) equals zero. Therefore, as the profit function is concave, at

the optimal ri, the second term of the left-hand side must also be zero. Because E[v] > 0,

dpm/dri > 0, and D′(pm)pm+D(pm) < 0, this can only hold if ri = 0. Using this in (28),

we obtain that the profit-maximizing listing fee is fi = v/2D(pm(0)) [pm(0)− c].

We turn to the case c = 0. From (30), the first-order condition of a seller can then be

45Due to Assumption (ii), the second-order condition is satisfied.
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written as (1 − ri) (D
′(pm)pm +D(pm)) = 0. This implies that pm is implicitly defined

by the equation D′(pm)pm + D(pm) = 0 and is therefore independent of ri. Platform

i can then ensure that a seller in each category is active and extract the entire seller

surplus by setting ri = 1 and fi = 0. As pm is not distorted by this fee combination, the

platform induces sellers to maximize industry profits and appropriates it entirely. There-

fore, this fee combination constitutes the equilibrium in a (pure-strategy) segmentation

equilibrium.46

Proof of Proposition 11. We start with case (i). From the proof of Proposition 10, we

know that the optimal ri is given by

(E[v]− v)D(pm)pm + E[v]ri
dpm

dri
(D′(pm)pm +D(pm)) = 0. (33)

Considering a mean-preserving spread in which the support of the distribution changes

implies that E[v] stays constant but v falls and v rises. Therefore, (33) is affected by

such a mean-preserving spread only via the change in v. As the derivative of (33) with

respect to ri is negative due to the second-order condition, we obtain that

sign

{

dri
dv

}

= sign {−D(pm)pm} < 0.

Hence, ri increases with a mean-preserving spread of v that changes the support of the

distribution.

Turning to the change in fi, we also know from the proof of Proposition 10 that, in

equilibrium, a seller in category v obtains a profit of zero, which implies that

fi =
1

2
vD(pm(ri)) [p

m(ri)(1− ri)− c] (34)

and that pm is implicitly defined by

D′(pm(ri)) [p
m(ri)(1− ri)− c] +D(pm(ri))(1− ri) = 0. (35)

Taking the total differential of (34) with respect to fi and v and using the fact that, due

to (35), we can ignore terms involving dpm/dri, yields

dfi
dv

=
1

2
D(pm(ri)) [p

m(ri)(1− ri)− c]−
vD(pm)pm

2

dri
dv

> 0.

46This can also be seen from (31). Because dpm/dri = 0, the second term of the left-hand side equals
zero. Instead, the first term is strictly positive, which implies that ri will be set at the highest possible
level, which still ensures that sellers in all categories are active (i.e., ri = 1 and fi = 0).
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Hence, fi falls with a mean preserving spread in the distribtion of v that lowers v.

We turn to a change in c. Proceeding in the same as above, we can differentiate (33)

with respect to c. Again, using the second-order condition for ri, we obtain (dropping

arguments of the demand function)

sign

{

dri
dc

}

=

sign

{

(E[v]− v) (D′pm +D)
dpm

dc
+ E[v]ri

[

(2D′ +D′′pm)
dpm

dri

dpm

dc
+
d2pm

dridc
(D′pm +D)

]}

.

The first term in curly brackets is negative because E[v] − v > 0, sign {dpm/dc} =

sign {−D′} > 0 by (35), and D′pm + D < 0, where the last inequality comes from the

first-order condition of a seller given by (30). The first term in square brackets is negative

as well because dpm/dri > 0 (as shown in the proof of Proposition 10), dpm/dc > 0, and

2D′ +D′′pm < 0 due to Assumption (ii). Finally, one can show that, if D′′′ is positive or

not highly negative, d2pm/(dridc) is positive. This implies that also the second term in

square brackets is negative as D′pm +D < 0. It follows that dri/dc < 0.

Finally, we determine how fi changes with c. From (34), we obtain47

dfi
dc

= −
vD(pm)

2

(

1 + pm
dri
dc

)

. (36)

We can determine the value of dri/dc from the second-order condition of the platform’s

maximization problem, given in the proof of Proposition 10 and from the expression in

sign {dri/dc}, provided above in this proposition. This yields

dri
dc

= −
(E[v]− v) (D′pm +D) dpm

dc
+ E[v]ri

[

(2D′ +D′′pm) dpm

dri

dpm

dc
+ d2pm

dridc
(D′pm +D)

]

(D′pm +D)
(

2E[v]− v + E[v]ri
d2pm

d(ri)
2

)

+ E[v]ri

(

dpm

dri

)2

(2D′ +D′′pm)
.

(37)

We start with the case c → 0. In this case, we know from the proof of Proposition

10 that D′pm +D = dpm/dri = 0. This implies that the numerator and the denominator

of the right-hand side of (37) are zero. Applying L’Hospital’s rule, we obtain that the

derivative of the numerator with respect to c is (E[v]− v) (2D′ +D′′pm) (dpm/dc)2 < 0,

when letting c → 0. Doing the same for the denominator yields 0. It follows that

dri/dc→ −∞ as c→ 0. Therefore, the right-hand side of (36) is positive, which implies

dfi/dc > 0.

We now turn to the case in which c gets large. As there is a choke price p̄ above which

demand equals zero and dpm/dri > 0, we know that, when c approaches this choke price,

47Because of the Envelope Theorem, we can ignore the terms dpm/dc and (dpm/dri) (dri/dc).
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ri will no longer react to c because otherwise a seller’s demand would be equal to zero.

This implies that dri/dc → 0 as c → p̄. As a consequence, the right-hand side of (36)

becomes negative, which implies that dfi/dc < 0.

Proof of Proposition 12. Regarding statement (i) of the proposition, we show that plat-

form fees are zero in any partial multi-homing equilibrium. To do so, we first consider all

possible configurations in the second stage that involve partial multi-homing of sellers.

We then show that only platform fees of zero give rise to any such partial multi-homing

equilibrium. To simplify the exposition of the proof, we focus on configurations in which

all M sellers per category are active. As we argue below, the same arguments apply to

the case in which only a subset of sellers is active.

The first configuration with partial multi-homing is one in which the same number

of sellers single-home across all categories. Specifically, in each category, M − l sellers

multi-home (with l being an even number), l/2 sellers single-home on platform A, and

l/2 sellers single-home on platform B. As each platform then hosts the same number of

sellers, buyers split evenly on both platforms. It is easy to check that there is no other

partial multi-homing configuration that can potentially be sustained as an equilibrium

in the second stage, given that the same seller allocation obtains in all categories.

In this configuration, the profit of a multi-homing seller is given by

πMH(l/2, l/2,M − l)− fA − fB. (38)

Suppose that multi-homing sellers from a positive mass of product categories form a

coalition with all buyers on platform −i and the coalition decides to be active only on

platform i. That is, each of these sellers withdraws from platform −i and all buyers move

to platform i. The resulting profit of a deviant seller is then

π(M − l/2)− fi (39)

because all buyers are on platform i and the sellers active on this platform are the M − l

multi-homing sellers and the l/2 single-homing sellers. Therefore, the deviation is not

profitable for the seller if (38) is larger than (39) or, equivalently, πMH(l/2, l/2,M − l)−

f−i − π(M − l/2) ≥ 0.

We show that the buyers of platform −i are indifferent between forming the coalition

with deviating sellers joining platform i and staying with the status quo because they face

the same prices and have access to the same number of sellers in both situations. To see

this, consider first the outcome after the deviation. As there are no buyers on platform

−i, all sellers on platform i face the same maximization problem, regardless whether they

single-home or multi-home. This problem is given by maxp (p− c)D(p(M − l/2)), where
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p(M − l/2) abbreviates the price vector set by all M − l/2 sellers. Now consider the

outcome before the deviation. On both platforms, there are M − l multi-homing sellers

and l/2 single-homing sellers. The maximization problem of a multi-homing seller can

therefore be written as maxp (p−c) [1/2D(p(M − l/2)) + 1/2D(p(M − l/2))] because on

each platform, a mass 1/2 of buyers is active, and the demand of buyers is determined by

the price vector of the M − l/2 active sellers, respectively. Similarly, the maximization

problem of a single-homing seller is maxp 1/2(p− c)D(p(M − l/2)). It is easy to see that

the resulting equilibrium prices are the same, and buyers observe the offers of M − l/2

sellers with and without the deviation. Therefore, buyers are indifferent.

From the analysis of the preceding paragraph, it follows that the multi-homing seller

faces the same number of competitors per platform with and without the deviation and

that the equilibrium prices are the same. Therefore, πMH(l/2, l/2,M − l) = π(M − l/2),

which implies that the deviation is profitable for all f−i > 0. As a consequence, the

postulated partial multi-homing configuration can only be sustained in the subgame

following fA = fB = 0.

Next, we turn to configurations in which the number of single-homing sellers on a

platform varies across product categories. Because a partial multi-homing equilibrium

can only emerge if buyers are willing to split evenly, this implies that the single-homing

sellers list in such a way that the distribution of sellers across categories is the same on

both platforms. Only if this holds, a buyer expects to interact with the same number

of sellers in her preferred category when deciding which platform to join. This outcome

can be achieved in the following way: a number M − l of sellers multi-home, and l

sellers single-home (with l being either even or odd). In half of the categories, the l

single-homing sellers list on platform A; in the other half, they list on platform B. This

structure follows that of Proposition 7, in which M = 2 and l = 1. Applying similar

arguments as in the proof of Proposition 7, this configuration can only occur if fi = f−i.

If fi 6= f−i, the single-homing sellers on the platform with the higher fee can profitably

deviate to the rival platform as they face the same competitive conditions but pay a lower

listing fee. Suppose now that fi = f−i > 0. Consider a deviation by platform i to reduce

its fee slightly. By the argument from above, it then attracts all buyers and sellers, and

obtains a profit of Mfi.
48 By contrast, when keeping its fee at the same level as the rival

platform, its profit is only (M − l/2)fi. Therefore, the deviation is strictly profitable. As

this holds for all strictly positive fees, the partial multi-homing configuration can only be

sustained with fA = fB = 0.

Finally, a partial multi-homing configuration can also emerge via a combination of the

48In the same way as in the proof of Proposition 7, we can show that in the range in which the partial
multi-homing equilibrium exists, sellers choose agglomeration in case one platform sets a lower fee than
the other.
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two scenarios above. For example,M−l sellers multi-home and l sellers single-home. Out

of the l single-homing sellers, in each product category, l′ sellers single-home on platform

A and l′ sellers single-home on B, with l′ < l/2. The remaining l− l′ single-homing sellers

list in such a way that, in half of all categories, they are active on platform A and, in

the other half, on platform B. A similar argument as that given in the last paragraph

can then be applied. A platform can attract some sellers by lowering its fee slightly in

case fi = f−i > 0. This argument holds regardless of the exact combination of the two

scenarios above. Hence, also in this case the partial multi-homing configuration can only

be sustained with fA = fB = 0.

We focused on cases in which all sellers are active. However, if only a subset of sellers

is active, the configurations which ensure partial multi-homing must be of the same

structure as those described when all sellers are active. Otherwise, buyers would not be

willing to split evenly on the platforms. Then, the same arguments as those described

above apply. As a consequence, in an equilibrium with partial multi-homing, platform

fees are zero. This proves statement (i) of the proposition.

Turning to statement (ii), we will show that only one of the different partial multi-

homing configurations can occur as an equilibrium in the second stage.

We note that, because platform fees are zero in a partial multi-homing equilibrium,

all sellers will be active. We start with the configuration in which in each category

M − l sellers multi-home, l/2 sellers single-home on platform A, and l/2 sellers single-

home on B. As shown above, the profit of a single-homing seller can then be written

as π(M − l/2)/2. Consider a deviation of one single-homing seller in a positive mass of

product categories who is active on platform i. These sellers form a coalition with all

buyers and become single-homers on platform −i. Buyers are then better off as they are

exposed toM− l/2+1 offers of sellers in the respective product categories and face lower

prices. Instead, sellers are only better off if π(M − l/2 + 1) > π(M − l/2)/2. Therefore,

the deviation is not profitable if

π(M − l/2)

2
≥ π(M − l/2 + 1). (40)

We now show that, given condition (40), the combination fA = fB = 0 is not an

equilibrium in the first stage. Consider fA = fB = 0 and suppose that platform i increases

its fee to ǫ, with ǫ > 0 but small. Then, in the second stage, either an agglomeration

or a segmentation configuration will emerge. A configuration with multi-homing cannot

emerge because, from the arguments above, we know that partial multi-homing only

emerges in case both fees are the same, and full multi-homing is dominated for sellers

by a configuration in which all buyers and sellers are active on platform −i (i.e., the

platform with the lower fee). If an agglomeration configuration emerges after platform
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i has increased its fee, all buyers and sellers will be active on platform −i and a seller’s

profit is π(M).

We next look at the segmentation configuration and start with the case in whichM is

an even number. Then, a seller’s profit when being active on platform i is π(M/2)/2− ǫ.

It follows that all sellers prefer segmentation over agglomeration if π(M/2)/2−ǫ ≥ π(M).

In addition, segmentation emerges only if no seller has a profitable deviation from this

configuration. The most profitable deviation for a seller is to form a coalition with all

buyers and another single seller in each category and move to platform −i. Buyers are

then strictly better off as they face an additional seller in each category than without the

deviation. The deviating seller’s profit is π(M/2 + 1). Therefore, the deviation is not

profitable if
π(M/2)

2
− ǫ ≥ π(M/2 + 1). (41)

Comparing (40) and (41), it is easy to see that, for ǫ sufficiently small, the former implies

the latter under our assumption that the fall in profit due to a larger number of sellers

decreases in the number of sellers: the assumption implies that π(M/2) − π(M/2 + 1)

is larger than π(M − l/2) − π(M − l/2 + 1) for all l < M (i.e., for all cases in which

partial multi-homing occurs). As a consequence, if π(M − l/2)/2 > π(M − l/2 + 1),

then π(M/2)/2 > π(M/2 + 1) and there exists an ǫ in the vicinity of zero such that

π(M/2)/2 − ǫ > π(M/2 + 1). Therefore, platform i has a profitable deviation to raise

its fee slightly, as the platform continues to carry a positive volume of trade and, thus,

obtains a strictly positive profit.

We turn to the case in which M is odd. Then, an equilibrium with zero listing fees

in the first stage and partial multi-homing exists. If platform i increases its fee slightly,

a segmentation configuration cannot occur. The reason is as follows: the way to support

a segmentation configuration is to ensure that buyers expect the same number of sellers

in each category. With M being odd, this can only work if sellers in different categories

make different listing decisions. For example, (M − 1)/2 sellers in all categories list on

platform A, (M−1)/2 sellers in all categories list on platform B, and the remaining seller

in each category lists on platform A in half of the categories and on B in the other half of

categories. However, if platform i charges a higher fee than platform −i, the remaining

sellers active on platform i have an incentive to move to platform −i. They face the same

number of competitors (i.e., (M−1)/2) but pay a lower listing fee. Therefore, a platform

cannot profitably deviate and an equilibrium in which platforms charge zero listing fees

exists.

However, if (41) holds, there exists also an equilibrium with strictly positive listing

fees. Suppose each platform is host to (M − 1)/2 sellers (i.e., one seller is inactive) and

both platforms charge the same strictly positive fees. Then, slightly lowering the fee by ǫ is
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not profitable for platform i if sellers and buyers will still play a segmentation equilibrium

(instead of an agglomeration equilibrium) in the second stage. Indeed, forming a coalition

of one seller in each category and all buyers and moving to platform i is not profitable

for the sellers if
π((M − 1)/2)

2
− ǫ ≥ π((M + 1)/2). (42)

By the same argument as above, (41) implies (42) given the assumption that π(m) −

π(m+1) is falling in m. As (40) implies (41), we obtain that if (40) holds, this deviation

is not profitable. As a consequence, an equilibrium with strictly positive fees exists. In

addition, this equilibrium profit-dominates that with zero listing fees. Therefore, the

equilibrium with zero fees will not be selected by profit-dominance in the first stage.

It follows that employing this equilibrium selection criterion destroys the partial multi-

homing configuration.

By the same argument, also partial multi-homing configurations comprised of a com-

bination of the two pure scenarios outlined in the first part of the proof cannot emerge

as equilibria of the full game. Under the condition that single-homing sellers have no

incentive to multi-home, platforms can, also in this case, charge strictly positive fees

and induce a segmentation equilibrium in the second stage with positive profits for the

platforms.

We exemplify this with the following analysis. Consider the situation in which M − l

sellers multi-home, with l ≥ 3 being an odd number. In half of the categories, there

are (l + 1)/2 single-homers on platform A and (l − 1)/2 single-homers on platform B,

whereas in the other half, it is the other way round. Then, among the l single-homers

l − 1 split even on both platforms, but the remaining single-homer in a category makes

a listing decision that depends on the category he is in. Hence, this scenario involves a

combination of the two pure scenarios described above. Following the analysis in which

single-homing sellers make the same listing decisions in each category, we can derive the

condition such that a single-homing seller in each category has no incentive to deviate

from the partial multi-homing equilibrium by forming a coalition with all buyers and be

active on the other platform. We obtain a condition similar to the one in (40), which is

πSH((l + 1)/2, (l − 1)/2,M − l)

2
≥ π(M − (l + 1)/2). (43)

Because the profit of a seller is falling in the number of competitors, πSH((l + 1)/2, (l −

1)/2,M − l) ≤ πSH((l − 1)/2, (l − 1)/2,M − l). In addition, a configuration with (l −

1)/2 single-homers on each platform and M − l multi-homers implies that competition

on both platforms works in the same way. As shown above in this proof, this yields

πSH((l − 1)/2, (l − 1)/2,M − l) = π(M − l + (l − 1)/2) = π(M − (l + 1)/2). Therefore,
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(43) implies
π(M − (l + 1)/2)

2
≥ π(M − (l + 1)/2). (44)

In the same way as above, we can now show that (44) implies that platforms have a

profitable deviation from setting zero fees in the first stage. To simplify the exposition,

we focus on the case with M even.49 Suppose again that platform i increases its fee to ǫ.

Then, in the second stage, a segmentation configuration emerges if condition (41) holds,

that is,
π(M/2)

2
− ǫ ≥ π(M/2 + 1). (45)

Comparing (44) and (45), we can apply a similar argument as above under the assumption

that the fall in profit due to a larger number of sellers decreases in the number of sellers.

In particular, for ǫ sufficiently small, the assumption implies that for all l < M (i.e.,

for all cases with partial multi-homing), if (44) is fulfilled, then (45) is fulfilled as well.

Therefore, platform i has a profitable deviation to raise its fee slightly, which destroys

the partial multi-homing equilibrium.

We finally consider configurations in which single-homing sellers in different categories

make different listing decisions. Recall from above that these configurations emerge if

M − l sellers multi-home, l sellers single-home, and among the single-homing sellers, in

half of the categories, they list on platform A and, in the other half, they list on platform

B. Suppose that l ≥ 2. The profit of a single-homing seller active on platform i is

πSH
i (l, 0,M − l)/2 because in the category of the seller all single-homing sellers list on

platform i. Consider a deviation of this seller to switch from single-homing on platform

i to single-homing on platform −i. The resulting profit can then be written as πSH
−i (l −

1, 1,M− l)/2. By symmetry of the platforms, this profit is equal to πSH
i (1, l−1,M− l)/2.

Hence, the deviation is profitable if

πSH
i (1, l − 1,M − l)

2
>
πSH
i (l, 0,M − l)

2
,

which holds by our assumption made at the outset. As a consequence, a partial multi-

homing configuration with l ≥ 2 can not constitute an equilibrium of the game.

The same argument does not hold true with l = 1, as then the deviation profit is

πSH
−i (0, 1,M − 1)/2, which is equal to πSH

i (1, 0,M − 1)/2. The single-homing sellers

in different categories could also deviate by forming a coalition with all buyers and be

active only on one platform. As buyers then observe the offers of all M sellers, which

implies that a seller’s profit is π(M), such a deviation is equivalent to one in which all

single-homing sellers become multi-homers. This deviation, however, is not profitable if

49The case with M odd also works in the same way as above.
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πSH
i (1, 0,M − 1)/2 ≥ π(M). This condition can be fulfilled as the competitive pressure

in the product market is larger if all M sellers compete for all buyers as compered to

the case in which only M − 1 sellers compete for all buyers, but one seller interacts with

only half of the buyers. As prices are lower in the first case, the single-homing seller may

benefit from reducing competition, but selling to only half of the buyers.

We turn to deviations of multi-homing sellers. First, a multi-homing seller can de-

viate to become a single-homing seller. The most profitable way to do so is to list on

the platform on which the other single-homing seller is not present, yielding a profit of

πSH
i (1, 1,M − 2)/2. Therefore, this deviation is not profitable if πMH(1, 0,M − 1) ≥

πSH
i (1, 1,M − 2)/2. Second, multi-homing sellers (one per category from a set of prod-

uct categories of positive mass) can also form a coalition with all buyers and list on the

platform on which the single-homing seller is present. (Buyers are not willing to form

a coalition with the sellers and be active on the other platform, as in this case, buyers

from the platform of the single-homing seller obtain a lower utility because they face

only M − 1 sellers instead of M .) The seller’s profit is then π(M). However, π(M) is

strictly less than πMH(1, 0,M −1), as the competitive pressure is higher, but the number

of buyers observing the seller’s listing is still the same.

As a consequence, a partial multi-homing equilibrium with the features that sellers

in different categories make different listing decisions and that there is only one single-

homing seller in each category can be sustained in the second stage if the conditions

πSH
i (1, 0,M − 1)/2 ≥ π(M) and πMH(1, 0,M − 1) ≥ πSH

i (1, 1,M − 2)/2 are jointly

satisfied. This is indeed possible.

Proof of Proposition 13. The third and the fourth stage play out in a similar way as in

the baseline model. In the fourth stage, buyers make their buying decisions to maximize

utility, and in the third stage, sellers set their product prices, conditional on the number

of sellers in their product category on the platform.

In the first part of the proof, we determine the conditions under which fi = 0, ∀i ∈

{1, ..., N}, is an equilibrium of the full game. Note that, given fi = 0, ∀i ∈ {1, ..., N}, as

long as in the equilibrium of the second stage at least one platform does not carry any

trade, then no platform can profitably deviate by increasing its fee in the first stage. The

reason is that, if a platform carried a positive volume of trade in the equilibrium with

zero fees, then, after the deviation, sellers and buyers active on this platform would form

a coalition and move to one of the platforms with a fee of zero. If the deviating platform

carries no trade, a higher fee cannot make this platform better off since it will not attract

any buyers and sellers.

To determine the condition under which a platform could profitably deviate from

fi = 0, given that all other platforms charge a fee of zero, we distinguish between the
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cases M = kN and M 6= kN . Recall that k is the largest integer such that M ≥ kN .

First, we analyze the case M = kN . We know from above that, given zero fees, a

platform only has an incentive to deviate to a strictly positive fee if all platforms carry

a positive volume of trade. The latter can only occur if each platform hosts k = M/N

sellers. This leads to a profit per seller of π(k)/N ≥ 0. The most profitable deviation by

a coalition in the second stage is then that one seller moves to another platform together

with all buyers (as those benefit from the additional seller). The seller’s profit is then

π(k + 1). It follows that for

π(k + 1) <
π(k)

N
, (46)

the deviation is not profitable for the seller, and an equilibrium exists in which all N

platforms carry a positive volume of trade. To the contrary, if the condition is not

fulfilled—i.e., π(k + 1) ≥ π(k)/N as in (2)—no equilibrium candidate in stage 2 with N

platforms carrying positive volumes of trade exists. Then, for fi = 0, ∀i ∈ {1, ..., N}, only

a subset of platforms will carry a positive volume of trade, which implies that no platform

can profitable deviate from these fees. This proofs the first part of the proposition for

M = kN .

Second, consider the case M 6= kN . We start by demonstrating that there can never

be a coalition-proof equilibrium in which sellers in different categories split differently

on the platforms. To see this, consider the case in which all sellers and all platforms

are active. Buyers are then only indifferent between platforms if each one is on average

host to M/N sellers. To achieve this, we can split the mass of categories in N segments,

each with a mass 1/N . In each segment, a platform has either k or k + 1 sellers in

the respective categories, according to the following two rules. First, in each segment, a

number N(k + 1 −M/N) of platforms is host to k sellers and a number N(M/N − k)

is host to k + 1 sellers. Then, in each segment of categories, all M sellers are active.

Second, we allocate to each platform k sellers in N(k+1)−M segments and k+1 sellers

in M − N(k) segments. Then, summing up over the categories, the average number of

sellers on each platform is M/N .50

However, such a distribution is not coalition-proof. Take one segment of categories

and consider all sellers who are active on a platform with k+1 sellers in their categories.

Take as a coalition one seller in each category within the segment together with all buyers

on the seller’s platform. This coalition has an incentive to go to a platform with only k

50For example, if M = 11 and N = 4, we split the categories in 4 segments, each one with mass 1/4.
In the first one of these segments, platform 1 is host to 2 sellers in all categories in the segment, whereas
platforms 2, 3, and 4, are host to 3 sellers. In the second segment, platform 2 is host to 2 sellers and
all others platforms are host to 3 sellers, whereas in the third (fourth) segment, platform 3 (4) is host
to 2 sellers and the other platforms are host to 3 sellers. Then, each platform has on average 11/4 and
sellers and buyers are indifferent.
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sellers. Per category, the deviating seller then obtains a profit (excluding the listing fee)

of 2π(k+1)/N , whereas without the deviation the profit is only π(k+1)/N . In addition,

also the buyers benefit as they now expect more sellers on the platform than before (i.e.,

the expected number of sellers is k + 1 instead of M/N). It follows that there exists a

profitable deviation from such an asymmetric equilibrium.

The same argument holds if only a subset of sellers is active. Therefore, if listing fees

are symmetric on all platforms, the equilibrium in the second stage must be symmetric

across all categories.

We now determine for the case M 6= kN , under which conditions fi = 0, ∀i ∈

{1, ..., N}, is an equilibrium in the first stage. Suppose first that only a subset of plat-

forms has a positive volume of trade. In this situation, sellers and buyers in the second

stage choose either agglomeration (that is, all buyers and all active sellers are on one

platform) or another distribution in which all platforms with positive market share host

the same number of sellers in all categories. The selected equilibrium depends on the

profits that sellers obtain and the numbers M and N .51 In this situation, following the

same arguments as in the case M = kN , no platform can profitably increase its fee.

Instead, suppose that all platforms carry a positive volume of trade. Proceeding

analogously to the case M = kN , we obtain inequality (46) also for the case M 6= kN .

We now show that if (46) holds, an equilibrium with zero fees will not be selected

by profit-dominance in the first stage. Suppose that (46) holds and all platforms charge

strictly positive fees. Then, slightly lowering the fee is not profitable for a platform, as

sellers and buyers will still play a segmentation equilibrium in the second stage, in which

all platforms have a positive market share and are host to k sellers. As a consequence,

an equilibrium with strictly positive fees exists. However, as M 6= kN , an equilibrium

in which fi = 0, ∀i ∈ {1, ..., N} always exists since at least one platform will not carry

a positive trade volume. Yet, the latter equilibrium is profit-dominated. Therefore, the

equilibrium with strictly positive fees will be selected in the first stage, whenever the

two equilibria co-exist. To sum up the analysis so far, in case M ≥ N , a pure-strategy

equilibrium in the first stage with fi = 0, ∀i ∈ {1, ..., N} exists and is selected if and only

if condition (2) is satisfied.

From the preceding arguments, it also follows that forM < N , the unique equilibrium

involves fi = 0, ∀i ∈ {1, ..., N}, as in any equilibrium in the second stage, only a subset

of platforms can carry a positive volume of trade.

In the second part of the proof, we turn to the segmentation equilibrium with positive

fees. From above, we know that for an equilibrium with positive fees to exist, all platforms

51Suppose, for example, that there are 10 sellers per category, 3 platforms, and π(10) > 0. Then, in
the first equilibrium type, one platform is host to 10 sellers, whereas in the second equilibrium type, two
platforms host 5 sellers each.
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must carry a positive volume of trade. This implies that each platform will have a mass

of 1/N buyers. Suppose that in a segmentation equilibrium candidate, each platform

hosts l ∈ {1, ..., k} sellers. Then, a platform i can charge at most fi = π(l)/N , leading

to a platform profit of Πi = lπ(l)/N and zero profits to sellers. Consider a coalition of

one seller on a platform j 6= i together with all buyers (i.e., not only those on platform

j but the whole buyer mass of 1). If this coalition deviates to platform i, all buyers

benefit as they now face l + 1 sellers instead of only l. The seller instead benefits only if

π(l+1) > π(l)/N . In addition, it is easy to check that this coalition leads to the tightest

condition for a segmentation equilibrium to exist in the second stage, as a deviation

involving more than one seller (per category) leads to lower seller profits. It follows that

segmentation is an equilibrium in the second stage if and only if π(l)/N ≥ π(l + 1).

We turn to the first stage and check if a platform has a profitable deviation from the

equilibrium candidate fi = π(l)/N . Consider the deviation in which platform i sets a fee

slightly below π(l+ 1). It then attracts l+ 1 sellers and, thereby, also all buyers. Hence,

the deviating platform’s profit is (l+1)π(l+1). Therefore, this deviation is not profitable

if lπ(l)/N ≥ (l+ 1)π(l+ 1). This condition is (weakly) stronger than π(l)/N ≥ π(l+ 1),

which was derived for the candidate segmentation equilibrium to exist in the second

stage. Thus, we can focus on the first stage.

By the same logic as in the previous paragraph, a platform can also deviate to any

fee slightly below π(m), with l < m ≤ M . The most profitable deviation is therefore

to set a fee of π(m̂), with m̂ ∈ argmaxl<m≤M mπ(m). It follows that if there exists

some l ∈ {1, ..., k} such that (3) holds, a pure-strategy segmentation equilibrium exists

in which platforms charge fi = π(l)/N . Applying profit-dominance in the first stage,

platforms choose fi = π(l⋆)/N , such that l⋆ ∈ argmaxl∈{1,...,k} lπ(l) subject to condition

(3).

In the third part of the proof, we show that if (2) is not satisfied, this does not imply

that (3) holds (i.e., there can be a region in which neither condition is satisfied). To

see this, note that for π(k)/N > π(k + 1), condition (2) is not satisfied. We now turn

to condition (3). Suppose first that l = k. Then, (3) holds if kπ(k)/N ≥ m̂π(m̂) or

π(k)/N ≥ m̂π(m̂)/k. We know that m̂ > k, which implies that m̂ must be at least k+1.

Inserting m̂ = k + 1 into π(k)/N ≥ m̂π(m̂)/k yields π(k)/N ≥ (k + 1)π(k + 1)/k. It is

easy to see that for

π(k + 1) <
π(k)

N
<

(k + 1)π(k + 1)

k

neither (2) nor (3) is satisfied. Since the right-hand side of (3) is at least as high as

(k + 1)π(k + 1) (due to the fact that m̂ is chosen to maximize mπ(m) with respect to

m), this also holds if m̂ 6= k + 1.

A similar argument obtains for the case in which l 6= k. Rewriting (3), we obtain
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π(l)/N ≥ m̂π(m̂)/l. The left-hand side of the previous inequality is larger than the right-

hand side of (2). However, π(k)/N > π(k + 1) does not rule out that there exists an m̂,

such that π(l)/N < m̂π(m̂)/l holds. In this case, again neither (2) nor (3) is satisfied.

Showing that there is a unique mixed-strategy equilibrium in this case follows the

same arguments as in the proofs of Propositions 3 and 4. Platform profits in the mixed-

strategy equilibrium are strictly positive. This follows because, if π(k + 1) ≥ π(k)/N

is violated, each platform sets a strictly positive fee even if all other platforms charge

a fee of zero. Therefore, setting a fee equal to zero is not part of the mixing domain.

As a consequence, the mixed-strategy equilibrium profit-dominates the pure-strategy

equilibrium with f ⋆
i = 0, ∀i ∈ {1, ..., N}, which exists for the case M 6= kN . Therefore,

the mixed-strategy equilibrium is always selected in the first stage.
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