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Abstract

We consider two-sided platforms with the feature that some users on one or both sides

of the market lack information about the price charged to participants on the other side of

the market. With positive cross-group external effects, such lack of price information makes

demand less elastic. A monopoly platform does not benefit from opaqueness and optimally

reveals price information. By contrast, in a two-sided singlehoming duopoly, platforms ben-

efit from opaqueness and, thus, do not have an incentive to disclose price information. In

competitive bottleneck markets, results are more nuanced: if one side is fully informed (for

exogenous reasons), platforms may decide to inform users on the other side either fully, par-

tially or not at all, depending on the strength of cross-group external effects and the degree

of horizontal differentiation.
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†Université catholique de Louvain, CORE/LIDAM and Louvain School of Management, B-1348 Louvain la

Neuve, Belgium, Paul.Belleflamme@uclouvain.be. Other affiliation: CESifo
‡Department of Economics and MaCCI, University of Mannheim, 68131 Mannheim, Germany, Mar-

tin.Peitz@gmail.com; also affiliated with CEPR, CESifo, and ZEW.



1 Introduction

In markets with two-sided platforms, cross-group external effects make the individually optimal

participation decision on one side dependent on how many users are active on the other. In

markets with a lot of turnover of market participants, this decision has to be based on expected

participation on the other side. The level of expected participation depends on market char-

acteristics and, if observable, on the actions of platform providers—in particular, their pricing

decisions.

This paper focuses on the disclosure of prices. In contrast to most of the existing literature,

we do not impose that users know all prices. In particular, we would argue that on many

two-sided platforms, information about the price charged to the other side is not universally

known. Possibly, platforms can strategically decide whether and to what extent they provide

price information to the group of users to whom the respective price does not apply. This is an

issue that is specific to two-sided platforms in contrast to networks or platforms with only one

group of users.

To illustrate what we have in mind, consider a simplified model of video game markets

that abstracts from non-linear pricing and lock-in. Game developers know the fees charged

by platforms to end users but the reverse is often not the case. Platforms sometimes inform

the market about reductions in the costs of developing games for them. For instance, Sony

announced a cut in the price for developers in 2007 and in 2009. In 2009 it released the statement

that it “will deploy various measures to further reinforce game development for PS3 and will

continue to expand the platform to offer attractive interactive entertainment experiences only

available on PS3,” and informed the public that it reduced the price of the development kit from

US$ 10,000 to US$ 2,000. This announcement was not restricted to the developer community, but

spread more widely to users. Thus, Sony’s information policy arguably affected the information

available to gamers and, therefore, their expectation about the availability of games on the

platform.

This paper formally investigates the incentive of platform operators to disclose price informa-

tion to the other side of the market. We use standard models of competition between two-sided

platforms to obtain equilibrium predictions on the pricing behavior for given disclosure rules and

then endogenize the disclosure decision. If some users on one side are not informed about the

price charged to users on the other side, they cannot infer the intensity of usage on the other side

from the observation of actual prices. Instead, these uninformed users have to form expectations

about participation on the other side without knowing the prices that platforms charge on that

side. We assume that these expectations are constant (that is, users hold passive beliefs), and

are confirmed in perfect Bayesian equilibrium. Clearly, users with constant expectations about

participation on the other side do not stop to participate when the price on the other side is

increased. This makes market demand less price elastic. Consequently, the decision to widely

disclose price information tends to lead to lower prices.

If the platform is in a monopoly position and if users move simultaneously on both sides, we

find that the platform fully discloses prices. Why is that so? If users do not observe the price on
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the other side, the platform has an incentive to raise this price too much for its own good. This

is similar to the classic opportunism problem (Hart and Tirole, 1990) and generalizes the result

by Hagiu and Halaburda (2014) who allow for no or full disclosure on each side of the market.1

By contrast, with competing platforms (and positive cross-group external effects on both

sides), full disclosure does not necessarily obtain, as higher prices may benefit both platforms.

In particular, under two-sided singlehoming, we show that at equilibrium, platforms do not

disclose any information to users on one side about the price they charge to the other side—the

outcome under strategic disclosure here is the same as when platforms coordinate their disclosure

decisions. Thus, while a monopoly platform always chooses to disclose information fully on both

sides of the market, competing platforms decide not to disclose information whatsoever.

In competitive bottlenecks (i.e., a market in which users on one side singlehome, while users

on the other side can multihome) results are more nuanced. Because the analysis becomes more

involved in this setting, we focus on situations in which users on one side are fully informed;

platforms must then decide the extent to which they want to inform users on the other side. In

case singlehomers are fully informed, we find that platforms choose to disclose no information

to multihomers (about the price they charge to singlehomers) for a large range of parameters.

However, if the horizontal differentiation between the platform is very low (i.e., close to the

limit under which only one platform would survive at equilibrium), then full disclosure and

no disclosure may coexist at equilibrium, or full disclosure may be the unique equilibrium (if

the multihoming side exerts much larger cross-group external effects than the singlehoming

side). Here, a firm attracts more users on the singlehoming side through full disclosure, and this

increase in market share overcompensates the loss in revenue per single-homing users (accounting

for revenues on both sides of the market). In the other case, in which multihomers are fully

informed, the information that platforms give to singlehomers depend again on the parameters of

the model: If multihomers exert sufficiently larger cross-group external effects than singlehomers,

then platforms find it optimal to inform a fraction of the singlehomers, or even all of them

(if multihomers exert even proportionately larger external effects and platforms are not too

differentiated); otherwise, platforms do not inform singlehomers whatsoever. In all these models

of platform competition, platforms would not inform any users if they could coordinate their

disclosure decisions.

Related literature. The early literature on network effects has considered alternative specifi-

cations about output information. In particular, in their seminal paper, Katz and Shapiro (1985)

contrast two models. In the first model (developed in the main text), they assume that users

first form expectations about output levels (i.e., network sizes) and next, on the basis of their

expectations and observed prices, they make their consumption decisions; to tie down equilib-

rium predictions, expectations are required to be self-fulfilling. In the second model (sketched in

the appendix), the authors assume alternatively that firms can commit to output levels, which

allows them to directly influence consumer expectations. In more recent work, Griva and Vettas

1This result holds if cross-group external effects are positive on both sides and also if they are positive on one

side but negative on the other side. In an extension, Hagiu and Halaburda (2014) allow for partial disclosure on

one side; our generalization is to allow for partial disclosure on both sides.
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(2011) and Hurkens and Lopez (2014) further explore the effect of user expectations on market

outcomes. In a two-sided market setting, Gabszewicz and Wauthy (2014) consider two versions

of expectation formation to show that two ex ante non-differentiated platforms can coexist and

make positive profits when the strength of cross-group external effects is heterogeneous across

users.2

Within the two-sided platform literature, we follow Armstrong (2006) in postulating that

users on both sides are heterogeneous with respect to their opportunity cost of joining a platform

and suppose that platforms set membership fees.3 While a substantial literature has evolved

focusing on pricing implications, several contributions have introduced additional strategic vari-

ables including Belleflamme and Peitz (2010) studying sellers’ ex ante investment incentives in

two-sided markets. In particular, Jullien and Pavan (2019) analyze the information management

of platforms that affects the users’ ability to predict participation decisions on the other side. In

this paper, we add to this line of research an alternative strategic variable of platforms, namely

the platforms’ decisions whether to disclose prices on the other side of the market, which directly

affects the ability of users to predict participation decisions on the other side.

As far as we know, the only other paper to explore the impact of price information on

equilibrium outcomes in markets with two-sided platforms is Hagiu and Halaburda (2014). We

follow Hagiu and Halaburda (2014) in postulating that users observe the price they have to pay,

but possibly not the price users on the other side have to pay and that uninformed users have

passive beliefs.4 Our monopoly result shows that the result of Hagiu and Halaburda (2014)

is robust to allowing partial disclosure on both sides. Under platform competition, we analyze

strategic disclosure, whereas Hagiu and Halaburda (2014) consider coordinated decisions. In their

competitive bottleneck model, both or none of the two platforms are assumed to fully disclose or

to not disclose at all on the singlehoming side;5 all users on the multihoming side are assumed to

be fully informed. They find that platforms jointly decide not to inform users on the singlehoming

side. This finding generalizes to the other models of platform competition analyzed in our paper:

if platforms can coordinate their disclosure decision they do not inform users. By contrast,

we consider the platforms’ strategic disclosure decision (either on the singlehoming or on the

multihoming side) and show that, depending on the setting and the parameter constellation,

platforms fully, partially or not at all disclose information to users.

While we analyze a static setting, expectations about participation decision also matter in

dynamic markets with installed user base. Cabral (2019) provides a theoretical contribution to

the dynamics of two-sided market; Tucker and Zhang (2010) provide an empirical investigation

into a platform’s ability to affect the expectation about participation decisions on the other side

of the market.

2A similar endogenous differentiation result is obtained by Halaburda et al. (2018).
3Rochet and Tirole (2003) consider heterogeneity in usage costs and consider the setting of usage fees. Hagiu

(2006) considers sequential participation decisions by the two sides of the platform. Armstrong and Wright (2007)

and Belleflamme and Peitz (2019) explore the effects of multihoming.
4In an extension, Hagiu and Halaburda show that their qualitative findings also hold under wary beliefs.
5In an extension, they allow that some but not all singlehoming users are informed about prices on the other

side of both platforms.
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Our paper also connects to the literature on price transparency. Furthermore, there is a

scant literature on the disclosure of price and product information in oligopoly, which analyzes

the competitive effects of informing only a fraction of consumers (see, e.g., Schultz, 2004, 2009).

Finally, the disclosure decision can be seen as an instance of informative advertising. The

literature has considered oligopoly environments in which firms advertise the existence of a

product, its price and product characteristics (including the contributions by Butters, 1977, and

Grossman and Shapiro, 1984). In our paper, we presume that product and price are known,

but that the price on the other side is not necessarily known. Since the price on the other side

affects participation on the other side, and participation on the other side generates an external

effect, our model captures a situation in which platforms can disclose information that affects

the quality perception.

The rest of the paper is organized as follows. In Sections 2 and 3, we analyze in turn the cases

of a monopoly platform and of two competing platforms, distinguishing between environments

with singlehoming on both sides or with potential multihoming on one side. In Section 4, we

make some concluding remarks.

2 Monopoly platform

In this section, we set up a simple monopoly platform model and examine the incentives of the

platform operator to disclose price information on the two sides of the market. We examine

the model in which the platform sets membership fees on both sides and users on both sides

simultaneously decide whether or not to join the platform.

2.1 Model

Consider a monopoly platform serving two distinct groups of users. Each group i = a, b comprises

a mass of users vi who decide whether to join the platform. The platform charges (possibly

different) membership fees for the two groups, A and B. Below we use the terms ‘membership

fee’ and ‘price’ interchangeably. The constant marginal cost of attracting users on the platform

is normalized to zero. A user of group i enjoys the following net utility when interacting on the

platform with users of the other group:

Ui =

{

ua + γan
e
b −A if i = a

ub + γbn
e
a −B if i = b

,

where ui is the intrinsic value of being on the platform, γi measures the cross-group external

effect provided by an additional member of side j on each member of side i, ne
j is the expected

number of members of side j on the platform. We assume that ui is drawn from a uniform

distribution on [0, vi] and that there is a mass of vi of potential users on side i. As for cross-

group external effects, we assume that they are positive for at least one side.6

6It is indeed hard to imagine a two-sided platform connecting two groups that dislike each other.
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Facing a membership fee A and expecting participation ne
b on the other side, a user of side

a decides to join the platform if ua ≥ A − γan
e
b. Correspondingly, a user on side b faces a

membership fee B and decides to join if ub ≥ B − γbn
e
a. Hence, the number of participating

users on side i is computed as
{

na = va + γan
e
b −A,

nb = vb + γbn
e
b −B.

(1)

Concerning the users’ information about membership fees, we assume that on side a, all

users observe the fee that the platform charges on their own side (A) but only have a probability

α to observe the membership fee charged on the other side (side B), and correspondingly on

side b where β denotes the probability that users observe the membership fee charged on side

A; the probabilities α and β are common knowledge.

From the platform’s point of view, these assumptions imply that when the platform changes

its membership fee for side i, all users on side i incorporate this change of price in their decision,

by taking into account that only a share of users on the other side will be aware of these

modifications. We call the couple (α, β) the ‘information structure’. In what follows, we assume

that the platform can commit to this information structure, but, at the ex ante stage, is able to

modify it at zero cost.

We analyze the following three-stage game: (stage 1) the platform chooses the information

structure; (stage 2) the platform sets the membership fees A and B; (stage 3) users in the two

groups simultaneously decide whether or not to join the platform. We look for a perfect Bayesian

equilibrium with passive beliefs of this game.

2.2 Analysis

2.2.1 Participation decisions

Our first task is to determine the number of users that will join the platform on each side,

given the information structure (α, β). On side i, with some probability, a user is informed of

the membership fee charged on the other side and, therefore, is able to anticipate correctly the

number of users that will join on the other side: ne
j = nj ; with the remaining probability, a

user is not informed of the membership fee charged on the other side. We assume that such an

uninformed user holds passive beliefs about participation on the other side; that is, the expected

number of participants on the other side is taken as constant ne
j = xj . Note that such a user

on side i knows that a fraction of users on the other side j do observe the membership fee and,

thus, could make her participation decision dependent on the price on side i. Thus, uninformed

users hold the belief that the number of participants is equal to the equilibrium number and

independent of the price on their own side.7 We mean to speak of perfect Bayesian equilibrium

with passive beliefs whenever we refer to an equilibrium.

7That is, we assume that if both prices change, xa and xb remain unchanged. Alternatively, we could assume

that, even though a user only observes A, she could nevertheless adjust her beliefs xb by inferring that those users

on side b that observe A will adjust their decision, knowing that participation on side a changes. We leave the

study of alternative beliefs to further research.
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Using expression (1), we can thus write:

{

na = va + γa (αnb + (1− α)xb)−A,

nb = vb + γb (βna + (1− β)xa)−B.

The solution to this system is

{

na = va+γaxb−A+γaα(vb−xb−B+γb(1−β)xa)
1−αβγaγb

,

nb =
vb+γbxa−B+γbβ(va−xa−A+γa(1−α)xb)

1−αβγaγb
.

Demand na is decreasing in A and nb in B if αβγaγb < 1. This condition is satisfied for all

information structures if γaγb < 1.

2.2.2 Membership fees

The platform chooses A and B to maximize its profits Π = Ana + Bnb. To assure an interior

maximum, cross-group external effects cannot be too large (Assumption 1)8 and, in case of

a negative cross-group external effect, an additional parameter restriction must be satisfied

(Assumption 2).

Assumption 1. 4 > (γa + γbβ) (γb + γaα).

Assumption 2. 2va + (γa + γbβ) vb > 0 and 2vb + (γb + γaα) va > 0.

Under these conditions, we obtain the following lemma (we relegate all the proofs to the

appendix).

Lemma 1. For a given information structure, the platform chooses the equilibrium membership

fees

A∗ =
(2− γbβ (γb + γaα)) va + (γa − γbβ) vb

4− (γa + γbβ) (γb + γaα)
, B∗ =

(2− γaα (γa + γbβ)) vb + (γb − γaα) va
4− (γa + γbβ) (γb + γaα)

which yield equilibrium participation levels

n∗
a =

2va + (γa + γbβ) vb
4− (γa + γbβ) (γb + γaα)

, n∗
b =

2vb + (γb + γaα) va
4− (γa + γbβ) (γb + γaα)

.

Note that Assumptions 1 and 2 guarantee positive participation on both sides. We also note

that A∗ = n∗
a − βγbn

∗
b and B∗ = n∗

b − αγan
∗
a.

2.2.3 Information structure

We now examine how the equilibrium responds to a change in α and β. In the appendix, we

prove the following result.

Proposition 1. A monopoly platform chooses to inform all users at equilibrium: α∗ = β∗ = 1.

8It can be checked that Assumption 1 implies that γaγb < 1, so that participation on each side is a decreasing

function of the price set on that side.
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To understand this result, let us decompose the effects on the platform’s equilibrium profit

of a change in the information on side a:

dΠ∗

dα
=

∂A∗

∂α
n∗
a +

∂n∗
a

∂α
A∗ +

∂B∗

∂α
n∗
b +

∂n∗
b

∂α
B∗. (2)

We compute

∂A∗/∂α = (γa − βγb) γaKa,

∂n∗
a/∂α = (γa + βγb) γaKa,

∂B∗/∂α = − (2− γb (γa + βγb)) γaKa,

∂n∗
b/∂α = 2γaKa,

(3)

with

Ka ≡ 2va + (γa + γbβ) vb

(4− (γa + γbβ) (γb + γaα))
2 > 0 by Assumption 2.

Consider first a platform that exhibits positive cross-group external effects on both sides. For

instance, a gaming platform with developers on side a and gamers on side b: developers’ profits

increase with the number of gamers (γa > 0) and gamers’ utilities increase with the availability

of games (γb > 0). By raising α, the platform makes side-a users more aware of –and so more

sensitive to–price changes on side b. Other things equal, this gives the platform larger incentives

to lower B∗ because the leverage effect of attracting more side-b users (so as to attract more

side-a users) increases. One expects thus an increase in α to be followed by a decrease in B∗,

resulting in an increase in n∗
b and n∗

a; one also expects the platform to raise A∗ so as to take

advantage of the increase in n∗
a induced by the decrease in B∗. We observe in expression (3)

that the increase in n∗
b is unambiguous, as is the increase in n∗

a when γb is positive.9 As for

the change in prices (namely a decrease in B∗ and an increase in A∗), they are as expected as

long as βγb is not too large with respect to γa; if not (i.e., if gamers exert sufficiently stronger

external effects than developers, and if gamers users are sufficiently informed of the fee charged

to developers), then the platform may adjust its price structure differently (it may reduce A∗ and

even raise B∗).10 We thus see that changing information on one side can have opposite effects

on participation and on fees. To assess the net effect, we use the fact that A∗ = n∗
a− βγbn

∗
b and

B∗ = n∗
b − αγan

∗
a. This allows us to rewrite expression (2) as

dΠ∗

dα
= γaKa (2γa (1− α)n∗

a + γb (1− β) (γa + βγb)n
∗
b) , (4)

which is clearly positive when γa, γb > 0.

Consider now a platform combining positive and negative cross-group external effects. An

example is a media platform that links advertisers to readers: advertisers welcome a larger

audience whereas readers dislike more advertising. Suppose first that advertisers are on side a,

so that γa > 0 > γb. In that case, it is clear that ∂A∗/∂α > 0 and ∂n∗
b/∂α > 0: increasing the

advertisers’ information about the readers’ fee yields the platform to charge more to advertisers

9The same result applies for the users’ net values. We have indeed that ni = vi + γin
e
j − Mi = Ui + vi − ui

(where Ma ≡ A and Mb ≡ B).
10For instance, if all gamers know about the fee charged to developers (β = 1), then ∂A∗/∂α < 0 for γb > γa

and ∂B∗/∂α > 0 for γb > (
√

γ2
a + 8− γa)/2, which is compatible with Condition (1) for γb > γa.

7



and to increase readers’ participation. If γa < −βγb (i.e., if advertisers value less an extra reader

than readers dislike an extra advertiser), the effect on the readers’ fee is ambiguous but it is

clear that ∂n∗
a/∂α < 0: better information on the advertisers’ side leads the platform to decrease

advertisers’ participation. Also, if γa < −βγb, expression (4) reveals that the net effect on profit

is positive.

Let us now reverse the roles by taking readers on side a, so that γb > 0 > γa. Clearly,

∂A∗/∂α < 0 and ∂n∗
b/∂α < 0: increasing the readers’ information about the advertisers’ fee

yields the platform to charge less to readers and to decrease advertisers’ participation. If βγb <

−γa (i.e., if advertisers value less an extra reader than readers dislike an extra advertiser), we

have that ∂n∗
a/∂α > 0 and ∂B∗/∂α > 0: better information on the readers’ side leads the

platform to raise readers’ participation and the advertisers’ fee. Again, in that case, expression

(4) reveals that the net effect on profit is positive.

3 Competing platforms

In this section we turn to platform competition. Suppose that there are two platforms, located

at the extremes of the unit interval (platform 1 at 0 and platform 2 at 1). There is a mass 1 of

users on the two sides of the market (noted a and b). We denote by mi the mass of users of side

i (i = a, b) who join platform 1 and by ni the mass of users of side i who join platform 2. We

also denote by Ak and Bk the membership fees charged by platform k (k = 1, 2) on side a and

b respectively.

We contrast two settings. In the first setting, called “two-sided singlehoming”, users on both

sides on the platform are supposed to singlehome; that is, they can be present on at most one

platform. In the second setting, called “competitive bottlenecks”, users on side a still singlehome

while users on side b have the possibility to multihome (or, equivalently, each platform can be

accessed by separate subsets of side-b users).

3.1 Two-sided singlehoming

Users on both sides have to choose to visit either platform 1 or platform 2. We make the following

assumptions about the users’ ability to observe prices. First, all users observe the membership

fees charged by the two platforms on their own side (i.e., users of side a observe A1 and A2, and

users of side b observe B1 and B2). Second, on side a (resp. b), each user has a probability αk

(resp. βk) to be exposed to the membership fee charged by platform k on the other side of the

market. Third, these probabilities are common knowledge.

We analyze the following three-stage game. In stage 1, the two platforms choose the share

of users they want to inform about prices; that is, platform 1 (resp. 2) chooses α1 and β1 (resp.

α2 and β2); we continue to assume that no cost is associated to these decisions. In stage 2, the

two platforms set their membership fees; that is, platform 1 (resp. 2) chooses A1 and B1 (resp.

A2 and B2). Finally, in stage 3, users on both sides decide which platform to visit. We solve the

game for perfect Bayesian equilibria with passive beliefs.
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3.1.1 Participation decisions

A user of type a located at x ∈ [0, 1] compares the net value she gets from joining either platform

1 or platform 2; that is, respectively ua + γam
e
b − A1 − τax, and ua + γan

e
b − A2 − τa (1− x),

where ua is the stand-alone utility, γa measures the cross-group external effects that side b exerts

on side a, τa is the unit transportation cost on side a, and me
b and ne

b are the expected mass of

users of side b who will join, respectively, platforms 1 and 2. The indifferent user of type a is

thus identified as

x̄a =
1

2
− A1 −A2

2τa
+

γa
2τa

(me
b − ne

b) .

We define similarly the indifferent user of type b as

x̄b =
1

2
− B1 −B2

2τ b
+

γb
2τ b

(me
a − ne

a) .

We focus here on the case in which γa > 0 but we do not place any restriction on γb, which can

be positive or negative. As for the stand-alone utilities ua and ub, we assume that they are large

enough so that all users join one or the other platform at equilibrium.11

Using the identities of the indifferent users, platforms can compute the share of users on

each side that will react or not to a modification of their membership fees. This can be modeled

in the following way. Take side a. Platform 1 knows that with probability α1, the user observes

B1 and can correctly anticipate the number of type b users that will join platform 1; that is, for

such a user, me
b = mb. In contrast, with probability (1− α1), the user does not observe B1 and

forms a passive expectation about the number of type b users that will join platform 1; that is,

for such a user, me
b = yb, with yb being some constant (we require, however, that expectations

be fulfilled at equilibrium: yb = mb at equilibrium). Similarly for platform 2: with probability

α2, n
e
b = nb and with probability (1− α2), n

e
b = zb.

Making similar definitions on side b, we can thus write the following:

me
b − ne

b = α1mb + (1− α1) yb − α2nb − (1− α2) zb

= (α1 + α2) (mb − yb) + 2yb − 1.

where, in the second line, we make use of the fact that, because of full participation on both sides,

mi = 1−ni and yi = 1− zi. Correspondingly, we find me
a −ne

a = (β1 + β2) (ma − ya) + 2ya − 1.

Under full participation, we also have that mi = x̄i. To find the number of users joining the two

platforms as a function of the four membership fees, we must then solve the following system of

equations:
{

ma = 1
2 − A1−A2

2τa
+ γa

2τa
((α1 + α2) (mb − yb) + 2yb − 1) ,

mb =
1
2 − B1−B2

2τb
+ γb

2τb
((β1 + β2) (ma − ya) + 2ya − 1) .

We define ha ≡ γa (α1 + α2) /2 and hb ≡ γb (β1 + β2) /2 as the as “effective” intensity of the

external effects given the information structure. In the full-information case, hi = γi. We note

that in the two-sided singlehoming case all our results depend on this effective intensity of the

11More precisely, we require 2ua ≥ 3τa − γa − (β
1
+ β

2
) γb and 2ub ≥ 3τ b − γb − (α1 + α2) γa.
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external effect.12 We can write the solution as

ma =
Fa − τ b (A1 −A2)− ha (B1 −B2)

2 (τaτ b − hahb)
and mb =

Fb − τa (B1 −B2)− hb (A1 −A2)

2 (τaτ b − hahb)
, with

Fa ≡ 2ha (γb − hb) ya + 2τ b (γa − ha) yb + (τ b − γb)ha − (γa − τa) τ b,

Fb ≡ 2hb (γa − ha) yb + 2τa (γb − hb) ya + (τa − γa)hb − (γb − τ b) τa.

3.1.2 Membership fees

Platform 1 chooses A1 and B1 to maximize Π1 = A1ma + B1mb, while platform 2 chooses A2

and B2 to maximize Π2 = A2 (1−ma) +B2 (1−mb). Solving for the system of four first-order

conditions (and assuming 4τaτ b > (ha + hb)
2 to satisfy the second-order conditions), we obtain

values of the membership fees that we use to compute the values of ma and mb. The next step

consists in imposing fulfilled expectations, i.e., ya = ma and yb = mb. Replacing and solving,

one finds that the unique fixed point is ma = mb = 1/2. Substituting ya = ma and yb = mb into

the expressions of Fa and Fb allows us to complete the characterization of the equilibrium (see

the appendix). We can then state the following results:

Lemma 2. In the two-sided singlehoming setting, for a given information structure, the platform

chooses the equilibrium membership fees

A∗
1 = A∗

2 = τa − 1
2 (β1 + β2) γb and B∗

1 = B∗
2 = τ b − 1

2 (α1 + α2) γa,

which yield equilibrium participation levels m∗
a = n∗

a = m∗
b = n∗

b = 1/2, and equilibrium profits

Π∗
1 = Π∗

2 =
1
2 (τa + τ b)− 1

4 ((α1 + α2) γa + (β1 + β2) γb) . (5)

3.1.3 Information structure

We observe from expression (5) that ∂Π∗
i /∂αi has the opposite sign of γa and ∂Π∗

i /∂βi has the

opposite sign of γb. We therefore conclude:

Proposition 2. In the two-sided singlehoming case with symmetric platforms and positive cross-

group external effects on both sides, it is a dominant strategy for each platform to disclose no

information to users in some group about the membership fee they charge to the other group.

Note that the information structure chosen by the platforms at the equilibrium of the game

is completely at odds with the preferences of the users. The equilibrium net values for the users

are indeed computed as: U∗
a = 1

2γa +
1
2 (β1 + β2) γb − τa and U∗

b = 1
2γb +

1
2 (α1 + α2) γa − τ b.

Thus, ∂Π∗
i /∂αi and ∂U∗

b /∂αi have opposite signs, and so do ∂Π∗
i /∂βi and ∂U∗

a/∂βi. So, as

cross-group external effects are positive on both sides, we see that the users benefit from more

12As we show below, this does not hold in the competitive bottlenecks model because, in this model, user

behavior differs on the two sides.
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observation of prices, while the platforms suffer from it (and will therefore choose to disclose no

information at equilibrium).

Importantly, we observe that the introduction of a competing platform completely reverses

the conclusion that we drew in the monopoly case: while a monopoly platform always chooses to

disclose information fully on both sides of the market, competing platforms decide to disclose no

information whatsoever when users singlehome on both sides. To understand this result, note

that the logic that we described in the monopoly case still applies: by disclosing information to

more users on one side, a platform increases the leverage it can gain on this side by lowering its fee

on the other side. This is understood by all market participants in stages 2 and 3. Consider the

deviation of a platform from symmetric disclosure policies. A platform that discloses information

to more users on one side than its competitor will increase the number of users on this side and

obtain a larger market share on this side. Such a deviation tends to be profit-increasing, taking

equilibrium prices under symmetric disclosure policies as given. However, since the competing

platform best-responds, more disclosure heats up competition and, therefore, a platform may

not have an incentive to further disclose information. In this setting, with singlehoming and full

participation on both sides, competition is particularly intense (each user gained by platform

i is a user lost by platform j, thereby generating a positive feedback loop on platform i but a

negative feedback loop on platform j). What Proposition 2 shows is that this competition effect

is so strong that platforms prefer not to disclose any information at equilibrium and strategic

disclosure gives the same outcome as coordinated disclosure.

3.2 Competitive bottlenecks

We now examine whether no disclosure is still observed at equilibrium when users on one side

have the possibility to multihome. As multihoming may relax competition between platforms

(for a systematic analysis, see Belleflamme and Peitz, 2019), the balance between the two effects

that we just outlined is likely to be affected.

Suppose that users on side a still singlehome while users on side b have the possibility to

multihome. (Equivalently, users on side b could be split into two separate subsets, with one

subset being able to access platform 1 only and the other subset being able to access platform

2 only.)13 We analyze the same three-stage game as in the previous section: (1) choice of

information structure, (2) choice of membership fees, (3) participation decisions. As a word of

caution, in the two propositions in this section (Propositions 3 and 4), at stage 1, we characterize

the solutions to the system of first-order conditions and check that second-order conditions are

satisfied locally. In this sense, we characterize “local” equilibria.

3.2.1 Participation decisions

A user of type a located at x ∈ [0, 1] compares the net value she gets from joining either platform

1 or platform 2; that is, respectively γam
e
b − A1 − τax and γan

e
b − A2 − τa (1− x), where me

b

13With this interpretation in mind, it could be possible to examine the case where each subset may not observe

the fee charged to the other subset. We leave this issue for further research.
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and ne
b are the expected mass of users of side b who will join, respectively, platforms 1 and 2.14

The indifferent user of type a is thus identified as

x̄a =
1

2
− A1 −A2

2τa
+

γa
2τa

(me
b − ne

b) .

A user of type b located at x ∈ [0, 1] decides to join platform 1 if γbm
e
a−B1−τ bx ≥ 0 and to join

platform 2 if γbn
e
a −B2 − τ b (1− x) ≥ 0. That is, the marginal type b users joining platforms 1

and 2 are identified by

x̂1 =
1

τ b
(γbm

e
a −B1) and x̂2 = 1− 1

τ b
(γbn

e
a −B2) .

We make the same assumptions as before regarding the users’ ability to observe prices.

It follows that me
b = α1mb + (1− α1) yb, n

e
b = α2nb + (1− α2) zb, m

e
a = β1ma + (1− β1) ya

and ne
a = β2na + (1− β2) za. We assume full participation on the singlehoming side, so that

ma + na = 1 and ya + za = 1. Moreover, ma = x̄a. On side b, we have that mb = x̂1 and

nb = 1− x̂2. Combining these equalities and solving, we obtain the following numbers of users

as functions of the membership fees and the information structure:

ma = G−τb(A1−A2)−α1γaB1+α2γaB2

2τaτb−γaγb(α1β1+α2β2)
,

mb =
γb

τb

(

β1
G−τb(A1−A2)−α1γaB1+α2γaB2

2τaτb−γaγb(α1β1+α2β2)
+ (1− β1) ya

)

− B1

τb
,

nb =
γb

τb

(

β2

(

1− G−τb(A1−A2)−α1γaB1+α2γaB2

2τaτb−γaγb(α1β1+α2β2)

)

+ (1− β2) (1− ya)
)

− B2

τb
,

(6)

where

G = τaτ b − α2γaγb + γaγb (α1 (1− β1) + α2 (1− β2)) ya

+γaτ b (1− α1) yb − γaτ b (1− α2) zb.

As solving the full problem appears to be cumbersome, we study two specific cases. First,

we consider the case where the singlehoming side is aware of prices on the multihoming side but

that users on the multihoming side are initially uninformed (but may become so as the result

of the disclosure decisions by platforms). Then, we consider the opposite case. To ensure the

existence of a perfect Bayesian equilibrium with passive beliefs in both cases, we impose the

following restriction on the parameters:

t ≡ τaτ b >
1
6

(

γ2b + γ2a + 4γaγb
)

≡ tmin, (7)

where t stands for τaτ b and can be seen as a measure of the degree of horizontal differentiation

between the two platforms.

3.2.2 All singlehoming users are informed

We assume here that users on side a (where users singlehome) observe the membership fees that

the platforms set on the other side but that the reverse may not be true; that is, α1 and α2 are

exogenously set to unity, but the platforms choose β1, β2 ∈ [0, 1].

14To ease the exposition, we assume here that users do not receive any stand-alone benefits when joining a

platform (i.e., we set ua = ub = 0).
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Membership fees. Platform 1 chooses A1 and B1 to maximize Π1 = A1ma + B1mb, while

platform 2 chooses A2 and B2 to maximize Π2 = A2 (1−ma) + B2nb. In the next lemma, we

characterize the equilibrium.

Lemma 3. In the competitive bottlenecks case in which all singlehoming users are informed

while some multihoming users are uninformed, the platforms set the following membership fees:

A∗
1 =

4τaτb−β1γ
2

b
−(β1+2β2)γaγb

2τb
m∗

a, B∗
1 = γb−γa

2 m∗
a,

A∗
2 =

4τaτb−β2γ
2

b
−(2β1+β2)γaγb

2τb
(1−m∗

a) , B∗
2 = γb−γa

2 (1−m∗
a) ,

with

m∗
a = 1

2 − γb(γa−γb)(β1−β2)

2(12τaτb−(2γ2
a+(β1+β2)γ

2

b
+(2+3β1+3β2)γaγb))

, n∗
a = 1−m∗

a

m∗
b = 1

2τb
(γa + γb)n

∗
a, n∗

b =
1

2τb
(γa + γb)m

∗
a.

The resulting equilibrium profits are

Π∗
1 =

8τaτb−γ2
a+(1−2β1)γ

2

b
−2(β1+2β2)γaγb

4τb
(m∗

a)
2 ,

Π∗
2 =

8τaτb−γ2
a+(1−2β2)γ

2

b
−2(2β1+β2)γaγb

4τb
(1−m∗

a)
2 .

Regarding the equilibrium fees, we observe that if the singlehoming side exerts larger (resp.

smaller) cross-group external effects than the multihoming side (i.e., γa > γb), then the fees

charged on the multihoming side are clearly negative (i.e., below marginal cost), while condition

(7) implies that the fees charged on the singlehoming side are positive (whatever the values of β1

and β2). If the opposite prevails (i.e., γa < γb), then platforms set positive fees to multihomers,

while the sign of the singlehomers’ fees cannot be ascertained.

Regarding the equilibrium participation on the single-homing side, we observe that the plat-

form that discloses to more users on the single-homing side, obtains more participation than the

competitor if and only if the multi-homing side is subject to stronger network effects than the

single-homing side (i.e., γa < γb).

Information structure. Platforms simultaneously choose their value of βi in (0, 1). We look

for a symmetric equilibrium. We compute

∂Π∗
i

∂βi

∣

∣

∣

∣

β1=β2=β

= γb
4γaγb(3γa+γb)β−(4t(5γa+γb)−(γa+γb)(3γ2

a+γ2

b))
16(6t−γ2

a−γaγb−βγ2

b
−3βγaγb)τb

. (8)

Under condition (7), the denominator is positive, which implies that the derivative is increasing

in β. There are thus three possible situations according to the sign of the derivative at β = 0

and β = 1. We compute

∂Π∗
i

∂βi

∣

∣

∣

∣

β1=β2=0

> 0 ⇔ t <
(γa + γb)

(

3γ2a + γ2b
)

4 (5γa + γb)
≡ t1,

∂Π∗
i

∂βi

∣

∣

∣

∣

β1=β2=1

> 0 ⇔ t <
(γa + γb)

(

3γ2a + γ2b
)

4 (5γa + γb)
+

γaγb (3γa + γb)

(5γa + γb)
≡ t2.
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As t1 < t2, the derivative in (8) is positive for all values of β if t < t1, negative for small values

of β and positive for large values of β if t1 < t < t2, and negative for all values of β if t > t2.

We have thus proved the following result (which we illustrate in Figure 1).

Proposition 3. Consider the competitive bottleneck setting in which platforms have to decide

to which extent they inform the multihoming side about the fees charged on the singlehoming

side. At the symmetric perfect Bayesian equilibrium with passive beliefs, the platforms’ choice

of information structure features: (i) full disclosure (β1 = β2 = 1) if tmin < t < t1; (ii) full

disclosure or no disclosure (β1 = β2 ∈ {0, 1}) if max {tmin, t1} < t < t2; (iii) no disclosure

(β1 = β2 = 0) if t > max{tmin, t2}.

We observe in Figure 1 that for a large parameter range, firms will choose at equilibrium to

disclose no information, which is reminiscent of what was observed in the two-sided singlehoming

case. This is certainly so if the singlehoming side exerts stronger cross-group external effects

than the multihoming side (γa > γb, which implies tmin > t2). Yet, if the latter condition is

reversed (i.e., if the multihoming side generates the stronger external effects) and platforms

are not too differentiated (t < t2), then full disclosure can be another equilibrium, or even the

unique equilibrium, of the game. However, for full disclosure to be the unique equilibrium of

the game, the multihoming side must exert much stronger cross-group external effects than the

singlehoming side (t1 > tmin if and only if γb > 17γa). It is also important to note that when the

two equilibria coexist (i.e., for max {tmin, t1} < t < t2), platforms strictly prefer no disclosure

(β1 = β2 = 0) to full disclosure (β1 = β2 = 1). We have indeed

Π∗
i |β1=β2=0 − Π∗

i |β1=β2=1 =
8t−γ2

a+γ2

b

16τb
− 8t−γ2

a−6γaγb−γ2

b

16τb
= γb

3γa+γb

8τb
> 0.

Hence, in this parameter range, if platforms could coordinate on the preferred equilibrium, they

would not disclose prices on the other side.

Keeping the parameters for the cross-group external effects constants and varying t, we see

that for full disclosure to be an equilibrium outcome, platform differentiation cannot be too large

(and requires γa < γb). The reason is that, for γa < γb, if a platform discloses to more single-

homing users, its market share on the single-homing side increases (as follows from Lemma 3).

This makes disclosure particularly attractive when t is small, as demand is more sensitive.

Restricting strategies to βi ∈ {0, 1}, in the special case γa = 0, we obtain simple expressions

for profits in each of the four subgames after stage 1. Denoting profits at stage 1 by Π∗
i (β1, β2),

these profits are Π∗
i (0, 0) =

8t+γ2

b

16τb
, Π∗

i (1, 1) =
8t−γ2

b

16τb
,

Π∗
1(1, 0) =

8t−γ2

b

4τb

(

1
2 +

γ2

b

2(12t−γ2

b)

)2

= Π∗
2(0, 1), and

Π∗
1(0, 1) =

8t+γ2

b

4τb

(

1
2 − γ2

b

2(12t−γ2

b)

)2

= Π∗
2(1, 0).

Hence, we find that min{Π∗
1(0, 0),Π

∗
1(1, 0)} > Π∗

i (1, 1) and Π∗
i (0, 0) > Π∗

1(0, 1). Depending on

the parameters, Π∗
i (1, 0) may be smaller or larger than Π∗

1(0, 0). If Π∗
1(1, 0) > Π∗

1(0, 0), no

disclosure is not an equilibrium. Since one can show that Π∗
1(1, 0) > Π∗

1(0, 0) implies Π∗
1(1, 1) >
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Π∗
1(0, 1), full disclosure is the unique equilibrium. The game at stage 1 then has the structure

of a prisoner’s dilemma. Otherwise, either no disclosure is the unique equilibrium or full and no

disclosure are equilibria.

More generally, returning to continuous strategies at stage 1, for any admissible parameters,

using the profit formulas in Lemma 3, we obtain that dΠ∗
i (β, β)/dβ < 0. Thus, if platforms could

coordinate their disclosure decisions, no information would be disclosed. Proposition 3 shows

that the preferred no disclosure outcome is supported as equilibrium of the strategic disclosure

game if t > max{tmin, t1}.

γ
a 

0.06γ
b 

τ
a
τ

b 

β  = 0
 

β  = 0 or 1  
 

t
min 

t
1 

γ
b 

t
2 

β  = 1
 

Figure 1: Price disclosure in competitive bottlenecks (all singlehomers are informed)

3.2.3 All multihoming users are informed

We assume now that all multihoming users (i.e., side b users) are informed, so that β1 = β2 = 1,

and some singlehoming users may be uninformed, so that α1 and α2 range between 0 and 1.15

Membership fees. Platform 1 chooses A1 and B1 to maximize Π1 = A1ma + B1mb, while

platform 2 chooses A2 and B2 to maximize Π2 = A2 (1−ma) + B2nb. We characterize the

equilibrium in the next lemma.

Lemma 4. In the competitive bottleneck case in which all multihoming users are informed while

some singlehoming users are uninformed, the platforms set the following membership fees:

A∗
1 =

4τaτb−γb(γb+(α1+2α2)γa)
2τb

m∗
a, B∗

1 = γb−α1γa

2 m∗
a,

A∗
2 =

4τaτb−γb(γb+(2α1+α2)γa)
2τb

(1−m∗
a) , B∗

2 = γb−α2γa

2 (1−m∗
a) .

The resulting equilibrium profits are

Π∗
1 =

8τaτb−(γ2

b
+α2

1
γ2
a+2(α1+2α2)γaγb)
4τb

(m∗
a)

2 ,

Π∗
2 =

(8τaτb−(γ2

b
+α2

2
γ2
a+2(2α1+α2)γaγb))
4τb

(1−m∗
a)

2 ,

15This seems to be a realistic assumption in many environments in which sellers are on the multihoming side

and buyers on the singlehoming side. Coordinated disclosure decisions in this setting have been analyzed by Hagiu

and Halaburda (2014); they find that equilibrium profits are largest under no disclosure.
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where

m∗
a = 1

2 + γa(γa−γb)(α1−α2)
2(12τaτb−(2γb(γa+γb)+(α1+α2)(γ2

a+3γaγb)))
,

m∗
b = γb+α1γa

2τb
m∗

a, n∗
b =

γb+α2γa

2τb
(1−m∗

a) .

Regarding the signs of the optimal fees, all we can ascertain here is that γa > γb (resp.

γb > γa) implies that singlehomers (resp. multihomers) pay positive fees; otherwise, the signs

depend on the share of informed singlehomers.

Information structure. Platforms simultaneously choose their value of αi in [0, 1]. To char-

acterize the symmetric equilibrium of this game, we evaluate ∂Π∗
i /∂αi at α1 = α2 = α. We

obtain
∂Π∗

i

∂αi

∣

∣

∣

∣

α1=α2=α

=
1

16τ b

γa
6t−

(

αγ2a + γ2b + (1 + 3α) γaγb
)P (α) ,

with

P (α) ≡ γ2a (γa + 7γb)α
2 + 2γa

(

7γ2b − 6t− γaγb
)

α+ γ2b (γa + 3γb) + 4t (2γa − 5γb) .

Condition (7) implies that the derivative has the same sign as P (α). Because P (α) is a second-

order polynomial, there are potentially three symmetric equilibria: full disclosure (α∗ = 1), no

disclosure (α∗ = 0), or partial disclosure (0 < α∗ < 1). In the latter case, the level of disclosure

is given by the smaller root of P (α), denoted by αp. It can be shown that αp <
1
2 . In the proof

of Proposition 4 in the Appendix we derive the following three thresholds:

t3 ≡ 1

9

(

3γaγb + γ2a − 7γ2b +
√

(γa − γb) (γa + 7γb)
(

γ2a + 2γ2b
)

)

,

t4 ≡ γ2b (γa + 3γb)

4 (5γb − 2γa)
,

t5 ≡ γ3a + 5γ2aγb + 15γaγ
2
b + 3γ3b

4 (γa + 5γb)
.

In the appendix, we show that P (α) has no real roots and is everywhere positive for t > t3,

while P (0) < 0 if 2γa < 5γb and t > t4. In the following proposition, we provide a partial

equilibrium characterization.

Proposition 4. Consider the competitive bottleneck setting in which platforms have to decide

to which extent they inform the singlehoming side about the fees charged on the multihoming

side. At the symmetric perfect Bayesian equilibrium with passive beliefs, the platforms’ choice of

information structure α1 = α2 = α∗ is as follows:











α∗ = 0 if t > max {tmin, t4} ,
α∗ = αp if max {tmin, t3} < t < t4,

α∗ = 1 tmin < t < t5.

As shown in the proof in the Appendix, we have identified two parameter regions in which

two candidate equilibria coexist. First, for max {tmin, t4} < t < t5 (which implies 2γa < 5γb),
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Figure 2: Price disclosure in competitive bottlenecks (all multihomers are informed)

we find that full and no disclosure are equilibrium candidates. Second, for max {tmin, t3} < t <

min {t4, t5}, full and partial disclosure are equilibrium candidates. The following remark (for-

mally shown in the Appendix), provides a partial answer to the question as to which equilibrium

candidates survive global deviations.16

Remark 1. For γa ∈ [γb, 5γb], we have that tmin is the lower bound of the parameter region

with multiple equilibrium candidates. At this lower bound, the equilibrium candidate with full

disclosure is not a global maximizer, while the other equilibrium candidate gives a higher profit

than the maximal deviation.

By continuity, the result also holds in the vicinity of the lower bound. We illustrate our

findings in Figure 2 in which, for simplicity, we do not show the full disclosure equilibrium

candidate within the parameter range with multiple equilibrium candidates—such an equilibrium

candidate exists in the region between tmin and t5.

We observe from Figure 2 that the equilibrium information structure crucially depends on

the relative strength of the cross-group external effects on the two sides. If multihomers exert

sufficiently larger cross-group external effects than singlehomers (i.e., γa being larger than about

2.5γb), then, in equilibrium, platforms choose to inform at least a fraction of the singlehomers.

Full disclosure is the only equilibrium candidate if multihomers exert a sufficiently larger exter-

nal effects than singlehomers and platforms are not too differentiated. Intuitively, a relatively

large γa generates strong positive revenue effects on the singlehoming side from gaining addi-

tional multihoming users; this gives incentives to platforms to inform at least some users on the

16The analysis is partial insofar as the complexity of the problem prevents us from checking the second-order

conditions globally on the whole parameter range.
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singlehoming side about the price charged to the multihoming side. Otherwise, platforms decide

not to inform singlehomers.

For further illustration, consider two special cases. First, suppose that multihoming and

singlehoming users are subject to the same marginal external benefit; i.e., γa = γb ≡ γ. Then,

for any (α1, α2), m
∗
a = n∗

a = 1/2 and, thus, more disclosure does not shift demand when prices

are endogenous. Platform i’s equilibrium profit at stage 2 is

Π∗
i =

τa
2

− 1

16τ b
(1 + α2

i + 2αi + 4αj)γ
2.

Thus, at stage 1, platforms do not disclose information (i.e., α∗
1 = α∗

2 = 0) because disclosure

increases the intensity of competition on the singlehoming side. The outcome is the same as in

an environment in which they coordinated their disclosure decisions (as in Hagiu and Halaburda,

2014).

Second, suppose that multihoming users are not subject to any external benefit; thus, par-

ticipation decisions on side a do not affect multihomers directly; i.e. γb = 0. In this case,

participation on multihoming side is −Bi/τ b. We obtain that, at stage 2, for given prices

on the singlehoming side Ai, platform i’s profit-maximizing price on the multihoming side is

Bi = −aiγa

4τa
Ai. In equilibrium, the platforms set the following membership fees:

A∗
1 = 2τam

∗
a, B∗

1 = −α1γa

2 m∗
a,

A∗
2 = 2τa (1−m∗

a) , B∗
2 = −α2γa

2 (1−m∗
a) ,

where m∗
a = 1

2 +
γ2
a(α1−α2)

2(12τaτb−(α1+α2)γ2
a)
. Evaluated at α1 = α2, by increasing αi, more users on side

a will learn about the price charged to users on side b, and this gives incentives to platform i at

stage 2 to further subsidize users on side b; i.e., ∂B∗
i /∂αi|α1=α2

< 0. In other words, for larger

αi, the price on the multihoming side, Bi, becomes a more effective instrument to attract users

on the singlehoming side. Equilibrium profits at stage 2 are

Π∗
1 =

8τaτb−α2

1
γ2
a

4τb
(m∗

a)
2 ,

Π∗
2 =

8τaτb−α2

2
γ2
a

4τb
(1−m∗

a)
2 .

We have that
∂Π∗

i

∂αi

∣

∣

∣

∣

α1=α2=α

=
γ2a
16τ b

γ2aα
2 − 12αt+ 8t

6t− αγ2a
.

Evaluated at α = 0, this derivative is γ2
a

12τb
> 0, which shows that platforms choosing no dis-

closure cannot occur in equilibrium. Setting a larger αi than the competitor gives platform

i an advantage, but competition becomes more intense. Each platform has to balance these

countervailing forces, given the behavior of the competing platform. Therefore, for some pa-

rameter range, the equilibrium features partial disclosure α∗
1 = α∗

2 ∈ (0, 1), which is given by

α∗
i = 2t

(

3−
√

9− (2γ2a/t)
)

/γ2a. By contrast, if platforms coordinated their decisions (as in

Hagiu and Halaburda, 2014), both platforms would implement no disclosure.

Comparing the results of Propositions 3 and 4, we notice a couple of common patterns in the

two cases that we analyzed. First, we see that in both setting, platforms choose to disclose no
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information at equilibrium when the informed users exert stronger cross-group external effects

than the initially uninformed users (i.e., γa > γb when all singlehomers are informed or γb > γa

when all multihomers are informed). This result is easily seen for symmetric cross-group effects

(γa = γb). When all singlehomers are informed, a change in βi at the first stage only affects the

equilibrium fee on the singlehoming side at the second stage (the other fee and the participation

levels are constant; see Lemma 3); as ∂A∗
i /∂βi < 0, it follows that platforms prefer opaqueness

(βi = 0). When all multihomers are informed, an increase in αi leaves participation on side a

unaffected, and increases participation on side b; yet, as both fees decrease (see Lemma 4), the

net effect on profit is negative and, again, platforms prefer opaqueness (αi = 0).

Second, there exist parameter constellations such that platform fully or partially inform the

initially uninformed side. Partial or full disclosure of information to the uninformed side requires

that this side exerts proportionately larger cross-group external effects. For platforms to inform

fully the initially uninformed side at equilibrium, this side must exert substantially stronger

cross-group external effects than the other side (namely, γb > 17γa when side a is informed, and

γa > 5γb when side b is informed). Moreover, we observe that partial disclosure may take two

different forms: when singlehomers are informed, partial disclosure may result from a mixed-

strategy equilibrium (when both full and no disclosure are pure-strategy equilibria); in contrast,

when all multihomers are informed, an interior equilibrium in pure strategies may emerge. This

stands in contrast to a setting in which platforms can coordinate their disclosure decision; with

such coordination, platforms would not inform users.

4 Discussion and Conclusion

How are market outcomes affected if platforms do not inform all users about the prices charged

to users on the other sides of the platform? Market outcomes then depend on user expectations

about participation levels. These expectations are independent of the actual price on the other

side if this price is not observed, but may depend on the price set on the own side. In this paper,

we characterize perfect Bayesian equilibria with passive beliefs, i.e., users who only observe the

price on their own side expect that the participation on the other side is given by its equilibrium

level.

While a monopoly always has an incentive to inform all participants about prices, the re-

sult is reversed under platform competition with strategic disclosure two-sided singlehoming. In

markets that feature competitive bottlenecks, results are more nuanced. Suppose first that all

singlehomers are informed about the prices on the other side of the market. Then, no disclosure

is an equilibrium for a large range of parameters; yet, full disclosure is an equilibrium if the

horizontal differentiation between the platform is very low and if multihomers exert stronger

cross-group external effects than singlehomers. Suppose second that all multihomers are in-

formed about the prices on the other side of the market. If multihomers exert sufficiently larger

cross-group external effects than singlehomers, then platforms find it optimal to inform a frac-

tion of the singlehomers, or even all of them (if multihomers exert even proportionately larger

external effects and platforms are not too differentiated); otherwise, no disclosure is again the
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equilibrium. If, instead, platforms could coordinate their disclosure decision, platform competi-

tion would always feature no disclosure.

In our analysis, we assumed that uninformed users hold passive beliefs. An alternative

is to consider wary beliefs—Hagiu and Halaburda (2014) show that their results qualitatively

carry over to this alternative belief formation. We leave it for future research to investigate the

robustness of our results with respect to these alternative beliefs.

While in many contexts some users do not have information on how much the platform

charges the other side, it may well be true that also some users have to make an adoption

decision before they learn the price they have to pay themselves. An intermediate case is

the situation in which consumers make a participation decision for multiple periods but only

know the current price. We note that there is a link between disclosure and commitment when

participation decisions are lumpy. The ability to commit to future prices is akin to disclosing

those prices. Future work may want to look at price disclosure decisions in such environments.

More generally, not only prices charged to the other side, but also some other platform

choices that affect participation of users on the other may be unknown. For instance, users of

video game platforms may well not know the extent to which platforms provide tools to game

developers. Our analysis can easily be extended to cover such non-price instruments. In this

sense, our model should be seen as a particular instance in which a platform affects expected

participation decision and, thus, expected quality, through disclosure decisions.

In previous work (Belleflamme and Peitz, 2019) we compared the two-sided singlehoming

model to the competitive bottlenecks under full disclosure and we endogenized the homing

decision. A natural extension is to combine our present setting with one in which also homing

decisions are affected by platform strategy (namely, the imposition of exclusivity). In light of

the rich results and sometimes tedious expressions obtained in isolation (either endogenizing

price information or endogenizing the homing decision), we leave this issue for further research.

5 Appendix

5.1 Proof of Lemma 1

The first-order conditions yield

2A+ (γaα+ γbβ)B = va + γaαvb + αγaγb (1− β)xa + γa (1− α)xb,

(γaα+ γbβ)A+ 2B = vb + γbβva + γb (1− β)xa + γaγbβ (1− α)xb.

The Hessian matrix is computed as

2
αβγaγb−1

αγa+βγb

αβγaγb−1
αγa+βγb

αβγaγb−1
2

αβγaγb−1

It is a negative definite matrix for all admissible values of A and B provided that the following

two conditions are met:
{

γaαγbβ < 1,

(2− (γaα+ γbβ)) (2 + (γaα+ γbβ)) > 0.
(9)
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Under conditions (9), we have thus global maxima. Note that the first condition is automatically

satisfied if cross-group external effects are negative for one side (as this implies γaαγbβ < 0). If

γa, γb > 0, then it is easy to show that the second condition is more stringent than the first.

Solving for A and B, one finds

A = (2−γbβ(γaα+γbβ))va+(γaα−γbβ)vb
(2−(γaα+γbβ))(2+(γaα+γbβ))

+ γa(1−α)(2−γbβ(γaα+γbβ))xb−(1−β)γb(γaα−γbβ)xa

(2−(γaα+γbβ))(2+(γaα+γbβ))

B = (2−γaα(γaα+γbβ))vb−(γaα−γbβ)va
(2−(γaα+γbβ))(2+(γaα+γbβ))

+ γb(1−β)(2−γaα(γaα+γbβ))xa−(1−α)γa(γaα−γbβ)xb

(2−(γaα+γbβ))(2+(γaα+γbβ))

Plugging these values into the expression for na and nb, we get:

na = 2va+(γaα+γbβ)vb+γb(1−β)(γaα+γbβ)xa+2γa(1−α)xb

(2−(γaα+γbβ))(2+(γaα+γbβ))

nb =
2vb+(γaα+γbβ)va+γa(1−α)(γaα+γbβ)xb+2γb(1−β)xa

(2−(γaα+γbβ))(2+(γaα+γbβ))

We now impose fulfilled expectations: xa = na and xb = nb. Solving for na and nb, we find

n∗
a =

2va + (γa + γbβ) vb
4− (γa + γbβ) (γb + γaα)

,

n∗
b =

2vb + (γb + γaα) va
4− (γa + γbβ) (γb + γaα)

.

It seems logical to impose that n∗
i increase with vi, which requires 4 > (γa + γbβ) (γb + γaα).

The latter condition follows from the second conditions in (9) if (γaα+ γbβ)
2 > (γa + γbβ) (γb + γaα),

which is equivalent to

−α (1− α) γ2a − β (1− β) γ2b − γaγb (1− αβ) > 0.

As this inequality may not satisfied (take, e.g., γa, γb > 0 and α, β < 1), we need Condition 1.

Furthermore, n∗
a and n∗

b have to be non-negative, which justifies Condition (2).

Finally, substituting n∗
a and n∗

b for xa and xb in the above expressions of A and B, we obtain

A∗ and B∗ as expressed in the lemma.

5.2 Proof of Proposition 1

The platform’s equilibrium profit is computed as

Π∗ (α, β) = (2va+(γa+γbβ)vb)((2−γbβ(γb+γaα))va+(γa−γbβ)vb)+(2vb+(γb+γaα)va)((2−γaα(γa+γbβ))vb+(γb−γaα)va)

(4−(γa+γbβ)(γb+γaα))
2 .

Evaluated at (α, β) = (1, 1), we find

Π∗ (1, 1) =
v2a + v2b + γavavb + γbvavb
(2− γa − γb) (2 + γa + γb)

,

where the denominator is positive given Condition 1. We now prove that Π∗ (1, 1) > Π∗ (α, β)

for all 0 ≤ α < 1 and 0 ≤ β < 1. The inequality Π∗ (1, 1) > Π∗ (α, β) is equivalent to

K1

(

va
vb

)2

+K2
va
vb

+K3 > 0, where (10)
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K1 ≡ (4− (γa + γbβ) (γb + γaα))
2

+(γa + γb − 2) (γa + γb + 2) ((γb + αγa) (γb − αγa)− 2βγb (γb + αγa) + 4) ,

K2 ≡ (γa + γb) (4− (γb + αγa) (γa + βγb))
2

+
(

4− (γa + γb)
2
)

(

γ2a (γa + βγb)α
2 + γaγb (β + 1) (γa + βγb)α

)

+
(

4− (γa + γb)
2
)

(

βγ2b (γa + βγb)− 4γb − 4γa
)

,

K3 ≡ (4− (γb + αγa) (γa + βγb))
2

+(γa + γb − 2) (γa + γb + 2) ((γa + βγb) (γa − βγb)− 2αγa (γa + βγb) + 4) .

Because of Condition 1, we have that

K2
2−4K1K3 = γ2aγ

2
b (1− α)2 (1− β)2 (4− (γa + βγb) (γb + αγa))

2 (γa + γb − 2) (γa + γb + 2) < 0.

It follows that the polynomial (10) has the sign of K3. Regrouping terms, we can write

K3 = L1α
2 + L2α+ L3, where (11)

L1 ≡ γ2a (γa + βγb)
2 ,

L2 ≡ 2γa (γa + βγb)
(

βγ2b − γ2a − γ2b − γaγb
)

,

L3 ≡ (4− γb (γa + βγb))
2

+((γa + βγb) (γa − βγb) + 4) (γa + γb − 2) (γa + γb + 2) .

Because of Condition 1, we have that

L2
2 − 4L1L3 = 4γ2aγ

2
b (1− β)2 (γa + βγb)

2 (γa + γb − 2) (γa + γb + 2) < 0.

It follows that the polynomial (11) has the sign of L3. Regrouping terms, we can write

L3 = M1β
2 +M2β +M3, where (12)

M1 ≡ γ2b
(

4−
(

γ2a + 2γaγb
))

,

M2 ≡ 2γ2b (γaγb − 4) ,

M3 ≡ 4γ2b + 2γ2aγ
2
b + 2γ3aγb + γ4a.

Because of Condition 1, we have that

M2
2 − 4M1M3 = 4γ2aγ

2
b (γa + γb)

2 (γa + γb − 2) (γa + γb + 2) < 0.

It follows that the polynomial (12) has the sign of M3. Regrouping terms, we can write

M3 = N1γ
2
b +N2γb +N3, where (13)

N1 ≡ 2
(

2 + γ2a
)

, N2 ≡ 2γ3a, N3 = γ4a.

We compute N2
2 − 4N1N3 = −4γ4a

(

γ2a + 4
)

< 0. Hence, the polynomial (13) has the sign of

N3 = γ4a, which is positive. It follows that the previous polynomials are all positive as well,

which completes the proof.
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5.3 Proof of Lemma 2

We derive here the equilibrium at stage 2 of the game with two-sided singlehoming. Platform

1 chooses A1 and B1 to maximize Π1 = A1ma + B1mb, while platform 2 chooses A2 and B2 to

maximize Π2 = A2 (1−ma) +B2 (1−mb), with

ma =
Fa − τ b (A1 −A2)− ha (B1 −B2)

2 (τaτ b − hahb)
and mb =

Fb − τa (B1 −B2)− hb (A1 −A2)

2 (τaτ b − hahb)

Fa ≡ 2ha (γb − hb) ya + 2τ b (γa − ha) yb + (τ b − γb)ha − (γa − τa) τ b,

Fb ≡ 2hb (γa − ha) yb + 2τa (γb − hb) ya + (τa − γa)hb − (γb − τ b) τa,

ha ≡ 1
2γa (α1 + α2) , hb ≡ 1

2γb (β1 + β2) .

The first-order conditions yield, respectively,

2τ bA1 + (ha + hb)B1 = τ bA2 + haB2 + Fa

(ha + hb)A1 + 2τaB1 = hbA2 + τaB2 + Fb.
(14)

2τ bA2 + (ha + hb)B2 = τ bA1 + haB1 + (2τaτ b − 2hahb − Fa)

(ha + hb)A2 + 2τaB2 = hbA1 + τaB1 + (2τaτ b − 2hahb − Fb)
(15)

The second-order conditions require: 4τaτ b > (ha + hb)
2. Solving the system of equations

(14)-(15) gives values of A1, A2, B1 and B2 such that

A1 −A2 = 2
3τaFa − (2ha + hb)Fb − (3τa − 2ha − hb) (τaτ b − hahb)

9τaτ b − (2ha + hb) (ha + 2hb)

B1 −B2 = 2
3τ bFb − (ha + 2hb)Fa − (3τ b − ha − 2hb) (τaτ b − hahb)

9τaτ b − (2ha + hb) (ha + 2hb)

Substituting these expressions into ma and mb and replacing Fa and Fb by their respective

values gives

ma = 1
2
2(ha+2hb)(γb−hb)ya+6τb(γa−ha)yb+9τaτb−2h2

a−3γaτb+3τbha−γbha−2γbhb−4hahb

9τaτb−(2ha+hb)(ha+2hb)
,

mb =
1
2
2(2ha+hb)(γa−ha)yb+6τa(γb−hb)ya+9τaτb−2h2

b
−3τaγb+3τahb−2γaha−γahb−4hahb

9τaτb−(2ha+hb)(ha+2hb)
.

The next step consists in imposing fulfilled expectations, i.e., ya = ma and yb = mb. Re-

placing and solving, one finds that the unique fixed point is ma = mb = 1
2 . Substituting

ya = ma = 1
2 and yb = mb = 1

2 into the expressions of Fa and Fb allows us to compute the

equilibrium membership fees and profits as:

A∗
1 = A∗

2 = τa − 1
2 (β1 + β2) γb and B∗

1 = B∗
2 = τ b − 1

2 (α1 + α2) γa,

Π∗
1 = Π∗

2 =
1
2 (τa + τ b)− 1

4 ((α1 + α2) γa + (β1 + β2) γb) .
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5.4 Proof of Lemma 3

In stage 3, users make their participation decisions according to (6), which simplifies to

ma = G−τb(A1−A2)−γaB1+γaB2

2τaτb−γaγb(β1+β2)
,

mb =
γb

τb

(

β1
G−τb(A1−A2)−γaB1+γaB2

2τaτb−γaγb(β1+β2)
+ (1− β1) ya

)

− B1

τb
,

nb =
γb

τb

(

β2

(

1− G−τb(A1−A2)−γaB1+γaB2

2τaτb−γaγb(β1+β2)

)

+ (1− β2) (1− ya)
)

− B2

τb
.

where

G = τaτ b − γaγb + γaγb (2− β1 − β2) ya.

In stage 2, the four first-order conditions of profit maximization can be written as











































2τ bA1 + (γa + β1γb)B1 − τ bA2 − γaB2 = G

τ b (γa + β1γb)A1 + 2 (2τaτ b − β2γaγb)B1 − β1τ bγbA2 − β1γaγbB2

= γb (β1G+ (1− β1) (2τaτ b − (β1 + β2) γaγb) ya)

τ bA1 + γaB1 − 2τ bA2 − (γa + β2γb)B2 = G− (2τaτ b − (β1 + β2) γaγb)

β2τ bγbA1 + β2γaγbB1 − τ b (γa + β2γb)A2 − 2 (2τaτ b − β1γaγb)B2

= γb (β2G− (1− (1− β2) ya) (2τaτ b − (β1 + β2) γaγb)) .

As for the second-order conditions, it can be checked that they become more restrictive as

β1 and β2 increase. Setting β1 = β2 = 1, we have thus the following sufficient conditions: (i)

τaτ b > γaγb and (ii) τaτ b > 1
8

(

γ2a + γ2b + 6γaγb
)

. It is easily seen that the latter condition is

more stringent than the former.

Following the same procedure as in the proof of Lemma 4 (see below), we derive the equi-

librium membership fees, participations and profits (the intermediary results are tedious and

therefore omitted):

m∗
a =

1

2
− γb (γa − γb) (β1 − β2)

2
(

12τaτ b −
(

2γ2a + (β1 + β2) γ
2
b + (2 + 3β1 + 3β2) γaγb

)) ,

m∗
b =

1

2τ b
(γa + γb)n

∗
a, n∗

b =
1

2τ b
(γa + γb) (1− n∗

a) ,

A∗
1 =

4τaτb−β1γ
2

b
−(β1+2β2)γaγb

2τb
m∗

a, B∗
1 = γb−γa

2 m∗
a,

A∗
2 =

4τaτb−β2γ
2

b
−(2β1+β2)γaγb

2τb
(1−m∗

a) , B∗
2 = γb−γa

2 (1−m∗
a) ,

Π∗
1 =

8τaτb−γ2
a+(1−2β1)γ

2

b
−2(β1+2β2)γaγb

4τb
(m∗

a)
2 ,

Π∗
2 =

8τaτb−γ2
a+(1−2β2)γ

2

b
−2(2β1+β2)γaγb

4τb
(1−m∗

a)
2 .

Note that we have 0 < m∗
a < 1 for all values of β1 and β2 provided that τaτ b ≥ 1

6

(

γ2b + γ2a + 4γaγb
)

,

which is condition (7).17

17We check again that with β
1
= β

2
= 1, we recover the expressions of Belleflamme and Peitz (2010).
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5.5 Proof of Lemma 4

In stage 3, users make their participation decisions according to (6), which simplifies to

ma = G−τb(A1−A2)−α1γaB1+α2γaB2

2τaτb−γaγb(α1+α2)
,

mb =
γb

τb

G−τb(A1−A2)−α1γaB1+α2γaB2

2τaτb−γaγb(α1+α2)
− B1

τb
,

nb =
γb

τb

(

1− G−τb(A1−A2)−α1γaB1+α2γaB2

2τaτb−γaγb(α1+α2)

)

− B2

τb
.

with

G ≡ τaτ b − α2γaγb + γaτ b (1− α1) yb − γaτ b (1− α2) zb.

In stage 2, the four first-order conditions of profit maximization can be written as






























2τ bA1 + (γb + α1γa)B1 − τ bA2 − α2γaB2 = G

τ b (γb + α1γa)A1 + 2 (τaτ b − α2γaγb)B1 − τ bγbA2 − α2γaγbB2 = γbG

τ bA1 + α1γaB1 − 2τ bA2 − (α2γa + γb)B2 = G− 2τaτ b + (α1 + α2) γaγb

τ bγbA1 + α1γaγbB1 − τ b (γb + α2γa)A2 − 2 (2τaτ b − α1γaγb)B2

= γb (G− 2τaτ b + (α1 + α2) γaγb) .

As for the second-order conditions, it can be checked that they become more restrictive as α1

and α2 increase. Setting α1 = α2 = 1, we have thus the following sufficient conditions: (i)

τaτ b > γaγb and (ii) τaτ b > 1
8

(

γ2a + γ2b + 6γaγb
)

. It is easily seen that the latter condition is

more stringent than the former.

The solution to the above system of four equations is

A1 =
(4τaτb−γ2

b
−(α1+2α2)γaγb)(4τaτb+2G−γ2

b
−α2

2
γ2
a−2α1γaγb)

2τb(12τaτb−(2γ2

b
+(α2

1
+α2

2)γ2
a+4(α1+α2)γaγb))

,

B1 =
(γb−α1γa)(4τaτb+2G−γ2

b
−α2

2
γ2
a−2α1γaγb)

2(12τaτb−(2γ2

b
+(α2

1
+α2

2)γ2
a+4(α1+α2)γaγb))

,

A2 =
(4τaτb−γ2

b
−(2α1+α2)γaγb)(8τaτb−2G−γ2

b
−α2

1
γ2
a−2(α1+2α2)γaγb)

2τb(12τaτb−(2γ2

b
+(α2

1
+α2

2)γ2
a+4(α1+α2)γaγb))

,

B2 =
(γb−α2γa)(8τaτb−2G−γ2

b
−α2

1
γ2
a−2(α1+2α2)γaγb)

2(12τaτb−(2γ2

b
+(α2

1
+α2

2)γ2
a+4(α1+α2)γaγb))

.

We can now replace these values in the expressions for ma, mb and nb. We also impose

fulfilled expectations: yb = mb and zb = nb, so that G = τaτ b − α2γaγb + (1− α1) γaτ bmb −
(1− α2) γaτ bnb. Solving for ma, mb and nb, we find:

m∗
a =

1

2
+

γa (γa − γb) (α1 − α2)

2 (12τaτ b − (2γb (γa + γb) + (α1 + α2) (γ2a + 3γaγb)))
,

m∗
b =

γb + α1γa
2τ b

m∗
a, n∗

b =
γb + α2γa

2τ b
(1−m∗

a) .

Note that we have 0 < m∗
a < 1 for all values of α1 and α2 provided that τaτ b ≥ 1

6

(

γ2b + γ2a + 4γaγb
)

.

It is readily checked that the latter condition is more stringent that the most restrictive of the

two second-order conditions. This explains why we need to impose condition (7)

We can now compute the equilibrium prices and profits:18

A∗
1 =

4τaτb−γb(γb+(α1+2α2)γa)
2τb

m∗
a, B∗

1 = γb−α1γa

2 m∗
a,

A∗
2 =

4τaτb−γb(γb+(2α1+α2)γa)
2τb

(1−m∗
a) , B∗

2 = γb−α2γa

2 (1−m∗
a) ,

18We check that with α1 = α2 = 1, we recover the expressions of Belleflamme and Peitz (2010): A∗
1 = A∗

2 =

τa − γb (3γa + γb) / (4τ b), B
∗
1 = B∗

2 = (γb − γa) /4, Π
∗
1 = Π∗

2 =
(

8τaτ b − 6γaγb − γ2

a − γ2

b

)

/ (16τ b).
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Π∗
1 =

8τaτb−(γ2

b
+α2

1
γ2
a+2(α1+2α2)γaγb)
4τb

(m∗
a)

2 ,

Π∗
2 =

(8τaτb−(γ2

b
+α2

2
γ2
a+2(2α1+α2)γaγb))
4τb

(1−m∗
a)

2 .

5.6 Proof of Proposition 4

Platforms simultaneously choose their value of αi in [0, 1]. To characterize the symmetric equi-

librium of this game, we evaluate ∂Π∗
i /∂αi at α1 = α2 = α. We obtain

∂Π∗
i

∂αi

∣

∣

∣

∣

α1=α2=α

= γa

16(6t−γ2

b
−γaγb−αγ2

a−3αγaγb)τb
P (α) ,

with

P (α) ≡ Aα2 +Bα+ C,

A ≡ γ2a (γa + 7γb) > 0,

B ≡ 2γa
(

7γ2b − 6t− γaγb
)

,

C ≡ γ2b (γa + 3γb) + 4t (2γa − 5γb) .

Condition (7) and our assumption that γa > 0 together imply that the derivative has the

same sign as P (α). Because P (α) is a second-order polynomial, there are potentially three types

of symmetric equilibria: full disclosure (α∗ = 1), no disclosure (α∗ = 0), or partial disclosure

(0 < α∗ < 1). In the last case, the level of disclosure is given by the smaller root of P (α),

αp ≡
6t+ γaγb − 7γ2b − 2

√

9t2 − 2
(

γ2a − 7γ2b + 3γaγb
)

t+ γ3b (7γb − 6γa)

γa (γa + 7γb)
.

We examine first the conditions for these three types of equilibria to emerge as the unique

equilibrium of the game. We consider next the configurations of parameters for which two

candidate equilibria coexist.

We first note that P (α) has two real roots provided that B2− 4AC > 0, which is equivalent

to

16γ2a
(

9t2 + 2
(

7γ2b − 3γaγb − γ2a
)

t+ γ3b (7γb − 6γa)
)

> 0.

Our assumption that t > tmin implies that this expression is larger than

4

3
γ2a (5γb − γa)

(

γ3a + 23γ3b + 15γaγ
2
b + 9γ2aγb

)

.

So, γa < 5γb is a sufficient condition for P (α) to have two real roots. If γa ≥ 5γb, then t must

be large enough, namely

t >
1

9

(

3γaγb + γ2a − 7γ2b +
√

(γa − γb) (γa + 7γb)
(

γ2a + 2γ2b
)

)

≡ t3,

with t3 ≥ tmin. We can therefore conclude that P (α) has no real root for γa ≥ 5γb and t < t3.

In that case P (α) has the same sign as C = γ2b (γa + 3γb) + 4t (2γa − 5γb), which is positive
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here as γa ≥ 5γb. As P (α) > 0 for all α ∈ [0, 1], full disclosure is then the unique symmetric

equilibrium of the game.

Suppose now that t > t3 (which is implied by t > tmin for γa < 5γb). Given that A > 0, the

two roots are then such that

αp ≡
−B −

√
B2 − 4AC

2A
< α+ ≡ −B +

√
B2 − 4AC

2A
.

It is also easily shown that P (α) > 0 for α < αp and for α > α+, while P (α) < 0 for

αp < α < α+. Hence, if a symmetric equilibrium with partial disclosure exists, it is such that

both platforms choose αp. Existence requires that 0 < αp < 1. To have αp > 0, we need B < 0

and C > 0; it can be shown that for t > tmin, C > 0 implies that B < 0. For γa ≤ 10γb (which

we assume here), we need A + C < −B to have αp < 1. Developing the latter two conditions,

we can state that partial disclosure (with α∗ = αp) is the unique symmetric equilibrium if

t >
γ3a + 5γ2aγb + 15γaγ

2
b + 3γ3b

4 (γa + 5γb)
≡ t5 and

{

either 2γa ≥ 5γb

or 2γa < 5γb and t <
γ2

b
(γa+3γb)

4(5γb−2γa)
≡ t4

Finally, no disclosure is the unique symmetric equilibrium if P (α) < 0 for all α ∈ [0, 1]. This

is so provided that C < 0 and α+ > 1. From the previous case, we know that C < 0 requires

2γa < 5γb and t < t4. It can be shown that if C > 0, t > t5 is a sufficient condition for α+ > 1.

We note that t5 > tmin for γa > γb. We can thus conclude that no disclosure is the unique

symmetric equilibrium if t > max {tmin, t4, t5}.
Combining the previous results, we can identify two regions of parameters where two candi-

date equilibria coexist. First, for max {tmin, t4} < t < t5 (which implies 2γa < 5γb), we have both

P (0) < 0 and P (1) > 0, showing that both full and no disclosure are equilibrium candidates.

Second, for max {tmin, t3} < t < min {t4, t5}, both α = αp and α = 1 are equilibrium candidates,

as 0 < αp < 1 and P (1) > 0.

5.7 Proof of Remark 1

We compare stage-2 equilibrium profits at the boundary where t = tmin. The platforms’ profits

are given by

Π∗
1 (α1, α2; tmin) =

(4γ2
a+γ2

b
−3α2

1
γ2
a+16γaγb−6α1γaγb−12α2γaγb)(γa+3γb−2α1γb−α2γa−α2γb)

2

12τb(2−α1−α2)
2(γa+3γb)

2 ,

Π∗
2 (α1, α2; tmin) =

(4γ2
a+γ2

b
−3α2

2
γ2
a+16γaγb−12α1γaγb−6α2γaγb)(γa+3γb−α1γa−α1γb−2α2γb)

2

12τb(2−α1−α2)
2(γa+3γb)

2 .

Consider first parameters such that γb < γa < 2.2373γb; here, αp < 0, P (0) < 0, P (1) > 0,

so that both α∗ = 0 and α∗ = 1 could be an equilibrium. We compute

Π∗
1 (0, 0; tmin)−Π∗

1 (1, 0; tmin) = γb
5γ3

b
+102γaγ

2

b
+45γ2

aγb−8γ3
a

48τb(γa+3γb)
2 > 0,

Π∗
1 (0, 1; tmin)−Π∗

1 (1, 1; tmin) = γaγ
2
b

γa+2γb

τb(γa+3γb)
2 > 0.

The first line suggests that α1 = 0 is not only a local maximizer but also a best-response to

α2 = 0, while the second line establishes that α1 = 1 is not a best-response to α2 = 1.
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Consider next parameters such that 2.2373γb < γa < 5γb; here, 0 < αp < 1, P (0) > 0,

and P (1) > 0, so that both α∗ = αp and α∗ = 1 could be an equilibrium. We find that

Π∗
1 (αp, 1; tmin)−Π∗

1 (1, 1; tmin) is equal to

γ2b
γ4
a+29γ4

b
+90γ2

aγ
2

b
+248γaγ

3

b
+16γ3

aγb+(2γ2
a+2γ2

b
+12γaγb)

√

3(5γb−γa)(γ3
a+23γ3

b
+15γaγ

2

b
+9γ2

aγb)
3τb(γa+3γb)

2(γa+7γb)
2 > 0,

which implies that α1 = 1 is not a best-response to α2 = 1.
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