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Abstract. I study how the distribution of wealth influences the govern-

ment’s response to a banking crisis and the fragility of the financial system.

Distributional concerns tend to make full government guarantees of deposits

in a systemic crisis credible for relatively poor agents, but not for wealthier

agents. As a result, wealthier agents will have a stronger incentive to panic

and, in equilibrium, the institutions in which they invest will be endogenously

more likely to experience a run and receive a partial bailout. Thus, even un-

der a utilitarian policy maker, bailout payments may be directed towards

the wealthy at the expense of the general public. Moreover, the shape of

the wealth distribution affects the level of fragility in the financial system.

The recognition of this fact may alter the government’s desire to redistribute

wealth ex ante.
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1 Introduction

In most of the theoretical literature on banking panics, both deposit insurance and

panics are all-or-nothing affairs, in the sense that all deposits are treated equally and a

panic affects all banks the same way. However, the financial crises observed in reality

do not fit such a simple description. First, panics are often restricted to certain types of

institutions or arrangements (i.e. money market mutual funds in the United States in

2008) while others remain effectively insured by the government (commercial banks in

the United States in 2008). Second, even within a single institution, some agents may

be forced to accept a haircut, whereas others remain protected in full by the government

(as in Cyprus in 2008). Third, the written rules of a deposit insurance program might

be abandoned in a systemic financial collapse, so that a banking crisis transforms gov-

ernment guarantees from a legal to a political commitment (as in Iceland in 2008 and

others).1

I study a model of financial intermediation in which the government’s response to a

financial crisis is determined, in part, by distributional concerns. In this setting, agents

anticipate differential treatment depending on their wealth level and, in equilibrium,

panics are endogenously restricted to certain types of institutions. My model builds

on the classic work of Diamond and Dybvig (1983), extended to include heterogeneous

endowments (i.e. wealth levels) across agents. In addition, there is a policy maker

charged with collecting taxes and with providing a public good. If there is a financial

crisis, the policy maker can divert a fraction of the tax revenue in order to bail out banks

experiencing runs. As in Keister (2016), the policy maker cannot pre-commit to the

details of the bailout package, but chooses bailouts ex post.2 Hence, the agents and their

1A case in point is the Icesave dispute, taking place after the collapse in 2008 of the Icelandic bank
Landsbanki. The Court of Justice of the European Free Trade Association States (EFTA) ruled in
2013 that the Icelandic government was not under legal obligation to adhere to its original promise
to insure Dutch and UK deposit holders, since doing so would have undermined the stability of the
Icelandic banking system.

2Government guarantees here are broadly interpreted to include all forms of fiscal transfers (bailouts)
to banks. Ex-post bailouts has been analyzed by, among others, Farhi and Tirole (2012), Keister
(2016), Bianchi (2016), Nosal and Ordonez (2016), and Chari and Kehoe (2016). The goal of this
assumption is to capture the renegotiation of government guarantees that appears to play a major
role in times of systemic banking crises.
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financial intermediaries anticipate that any bailouts will be provided only to the level

which is ex-post optimal for the policy maker.

I begin by showing that if bailouts are prohibited, this model does not lead to any

novel implications nor give predictions that are consistent with the recent episodes of

financial turmoil. If bailouts are allowed, however, a utilitarian policy maker will choose

ex post to tilt the bailout package disproportionately towards poorer agents and their

financial institutions. As a result, full government guarantees of deposits will tend to be

credible for relatively poor agents, but only partial guarantees may be credible for the

wealthy. The anticipation of this response, in turn, influences agents’ behavior and thus

determines the form of financial fragility observed in equilibrium. Specifically, wealthier

agents will have a stronger incentive to panic and, in equilibrium, the institutions in which

they invest are endogenously more likely to experience a run and be bailed out by the

government. The resulting pattern, in which retail depositors do not panic but wealthier

agents do and their institutions are endogenously more likely to end up being bailed out,

matches well with observations from recent financial crises. Moreover, bailouts, when

they occur, will tend to be directed towards the wealthy and their institutions while, by

depressing the level of the public good, imposing a cost on everyone else.

The incentive for an agent to run in this model depends on the size of the bailout his

institution would receive in a crisis, which in turn depends on the entire distribution of

wealth. In particular, given any initial distribution of wealth, there exists an endogenous

cutoff point such that an agent may have an incentive to run only if his wealth level (after

any redistribution ex ante) remains above the cutoff. Moving to a new distribution of

wealth not only changes the wealth level of some agents, but also changes this cutoff

point. I say that such a move increases financial fragility if it increases the measure of

agents in this fragile region. I show, both analytically and through numerical examples,

how rising inequality can increase financial fragility in some cases and decrease it in

others.

This link between inequality and financial fragility changes the desirability of ex-ante

redistribution. I show that taking the link into account enhances the government’s desire
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to redistribute wealth in some cases, but diminishes it in others. In particular, if more

redistribution has the effect of increasing the measure of agents in the fragile region of the

wealth distribution, the policy maker may choose to scale down the amount of ex-ante

redistribution in order to avoid creating excessive fragility. In fact, the link with fragility

can prevent a utilitarian government from fully redistributing wealth even if there are

zero efficiency costs associated with redistribution or progressive taxation.

I conclude the analysis by relating the banking arrangements underlying the baseline

model to real world financial institutions and regulatory practices. In particular, the

banking arrangements in the model can be interpreted as being composed of two sectors

– a “commercial” banking sector where all agents are insured and therefore do not run

and a “shadow” banking sector where the run risk (and hence bailouts) ends up being

concentrated.

The closest paper in the existing literature is Cooper and Kempf (2016), which studies

the decision of the government ex post to provide deposit insurance in a version of the

Diamond and Dybvig model with heterogeneous endowments. They restrict the govern-

ment to a binary choice of either providing deposit insurance to everyone or abstaining

from providing deposit insurance altogether. I allow for much more flexible bailout in-

terventions in which the government may choose to impose different haircuts on different

agents, as was recently the case in some countries (Iceland and Cyprus). Cooper and

Kempf also restrict their analysis to equilibria where runs are zero probability events

and, therefore, do not affect ex-ante behavior. The centerpiece of my analysis, in con-

trast, is the fact that the agents and their financial intermediaries anticipate that a bank

run might occur with positive probability and adjust their behavior in response (as in

Cooper and Ross, 1998, Peck and Shell, 2003, and others).3

The rest of the paper is organized as follows. Section 2 presents the model. Section 3

formulates the strategies, derives allocations, and defines equilibria. Section 4 contains

3Note that the underlying mechanism I present does not assume out-size political power or inside
connections for the wealthy. In this respect the model I study is different from the existing literature
which has proposed a number of political frictions or non-standard preferences that can generate a
link between the distribution of wealth and financial fragility. See for example, Stiglitz (2009), Rajan
(2010), and Kumhof et al. (2016).
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the main results of the analysis. Section 5 applies the model to study the effect of ex-ante

redistribution on financial fragility. Section 6 relates the banking arrangements in the

model to those observed in reality. The last section concludes.

2 The model

The model is based on that in Keister (2016), which is a version of the Diamond and

Dybvig (1983) model augmented to include fiscal policy and a public good.

2.1 The environment

There are three time periods t = 0, 1, 2 and a set of agents. The wealth level of a

given agent is his endowment of private goods and is denoted e. The c.d.f. and the p.d.f.

of the distribution of wealth in the population of agents are denoted H(e) and h(e). The

support of the wealth distribution is [e, ē] and mean wealth is normalized to 1. The

agents derive utility from the consumption of a private good and the consumption of a

public good. In particular, the preferences for agent i with wealth level e are given by

u (c1 + ωe
i c2) + v(g), (1)

where ct denotes his consumption in period t and g denotes the level of the public good,

which is provided in period 1. For each wealth level e, the index i runs from 0 to the

density of wealth-e agents in the population, h(e). The object ωe
i is a binomial random

variable with support Ω ≡ {0, 1}. If ωe
i = 0, this particular agent is impatient and

values consumption only in period 1. On the other hand, if ωe
i = 1, this particular agent

is patient and values consumption equally in periods 1 and 2. Agent i with wealth e

learns the realization of ωe
i privately at the start of period 1. All agents have the same

probability of being impatient, denoted π. I assume that a law of large numbers holds

according to which the mass of impatient agents with wealth level e will be equal to

πh(e), and therefore, the total mass of impatient agents will be equal to π. I also assume

that the functions u and v are of the constant relative risk aversion form, with
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u(c) =
c1−γ

1− γ
and v(g) = δ

g1−γ

1− γ
, (2)

where the parameter δ > 0 measures the relative importance of the public good. As in

Diamond and Dybvig (1983) the coefficient of relative risk-aversion γ is assumed to be

greater than 1.

There is a single constant-returns-to-scale technology, operated at a central location,

for transforming the endowments into private consumption in later periods. A unit of

good invested in period 0 yields R > 1 units in period 2, but only 1 unit in period 1.

There is also a linear technology for transforming units of the private good into units

of the public good in period 1. Without loss of generality this rate of transformation is

assumed to be one-to-one.

In period 0, the agents can pool their endowments into the constant-return-to-scale

technology in order to insure against idiosyncratic liquidity risk. Agents are isolated

from each other in periods 1 and 2 and no trade can occur between them. As in Ennis

and Keister (2010), I assume that agents’ order in the withdrawal opportunities is given

by their index. Specifically, an agent with wealth e and index i has an opportunity to

withdraw before another agent with the same wealth level and index i∗ if and only if

i < i∗.4 When an agent’s opportunity to withdraw arrives, he can either visit the central

location or wait until the final period to withdraw. Those who decide to withdraw in

period 1 must consume immediately what is given to them and return to isolation.

Wallace (1988, 1990) shows that this environment leads to a sequential-service con-

straint where each payment can depend only on the information available to the inter-

mediation technology at the time of the withdrawal. For each agent, the intermediation

technology will observe his wealth level and his choice of whether to withdraw in period

1 or period 2. At the same time, the intermediation technology does not observe this

agent’s consumption preference type ωe
i or his index i and, therefore, payments cannot

depend on this information. Further, I assume that the fraction of wealth-e agents who

4The assumption that agents know their ordering when making withdrawal decisions is for tractability
and is based on Green and Lin (2000), Andolfatto et al. (2007), and on Ennis and Keister (2010).
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contact the central location during the first π withdrawals is equal to the fraction of

wealth-e agents in the population. This assumption ensures that the intermediation

technology cannot make inferences based on the composition of withdrawals.5

2.2 The decentralized economy

In the decentralized economy, in addition to agents, there is a set of banks and a

single policy maker. I assume that each agent has access to one bank only. Moreover,

in the baseline version of the model, I restrict attention to financial arrangements such

that all agents within any given bank have equal wealth levels and hold a deposit of

equal amount. That is, all agents in bank e have wealth level e and have deposited their

entire after-tax wealth. This assumption may appear to be restrictive at first, not least

because this is not the way most financial institutions operate in reality. Nonetheless,

once we derive the equilibrium outcomes under this special financial arrangement, it

will become clear that the main results hold under more general financial arrangements

where agents with different wealth levels can be part of the same bank. The results from

this extension of the model are presented in Section 6. Going through the analysis first

under the baseline scenario where agents are separated by wealth levels simplifies the

presentation considerably and allows me to highlight the key mechanisms in the clearest

possible way.

2.2.1 Banks

The intermediation technology is operated by a continuum of banks. In each bank, the

fraction of impatient agents will be equal to π. Also, each bank is small and will have no

effect on economy-wide outcomes. All banks operate to maximize the expected utilities

of their agents at all times. There are no restrictions on the payments a bank is allowed

to give other than those imposed by the information structure and the sequential-service

5For example, those choosing to withdraw in period 1 might be assigned to separate withdrawal lines
based on their wealth level. The agents in line e are serviced with speed proportional to the fraction
of wealth-e agents in the population. This corresponds to the “no clock” assumption in Diamond and
Dybvig models according to which the speed with which agents arrive to withdraw is not informative
about the mass of additional withdrawals that is likely to occur in the future.
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constraint. Specifically, banks will adjust the payments they give to their remaining

agents whenever new information becomes available. The information available to the

banks is the same as the information available to the intermediation technology. Further-

more, as in Ennis and Keister (2010), I assume that banks cannot pre-commit to future

payments. Instead the payment given to each agent will be made as a best response to

the situation the bank is facing at the time of the withdrawal.6

2.2.2 Financial crisis

I follow Cooper and Ross (1998) and others in introducing the possibility of bank runs

through a sunspot state. The sunspot state can takes on two values, α and β, with

respective probabilities (1 − q, q) and is realized at the start of period 1. The state of

the economy in period 1 is thus given by s ∈ S = {α, β}. The sunspot state has no

effect on preferences or technologies, but may serve to coordinate agents’ expectations in

equilibrium. The agents observe the realization of the sunspot state at the beginning of

period 1 before withdrawals begin. Banks do not observe the realization of the sunspot

state but instead must infer it based on the flow of withdrawals. A fraction π of the

agents in each bank will be impatient and will choose to withdraw in period 1 in both

states. At the same time, a given bank will experience a run if and only if a positive mass

of its patient agents also chooses to withdraw in period 1. Thus, if withdrawals continue

beyond the first π, the bank infers that a run must be underway. In this case the bank

can (and will) react to this surge of period 1 withdrawals in choosing the payments it

gives to its remaining agents.

2.2.3 Policy maker

There is a single policy maker who is both benevolent and utilitarian. This policy

maker can tax the endowments in period 0 and use the tax revenue to provide the public

good in period 1. Taxes are set in period 0, before the sunspot state is realized, and

6As in Ennis and Keister (2009, 2010) this lack of commitment assumption implies that suspension
of payments plans as in Diamond and Dybvig (1983) or run-proof contracts as in Cooper and Ross
(1998) fails to eliminate runs in this environment since banks will not use them ex post. Similarly,
priority of claims provisions as analyzed by de Nicolo (1996) will also not work in preventing runs.
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therefore taxation cannot be contingent on the sunspot state. Furthermore, taxation

is not possible after the initial period.7 In the baseline model, I restrict the policy

maker to impose the same tax flat rate of τ ∈ [0, 1] on all agents. I investigate ex-ante

redistribution in Section 5.

If a given bank is experiencing a run, the policy maker can use tax revenue to provide

a fiscal transfer (bailout) to the bank. The bailout would augment the bank’s resources

and therefore raise the consumption levels for its remaining agents. At the same time,

the opportunity cost of a bailout is that the level of the public good will be lower since

some of the tax revenue has been diverted to bail out banks. The policy maker is allowed

to provide any bailout payments to banks subject to two restrictions. First, a bailout

can be given only to a bank that is experiencing a run. Second, the bailout to any given

bank cannot be so large so as to provide “super insurance”. That is, the agents in a bank

that is bailed out cannot receive more consumption than they would have received had

there been no run on their bank. These restrictions are necessary to ensure that the

policy maker is not using bailouts for pure redistribution, independent of its response

to a financial crisis. Finally, as in Keister (2016), the policy maker cannot pre-commit

to the bailout policy and will instead choose bailouts ex post, as a best response to the

situation at hand, and subject to the restrictions outlined above.

2.3 Timeline

The sequence of events is depicted in Figure 1. In period 0, the policy maker sets

the tax rate τ and agents deposit their after-tax endowment with a bank. At the start

of period 1, each agent observes his consumption type (impatient or patient) and the

realization of the sunspot state. Withdrawals then begin. The banks and the policy

7As shown by Wallace (1988), if the policy maker were able to collect taxes after agents have withdrawn
from the bank, it could effectively circumvent the sequential service constraint. It is therefore
important that there be some restrictions on the policy maker’s ability to tax agents in period 1.
Having all taxes collected in period 0 is one way of ensuring that fiscal policy is consistent with the
assumptions about sequential service. Boyd et al. (2002), Martin (2006), and Keister (2016) have
all introduced taxation in the Diamond-Dybvig model in similar ways. Another approach would
be to follow Keister and Narasiman (2016) where taxes are collected in period 1 through a levy on
bank deposits. In their setting, a “bailout” is identified as an event where a lower tax is collected
from some bank(s). The second approach yields implications for fragility which are largely similar
to having all taxes collected in period 0.
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maker do not observe the state and must infer it based on withdrawals. A fraction π

of the agents in each bank will be impatient and will choose to withdraw in period 1

regardless of the state. As a result, payments during the initial π withdrawals cannot be

made contingent on the state. If withdrawals within a bank stop once they reach π, then

this bank is not experiencing a run and there will be only impatient agents left within

the bank. On the other hand, if withdrawals within a bank continue beyond the first

π, then this bank is experiencing a run. As a result, a fraction of the remaining agents

within the bank will be impatient and the bank can potentially receive a bailout from

the policy maker. After receiving a bailout (if any), each bank makes payments to those

agents still arriving to withdraw in period 1. After all bailouts have been made, the

remaining tax revenue will be used to provide the public good. In period 2 each bank

divides the matured value of its remaining resources evenly among its remaining agents.

Figure 1: Timeline.

3 Strategies, best responses, and equilibrium

In this section, I describe the strategy sets and optimal behavior of agents, banks, and

the policy maker, then provide a definition of equilibrium. This section sets the stage

for the analysis of how the distribution of wealth affects equilibrium fragility in Section

4.
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3.1 Strategies

A withdrawal strategy for an agent i with wealth e is a mapping from his consumption

preference type Ω = {0, 1} and the realization of the sunspot state S = {α, β} to a choice

of whether to withdraw in period 1 or period 2. That is,

yei : Ω× S → {0, 1} , (3)

where yei = 0 corresponds to withdrawing in period 1 and yei = 1 corresponds to with-

drawing in period 2. Let ye be the withdrawal profile for all wealth-e agents and let

y = {ye} be the withdrawal profile for all agents in all banks. I will focus on symmetric

equilibria in which all agents within the same bank follow the same strategy and on

equilibria where all patient agents in each bank choose to withdraw in period 2 when the

state is α.

In principle, the strategy of a bank specifies how much it will pay each agent at the

time of the withdrawal. We can, however, use the structure of the model to simplify the

strategy space of a bank as follows. First, note that bank e anticipates that a fraction π

of its agents will be impatient and will choose to withdraw in period 1 in each state. As

these withdrawals take place, the bank is unable to make any inference about the sunspot

state. Since agents are risk averse, the bank will choose to give the same payment to

each of the first π agents to withdraw. Denote this payment as ce1. I show below that a

bank’s choice of ce1 can be used to determine the payments it will make to the remaining

fraction 1− π of its agents as well. We can, therefore, express the strategy of bank e as

the choice of a single number ce1. Let c1 be the specification of the early payments chosen

by all banks.

The policy maker chooses a bailout payment be per agent in bank e, which implies a

bailout of beh(e) for bank e and a total bailout of
∫
beh(e)de, where h(e) is the density

function of the wealth distribution across agents. Let b denote the specification of bailout

payments to each bank. A strategy for the policy maker is then a choice of a bailout

specification b.
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3.2 Allocations and welfare

For given tax rate τ and a triple (ce1, b
e, ye), we can compute the entire consumption

allocation for the agents in bank e. If the state is α, only impatient agents will choose

to withdraw in period 1. As a result, withdrawals stop after the first π, there will be no

bailouts, and the payment given by the bank to each of its patient agents in period 2

will be

ce2α =
R((1−τ)e−πce1)

1−π
. (4)

In other words, the bank’s remaining 1−π agents evenly share the matured value of the

initial deposits minus the payments made to the first π agents. On the other hand, if

the state is β, we can use the strategy profile of the agents in bank e to compute the

additional mass of period-1 withdrawals (i.e. after the first π) that will take place in any

bank e, denoted πe
β ∈ [0, 1 − π]. Thus, if there is no run on bank e we have πe

β = 0.

On the other hand, if there is a partial (or full) run on bank e when the state is β we

have πe
β ∈ (0, 1 − π]. The remaining quantity resources in bank e, including a bailout

payment of be ≥ 0, will be equal to

ψe
β ≡ (1− τ)e− πce1 + be. (5)

The bank will choose to give a common payment of ce1β to each of the additional πe
β agents

arriving to withdraw in period 1 and a common payment of ce2β to all agents withdrawing

in period 2. These payments will be chosen to maximize the sum of expected utilities

for the remaining agents in bank e. That is,

max
{ce1β , c

e
2β}

{πe
βu(c

e
1β) + (1− π − πe

β)u(c
e
2β)}, (6)

subject to the resource constraint and and incentive-compatibility constraint

πe
βc

e
1β + (1− π − πe

β)
ce2β
R

≤ ψe
β (7)
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ce1β ≤ ce2β. (8)

The solution of the program in (6) is characterized by the following first order condition

u′(ce1β) = Ru′(ce2β). (9)

Since R > 1, this first order condition implies that the incentive-compatibility constraint

in (8) does not bind and the remaining patient investors in any bank e will have a strictly

dominant strategy to withdraw in period 2. Moreover, from (7) and (9), it follows that

the consumption levels for the remaining agents in the bank, ce1β and ce2β, are increasing

functions of ψe
β and decreasing functions of πe

β. The consumption allocation for the

agents in bank e is thus summarized in the following vector,

(
ce1, c

e
2α, c

e
1β, c

e
2β

)
, (10)

where ce2α is characterized in (4), and ce1β, c
e
1β are characterized as the solution to (7) and

(9). The level of the public good in each state is given by

gα = τ and gβ = τ −

∫ e

e

bedH(e). (11)

For given tax rate τ and a triple (c1, b, y) we can therefore compute the consumption

allocation in each bank in each state, as given in (10), and the level of the public good gs in

each state, as given in (11). As a result, we can completely characterize the consumption

allocation over the private and the public good for each agent in each bank. Welfare for

wealth-e agents is equal to the the sum of expected utilities for the agents in bank e,

that is,

W e(ce1, b
e, ye) =





πu(ce1) + (1− q) [(1− π)u(ce2α) + v(gα)]

+q
[
πe
βu(c

e
1β) + (1− π − πe

β)u(c
e
2β) + v(gβ)

]




. (12)

Total welfare in the economy is measured by the equal-weighted sum of all agents’ ex-
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pected utilities. That is,

W (c1, b, y) =

∫ ē

e

W e(ce1, b
e, ye)dH(e). (13)

3.3 Feasible bailouts

The policy maker can freely choose the bailout payment be for each bank subject

to the following restrictions. First, the payment must be non-negative. As in Keister

(2016), this assumption prevents the policy maker from collecting additional tax revenue

at t = 1. Instead, the fiscal capacity of the public sector must be set in period 0, before

the sunspot state is revealed. Second, the bailout payment cannot be set so high that

agents in the bank consume more than they would have consumed had there been no

run. Because my focus is on policy reactions to a crisis, I want to separate ex ante

redistribution, which occurs in normal times, from ex post redistribution during a crisis.8

To formalize these restrictions, note that for each bank e, the choice of ce1 implies a value

of ce2α. Furthermore, a given triple (ce1, b
e, ye) implies values for ce1β and ce2β. The bailout

policy is restricted so that, after the bank is bailed out, the payments given in period

1 cannot exceed ce1 and the payments given in period 2 cannot exceed ce2α. That is, the

allocation in bank e must satisfy ce1β ≤ ce1 and ce2β ≤ ce2α.
9

Formally, the policy maker’s strategy set includes any non-negative bailout payment

for each bank. However, in order to prevent super-insurance, I model the payoff to

the policy maker as taking a prohibitively low value (i.e. −∞) whenever some bank(s)

receive super-insurance. Therefore, the equilibrium bailout specification would always

satisfy the no-super insurance restriction.

8For now, I assume that the distribution of wealth in the initial period reflects the outcome of any
ex-ante redistribution policy. In Section 5, I return to this issue and explicitly introduce a choice of
ex ante redistribution policy into the model.

9Alternatively one can restrict the bailouts so that the agents in banks with a bailout do not receive
more than the face value of the deposit that is ce1β ≤ ce1 and ce2β ≤ ce1. Both approaches yield similar
results.
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3.4 Partial bank runs

The agents in bank e will be said to follow the no-run strategy profile in which each

agent withdraws in period 1 only when impatient, regardless of the sunspot state. There

is always an equilibrium in this model in which no bank run occurs at any bank, no

bailouts are made, and the first-best allocation of resources obtains. As is standard in

the literature on Diamond-Dybvig models, my interest is in whether or not the banking

system is fragile in the sense that there exist other equilibria in which some agents run

on their bank. To look for such equilibria, we could in principle start from an arbitrary

withdrawal profile for all agents, derive the best response of the banks and the policy

maker, and then check whether the agents in each bank are best responding with their

strategy profile. Notice, however, that the analysis can be simplified by observing that

the first order condition in (9) implies that the remaining payments in state β satisfy

ce1β < ce2β for each e. That is, all patient agents whose opportunity to withdraw arrives

after the first π will choose to withdraw in period 2. As a result, in equilibrium a run

on any bank is necessarily partial and will not continue beyond the first π withdrawals.

In other words, a banking panic in this model consists of a wave of withdrawals from

some bank(s), followed by a policy reaction that halts the run.10 Note that a panic will

lead to excessive liquidation of long-term investment and a misallocation of resources.

As result, even after the run has ended, a bank’s remaining creditors will suffer losses

and receive less from the bank because of the run.

In view of this discussion, I consider the following partial run strategy profile for the

agents in bank e,

10Ennis and Keister (2010) show that in settings where banks are able to react by changing payments
when withdrawal demand is high, and agents know their position in the withdrawal order, an equi-
librium bank run will be necessarily partial and restricted to agents that can withdraw before banks
infer that a run is underway. The fact that a run necessarily halts after π withdrawals depends
on my assumption that there are only two sunspot states. Ennis and Keister (2010) show that,
with a richer sunspot variable, there can be equilibria in which runs occur in multiple waves, with a
policy reaction following each wave. Restricting attention to single-wave runs allows me to simplify
notation and focus more clearly on how the distribution of wealth shapes financial fragility.
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yei (ω
e
i , α) = ωe

i for all i

yei (ω
e
i , β) =





0

ωe
i









if i ≤ πh(e)

if i > πh(e)




.

(14)

According to this strategy profile, an impatient agent with wealth level e always chooses

to withdraw in period 1. A patient agent with wealth level e, on the other hand, chooses

to withdraw in period 1 if and only if the state is β and his order in the withdrawal

opportunities is among the first fraction π within his bank. Otherwise, this patient

agent withdraws in period 2. Thus, any withdrawals after the first π will be made only

by the impatient agents and the mass of additional period-1 withdrawals from a bank

whose agents follow the strategy in (14) will be equal to πe
β = (1 − π)π. Recall that

during the first fraction π of withdrawals, the bank is unable to infer whether a run is

under way. According to the partial run strategy profile in (14), when patient, an agent

will run only if he can withdraw before his bank infers that a run is underway. The

partial run strategy profile for the agents in bank e is consistent with equilibrium if and

only if the following incentive to run condition holds,

ce1 ≥ ce2β. (15)

In state β, an agent with wealth e and an opportunity to be among the first π to withdraw

will receive ce1 if he withdraws in period 1 and ce2β if he withdraws in period 2. Condition

(15) ensures that joining the run by withdrawing in period 1 is a best response.

3.5 Optimal early payments

In this and the next section, I characterize banks’ and the policy maker’s best responses

to the withdrawal strategies of the agents. I consider equilibria that are symmetric within

each bank in the sense that all agents in a given bank play either the no-run strategy

profile or the partial run strategy profile in (15). Withdrawal behavior may differ across

banks, however, with some some banks experiencing a run in state β while others do not.
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Each bank e chooses its early payment ce1 to maximize the sum of its agents expected

utilities in (12), taking as given the pair (be, ye), the level of the public good in each

state gs, and recognizing that the remaining payments within the bank (i.e. ce2α, c
e
1β and

ce2β) will be chosen to satisfy (4), (7) and (9). The optimal choice of early payments in

any bank e will satisfy the following first order condition,

u′(ce1) = R[(1− q)u′(ce2α) + qu′(ce2β)]. (16)

Bank e sets its early payment to equalize the marginal utility of the agents withdrawing

before the state is known to the expected marginal utility of the agents withdrawing after

the state is known.11 Furthermore, if the agents in bank e follow the no-run strategy

profile, then be = 0. In this case, using the utility function in (2), we obtain the solution

in closed form,

ce1 =
(1−τ)e

π+(1−π)R(1−γ)/γ and ce2s = R1/γ (1−τ)e

π+(1−π)R(1−γ)/γ . (17)

The above implies ce1 < ce2s for s ∈ {α, β}, and therefore, the no-run strategy profile will

always be a best response for agents when the payments satisfy (17).

3.6 Optimal bailout policy

The policy maker infers the state s after the initial π withdrawals. If the state is α

there are no runs, no bailouts will be made, and all tax revenue is used to provide the

public good. On the other hand, if the state is β the existing tax revenue is allocated

between the public good and bailouts to those banks experiencing runs, subject to the

restriction that super-insurance is not allowed. Recall that the consumption levels for

the remaining agents in bank e, i.e. ce1β and ce2β, are increasing in the bailout received by

the bank. The policy maker chooses a bailout specification to maximize the expression

for total welfare in (13). The optimal bailout specification is characterized as follows:

11Note that as the probability of the run state q converges to zero then the condition in (16) converges
to the standard equation characterizing optimal risk sharing between impatient and patient agents
in Diamond-Dybvig models.
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each bank either receives the maximally allowed (per-agent) bailout be = b̄e or an amount

which ensures that the marginal utility for the remaining agents within the bank is equal

to the marginal utility from the public good, that is,

u′(ce1β) = Ru′(ce2β) = v′
(
τ −

∫ e

e

bedH(e)

)
. (18)

Thus, the bailout given to any bank experiencing a run would raise the consumption

level of its remaining agents until their marginal utilities are equalized to the marginal

utility from the public good or until the bailout to this particular bank reaches the upper

limit imposed by the no super-insurance restriction.12

3.7 Definition of equilibrium

In this section, first, I define the equilibrium of the withdrawal game within a bank,

holding fixed the actions of banks and the policy maker. Second, I define the equilibrium

of the overall game where the agents, banks and policy maker all react to each other.

In order to set the stage for the first definition, note that the pair (ce1, b
e) defines a

withdrawal game for the agents in bank e. The payoffs in this game are the consumption

levels described in (10). In particular, the payments received by agent i with wealth level

e will be completely determined by the triple (ce1, b
e, ye), the realization of the sunspot

state s, and the realization of his consumption type ωe
i . The (indirect) expected utility

for this individual can be defined as follows,

vei (c
e
1, b

e, ye) = E[u(ce1i + ωe
i c

e
2i) + v(g)], (19)

where E represents the expectation over ωe
i and s. In the above expression, the level

12The bailout policy I study here differs from that in Keister (2016) in that the policy maker does not
observe a bank’s choice of ce1 before choosing the bailout payment be. Of course, the policy maker
will correctly anticipate this choice in equilibrium and will choose be accordingly. However, if a bank
were to deviate to a higher value of ce1, the policy maker would not observe this choice in my model
and, therefore, would not reward the bank with a larger bailout. In this way, the incentive distortion
that arises in Keister (2016) does not arise here and there is no need to study macro-prudential
policies that aim to correct this distortion. The approach I take leads to the same outcome as that
in Keister (2016) when the optimal macro-prudential policy is in place, while being notationally
much simpler.
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of the public good in each state will be independent of the outcome within bank e and

will therefore be treated as fixed both by the bank and by its agents. Hence, we can use

the withdrawal profile for the agents in bank e together with the consumption allocation

in (10) to compute the payoff for each agent within the bank and also to determine

whether this agent is best responding with his strategy. Now we are ready to state the

first definition.

Definition 1. For given tax rate τ and a pair (ce1, b
e), an equilibrium of the withdrawal

game in bank e is a profile of withdrawal strategies y∗e such that y∗ei ∈ argmax
yei∈{0,1}

vei
(
ce1, b

e, (y∗e−i, y
e
i )
)

for all i ∈ [0, h(e)].

Let Ŷ e (ce1, b
e) be the set of symmetric pure strategy equilibrium strategy profiles for

the agents in bank e. The following definition of equilibrium in the overall banking game

is based on Ennis and Keister (2010).

Definition 2. For given tax rate τ , an equilibrium without commitment is a triple

(c∗1, b
∗, y∗) such that,

(i) ye∗ ∈ Ŷ e(ce∗1 , b
e∗) for each e ∈ [e, e],

(ii) ce∗1 ∈ argmax
ce1

W e(ce1, b
e∗, ye∗) for each e ∈ [e, e],

(iii) b∗ ∈ argmax
b

W (c∗1, b, y
∗).

According to (i), for a given early payment ce∗1 and bailout be∗, the profile of agents’

strategies in bank e is an equilibrium of the withdrawal game in that bank. According

to (ii), bank e chooses its early payment optimally taking as given the strategy profile of

its agents ye∗ and the bailout payment of the policy maker. Note that conditions (i) and

(ii) define equilibrium within a bank holding the specification of bailouts across banks

fixed. Finally, according to (iii), the policy maker chooses bailouts optimally taking as

given early payments in all banks and the strategy profile for all agents in all banks.
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Observe that if the banks and the policy maker had commitment power, then their

plans would be set once and for all - before the agents have made their withdrawal

decisions - and no change could be made later. In this case, the policy maker could

prevent runs by committing to fully insure all deposits – regardless of whether they are

held by poor wealthy agents. Banks could also prevent runs by committing to suspend

withdrawals at t = 1 after a fraction π of agents have withdrawn. As is standard in

Diamond-Dybvig models, these types of policies carry zero cost along the equilibrium

path. In my environment, however, both the banks and the policy maker cannot irre-

vocably set their plans before the agents choose their strategies. Instead the payment

given to each agent and the bailout given to each bank will be finally determined only

when it is actually made.

3.8 The optimal tax rate

Each possible choice of the tax rate τ generates a game in which banks, agents, and

the policy maker will play an equilibrium as described in Definition 2. This game may,

of course, have multiple equilibria. In order to streamline the analysis, for each value of

the tax rate I will study the equilibrium characterized by the maximum mass of agents

following the partial run strategy.13 As I show in the next section, this equilibrium can be

characterized as follows: if the sunspot state is α then all agents in all banks coordinate

on the good equilibrium and do not run on their banks. If the sunspot state is β then all

banks with e above a given cutoff point ef experience a partial run from their depositors.

At the same time, all banks with e below this cutoff do not experience a run. The cutoff

is a function of tax rate, which the policy maker controls, and the initial distribution of

wealth H, which the policy maker takes as given.

13See Ennis and Keister (2006) for a general discussion of how optimal policy problems can be formulated
in models with multiple equilibria.
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4 How the distribution of wealth affects fragility

In this section, I present the main results of the analysis. I focus on characterizing the

type of runs that can occur in equilibrium and connecting them to the bailout intervention

of the policy maker. First, and as a motivating example, I show that removing bailouts

leads to an economy where the initial distribution of wealth is not linked to financial

fragility. Second, returning to the economy where bailouts are allowed, I show that

financial fragility can be linked to the distribution of wealth through the bailout policy.

Third, both analytically and through numerical examples, I examine how varying the

initial distribution of wealth affects financial fragility.

Before proceeding, I formally define the notion of fragility used for the remainder of

the paper. First, an economy is a collection of parameter values (i.e. R, π, q, γ and δ)

together with a c.d.f. for the initial distribution of wealth H. The definition of fragility

is the following.

Definition 3. Given an economy, the financial system is fragile for agents with wealth

level e if and only if there exist an equilibrium where this agent type follows the partial

run strategy profile in (14).

If, on the other hand, one cannot construct an equilibrium where agents with wealth

level e follow the partial run strategy profile, the financial system is not fragile for this

type of agent. Financial fragility is thus defined separately by agent type.

4.1 No bailouts implies no relationship

Suppose a strict no-bailout rule, which prohibits the policy maker from engaging in

any bailouts, is enacted. A strict no-bailouts rule is, in general, not ex post optimal

and therefore plagued by credibility issues. Nonetheless, and only for the sake of the

discussion in this section, I assume that the policy maker can pre-commit to such a rule.
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Equilibrium fragility in this case is independent of the distribution of wealth.

Proposition 1. Under a strict no-bailouts rule, the financial system is either fragile for

all agents or fragile for none.

If bailouts are prohibited and the utility function for the agents is constant relative

risk aversion, then the ratio ce1/c
e
2β is independent of wealth levels e, the tax rate τ , and

the wealth distribution H. As a result, either the economy is “maximally fragile” in the

sense that all types of agents are susceptible to a run, or it is not fragile at all. It is

straightforward to show that the former case occurs when we have

R(2−γ)/γ

π+(1−π)R(1−γ)/γ <
(

1−qR
1−q

)1/γ
. (20)

I assume this condition on the parameters holds throughout the remainder of the anal-

ysis.14

Proposition 1 implies that, in the absence of bailouts, changes in the initial distribution

of wealth have no effect on financial fragility. In making decisions on redistribution,

therefore, the policy maker can ignore financial stability considerations. In the remainder

of the paper, I show that this independence breaks down when bailouts occur and derive

the implications of wealth inequality for financial fragility.

4.2 Bailouts and the incentive to run

In this section I return to the case where the policy maker is allowed to bail out banks

experiencing runs. Since the policy maker cannot pre-commit, the agents and the banks

anticipate the ex-post efficient bailout intervention and adjust their behavior accordingly.

First, I show that wealthier agents anticipate lower bailouts to their banks in the event

14In the special case where the probability of the run state is zero (i.e. q = 0), (20) reduces to condition
(8) in Ennis and Keister (2010).
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of a run and, as a result, have a higher incentive to run. In particular, any equilibrium

bailout specification b∗ can be characterized as follows.

Proposition 2. If be∗ > 0 and bẽ∗ > 0, then be∗ > bẽ∗ whenever e < ẽ.

In other words, if two banks serving different types of agents both receive bailouts in

equilibrium, then the bank serving poorer agents will receive a larger bailout. This result

has two implications. First, if two types of agents play the partial run strategy and the

type with the lower wealth level is best responding, then the type with the higher wealth

level is automatically best responding as well. Second, if we can construct equilibrium

where agents with wealth level e play the partial run strategy then we can construct a

different equilibrium where, in addition to agents with wealth level e, any agent with

wealth level above e also plays the partial run strategy.

Next, in a given equilibrium, I saw that wealth level e agents are fully insured if the

bailout their bank would receive in the event of a run is large enough that a patient

agent who waits to withdraw incurs no losses, that is, ce2α = ce2β. The next result shows

that, in equilibrium, full insurance will be contingent on agents’ wealth levels.

Proposition 3. If agents with wealth level e are fully insured in a given equilibrium,

then all agents whose wealth lies below e are also fully insured.

If the agents in any given bank e are fully insured, then there will be no incentive

to run (that is, the partial run strategy is not a best response because ce1 < ce2β) and,

as a result, the bailout to this particular bank remains strictly off the equilibrium path

of play. Therefore, equilibrium runs (and any equilibrium bailouts) must necessarily be

restricted only to partially insured agents and their banks. Proposition 2 shows that

agents with wealth level e benefit from full insurance in a given equilibrium only if all

agents with lower wealth levels also benefit from full insurance. An implication of this

23



result is that if anyone receives full insurance in equilibrium it must be the agents with

relatively low wealth levels.

The properties of the ex-post optimal bailout intervention, derived in Propositions 2

and 3, shape financial fragility by affecting the incentives to run faced by different types

of agents. Through this channel, the bailout policy and the distribution of wealth play a

central role in the sort of runs that can be sustained in equilibrium as we will see next.

4.3 The cutoff for fragility

This section shows that equilibrium fragility can vary across agents and their banks.

As a result, the initial distribution of wealth will have a fragility component that operates

through the bailout intervention of the policy maker. In particular, the form of the policy

maker’s bailout intervention entails that wealthy agents anticipate lower bailouts (if any),

and therefore, will experience larger losses from staying invested in a crisis, which in turn,

affects their incentive to run. The following result formalizes this notion.

Proposition 4. For a given economy, there exists a cutoff ef such that the financial

system is fragile for agents with wealth levels e > ef and not fragile for agents with

wealth levels e < ef .

The financial system is fragile for all (fragile for none) whenever ef < e (ef > ē). On

the other hand, if the cutoff point is interior, e < ef < e, then the financial system is

fragile only for agents located above the H(ef ) percentile of the wealth distribution. The

next result shows that the cutoff can be interior in some cases.

Proposition 5. In some economies, the cutoff point is interior, e < ef < e.

Proposition 5 is established by means of the examples in Figures 2a - 2b. The results
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in Propositions 4 - 5 outline a key feature of the model – equilibrium fragility in this

environment tends to be concentrated among the wealthier agents and their banks since,

in a crisis, they receive less fiscal support in the form of bailouts. At the same time,

all agents with wealth below the cutoff will be effectively insured and will not run on

the banks in equilibrium. Moreover, since agents with wealth below ef do not panic in

equilibrium, there is no need for the policy maker to step in and to actually bail them

out. In other words, we have the following corollary,

Corollary 1. Equilibrium bailouts will be made only to institutions serving agents with

wealth levels above the cutoff ef .

That is, equilibrium runs and bailouts will be restricted only to banks that serve agents

who are rich enough to remain above the cutoff point. In some cases, all agents with

wealth above ef will be part of the bailout package. In other cases, there will be an

upper bound eNB < ē, also determined in equilibrium, such that only agents with wealth

in the interval (ef , eNB) receive a bailout and those with e > eNB receive no bailout .

Before proceeding, note that one can re-interpret the endogenously emerging properties

of the banking structure as follows. Agents with wealth below the cutoff ef belong to the

“commercial” part of the financial system where deposit insurance is effective and runs

do not occur in equilibrium. Agents with wealth above the cutoff belong to the “shadow

banking” sector where both runs, and therefore bailouts, can take place in equilibrium.15

Moreover, not all agents belonging to the shadow banking sector necessarily anticipate

bailouts from the policy maker in a crisis - those whose wealth level is above eNB will

be left out of the bailout program altogether. For the analysis to follow, I refer to

the interval [e, ef ) as the effective insurance region and to the interval [ef , eNB) as the

bailouts region.

15I show in Section 6 that such an interpretation continues to apply under more general banking ar-
rangements where agents with different wealth levels can belong to the same bank.
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4.4 What determines the cutoff for fragility

In this and the next section I study how changes in the initial distribution of wealth

shape equilibrium fragility through its effect on the cutoff point ef . For the analysis

that follows, it will be helpful to proceed in steps and to begin by examining the partial

effects. First, I fix the initial distribution of wealth and examine how changes in the tax

rate affect the cutoff for fragility.

Proposition 6. Suppose that, for a given tax rate τ , we have e < ef < e. Then, holding

H fixed, we have ef < ẽf whenever τ < τ̃ .

In other words, increasing the policy maker’s tax revenue will raise the cutoff for

fragility, thereby shrinking the fragile region. More tax revenue implies that the policy

maker is willing to provide larger bailouts to banks. Larger bailouts raise the consump-

tion levels, ce1β and ce2β, for the remaining agents in banks with a bailout. As a result,

an agent located at the old cutoff point will no longer have an incentive to run and the

new cutoff point ẽf will be higher. Second, I hold the tax rate τ fixed and examine how

changes in the initial distribution of wealth affect the cutoff point.

Proposition 7. Suppose that, for a given distribution of wealth H, we have e < ef < e.

Holding τ fixed, let H̃ be a mean-preserving spread of H. Then,

(i) If h̃(e) > h(e) for each e ∈
[
ef , eNB

]
then ẽf < ef .

(ii) If h̃(e) < h(e) for each e ∈
[
ef , eNB

]
then ẽf > ef .

Assume we change the initial distribution of wealth so that mean wealth remains

unchanged but the mass of agents at each point in the bailout region is higher, as in case

(i). Then providing the same level of per-capita bailout for each agent in the bailout

region (i.e. between ef and eNB) requires a bigger economy-wide bailout. This lowered

capacity to provide bailouts implies that the bailout payment per agent will be lower. As
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a result, agents with wealth slightly below the old cutoff will now also have an incentive

to run. That is, these agents lose their effective insurance and the new cutoff for fragility

ẽf will be lower. The opposite result holds in the reverse case as shown in part (ii).

Before continuing note the following implication of Proposition 7. Assume we hold tax

revenue constant and move from a wealth distribution H to a wealth distribution H̃ such

that h̃(e) > h(e) for each e ≥ ef . Then the new cutoff point ẽf falls below the old one

and the mass of agents in fragile banks in the economy increases.

4.5 Examples

The previous section examined in isolation how changes in the tax rate (Proposition

6) and changes in the mass of agents in the bailout region (Propositions 7) affect the

mass of agents with wealth above the cutoff point. However, as the initial distribution

of wealth moves both of these forces will operate jointly on the position of the cutoff

point and not always in the same direction. In this section, I present the analysis in the

case where both of these forces are simultaneously active. In order to present the results

in their simplest form, I focus on the limiting case as the probability of state β goes to

zero. The optimal tax rate in this case can be characterized in closed form

τ ∗ = 1
1+(1/δ)[

∫
e−γdH(e)]1/γ

. (21)

Recall from (2) that the parameter δ governs the relative value of the public good in

agents’ preferences. One can also show that the policy maker chooses both to collect

more taxes and to provide larger bailouts when the parameter δ is higher. Further, the

policy maker responds to a mean preserving spread of the wealth distribution - that is

an increase in inequality - by choosing a lower tax rate.

The analysis is presented through two numerical examples (in Figures 2a and 2b)

which highlight how a more unequal initial wealth distribution can lead to more fragility

in some economies and less fragility in others. Figure 2a corresponds to a high value of
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the parameter δ, and therefore, to an economy where the policy maker sets a high tax

rate. Figure 2b, on the other hand, corresponds to a low value of δ and therefore to an

economy where the policy maker chooses a lower tax rate. In both figures I compare the

cutoff for fragility associated to a low level of inequality (represented by a solid line) to

the cutoff for fragility associated to a high level of inequality (represented by a dashed

line).

Focus first on Figure 2a, where the fragility cutoff lies significantly to the right of mean

wealth. This case represents a situation where most of the agents are effectively insured

and the economy remains fragile only for a few relatively wealthy agents. Furthermore,

the bailout region in this case covers all agents whose wealth remains above the cutoff

for fragility i.e. they all receive some fiscal support but not enough to prevent them

from running. Consider a mean preserving spread applied to the original distribution of

wealth such that the mass of agents at each point in the old bailout region is higher, as

shown on the figure. More inequality leads to lower tax rate (and therefore lower tax

revenue), which other things being equal, corresponds to lower cutoff point (Proposition

6). Furthermore, a higher mass of agents at each point above the old cutoff point also

pushes down the cutoff for fragility (Proposition 7). Thus, both forces in this case operate

in the same direction, generating a lower cutoff for fragility and leading to a financial

system with a higher mass of agents in fragile banks. In other words, in this example an

increase in inequality leads to an increase in the level of financial fragility

Next, consider Figure 2b where the parameter δ is smaller, and therefore, the policy

maker chooses to collect less tax revenue. This represents a case where a relatively

smaller fraction (less than half) of the agents are effectively insured. In addition, the

bailout region does not cover all agents in fragile banks but only those whose wealth

is not too high. Next, apply a mean preserving spread to the original distribution of

wealth such that the mass of agents at each point in the old bailout region is lower. The

overall effect on the cutoff for fragility would therefore depend on whether the smaller

bailout region effect (which pushes the cutoff up) dominates the lower tax revenue effect

(which pushes the cutoff down). In Figure 2b the smaller bailout region is the dominant
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factor and the new cutoff for fragility rises as a result. In other words, in this example

an increase in inequality leads to a decrease in the level of financial fragility.
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(a) Higher inequality leads to more fragility.

(b) Higher inequality leads to less fragility.

Figure 2: The distribution H̃ (with p.d.f. h) is a mean-preserving spread of the distri-
bution H (with p.d.f. h̃). The parameter δ is equal to 1 in Figure 2a (high
fiscal capacity) and equal to 0.01 in Figure 2b (low fiscal capacity). The other
parameter values are the same in both figures and are set to R = 3, π = 0.5,
γ = 5, and q = 0. The cutoff for fragility is represented by the vertical solid
line when the wealth distribution is H and by the vertical dotted line when the
wealth distribution is H̃. A raise in inequality (as represented by a move from
H to H̃) implies that the mass of agents in fragile banks increases on Figure
2a and decreases on Figure 2b.
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5 Ex-ante redistribution

This section extends the model to allow for ex-ante redistribution and examine the

implications for fragility. In particular, I start from a given initial wealth distribution

H0 and allow the policy maker to choose a linear tax and transfer scheme in period 0,

which leads to a new distribution H1. Let the tax and transfer program of the policy

maker in period 0 be characterized by the pair (t, ∆) where t is the marginal tax rate

and ∆ is a lump-sum transfer. The after-tax wealth level for an agent with wealth level

e is hence (1− t)e+∆. The amount of tax revenue collected in period 0 is equal to the

total tax revenue minus all transfers. That is, τ =
∫ e

e
(te−∆)dH(e).

The policy maker has the option of collecting τ in tax revenue without any redistri-

bution by selecting t = τ and ∆ = 0. At the same time, the policy maker can raise

the same amount in tax revenue while fully redistributing all wealth in the process by

selecting t = 1 and ∆ = 1 − τ . Henceforth, the level of redistribution is measured by

ρ = ∆
1−τ

, where ρ = 0 corresponds to no redistribution (i.e. as in the baseline case) and

ρ = 1 corresponds to full redistribution. Thus, higher ρ leads to more redistribution,

leaving government revenues unchanged.

There are a number of well-known efficiency losses associated with redistribution that

are examined extensively in the literature on optimal taxation.16 It is beyond the scope

of the paper to explicitly model the determination of these costs. Instead, I augment

the model with a loss function L(t,∆) expressed in utility terms and subtracted from

total welfare in period 0. The function L is assumed to be (weakly) increasing in both

arguments.17

Given a loss function L, the “traditional” approach will be to balance the welfare

benefits of redistribution against the costs embedded in L. As long as the exogenous

cost of redistribution prevents the policy maker from choosing to make H1 a degenerate

distribution in which all agents have equal wealth level, I can apply the baseline model by

16See Diamond and Saez (2011) for an overview of the literature on optimal taxation.
17As will become clear, the precise way one chooses to model the cost of taxation and redistribution

will not matter for the remainder of the analysis in this section.
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simply defining H1 to be the initial distribution of wealth. More interestingly, however,

the (after-tax and transfer) distribution of wealth in period 0 has a fragility component

that operates entirely separately from any efficiency costs. Specifically, for each tax and

transfer pair (t,∆) there is an associated cutoff point ef (t,∆) such that a bank is fragile

if and only if the after-tax wealth level of its depositors remains above that cutoff. As

a result, when choosing the optimal level of redistribution, the policy maker must take

into account this fragility component as well.

In order to isolate the impact of this fragility component on the optimal choice of ex-

ante redistribution, from now on I assume that ex-ante redistribution carries no efficiency

costs, i.e. L (t,∆) = 0 for all t and ∆. This allows me to focus on the novel factors

operating for and against redistribution in this environment without the confounding

impact of efficiency gains or losses. We obtain the following result.

Proposition 8. The optimal level of ex-ante redistribution in some economies remains

partial even if period-0 redistribution carries no efficiency losses.

Proposition 8 is established in Figures 3a and 3b. In these figures I fix the level of

government revenue τ and vary the level of redistribution ρ. First, refer to Figure 3a,

which shows the initial distribution of wealth together with the fragility cutoff associated

with three different levels of redistribution ρ. In this example, more ex ante redistribution

moves the cutoff to the left and therefore pulls more agents into the fragile region.

Thus, for the level of redistribution, ρ, respectively equal to 0, 0.4 and 0.7 and 1 the

corresponding cutoff point implies that the fraction of agents in fragile banks in the

economy is 0.55, 0.76 and 0.99 and 1 respectively. In addition, higher values of ρ in

this case, by pulling more and more agents into the fragile region of the distribution of

wealth, also lead to larger aggregate bailout in a crisis.

Figure 3b shows the level of redistribution on the horizontal axis and total welfare on

the vertical axis and is constructed under the same parameters as in Figure 3a. The

gain from redistribution is non-monotone, meaning that one must search globally for
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the optimum. In this case total welfare reaches a maximum at an interior level of

redistribution approximately equal to 0.27. For lower values of ρ the utilitarian benefits

of a more equal wealth distribution exceed the fragility costs in terms of a larger mass of

agents whose wealth falls above the cutoff for fragility. For higher values of ρ, however,

the utilitarian gains are not sufficient to offset the higher fragility and total welfare starts

to decrease.18

To summarize, when redistribution affects fragility, a utilitarian policy maker will not

necessarily choose to fully redistribute wealth even when the standard costs of redistribu-

tion are completely absent. The reason is that financial fragility in this model is shaped

by the distribution of wealth in the initial period and any redistribution undertaken

in period 0 would potentially have a fragility component in addition to the standard

efficiency costs. In some cases, this fragility component might increase the benefit of

redistribution, while in others the effect will be the opposite. In particular, if a fully

equal distribution of wealth also entails that fragility is not present (as in Figure 2a),

then the policy maker wants to engage in more redistribution not only because it brings

utilitarian benefits, but also because it brings financial stability gains. In contrast, if a

fully equal wealth distribution also entails maximum fragility (as in Figures 2b and 3a)

then more progressive taxation must be traded-off against the financial fragility costs

it entails. In such cases, the policy maker may choose to stop short of fully equalizing

wealth levels even when all of the standard efficiency costs to redistribution are absent

(as in Figure 3b).19

18Note that for ρ above about 0.65, the financial system becomes fragile for almost all of the agents
and therefore the utilitarian effects starts to dominate again since fragility cannot increase further.

19In a model with a longer time horizon, redistribution during a crisis may affect future fragility both
through the change in the distribution of wealth and, potentially, through agents’ beliefs about future
policy actions. I thank an anonymous referee for pointing out this potential channel, which I leave
for future research.
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(a) Ex-ante redistribution and fragility.

(b) Optimal level of redistribution.

Figure 3: The parameter values are as follows R = 3, π = 0.5, γ = 5, δ = 0.01, and
q = 0.05. In addition, there is no efficiency cost of period-0 redistribution, i.e.
L (t,∆) = 0 for each combination of t and ∆. Figure 3a shows that for level of
redistribution, ρ, respectively equal to 0, 0.4 and 0.7 and 1 the corresponding
cutoff point implies that the fraction of agents in fragile banks in the economy
is 0.55, 0.76 and 0.99 and 1 respectively. Figure 3b shows that total welfare
in period 0 is maximized at an interior level of redistribution approximately
equal to 0.27.
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6 Banking arrangements and fragility

For my purposes a banking arrangement represents a specific grouping of agents into

banks. In the baseline version of the model, each bank services only one agent type.

Although this assumption simplified the analysis considerably, it raises two further ques-

tions: how robust is the model to alternative banking arrangements, and what could be

the counterpart in reality to the financial institutions assumed in the model? In this

section, I show what sort of banking arrangements in this environment are equivalent to

type-specific banks and then link these arrangements to real world financial practices.

Suppose we were to consider arrangements in which agents of more than one type are

grouped together in a single bank. The operation of the bank then has distributional

consequences and some assumption must be made about how different types of agents

are treated. One natural benchmark is the proportional principle. Under this principle,

all agents who withdraw in the same period and in the same state from a given bank k

must be given the same rate of return, that is,
c
e1,k
1

e1
=

c
e2,k
1

e2
,

c
e1,k
2α

e1
=

c
e2,k
2α

e2
, and so forth.

Note that the allocation in any type-specific bank automatically satisfies the proportional

principle. At the same time, if more than one agent type is grouped into the same bank

then the proportional principle is imposed as an additional constraint on the payments

within the bank. One justification for imposing such simple rules for the operation of

the bank is that more complicated rules may be plagued by credibility issues (recall that

banks have limited commitment in this setting). In addition, the proportional principle

implies that banks do not redistribute on their own among their agents.

Next, I assume that the bailout intervention of the policy maker is directly making

payouts to agents in banks experiencing a run – in addition to any payments these agents

receive from their banks. In particular, an agent with wealth level e withdrawing after

his bank infers that the state is β consumes ce,ktβ +de,kt where de,kt is the additional payout

provided by the policy maker in the period of the withdrawal. The bailout given to any

bank is then obtained as the sum of all extra payouts given by the policy maker to agents

in the bank. This is equivalent to assuming that the policy maker chooses not only the

35



bailout given to a particular bank, but also how to distribute this bailout across the

remaining agents within the bank (as was the case in Cyprus, Iceland, and elsewhere).20

Suppose we derive the equilibrium under the assumption from the baseline model

in which agents with different wealth levels are grouped into different banks. We could

then ask: what other grouping(s) of agents into banks will generate the same equilibrium

allocation? The following result provides an answer.

Proposition 9. Suppose banks follow the proportional principle. Starting from any

equilibrium of the economy with type-specific banks, suppose that (i) all agents who follow

the no-run strategy in that equilibrium are grouped into one or more banks, and (ii) all

agents who follow the partial-run strategy in that equilibrium are separately grouped into

one or more banks. Then there exists an equilibrium under the new grouping that delivers

the same allocation as the original equilibrium with type-specific banks.

In other words, the equilibrium allocations obtained under type-specific banks will be

robust to different groupings of agents into banks as long as agents who follow the partial

run strategy are not grouped together with agents who follow the no-run strategy. So,

suppose that in equilibrium an agent follows the partial run strategy if and only if his

wealth level is greater than the cutoff for fragility ef . According to Proposition 9 there

always exists an equilibrium which replicates the equilibrium under type-specific banks

as long as agents with wealth below ef are grouped into banks separately from those

with wealth above ef .

There are, of course, a variety of ways for the agents both above and below the cutoff

to be grouped into banks. One way is to form type-specific banking arrangements as

in the baseline version of the model. Another way is to form only two types of banks

- one “commercial bank” for agents below the cutoff and one “shadow bank” for agents

20In order to ensure consistency with the baseline model, I impose the same limits on the amount of
ex-post redistribution that can be undertaken through bailouts. Namely, taxation after the initial
period is not allowed, a bailout can be made only to banks experiencing a run and super-insurance
is strictly prohibited. As in the baseline model, these restrictions are necessary to ensure that the
bailout program is not used as a means of redistribution independently of any banking crises.

36



above the cutoff. Both of these approaches yield the same outcome, but working with

type-specific banks, as in the baseline case, turns out to be much simpler. Finally, notice

that all banking arrangements that are equivalent to type-specific banks have one feature

in common. Namely they are consistent with a type of “Volker rule” in the sense that

risky deposits (i.e. those that will be withdrawn in a run) are not mixed in the same

institution with safe deposits.

Note that the outcome may be different if agents who follow the no-run strategy in the

original equilibrium are grouped together in a bank with agents who follow the partial-

run strategy. In this case, the proportional rule implies that some of the losses created

by a run would fall on the agents who do not run, decreasing their consumption and,

potentially, giving them an incentive to join the run. I leave the study of equilibria when

agents are grouped into banks in different ways, as well as the question of how agents

may endogenously choose to group together in banks, for future research.

7 Conclusion

I analyzed a model in which the initial wealth distribution is linked to the allocation

of bailouts during crises and shapes the sort of bank runs that can arise in equilibrium.

This approach is motivated, in part, by some of the characteristics of the recent financial

crises. In particular, the fiscal support to the distressed part of the financial system was

based mainly on the policy maker’s willingness to bail out different type of agents and

their institutions rather than by existing contractual obligations.

The model predicts that wealthier agents tend to experience more fragility under a

utilitarian policy maker since full government guarantees of deposits may be credible for

the relatively poor, but only partial guarantees may be credible for the relatively wealthy.

In particular, for given distribution of wealth there is an endogenously determined cutoff

point. Agents whose wealth level lies above the cutoff will be in the fragile region of the

wealth distribution. That is, these agents will have incentive to panic and, in equilibrium,
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the institutions in which they invest are endogenously more likely to experience a run

and receive a bailout.

I used the model to characterize how changes in the distribution of wealth affect

financial fragility. More inequality leads to more fragility if it pulls more agents into the

fragile region of the wealth distribution and to less fragility if the effect is the opposite.

Moreover, the fragile region in the distribution of wealth has implications for the optimal

level of redistribution ex ante. In particular, redistribution ex ante will be more attractive

if it pulls more agents away from the fragile region of the distribution of wealth and

less attractive if the opposite effect occurs. The recognition of this fact implies that

the optimal level of ex-ante redistribution can remain partial even absent the standard

efficiency costs associated with progressive taxation. Finally, I showed how the banking

arrangements underlying the model can be linked to real world financial organizations.

The results in this paper are derived assuming a utilitarian policy maker. It is possible,

of course, that policy decisions are made based on some other objective function that

assigns greater weight to agents who have more political connections or other forms of

power. In such a setting, the model I present here would predict that whatever agents

have more weight in the objective function will tend to be credibly fully insured and,

hence, have no incentive to run on their banks. Agents with little or no weight in the

objective function, in contrast, will tend to experience fragility. In equilibrium, bank

runs and the associated bailouts will tend to be concentrated among agents who are less

favored by the policy maker. Viewed this way, the observation that bailouts may be

directed towards wealthy individuals can be interpreted as evidence that policy makers

may be more utilitarian than is commonly assumed.
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Appendix: proof of selected propositions

Proposition 1. Under a strict no-bailouts rule the financial system is either fragile for

all agents or fragile for none.

Proof. The discussion in the text established that any type e of agent would best respond

with the partial run strategy in (14) if and only if the condition in (15) holds. That is,

the ratio ce1/c
e
2β must be greater than one. Under a no-bailouts rule, this ratio does not

depend on e and is greater than one only if the condition on the parameters in (20) holds.

In order to see that, start by dividing both sides in (16) by u′(ce2β) to obtain,

u′(ce1)

u′(ce2β)
= R(1− q)

u′(ce2α)

u′(ce2β)
+Rq. (22)

From (7), (9) and the fact that the function u exhibits constant relative risk aversion,

the solution for ce2β in terms of ce1 satisfies the relationship

ce2β = R1/γ (1−τ)−πce2
(1−π)(π+(1−π)R1/(1−γ))

.

where γ > 1 is the coefficient of relative risk aversion and λβ depends only on parameters

λβ = 1
(1−π)(π+(1−π)R1/(1−γ) .

Inserting the expression for ce2β into (22) and using (4), it follows that the right hand

side in (22) is independent of e. Moreover, from (22) it follows that ce1/c
e
2β is also not a

function of e. Thus, the financial system in the no-bailouts economy is either fragile for

all agents (i.e. what was referred to as maximally fragile in the text) or fragile for none.

The main text also stated that the condition in (20) implies that the no-bailouts

economy is maximally fragile. Indeed, set be = 0 and use (2), (4), (7), (9) and (16) to

solve explicitly for ce1. That is,

ce1 =
(1−τ)e

π+((1−q)λ−γ
α +qλ−γ

β )1/γ
,
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where λα =
(
(1− π)R1/(1−γ)

)−1
. The partial run strategy profile in (14) is a best response

for any type e agents if the condition in (15) holds. That is,

ce1
ce2β

= λβ((1− q)λ−γ
α + qλ−γ

β )−1/γ > 1.

The restriction on parameters in (20) implies that the right hand side of the above is

greater than one, yielding the desired result.

Proposition 2. If in equilibrium be∗ > 0 and bẽ∗ > 0. Then be∗ > bẽ∗ whenever e < ẽ.

Proof. Suppose that type-e agents follow the partial run strategy in (14), then the bailout

to bank e must be strictly below the full-insurance level of b̄e. Indeed, assume the bailout

to bank e provides full insurance to its investors, i.e. be = b̄e then we must have ce2α = ce2β.

Combining this last equality with (16) yields

u′(ce1) = Ru′(ce2β),

and therefore ce1 < ce2β which violates the best response condition in (15). In other words,

if in equilibrium type-e agents follow the partial run strategy then be < b̄e. Next, assume

that type-e agents and type-ẽ agents follow the partial run strategy and their banks

receive a bailout of be > 0 and bẽ > 0 respectively. Then we must have

0 < be < b̄e and 0 < bẽ < b̄ẽ. (23)

For fixed be, I write ce1(b
e), ce2α(b

e), ce1β(b
e), and ce2β(b

e), to highlight that the payment

plan in any bank e is a function of be. From (7), (4), (9) and (16), we have

∂ce1(b
e)

∂be
> 0,

∂ce2α(b
e)

∂be
< 0,

∂ce1β(b
e)

∂be
> 0 and

∂ce2β(b
e)

∂be
> 0, (24)

as well as
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∂ce1(b
e)

∂e
> 0,

∂ce2α(b
e)

∂e
> 0,

∂ce1β(b
e)

∂e
> 0 and

∂ce2β(b
e)

∂e
> 0. (25)

Moreover, if be > 0 and bẽ > 0, then (18) and (23) imply

ce2β(b
e) = cẽ2β(b

ẽ).

Combining the above equality with (24) and (25) yields be > bẽ whenever e < ẽ . The

main text also stated that if two types of agents play the partial run strategy and the

type with the lower wealth level best responds then the type with the higher wealth level

best responds as well. This result follows immediately from (18) and (24).

Proposition 3. If, in a given equilibrium, agents with wealth level e are fully insured,

then all agents whose wealth lies below e would also be fully insured.

Proof. The definition of full insurance in Section 3.3 implies that if the level of the per-

agent bailout payment in bank e corresponds to full insurance, be = b̄e, then the payment

to an agent with wealth level e in period 2 does not depend on the sunspot state ce2α = ce2β

(the reverse also holds: if ce2α = ce2β then be = b̄e). Using (2) and (16) we can express b̄e

as follows

b̄e = b̄(1− τ)e,

where b̄ depends only on parameters, and therefore, b̄e is an increasing function of e.

Combined with Proposition 2 this yields the desired result. Namely, in any equilibrium

if type-e agents receive full insurance then any type with lower wealth level will be fully

insured as well.

Proposition 4. For a given economy, there exists a cutoff ef such that the financial

system is fragile for agents with wealth levels e ≥ ef and not fragile for agents with wealth
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levels e < ef .

Proof. Consider a cutoff strategy profile yζ such that any agent with wealth level e plays

the partial run strategy in (14) if and only if his wealth level is greater than or equal to

some cutoff point ζ, which belongs to the domain of the wealth distribution, i.e. ζ ∈ [e, e].

Denote with Y (τ) the set of all cutoff strategy profiles consistent with equilibrium for

given tax rate τ and let ef (τ) denote the smallest of all cutoff points belonging to the

set Y (τ). That is, yef (τ) ∈ Y (τ) and ef (τ) ≤ ζ whenever yζ. ∈ Y (τ).

I show that the financial system is not fragile for any agent whose wealth lies below

the cutoff point ef (τ). Indeed, assume ẽ ∈ [e, e] is the lowest wealth level for which one

can construct an equilibrium such that agents with wealth e = ẽ play the partial run

strategy. It must then be the case that ef (τ) ≥ ẽ. If one can construct an equilibrium

in which only a fraction of the agents with wealth level greater than or equal to ẽ follow

the partial run strategy, then clearly one can also construct an equilibrium where all of

the agents with wealth level greater than or equal to ẽ follow the partial run strategy

(since augmenting the set of agents who run on the bank decreases the per-agent bailout

payment in each bank). Therefore, yẽ is a cutoff strategy profile yẽ ∈ Y (τ), and hence,

ef (τ) ≥ ẽ. In other words, ef (τ) ≥ ẽ and, at the same time, ef (τ) ≤ ẽ which yields

ef (τ) = ẽ.

The following procedure can be used to establish if the financial system is fragile for

any given type of agents. Fix a tax rate τ , derive the lowest cutoff point associated to a

cutoff strategy profile and call this point ef (τ). The financial system for this particular

tax rate is then fragile for all agents whose wealth level is greater than or equal to ef (τ).

For each tax rate τ the maximally fragile equilibrium is the one where all agents with

wealth greater than or equal to ef (τ) play the partial run strategy in (14). Denote with

WMF (τ) the sum of all agents expected utilities in period 0 assuming that the maximally

fragile equilibrium obtains and let τ ∗ = argmax
τ∈[0,1]

WMF (τ) denote the optimal choice of tax

rate within the maximally fragile equilibria. Finally, the financial system in the overall

economy will not be fragile for any agent whose wealth level is below ef ≡ ef (τ ∗).
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Proposition 5. In some economies, the cutoff point is interior, e < ef < e.

Proof. Consider equilibrium where each agent follows the partial run strategy if and

only if his wealth level is greater than or equal to ef ≡ ef (τ ∗). Based on the partial

run strategy in (14) any bank e can experience a run only when the sunspot state is β.

Assume that the probability of state β is equal to zero, that is q = 0. In this case, the

optimal tax rate τ ∗ can be obtained in closed form as shown in (21). Moreover, when

q = 0 we can solve explicitly for the profile of early payments in all banks c∗1 = {ce∗1 }ee

and the bailout specification b∗ = {be∗}ee. That is, the allocation for each agent type with

wealth level below ef is given in (17). Moreover for each agent type with wealth level

greater than or equal to the cutoff point ef we have

ce∗1 = (1−τ∗)e

π+(1−π)R(1−γ)/γ , (26)

as well as,

be∗ = (1− τ ∗)(a1e
f − a2e) (27)

where both a1 and a2 depend only on parameters. From (27) the upper limit on the

bailout region is therefore equal to eNB ≡ min
{

a1
a2
ef , e

}
and the economy-wide bailout

is

b∗ = (1− τ ∗)
∫ eNB

ef
(a1e

f − a2e)dH(e)

= (1− τ ∗)
[
a1
(
efH(eNB)−H(ef )

)
− a2

∫ eNB

ef
edH(e)

]
,

(28)

If the cutoff point ef belongs to the interior of the wealth distribution (that is e < ef < e)

the incentive to run in (15) must hold with equality. That is, ce∗1 = ce∗2β for e = ef . To see

that, suppose this were not true and ce∗1 > ce∗2β when e = ef . Then there exist another

cutoff strategy profile yζ for some ζ ∈ (e, ef ) which is also consistent with equilibrium.
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But this leads to a contradiction since by construction ef is the smallest point associated

to a cutoff strategy profile. Next, applying (18) and using ce
f

1 = ce
f

2β yields,

Ru′(ce∗1 ) = Ru′(ce∗2β) = v(τ ∗ − b∗) for e = ef . (29)

Plugging the expression for b∗ in (28) into the equation in (29) it follows that any interior

cutoff point ef also satisfies the following equation

(
(1−τ∗)ef

π+(1−π)R(1−γ)/γ

)−γ

= δ
R

(
τ∗ − (1− τ∗)

[
a1
(
efH(eNB)−H(ef )

)
− a2

∫ eNB

ef
edH(e)

])−γ

. (30)

The existence of an interior solution to the above equation for various wealth distributions

is established numerically on Figures 2a though 3a. Note that if the equation in (30) has

more than one root then the cutoff point for fragility ef is equal to the smallest root in

the domain of the wealth distribution.

Proposition 6. Suppose that for given τ we have e < ef < e. Then, holding H fixed,

we have ef < ẽf whenever τ < τ̃ .

Proof. Fix a tax rate τ and assume the point cutoff point for fragility for this particular

tax rate ef ≡ ef (τ) belongs to an interior point of the wealth distribution. Consider

an equilibrium where type-e agents follow the partial run strategy in (14) only if their

wealth level is greater than or equal to the cutoff point. In the general case where the

probability of state β is positive i.e. q > 0 the early payments ce∗1 in each bank for which

e ≥ ef can be written as

ce∗1 = g(e/ef )(1− τ)e, (31)

whereas the bailout payment for each e ≥ ef can be expressed as

be∗ = f(e/ef )(1− τ)e. (32)
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The function f(x) is strictly decreasing in x. The upper limit on the bailout region is

obtained from eNB = min
{
êNB, e

}
where êNB = x̄ef and f(x̄) = 0. The economy-wide

bailout package is

b∗ =

∫ eNB

ef
f(e/ef )(1− τ)edH(e). (33)

Plugging (33) into the expression for (29) then implies that the interior cutoff point ef

must satisfy the following equation

(
g(1)ef

)−γ
= δ

R

(
τ

1−τ
−

∫ eNB

ef
f(e/ef )dH(e)

)−γ

. (34)

The above yields the desired result. Namely, holding the distribution of wealth fixed H

fixed, the above implies that if the tax rate increases τ̃ > τ then the cutoff point also

raises ẽf > ef . Note that, in the special case q = 0, we have

g(e/ef ) = 1
π+(1−π)R(1−γ)/γ and f(e/ef ) = a1(e/e

f )−1 − a2,

and thus the equation in (34) reduces to the equation in (30).

Proposition 7. Suppose that, for a given distribution of wealth H, we have e < ef < e.

Holding τ fixed, let H̃ be a mean-preserving spread of H. Then,

(i) If h̃(e) > h(e) for each e ∈
[
ef , eNB

]
then ẽf < ef .

(ii) If h̃(e) < h(e) for each e ∈
[
ef , eNB

]
then ẽf > ef .

Proof. Start from a given distribution of wealth H with an associated cutoff for fragility

ef and a bailout region [ef , eNB]. Then, consider a new distribution of wealth H̃ with

a cutoff for fragility ẽf and a bailout region [ẽf , ẽNB]. Suppose h̃(e) > h(e) for each

e ∈ [ef , eNB], then the following relation must hold

b = (1− τ)

∫ eNB

ef
f(e/ef )eh(e)de < (1− τ)

∫ eNB

ef
f(e/ef )eh̃(e)de = b̃.
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Applying (34) it follows that the cutoff for fragility in the economy corresponding to H̃

is lower than the cutoff for fragility in the economy corresponding to H, that is ẽf < ef .

Further, in some cases, we can determine whether the cutoff point will raise or fall as

a result of a change in the initial distribution of wealth under more general shifts. In

particular, suppose we move to a new distribution of wealth H̃ such that tax revenue

remains the same but the total fraction of wealth belonging to agents in the bailout

region corresponding to H increases. That is,

∫ eNB

ef
eh(e)de <

∫ eNB

ef
eh̃(e)de,

Note that h̃(e) > h(e) for e ∈ [ef , eNB] is sufficient but not necessary for the above

relation to hold. Then as the probability of state β converges to zero (i.e. as q goes to

zero) the equation in (30) combined with the above relation implies ẽf < ef .

Proposition 9. Suppose all banks follow the proportional principle. Starting from

any equilibrium of the economy with type-specific banks, suppose that (i) all agents who

follow the no-run strategy in that equilibrium are grouped into one or more banks, and (ii)

all agents who follow the partial-run strategy in that equilibrium are separately grouped

into one or more banks. Then there exists an equilibrium under the new grouping that

delivers exactly the same allocation as the original equilibrium with type-specific banks.

Proof. To begin, fix a complete strategy profile y = {ye}ee for all agents and denote

with ce ≡ {ce1, c
e
2α, c̃

e
1β, c̃

e
2β} the allocation for type-e agents which obtains under a type-

specific banking arrangement (i.e. when all types are grouped separately into banks).

Suppose we form a new banking arrangement by grouping agents into banks in the

manner stated in the proposition. I show that there always exists an equilibrium under

this alternative banking arrangement which exactly coincides to the equilibrium obtained

under type-specific banks.

The proof is by construction. Keep the same strategy profile y, and denote with ce,k ≡
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{ce,k1 , ce,k2α , c̃
e,k
1β , c̃

e,k
2β } the resulting allocation for type-e agents when they are grouped into

bank k. The objective of any bank k is to maximize the sum of all its agents expected

utilities subject to the proportional principle and taking as given the strategy profile of

the investors, the bailout specification of the policy maker, and the payments made by

all other banks. In equilibrium the allocation in any bank k must satisfy the following

resource constraint in state α

∫ e

e

[
πce,k1 + (1− π)

ce,k2α

R

]
dHk(e) = (1− τ)

∫ e

e

edHk(e),

as well as the following resource constraint in state β

∫ e

e

[
πce,k1 + πe,k

β c̃e,k1β + (1− π − πe,k
β )

c̃e,k2β

R

]
dHk(e) = (1− τ)

∫ e

e

edHk(e) + bk.

where bk is the total per-agent bailout to bank k. These two resource constraints simply

state that the total outflow of resources in period 1 and 2 from any bank k in each state

must come either internally (from endowments obtained as deposits in period 0 and

placed into the constant return to scale technology) or externally by receiving additional

resources from the policy maker in the form of a bailout transfer. It will be useful to

define be,k as per-agent bailout for type-e agents when they are grouped into bank k.

That is,

be,k ≡ πe,k
β (c̃e,k1β − ce,k1β ) + (1− π − πe,k

β )
c̃e,k2β −ce,k2β

R
.

The total bailout to any bank k is then obtained by summing over all be,k in bank k

to obtain bk =
∫ e

e
be,kdHk(e). Since by assumption all agents grouped into the same

bank follow the same withdrawal strategy we have πe,k
β = πk

β for each wealth level e.

In addition, the proportional principle requires that the allocation for any two agents

types, say e and ẽ, grouped into the same bank k must satisfy ce,k

e
= cẽ,k

ẽ
. The first order

condition for the optimal choice of payment within any bank k therefore reduce to the
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following expressions for each agent type grouped into bank k

u′(c̃e,k1β ) = Ru′(c̃e,k2β ),

as well as,

u′(ce,k1 ) = (1− q)Ru′(ce,k2α ) + qRu′(c̃e,k2β ).

Moreover, if any bank k is bailed out then from (18) the consumption levels for each

agent type in that bank must satisfy c̃e,k1β = c̃1β and c̃e,k2β = c̃2β, where c̃1β and c̃2β are set

to ensure that the marginal utilities in any bank with a bailout is equal to the marginal

utility from the public good. That is,

u′(c̃e,k1β ) = Ru′(c̃e,k2β ) = v

(
τ −

∫ 1

0

bkσkdk

)
.

where σk is the mass of agents grouped into bank k. From the above equilibrium con-

ditions it follows that the allocation for any agent type e in any bank k coincides with

the allocation for this type under type-specific banking, that is, ce,k = ce and be = be,k.

This can be verified by plugging the allocation and the bailout payment under type-

specific banks in the above equilibrium conditions. In other words, we have constructed

an equilibrium allocation under this alternative banking arrangement which exactly co-

incides with the equilibrium under type-specific banks. The reverse statement holds as

well. That is, we can fix a complete strategy profile for all agents and then form a

banking arrangement such that all agents grouped into the same bank follow the same

withdrawal strategy and each bank follows the proportional principle. Then, keeping

the same strategy profile for the agents, an identical equilibrium will result under a

type-specific banking arrangement.
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