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Abstract

A seller has a fixed number of goods to sell by a deadline. At each time, he posts a regular price

and decides whether to hold a flash sale. Over time, buyers privately enter the market and

strategically time their purchases. If a buyer does not purchase when she arrives, she can pay

an attention cost to recheck the regular price afterwards, or she can wait for future flash sales

where she may obtain a good at a discounted price. In the unique Markov perfect equilibrium,

the seller sporadically holds flash sales to lower the stock of goods. A flash sale increases the

willingness to pay of future buyers, but decreases the willingness to pay of buyers who arrive

early in the game. When it is very likely that a buyer will obtain a good in a flash sale, the seller

holds a “big” initial flash sale for all but one unit of the good.
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1 Introduction

Some markets share the following characteristics: (1) goods are perishable, (2) the initial number

of goods for sale is fixed in advance, and (3) consumers enter the market over time and choose the

timing of their purchases. Examples of such markets include airline seats, hotel rooms, and sports

tickets. The revenue management literature studies the optimal pricing in these markets under

the assumption that the seller has perfect commitment power. By contrast, this paper studies the

case where the seller cannot commit.1

In our model, a monopolist seller has a fixed number of identical goods to sell before a dead-

line. At each time, the seller posts a price and also decides whether to offer some goods in an

advertised flash sale featuring a low price. There are two kinds of consumers: arriving (high-

valuation) buyers and a stationary set of (low-valuation) shoppers. Arriving buyers are forward-

looking and have unit demand, and their arrival is private. When a buyer arrives, she observes

the current price and the remaining inventory and decides whether to buy a good. If she decides

not to make the purchase, she becomes an accumulated buyer and faces inattention frictions: she

can pay costly attention to recheck the price and remaining stock at any time. Flash sales attract

the attention of both accumulated buyers and shoppers.2 In a flash sale, the probability that an

accumulated buyer obtains a unit depends on the number of units offered by the seller.

We characterize the unique Markov perfect equilibrium where the behavior of the players de-

pends only on commonly available information: the calendar time and the number of remaining

goods of the seller. In equilibrium, due to the lack of commitment, the seller holds a flash sale at

the deadline to clear the remaining stock.3 Prior to the deadline, forward-looking buyers antici-

pate that flash sales may be offered in the future, and so they expect to obtain a positive surplus

1In the airline and hotel industries, sellers often employ revenue management algorithms, a practice typically
viewed as a commitment device used by sellers. However, revenue managers frequently adjust prices based on their
information and personal experience, instead of strictly following the pricing strategy suggested by the algorithm. In
the article Confessions of an Airline Revenue Manager, George Hobica said,“The computer adjusts fares all the way
up until the departure time, but as a revenue manager, I can go in and adjust things based on information that the
computer may not know. For example, are there specific events taking place at a destination? Are there certain con-
ditions at the departure airport that will allow more than the desired amount of seats to go empty such as weather?"
See http://www.foxnews.com/travel/2011/12/08/confessions-airline-revenue-manager.html

2Flash sales are common in many industries. For example, in the airline industry, flash sales (limited time offers
with sufficiently low prices) are common. See https://www.skyscanner.net/news/tips/how-to-find-flash-sale-flights-
before-theyre-gone/. Casual observation suggests that these offers are advertised to “window shoppers” via deal-
alert email/text messages from agencies like Kayak, Orbitz, or Google Flights or online real-time bidding sponsored
advertisement on social media such as YouTube and Facebook.

3Last-minute clearance sales are optimal in many dynamic pricing settings. See, e.g., Nocke and Peitz (2007). In
practice, the last-minute deal strategy is commonly used in many industries. See The Wall Street Journal, March 15,
2002, “Airlines now offer ‘last-minute’ fare bargains weeks before flights,” by Kortney Stringer.
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by delaying their purchases. However, waiting for flash sales is risky: goods may be purchased by

others. To avoid such a risk, a buyer is willing to purchase a good immediately at a price higher

than the flash-sale price. The seller posts the endogenous reservation price of arriving buyers,

ensuring that they purchase a good upon arrival. As the deadline approaches, a buyer’s willing-

ness to pay decreases because the arrival of new buyers becomes less likely. Also, at any time, the

smaller the seller’s inventory, the higher the risk a buyer faces by waiting for flash sales, and thus

the higher the price she is willing to pay to avoid the risk. Consequently, the equilibrium price de-

creases continuously over time until a transaction occurs, the inventory is reduced, and the price

jumps up.

A novel feature of our equilibrium is that the seller periodically holds flash sales before the

deadline. In doing so, the seller lowers his inventory and creates scarcity, which allows him to

charge a high price in the future. The optimal timing of the flash sales trades off between future

transaction prices and quantities: by reducing the current inventory size, the seller can extract

more rent from future buyers, but he increases the probability that the remaining stock is insuf-

ficient to sell to all of them. In equilibrium, it is unlikely that a large number of buyers will arrive

before the deadline when it is near, and so the seller has an incentive to keep a small inventory.

The equilibrium specifies a sequence of “cutoff times” when the seller finds it optimal to hold a

flash sale if the remaining stock is high.

Our first contribution is to construct a tractable setting that makes it possible to study dynamic

price discrimination in such an environment. The main modeling innovation is the presence of

inattention frictions on the buyers’ side. Our modeling of inattention frictions helps us to over-

come two significant challenges in modeling revenue management with hidden arrivals: dealing

with both the large set of deviating strategies and the possession of private information by the

different agents in the model.4 In general, when arrivals are private, forward-looking agents need

to form beliefs about both the number of accumulated buyers and their private information. Ac-

cordingly, the seller can use prices to manipulate buyers’ beliefs and their willingness to pay. This

not only makes characterizing equilibrium behavior difficult, but may also lead to unreasonable

(on- or off-path) equilibrium behavior supported through implausible coordination between the

agents’ beliefs about it. Our modeling of inattention frictions limits the seller’s ability to manip-

ulate buyers’ beliefs, as inattentive buyers do not closely track the price. Also, flash sales allow

the seller to sell units fast at low prices, but since they attract the attention of accumulated buy-

4We perceive inattention frictions as a natural way to capture relevant aspects of consumer behavior. For example,
due to the physical and psychological costs, when a consumer is waiting for a discount flight ticket, she will only
occasionally visit the airline’s website instead of monitoring it 24-7.
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ers, they restrict the ability of the seller to use the inattention frictions to fully price discriminate

between buyers and shoppers.

Our second contribution is to identify a new channel of inefficiency in dynamic monopoly

pricing: the seller allocates some of the goods early in the game through flash sales despite the

possibility that additional buyers with high willingness to pay may arrive in the future.

The third contribution of the paper is to provide a new rationale for price fluctuation and flash

sales. Holding flash sales creates scarcity for future consumers and allows the seller to extract more

rent from them. This complements the classic view of price fluctuation (discussed in the litera-

ture review) as stemming from either changes of the inventory or the seller’s screening of buyers

with different valuations and arrival times.5 One of the testable implications distinguishing our

model from the literature is that price jumps do not have to take place either after transactions (as

in most revenue management models) or when a sufficient number of low-value consumers are

accumulated (as in the durable goods literature). They can also occur when the realized demand

is low and the deadline is close.

The aforementioned results rely on the following building blocks of our model: the existence

of a deadline, buyers arriving stochastically and being forward-looking, the finiteness of the in-

ventory, and the lack of commitment by the seller. First, as the buyers’ arrival is stochastic, there

are histories where the stock is high and the expected future demand from arriving buyers is low

due to the proximity of the deadline. The presence of the deadline is crucial for the seller to be

willing to hold a flash sale at such histories. Alternatively, if the arrival times of the buyers were

deterministic, the seller would hold a flash sale (if at all) only at the beginning of the game, since a

late flash sale would reduce the willingness to pay of buyers who arrive early. Second, the seller’s

incentive to hold flash sales also relies on buyers being forward-looking. If, on the contrary, buyers

were myopic, their willingness to pay would be independent of the seller’s inventory. Third, a flash

sale can credibly reduce future supply only if the seller is unable to produce additional goods over

time, which is ensured by the assumption of the inventory being finite. Finally, the lack of com-

mitment by the seller contributes to shaping the price dynamics. In the equilibrium, the seller is

unable to extract the full surplus from the buyers, as they believe that the seller will hold low-price

flash sales in the future. If the seller had commitment power, he could commit to not holding flash

sales at all. He benefits from doing so if, for example, the flash-sale price is sufficiently small.

Finally, we investigate the effect of demand-side competition on price dynamics. A buyer’s

5For example, there is extensive evidence of price fluctuation in the airline market. McAfee and Te Velde (2006)
find that the fluctuation of airfares is too high to be explained by the standard monopoly pricing models. Escobari
(2012) and Williams (2018) find that airline prices decrease conditional on inventory size and increase after transac-
tions.
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willingness to pay depends on the probability that she will get a good in a future flash-sale offer if

she rejects the price offer at her arrival time. This probability quantifies the competition between

buyers and shoppers during flash sales. We first consider the case where, whenever there is one

accumulated buyer and the seller holds a flash sale, the buyer is very likely to acquire a good. In

this case, the buyers’ willingness to pay is very low shortly before a flash sale, and so the seller has

an incentive to hold a flash sale earlier to increase the price. We show that when the probability

that a buyer obtains a good in a flash sale is high, the seller holds a flash sale for all but one unit

at the beginning of the game, and tries to sell the remaining unit at the regular price. Then we

let accumulated buyers become increasingly unlikely to obtain a good in a flash sale. At the limit

where a buyer cannot obtain a good in a flash sale, the seller’s commitment problem disappears:

he charges a high price, leaves no rent for buyers, and holds a flash sale to sell the remaining units

at the deadline.

Related Literature. A large body of the revenue management literature examines markets with

sellers who sells a finite number of goods before a deadline to myopic buyers who arrive over

time.6 The common finding in these models is that prices fluctuate over time, decreasing before

sales take place and sharply increasing afterwards. In a recent paper, Board and Skrzypacz (2016)

extend the analysis to forward-looking buyers and characterize the revenue-maximizing mecha-

nism.7 The optimal mechanism trades off between time discounting and incoming demand with

higher willingness to pay. In the continuous-time limit, the optimal mechanism is implemented

via a price-posting mechanism with a last-minute auction. Our findings in the absence of com-

mitment have three main distinguishing features. First, while in the commitment case the main

inefficiency arises because of monopolistic withholding, in our model it stems from the early flash

sales. Second, price fluctuations in our model arise even in the absence of discounting and are

caused by the inability of the seller not to lower future prices. Third, Board and Skrzypacz ar-

gue that the seller’s profit is higher when buyers are long-lived, as the commitment power gives

the seller the option to postpone transactions and wait for the resolution of arrival uncertainty.

On the contrary, in our model where the seller has no commitment power, the seller’s profit is

lower when buyers are long-lived due to the equilibrium strategic interaction between them (see

Proposition 6). Finally, in Board and Skrzypacz, the seller has no incentive to hide the inventory or

manipulate the buyers’ belief about it. By contrast, manipulating the inventory is crucial for the

seller in our model, as it is the only credible way he has to influence the buyer’s willingness to pay.

6See, e.g., the seminal paper of Gallego and Van Ryzin (1994), and Talluri and Van Ryzin (2006) for a textbook treat-
ment. Gershkov and Moldovanu (2009) extend the benchmark model to address the case of heterogeneous objects.

7See also Mierendorff (2016), Pai and Vohra (2013), and Gershkov et al. (2017).
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In Hörner and Samuelson (2011) and Chen (2012), the seller has no commitment power and

sells goods to a fixed set of forward-looking buyers. In a setting without randomly arriving buy-

ers, they show that the seller either replicates a Dutch auction or posts an unacceptable price

until the deadline and then charges a static monopoly price. Therefore, in their models, the seller

never uses low prices to inefficiently sell to buyers with low valuations to increase the competition

among buyers with high valuations. By contrast, we show that maintaining the assumption that

buyers arrive stochastically, as do most revenue management models, generates both fluctuating

price dynamics and the possibility of flash sales. Deb and Said (2015) allow the seller to manage

demand–as opposed to supply in our model–so that he can manage competition among con-

sumers inter-temporally. They consider a two-period dynamic screening problem where a seller

without capacity constraints sells goods to buyers who arrive in each period. They show that the

seller may deliberately postpone the transaction with some first-period buyers to alter demand in

the second period, thereby making the threat of charging a high second-period price credible.

More broadly, our paper is related to the durable-goods pricing literature. First, a set of papers

introduce arrival of consumers into a canonical durable good pricing model à la Gul et al. (1986).

Conlisk et al. (1984) and Sobel (1991) study pricing dynamics with the arrival of new buyers per

period. In their model, the price fluctuates due to the trade-off between rent extraction from

high-valuation buyers and the revenue from the accumulated low-valuation buyers.8 Öry (2017)

examines a model where it is costly for the seller to lure “window shoppers” back. Similarly to our

model, her model exhibits discrete price drops at the times when the seller sells to low-valuation

buyers. Although the aforementioned papers also generate price fluctuations as in our model, the

key mechanism is different. In the durable goods literature, the low-value buyers are accumulated

until a critical time at which the seller finds it optimal to reap the rent from them. Instead, in our

model, the seller holds flash sales to increase the scarcity of the goods, consequently increasing

the willingness to pay of future buyers after low realizations of the demand. Therefore, our model

is better suited to explain price fluctuation in environments where sellers have binding inventory

constraints and goods are perishable. Second, the role of capacity constraint has also been studied

in durable-goods pricing contexts. McAfee and Wiseman (2008) introduce endogenous choice of

capacity in each period and allow the production cost of capacity to be vanishingly small. They

show the Coase conjecture fails in the presence of capacity constraints rather than to rationalize

the price fluctuation. McAfee and Vincent (1997) assume that the seller has one good and posts the

8Garrett (2016) considers a model where buyers arrive privately and their valuations change stochastically over
time. He shows that similar price dynamics take place. Board (2008) discusses the case where incoming demand
varies over time and examines how the seller uses time to discriminate between different generations. Also see Inderst
(2008) and Fuchs and Skrzypacz (2013) for studies on arrivals in bilateral bargaining with asymmetric information.
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reserve price of an auction in each period. When there is a “gap” between the seller’s reservation

value and minimum valuation of the buyer, they show that the seller’s expected revenue converges

to those of a static auction with no reserve price when the time between auctions goes to zero. Liu

et al. (2018) study the “no gap” case and examine both stationary and non-stationary equilibria.

They show that with multiple buyers, an immediate sale by efficient auction is optimal in the limit

as the period length vanishes.

There is a large industrial organization literature on the roles of capacity constraint and of

demand uncertainty in pricing. For example, Gale and Holmes (1993) show that it is optimal for a

monopoly airline to use advance-purchase discounts to divert consumers from a peak-time flight

to an off-peak-time flight. Dana (1998) discusses the optimality of advance-purchase discounts

in a perfectly competitive market à la Eden (1990). Also noteworthy are the studies on the effect

of costly capacity choice on price competition, e.g., Kreps and Scheinkman (1983), Dana (1999),

Anton et al. (2014) and Dana and Williams (2018). In this literature, it is typical to investigate a

static or two-period stylized model, and the focus is not on fully analyzing the price dynamics as

in our model.

Finally, the insight that sellers may benefit from reducing inventories or endowments has been

discussed in static competitive equilibrium frameworks introduced by Aumann and Peleg (1974)

and Gale (1974). Our goal is to investigate how such an insight shapes the equilibrium outcome in

a revenue management environment, where dynamic considerations and random demand play

an important role in pricing. In particular, we focus on the timing of the flash sales.

The rest of this paper is organized as follows. In Section 2, we present the model setting and

define the solution concept we are going to use. In Section 3, we analyze equilibria. Section 4

discusses some modeling choices and possible extensions of the baseline model. Appendix A in-

cludes all the proofs.

2 Model

We consider a dynamic pricing game between a single seller who has K ∈N identical and indivisi-

ble goods for sale and many buyers. Time is continuous: t ∈ [0,1].

Seller. At every time t , the seller makes a regular offer which specifies a price Pt ∈R. After offering

the regular price, he can hold a flash sale, discussed in more detail below. The seller values goods

at zero.

Buyers. At time 0, there are no buyers. Over time, buyers arrive privately at a rateλ> 0. Each buyer

7



has a unit demand and values the good at vH > 0. A buyer leaves the game after purchasing a good.

When a buyer arrives, she observes the current regular offer Pt and the seller’s current inventory

(or stock) Kt , which equals the number of units that have not been sold in [0, t ). She either accepts

the regular offer, or she rejects it and becomes an accumulated buyer. An accumulated buyer

faces inattention frictions: at each moment t , she does not observe the seller’s regular offer and

inventory unless she incurs a cost c > 0 for paying attention. In sum, a buyer is attentive at her

arrival time and at the times when she pays attention (or rechecks the regular price).9

If there are Nt ≥ 1 attentive buyers at time t , they simultaneously and independently decide

whether to purchase. Nature randomly orders the buyers who decide to purchase a good and

allocates the goods to the first Kt of them (or to all of them, if fewer than Kt buyers are willing to

buy a good).10 These are called regular sales.

Flash sales. At each time t , after the regular sales take place, the seller decides the number of

units to be offered in a flash sale. A flash sale differs from a regular offer in three aspects: (i) it is

held at an exogenous price vL ∈ (0, vH ), (ii) without paying an attention cost, accumulated buyers

observe it with a positive probability, and (iii) it also attracts demand from a broader market. One

can interpret such additional demand as a pool of shoppers with a willingness to pay equal to vL .

If the seller chooses to hold a flash sale, he selects the number of units to be offered in it. The

game proceeds similarly to the regular price offer, but with the possibility that some goods will be

purchased by shoppers. First, nature uniformly randomly orders the accumulated buyers (if any).

If there is no buyer, all goods are assigned to shoppers. If there is at least one buyer, with proba-

bility β ∈ (0,1) the first good is assigned to the first buyer, and with probability 1−β to a shopper.

If more than one unit is offered in the flash sale, the second unit is assigned analogously: if no

buyer remains, it is assigned to a shopper, while if there is at least one buyer, the unit is assigned

to the first of the remaining buyers with probability β, and with probability 1−β to a shopper. This

process is iterated until none of the units offered in the flash sale is left. The parameter β mea-

sures how “attentive” buyers are with respect to shoppers. It also captures the seller’s inability to

exclude accumulated buyers from having access to flash sales, making the seller’s price discrimi-

nation problem non-trivial. The seller does not know whether the goods are assigned to buyers or

shoppers, and a buyer is aware of the flash sale only if a good is assigned to her.

Information. The seller observes his own previous actions (the previous regular offers and flash

sales) and the previous regular sales. He does not observe the arrival of buyers, their attention

9The role of the assumption of inattention frictions is discussed in Section 2.1.
10Our results are unchanged if the seller is allowed to control the capacity for each regular price.
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times, or the type of consumers who obtained goods in each flash sale. Buyers observe the reg-

ular price and the inventory at each of their attention times. They do not observe the arrival of

other buyers or whether flash sales take place. A buyer observes a flash-sale offer only if a unit is

assigned to her.

Heuristic timing and payoffs. Although the game is in continuous time, it is useful to consider a

heuristic internal timing within each instant t as follows: (i) the seller chooses regular price Pt , (ii)

nature decides whether a buyer arrives at time t , and accumulated buyers make their attention

choice, (iii) attentive buyers observe (Kt ,Pt ) and decide whether to accept the current regular of-

fer, (iv) goods are allocated according to the regular-sales procedure described above, (v) knowing

how many goods have been sold at the regular price, the seller decides how many units to offer in

a flash sale, and goods are allocated according to the flash-sale procedure described above.

The seller is risk-neutral and does not discount the future. His payoff equals the summation of

all transaction prices. A buyer’s payoff is given by







vH −p −nc if she purchases the good at a price p ,

−nc if she fails to get any good ,

if she pays costly attention for n ∈Z+ times.

Histories and strategies. To avoid technical issues associated with continuous-time games (see

Bergin and MacLeod, 1993), we follow Murto and Välimäki (2013) and Akcigit and Liu (2015) by

endowing the players’ strategies with multiple private stages. A player’s private stage begins when

he/she obtains new information regarding other players’ actions. One can then interpret the strat-

egy of each player as deciding, at the beginning of each of his/her private stages, his/her action

plan until the stage ends. This specification allows each player to immediately react to other play-

ers’ actions. The next four paragraphs provide the formal definitions of the history and strategy

sets of each player. They enable us to define Markov strategies and Markov equilibria, which are

the basis of our later analysis.

A seller’s history at time t summarizes information about previous regular sales up to t and

the remaining stock Kt ≥ 0. If, before time t , regular sales have taken place for I ∈ {1, ...,K } times,

the seller’s history consists of a strictly increasing, finite sequence of times (τ1,τ2, ...,τI < t ) when

the previous regular sales took place and of the volume of sales. Hence, the seller’s history up to

time t is denoted by hs
t = ((t ,Kt ), (τi ,ri )I

i=0), where ri ≥ 1 represents the volume of regular sales at

time τi , for i = 1, ..., I , and where we set (τ0,r0) = (0,0) for convenience. We require hs
t to satisfy

9



seller posts PτI (hs
τI−1

;r I−1)

r I attentive buyers purchase

a new stage begins

seller chooses FτI (hs
τI

;r I )

Figure 1: A heuristic order of moves at τI when a regular sale happens and a new stage begins, where τI−1 < τI

denotes the last time a regular transaction occurred.

Kt ≤ K −
∑I

i=1 ri . If, instead, there have been no sales up to t the history at time t , we set hs
t =

((t ,K ), (0,0)).

A seller’s (pure) strategy is defined in stages as follows. At time 0, the seller begins with private

stage 0 at history hs
0 = ((0,K ), (0,0)). The seller’s strategy in stage 0 specifies a regular pricing and

flash-sale decision for each t ≥ 0. Specifically, it specifies for each t ≥ 0 (i) Pt (hs
0) ∈R+, the regular

price at time t conditional on no regular sale having occurred in [0, t ), and (ii) Ft (hs
0) ∈ {0, ...,K }, the

cumulative number of flash sales in [0, t ] conditional on no regular sale having occurred in [0, t ].

Whenever a regular sale occurs at time τI ∈ [0,1], the seller enters the subsequent private stage.

Using hs
τI

= ((τI ,KτI ), (τi ,ri )I−1
i=0) to denote the seller’s history at the beginning of the stage that

starts at time τI and r I to denote the number of regular sales at τI , the seller’s strategy specifies

(i) the regular price Pt (hs
τI

;r I ) ∈ R+ for each t ∈ (τI ,1] and (ii) the cumulative number of flash

sales Ft (hs
τI

;r I ) ∈
{

0, ...,KτI − r I } in [τI , t ].11 To guarantee that the times when flash sales occur are

well defined, both Ft (hs
0) and Ft (hs

τI
;r I ) are assumed to be a right-continuous and non-decreasing

function of t in their domain. Figure 1 illustrates a typical sequence of moves when a new private

stage of the seller is initiated by buyers’ purchase at time τI .

A buyer’s history is defined only when she is attentive. At time t , an attentive buyer’s history

consists of the previous and current attention times, (τb
1 = b,τb

2 , ...,τb
J = t ), and the prices and

the inventories at these times (P j ,K j )J
j=1, where b is the buyer’s arrival time. Denote it by hb

τ ≡

(τb
j
,P j ,K j )J

j=1. A buyer begins her first stage at her arrival time, and she enters the next private

stage whenever she rechecks the regular price. At the beginning of her J-th stage, given her history

hb
t , the buyer’s (pure) strategy specifies a pair: the first component D(hb

t ) ∈ {0,1} indicates whether

the buyer should accept the regular offer at time t , and the second component represents the

11Notice that the domain of Ft (hs
τI

;r I ) includes τI , that is, the seller can immediately determine the number of
flash sales at the moment a regular sale occurs when a new stage begins. Therefore, the seller can react to a buyer’s
purchase at time t without a lag. Also, if I > 0, Pt (hs

τI
;r I ) is defined for t > τI ; while if I = 0, the domain of t in Pt (hs

0)
includes 0 so that the regular price at time 0 is specified. This asymmetric treatment is due to the fact that private
stage 0 starts before the seller’s regular pricing decision at t = 0.

10



next attention time A(hb
t ) ∈ (t ,1]∪ {+∞} conditional on not obtaining a good at time t , where +∞

means that she will not check the price in the future. It is convenient to assume that any strategy of

a buyer generates a finite number of rechecking times, as it ensures that (i) the history of a buyer is

finite dimensional, and (ii) the payoff of a buyer is finite independently of the strategy she uses.12

Solution concept. We focus on equilibria where the strategies of the players depend on the calen-

dar time and the inventory size.13 With some abuse of language, we say that the seller’s strategy is

Markov if there is a regular price pk (t ) ∈R+ and a flash-sale policy fk (t ) ∈ {0, ...,k} for each t ∈ [0,1]

and k ∈ {1, ...,K } satisfying the following property. For each stage beginning with a seller’s history

hs
τI
= ((τI ,KτI ), (τi ,ri )I−1

i=0) and an r I -unit regular sale,

• FτI (hs
τI

;r I ) = fKτI
−rI (τI ), and

• Pt (hs
τI

;r I ) = pk (t ) and Ft (hs
τI

;r I )−Ft−(hs
τI

;r I ) = fk (t ) for every t ∈ (τI ,1], where k = KτI −r I −

Ft−(hs
τI

;r I ).

Hence, in a Markov strategy of the seller, pk (t ) denotes the regular price at time t when the

seller has k units, and fk−r (t ) denotes the number of units offered in the time-t flash sale if r ∈

{0, ...,k} units were sold in regular sales at time t . Similarly, a strategy of a buyer is Markov if, for

any buyer’s history hb
t , D(hb

t ) and A(hb
t ) depend only on (t ,Kt ) and Pt . We say that a strategy

profile is a Markov perfect equilibrium if it is a perfect Bayesian equilibrium (in pure strategies)

and the players’ strategies are Markov.

In our game, players have a significant amount of private information regarding previous prices

and accumulated buyers even in a Markov equilibrium. As buyers’ decisions depend on not only

the Markov state variable but also the regular price, the seller may use the price to signal his (en-

dogenous) private information to manipulate subsequent buyers’ purchasing and attention deci-

sions off the equilibrium path. To isolate our main focus on dynamic price discrimination from

technical complications driven by signaling considerations and the evolution of beliefs about the

number of accumulated buyers, we select Markov perfect equilibria where (i) there is no accumu-

lated buyer on the path, and (ii) after any buyer’s history, a buyer believes that there is no other

12Formally, a buyer’s strategy (A,D) is feasible if the following holds. Fix any path (Pt ,Kt )1
t=0 and arrival time b.

Define τb
1 = b and hb

b
= (b,Pb ,Kb). Recursively define τ j = A(hb

τb
j−1

) and hb

τb
j

= (hb

τb
j−1

, (τb
j
,Pτb

j
,Kτb

j
)) for all j > 1 as long

as τ j−1 6= +∞. Then, there exists some finite J such that τb
J
=+∞.

13This makes the analysis tractable, as other potentially payoff-relevant variables, such as the number of accumu-
lated buyers and the (higher-order) beliefs of each of players about them, depend on players’ private histories. Adding
them would prevent the equilibrium from having a recursive structure.
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accumulated buyer and that the seller’s continuation play coincides with the one specified by the

equilibrium strategy.14 In the remainder of the paper, we call these, simply, equilibria.

2.1 Discussion of the Assumptions

To study price dynamics in a revenue-management environment without commitment, we make

some rather unconventional modeling choices. These assumptions aim at giving tractability to

a problem that otherwise has been proven intractable, while keeping the main trade-offs of eco-

nomic interest. In particular, these assumptions allow us to prove that there exists a unique equi-

librium, to characterize it using dynamic programming techniques, and to show that it exhibits

price dynamics consistent with observed regularities. Before proceeding further, we discuss the

role of these assumptions.

Inattention frictions. We assume that being attentive is costly for accumulated buyers. As we

explain in the Introduction, this is a simple modeling device to lower the buyers’ willingness to

monitor the price, and therefore it limits the ability of the seller to influence the beliefs through

deviations. It is necessary for making the model tractable, and it captures the observation that

buyers check the price only occasionally. We also assume that buyers observe the regular offer

at their arrival time for free. This assumption ensures that some goods are sold through regular

offers in equilibrium, while the seller has a limited ability to manipulate the buyers’ beliefs. In

Section 4.2, we discuss some alternative ways to model buyers’ attentiveness and argue that our

main results are preserved.

Flash sales. Low-price flash sales are accessible to both accumulated buyers and shoppers in a

broader market, while regular sales are accessible only to attentive buyers. This preserves the

standard dynamic pricing trade-off of the seller, namely, sell fast at a low price, or slowly at a high

price. Also, as an accumulated buyer can wait for and obtain a good in a flash sale, the seller is

unable to fully extract surplus from buyers, making the dynamic price discrimination problem

non-trivial.

We make a number of assumptions to facilitate the analysis. First, we assume that at each time

t , the seller’s decision on the number of goods offered in a flash sale depends on the number of

regular sales at time t . Therefore, the seller is able to immediately respond to a buyer’s purchase

14A rationale for this refinement of the buyer’s off-the-path belief is that she interprets each observed deviating
regular price as a “tremble” and the price is on the equilibrium path for the rest of the time. Since a buyer can pay at-
tention for at most a zero-measure set of times, these trembles do not induce more accumulated buyers with positive
probability. Our refinement is in the spirit of the so-called “passive beliefs” introduced by Hart and Tirole (1990). See
McAfee and Schwartz (1994) and Horn and Wolinsky (1988) for its use in applications.
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without a lag. This assumption implies that, in any strategy profile, when a buyer is deciding

whether to accept a regular price, the time of the “next” flash sale is always well defined. The

times of future flash sales are required to define the buyer’s continuation payoff by rejecting the

regular price in our continuous time model.

Second, we assume that, at each flash-sale time, an accumulated buyer observes the flash-sale

offer only if she obtains a good in it. It ensures that, off the path, no buyer obtains information

that allows her to make inferences about the number of accumulated buyers. This assumption,

together with the one that accumulation is unobservable, permits the existence of an equilibrium

where the payoff of the seller is independent of the previously accumulated buyers and the seller

conditions only on the current time and inventory to make pricing and flash-sale decision.

Third, we assume that when a flash-sale offer is posted, goods will be immediately allocated.15

This assumption simplifies the analysis, but our insight does not depend on this assumption. In

the working paper version (Dilme and Li 2018), we consider an alternative model where it takes

time to attract attention to flash-sale offers, and we show that our results are robust as flash-sale

offers draw attention sufficiently quickly. This is also related to the assumption that the broader

market is large and stationary enough to ensure that a seller can never exhaust the demand of flash

sales from shoppers. Incorporating a history-dependent population of low-value shoppers would

not only complicate the analysis without adding new insights, but also prevent the existence of

Markov equilibria.

We make two additional simplifying assumptions, which can be relaxed without undermining

our key results. We assume that consumers automatically accept a flash-sale offer. This assump-

tion is made for simplicity. As it is suboptimal for the seller to charge a regular price lower than vL ,

it would naturally be part of equilibrium behavior to accept such a low price even if buyers were

allowed to reject the offer. In addition, we assume that holding a flash sale is costless. Assuming

that offering such a deal involves a small cost c ′ ∈ (0, vL) would not qualitatively change our results

although it would give the seller less incentive to lower the price.16

15In practice, the deal alert can be email/text messages sent by third parties, such as Kayak or Orbitz in the airline
industry, or online real-time bidding (RTB) advertisements that facilitate the seller’s ability to target and track “win-
dow shoppers.” The time windows for these flash sale offers are typically very short compared to the length of the
transaction season. See Biyalogorsky et al. (2001) for a discussion of a similar result in a different setting. We thank a
referee for asking us to clarify this point.

16In a durable good setting, Öry (2017) argues that costly sales endow the seller with some commitment power and
avoid the well-known Coase conjecture as the equilibrium outcome.
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3 Analysis

We begin with a lemma that will simplify our analysis.

Lemma 1. In any equilibrium,

1. the seller posts, in any history, a regular price that makes an attentive buyer indifferent be-

tween accepting and rejecting it, and

2. if a buyer does not purchase a good at her arrival time, she never rechecks the regular price.

In equilibrium, an attentive buyer believes that there are no accumulated buyers. Also, she

expects that the seller and the buyers who arrive in the future will follow a Markov strategy. There-

fore, the continuation value she expects from rejecting the current regular offer depends only

on the current state (t ,k). Following the standard Diamond-paradox argument, the seller always

finds it optimal to post the regular price that an attentive (either accumulated or newly arrived)

buyer is indifferent between accepting and rejecting. This further implies that each buyer can

achieve her equilibrium payoff by rejecting all equilibrium regular offers and waiting to possibly

obtain a good in a flash sale. Then, rechecking is strictly suboptimal: it is costly and, after recheck-

ing, it is optimal for the buyer to reject the equilibrium offer.

Lemma 1 implies that, in any equilibrium, if a buyer is accumulated off the path, she does

not recheck the regular price. This generates three important observations. First, in equilibrium,

at each time, a regular price offer is observed and accepted only by arriving buyers. Since the

probability of two buyers arriving at the same instant is zero, the probability that two or more

buyers observe a given price offer at the same time is zero too. Thus, the competition between

buyers is inter-temporal rather than contemporaneous. Second, since accumulated buyers do

not recheck the price, a buyer who rejects the regular price at her arrival time will not take any

future regular offer; and thus she can obtain a good only in a future flash sale. Consequently,

when a buyer arrives, she trades off between purchasing the good at the current regular price and

waiting for a future flash sale. The possibility of obtaining a good in a future flash sale makes the

continuation value she expects from rejecting an offer non-trivial. Finally, the lemma also implies

that if a seller accumulates buyers off the path of play, his continuation payoff is independent

of the number of accumulated buyers. This is because such an accumulation is not observed by

other buyers, and accumulated buyers buy only in flash sales. As a result, by accumulating buyers,

the seller can neither extract surplus from them nor increase the future buyers’ willingness to pay.

Consequently, in any equilibrium, the continuation payoff of the seller depends on only the time

and the stock independently of the previous history.
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3.1 Single-Unit Case

We first analyze the case where the seller has only one good, which helps to develop some intuition

for the multi-unit model.

Proposition 1. Suppose that K =1. There is a unique equilibrium. In this equilibrium, at any time

t ∈ [0,1],

1. the regular price p1(t ) satisfies

vH −p1(t ) = e−λ(1−t )β(vH − vL) ; (1)

2. an attentive buyer accepts a regular price offer if and only if it is weakly below p1(t ), and never

rechecks if she rejects an offer; and

3. the number of units offered in the flash sale is f1(t ) = 0,∀t < 1, and f1(1) = 1.

Equilibrium timing of flash sales. Proposition 1 establishes that the seller holds a flash sale at

time t (i.e., f1(t ) = 1) if and only if t = 1. The “if” part of the claim is a consequence of the seller’s

inability to commit: if the unit has not yet been sold at the deadline, the seller prefers to obtain

some revenue vL > 0 by offering a last-minute deal. This lowers the ability of the seller to extract

rents from the buyers, as they know that they can wait until the deadline and obtain, with positive

probability, the good at a low price. Still, due to the inter-temporal competition between buyers

and the contemporaneous competition among buyers and shoppers at the deadline, the seller can

keep the regular price above vL . As a result, we obtain the “only if” part: the highest price accepted

by a buyer before the deadline is strictly higher than vL , and so it is optimal not to hold a flash sale

before the deadline. Because a flash sale occurs only at the deadline, the good is allocated to a

shopper only if no buyer arrives, making the allocation efficient. This will not be true in the multi-

unit case.

Equilibrium regular pricing. The equilibrium price smoothly declines over time. The intuition

is simple. The left-hand side of equation (1) represents a buyer’s payoff if she arrives at time t

and purchases the good at the equilibrium price p1(t ), while the right-hand side represents the

continuation value she expects from rejecting the offer. By Lemma 1, the equilibrium price p1(t )

makes her indifferent between making the purchase upon arrival and rejecting the offer and wait-

ing for the final flash sale. By waiting, she gets the good at the final flash sale only if (i) no other
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buyer arrives in [t ,1] and (ii) the good is assigned to her in the flash sale. The former event oc-

curs with probability e−λ(1−t ), which is increasing in t , and the probability of the latter event is β,

conditional on the former event. Intuitively, as time passes, the probability that more buyers will

arrive before the deadline shrinks, and so a buyer faces less competition and her reservation price

decreases. The gap between p1(1) = (1−β)vH +βvL and vL reflects the buyer’s willingness to avoid

competition with shoppers.

3.2 The Two-Unit Case

We now turn to the analysis of the multi-unit model. In this section, we focus on the case where the

seller has two units. This is the simplest case where we can discuss the trade-offs that determine

the timing of pre-deadline flash sales. In Section 3.3, we study the general model where the seller

has more than two units.

Proposition 2. Suppose that K = 2. There exists a unique equilibrium. There exists a t∗2 ∈ [0,1) such

that, in this equilibrium, at any t ∈ [0,1] and k ∈ {1,2},

1. the seller’s regular price pk (t ) satisfies (1) when k = 1 and, when k = 2,

vH−p2(t ) =







∫t∗2
t (vH−p1(s))e−λ(s−t )λds

+e−λ(t∗2 −t )
(

β(vH−vL)+(1−β)(vH−p1(t∗2 ))
)

if t ≤ t∗2 ,

β(vH − vL)+ (1−β)(vH −p1(t )) if t > t∗2 ;

(2)

2. an attentive buyer accepts a regular price offer at state (t ,k) if and only if it is weakly below

pk (t ), and never rechecks if she rejects an offer; and

3. the number of units offered in a flash sale is fk (t ) = 0 if t < t∗2 , fk (t ) = k −1 if t ∈ [t∗2 ,1), and

fk (t ) = k if t = 1.

Proposition 2 shows that the equilibrium is characterized by a cutoff time t∗2 . In equilibrium,

the seller holds no flash sale when t ∈ [0, t∗2 ). When t ∈ [t∗2 ,1), instead, the seller holds a flash sale

to ensure that his inventory size is not greater than one. That is, if Kt = 2 and no regular sale takes

place, he sells one unit at the flash-sale stage; otherwise he holds no flash sale. At the deadline,

the seller holds a flash sale for all remaining units. If the seller has k units at time t , the seller posts

the highest regular price pk (t ) such that if a buyer arrives she accepts the offer. In the remainder

of this section, we shed light on why Proposition 2 holds.
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Continuation play when Kt = 1. Given that buyers believe there is no accumulated buyer, the

continuation payoff a buyer expects from rejecting an offer depends on the history only through

the current time and inventory size. Also, the number of accumulated buyers does not affect the

seller’s continuation payoff: they obtain a good only in flash sales. As a result, both on and off the

equilibrium path, once one of the units is sold, the continuation play is characterized by Proposi-

tion 1.

Equilibrium regular pricing when Kt = 2. The right-hand side of equation (2) represents a buyer’s

continuation value if she decides not to accept the current offer. There are two cases to consider.

When t ≤ t∗2 , it has two terms. The first term corresponds to the event that one unit is sold at some

time t ′ ∈ [t , t∗2 ] (because another buyer arrives). In this case, the inventory becomes 1 after the

regular sale and therefore, by equation (1), her expected continuation payoff equals vH − p1(t ′).

The second term corresponds to the event that no buyer arrives in [t , t∗2 ]. In this case, the buyer

obtains the good at the time-t∗2 flash sale with probability β and, with probability 1−β, she does

not obtain a good and waits for the next flash sale. In the latter case, her continuation payoff

equals vH −p1(t∗2 ).

When t > t∗2 and Kt = 2, buyers expect an immediate flash sale. Thus, the continuation value

of a buyer is expressed in equation (2) as the sum of her payoff if she gets the good at the time-t

flash sale, vH − vL and her continuation payoff if she does not get it, vH −p1(t ). The regular price

p2(t ) is then equal to the highest price that a buyer is willing to accept at time t when the inventory

Kt = 2.

Equilibrium timing of flash sales. We now discuss how to obtain the equilibrium value of the

flash sale time for the first unit, t∗2 . First, we rule out that the seller holds a two-unit flash sale

before the deadline. To do so, fix some t < 1 and assume that Kt = 2. The payoff of the seller from

holding a two-unit flash sale at time t is 2vL . The seller has the option of holding a one-unit flash

sale at time t instead and obtaining a payoff equal to vL +Π1(t ), where

Π1(t ) ≡

∫1

t
λe−λ(t ′−t )p1(t ′)dt ′+e−(1−t )λvL (3)

is, by Proposition 1, the expected profit for the seller at time t if Kt = 1. Since Π1(t ) > vL for t < 1

(notice that p1(t ′) > vL for all t ′ ∈ [0,1]), holding a two-unit flash sale before the deadline is always

dominated by holding a one-unit flash sale. Hence, in equilibrium, if there is a flash sale before

the deadline, only one unit is offered in the sale.

We now determine the first time t∗2 where, if no regular sale has occurred before, the seller
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holds a flash sale. Assume that t∗2 > 0. We can compute the value of the seller from deviating

and holding a flash sale at t∗2 − ε, for some small ε > 0. If no buyer arrives in [t∗2 − ε, t∗2 ], which

happens with probability e−λε, the payoff of the seller is not affected by the deviation. If, instead,

exactly one buyer arrives in [t∗2 − ε, t∗2 ], which happens with probability ελe−λε, the seller’s gain

from deviating is

vL +p1(t∗2 )− (p2(t∗2 )+Π1(t∗2 ))+O(ε) (4)

as ε → 0. For small ε, the event where more than one buyer arrives in [t∗2 − ε, t∗2 ] happens with

probability O(ε2). Hence, the seller has no incentive to deviate from holding flash sales at t∗2 only

if expression (4) is weakly negative.

Since p1(1) > p2(1) and Π1(1) = vL , expression (4) is strictly positive when it is evaluated at

t∗2 = 1. Therefore, in any equilibrium, t∗2 < 1 and the seller offers one unit during the flash sale at

t∗2 if Kt∗2
= 2. We can then compute the seller’s gain from deviating by holding a flash sale at t∗2 +ε,

for some ε > 0, while charging the equilibrium regular price in [t∗2 , t∗2 +ε]. Again, the seller’s gain

from such a deviation is mostly determined by the event where one buyer arrives in [t∗2 , t∗2 + ε].

Also, by equation (2), p2(·) is continuous at t∗2 , and the gain from such a deviation in such an event

is exactly the negative of expression (4). Therefore, we conclude that in an equilibrium where

t∗2 ∈ (0,1), it must be that vL + p1(t∗2 )− (p2(t∗2 )+Π1(t∗2 )) is equal to 0, whereas it must be weakly

positive if t∗2 = 0. Using equation (2), we can replace p2(t∗2 ) in the previous equation and obtain

that

βvL + (1−β)p1(t∗2 )−Π1(t∗2 ) = 0, (5)

whenever t∗2 ∈ (0,1). In the proof of Proposition 2 we show that equation (5) has at most one

solution for t∗2 ∈ (0,1). If a solution exists, it corresponds to the value of t∗2 in Proposition 2. If,

instead, no solution exists, then t∗2 = 0 in equilibrium; that is, the seller holds a fire sale for one

unit at t = 0.

Note that since t∗2 < 1, the equilibrium allocation rule is inefficient: a unit is allocated to low-

value shoppers when it is still possible that multiple high-value buyers will arrive before the dead-

line.

3.3 The Multi-Unit Case

We now consider the general case, where K is an arbitrary natural number.
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Proposition 3. There exists a unique equilibrium. The equilibrium is characterized by a decreasing

sequence of threshold times (t∗
k

)K+1
k=1 satisfying that t∗1 = 1, t∗K+1 = 0, and t∗

k+1 < t∗
k

whenever t∗
k
> 0.

In this equilibrium, for each t ∈ [0,1] and k ∈ {1, ...,K },

1. the regular price pk (t ) satisfies

vH−pk (t ) =







∫t∗
k

t (vH−pk−1(s))e−λ(s−t )λds

+e−λ(t∗
k
−t )(β(vH−vL)+(1−β)(vH−pk−1(t∗

k
))

)

if t ≤ t∗
k

,

β(vH−vL)+ (1−β)(vH−pk−1(t )) if t > t∗
k

,

(6)

where we set p0(t ) = vH for convenience;

2. an attentive buyer accepts a regular price offer at state (t ,k) if and only if it is weakly below

pk (t ), and never rechecks if she rejects an offer; and

3. the number of units offered in the flash sale is fk (t )=k−k̄ if k> k̄ and fk (t )=0 if k ≤ k̄, where

k̄ is such that t ∈[t∗
k̄+1

, t∗
k̄

).

Equilibrium timing of flash sales. The flash-sale strategy of the seller defines a time-dependent

“ceiling” for his inventory. It specifies the upper bound on the inventory size, denoted by K̄t , that

the seller is willing to keep at time t . It is determined by finding the value k̄ such that t ∈ [t∗
k̄+1

, t∗
k̄

).

To see this, suppose that at time t , r ∈ {0, ...,Kt −1} units are sold at the regular price, and so Kt − r

units remain at the flash-sale stage. The seller then checks whether Kt − r is above K̄t . If so, he

holds a flash sale for Kt − r − K̄t units to ensure that only K̄t units are left afterwards; otherwise, if

Kt − r ≤ K̄t , the seller does not hold a flash sale. Figure 2 plots K̄t for t ∈ [0,1] in an example.

The ceiling of the inventory K̄t is decreasing in time. This is true because, as the time gets

close to the deadline, the expected number of future arrivals decreases. Furthermore, Proposition

3 establishes that t∗
k+1 < t∗

k
whenever t∗

k
> 0, implying that K̄t decreases in steps of size 1. The logic

behind this result is similar to the intuition provided above for the result that t∗2 < t∗1 = 1. Indeed,

suppose that t∗
k+1 = t∗

k
> 0 for some k > 1; that is, the size of the jump down from the ceiling K̄t at

time t = t∗
k

is 2. In this case, the regular price at time t∗
k
−ε, for ε> 0 small, would be

pk+1(t∗k −ε) =β2(vH − vL)+ (1−β2)(vH −pk−1(t∗k ))+O(ε)

<β(vH − vL)+ (1−β)(vH −pk−1(t∗k ))+O(ε)

= pk (t∗k −ε),
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Figure 2: The step function K̄t is the time-dependent ceiling for the seller’s inventory. The seller does not hold a
flash sale in states in the white area (including states on the boundary between the white and gray areas), such as at
point A, whereas he holds an immediate flash sale in states in the shadowed area, such as at point B .

where, as before, β2 ≡β+(1−β)β is the probability that an accumulated buyer obtains a good at a

two-unit flash sale if there is no other accumulated buyer. Thus, similar to what we argued to show

that t∗2 < 1, the seller is better off holding a flash sale for one unit at time t∗
k
−ε than following the

equilibrium strategy. Intuitively, the seller can only discretely adjust his inventory by holding flash

sales, while his incentive of doing so is determined by the distribution of arrivals in the remaining

time, which changes continuously over time. Hence, the seller finds it optimal to lower the ceiling

for his inventory unit by unit.

The equilibrium flash-sale strategy implies that, on the path of play, a multi-unit flash sale

takes place only at t = 0 in the case where K > K̄0 +1. After that, the seller still holds flash sales

over time when realized demand is low, but only one unit is offered in each flash sale.

Equilibrium regular pricing. Proposition 3 establishes that, in a state (t ,k) with t ≤ t∗
k

and k ≥ 2,

the seller offers a regular price pk (t ) that makes buyers indifferent whether to accept it. He does

so until either there is a regular sale or t∗
k

is reached and he holds a flash sale for one unit. As in

the two-unit case, pk (t ) coincides with the buyer’s reservation price, given by equation (6).

If, instead, t∗
k ′+1 ≤ t < t∗

k ′ for some k ′ < k, then the seller immediately holds a flash sale for k−k ′
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Figure 3: (a) depicts pK (·) in [0, t∗K ] for different values of K . (b) depicts a possible realization of the price path, where
the dots denote transaction prices.

units. As a result, in this case, the following equation holds:

vH −pk (t ) =βk−k ′(vH − vL)+ (1−βk−k ′)(vH −pk ′(t )) , (7)

where βk−k ′ denotes the probability that a given buyer in the waiting state obtains the good at

time t if k−k ′ goods are offered and she is the only buyer in the waiting state at time t . Notice that

βk−k ′ is increasing in both β and k−k ′, for all k−k ′ ≥ 1. When k−k ′ = 1, equation (7) takes exactly

the same form as the one in (6). When k −k ′ > 1, equation (7) also applies when, while keeping k ′

the same, k is replaced by k−1, and so vH −pk (t ) =β(vH −vL)+(1−β)(vH −pk−1(t )) and (6) holds.

Figure 3 provides some simulated price paths. Conditional on the inventory size, the price

declines as the deadline approaches. However, transactions occur over time, and each transaction

triggers an uptick in the price. As a result, the price goes up or down depending on the arrival of

buyers.

3.4 The Role of the Competition between Consumers

Our model has two kinds of consumers: the (high-value) buyers and the (low-value) shoppers. The

equilibrium price dynamics is affected by the degree of competition between consumers, which

is determined by two parameters in our model: the arrival rate of buyers, λ, and the intensity

of the competition in a flash sale, β. We devote this section to investigating how the change in
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the competition between consumers affects the timing of flash sales. These comparative statics

exercises offer empirical testable implications.17

The variation of λ. The following result illustrates the effect that changes in λ have on the timing

of flash sales.

Proposition 4. The flash-sale time t∗
k

increases in λ for every k = 1, ...,K .

To understand the logic behind Proposition 4, notice that in our model the arrival rate of buy-

ers sets the pace of the game: at a given instant t , the future arrivals from t to 1 are distributed

according to a Poisson distribution with parameter (1− t )λ. Thus, for a larger λ, the seller expects

that more buyers will arrive in the future after any given time, and so he has a lower incentive to

hold a flash sale, and flash sales are closer to the deadline.18

Given Proposition 4, the following implication is immediate.

Corollary 1. The expected number of flash sales is decreasing in λ.

The result is straightforward since, when λ is high, not only does the seller delay flash sales but

also more buyers arrive in expectation.

The variation of β. To see the role of β on the equilibrium outcome, we analyze the case where β

is either large or small. First, we consider the case where β is close to 1. In this case where, off the

path, there is one accumulated buyer and the seller holds a flash sale, the buyer obtains a good

with high probability. The following result shows that the seller sells most of the goods through an

initial flash sale due to his inability to commit to future high prices:

Proposition 5. There exists a unique β̄ ∈ (0,1) such that t∗
k
= 0 for all k > 1 if and only if β ∈ [β̄,1).

Furthermore, β̄ is increasing in λ.

Proposition 5 establishes that, when β ≥ β̄, the seller holds a flash sale at time 0 for K − 1

units and keeps only one unit after that. That is, when buyers are very likely to obtain a good in

a flash sale, the seller can generate only inter-temporal competition for one unit in equilibrium.

To obtain further intuition, assume by way of contradiction that t∗2 > 0 in the extreme case where

β= 1. Consider a history such that Kt∗2 −ε
= 2 for some small and positive ε. In this case, the large

17Aryal et al. (2018) document the passenger heterogeneity and stochastic demand within and across flights in the
airline industry.

18A similar argument implies that when the arrival rate is a time-dependent function λ(·), our equilibrium out-
come remains qualitatively the same. The time variable can be “stretched” so that, under the normalized time, the
arrival rate is constant.
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value of β lowers the willingness to pay of a buyer who is attentive at t∗2 −ε: she knows that if she

rejects the offer, she is very likely to obtain the good in a flash sale as the probability that another

buyer arrives in (t∗2 −ε, t∗2 ] is O(ε). Therefore, p2(t∗2 −ε) = vL+O(ε), which implies that, conditional

on one buyer arriving in (t∗2 −ε, t∗2 ], the payoff of the seller is given by

vL +e−λ(1−t∗2 )
E
[

p1(t )
∣
∣ t > t∗2

]

+
(

1−e−λ(1−t∗2 ))vL +O(ε) (8)

as ε→ 0, where the expectation is over time t when the next buyer arrives. The seller can instead

hold a flash sale at t∗2 − ε. In this case, if a buyer arrives in (t∗2 − ε, t∗2 ], the payoff of the seller is

vL + p1(t∗2 )+O(ε), which is higher than the payoff in (8) for ε small enough, given that p1(·) is

decreasing. Therefore, conditional on one buyer arriving in (t∗2 −ε, t∗2 ], the seller prefers holding a

flash sale at t∗2 −ε rather than at t∗2 . If, instead, no buyer arrives in (t∗2 −ε, t∗2 ], the deviation does

not change the seller’s payoff. Finally, the event where two or more buyers arrive in (t∗2 −ε, t∗2 ] is

highly unlikely (its probability is O(ε2)). Then, the expected gain from deviating is positive, which

indicates that there is no equilibrium with t∗2 > 0.

The value of β̄ is found by requiring that (5) hold when t∗2 = 0 and β= β̄. One can show that t∗2

is decreasing in β, and so, for β > β̄, t∗
k
= 0 for all k ≥ 2. Intuitively, a higher β increases a buyer’s

payoff from waiting for the next flash sale, resulting in a lower equilibrium regular price for each

state (t ,k). Furthermore, it increases the price difference between holding one and two units at

each time t , p1(t )− p2(t ), and therefore strengthens the seller’s incentive to hold a flash sale, as

we discussed in Section 3.2. Notice that p1(t )−p2(t ) is decreasing in t , and so a larger value of β

implies that, in equilibrium, the seller holds the first flash sale earlier; that is, t∗2 decreases in β.

Using Proposition 4 and that t∗2 is decreasing in β, it is easy to see that β̄ is increasing in λ.

In the limit as β→ 0, the probability that a buyer obtains a good in a flash sale vanishes, and

so the buyer’s willingness to pay increases to vH . As a result, buyers behave like myopic players as

in Gallego and Van Ryzin (1994), and the seller’s profit achieves its first-best value.

Proposition 6. As β→ 0, t∗
k
→ 1 and pk (t ) → vH for any k = 1, ...,K and t ∈ [0,1].

The parameter β captures the likelihood that accumulated buyers notice a flash sale. In prac-

tice, it is determined by multiple factors. For example, it is likely to depend on the effective de-

mand from people who consider purchasing the good only if it is cheap enough. In the airline

example, the demand from the broader market may be constituted, in part, by the leisure passen-

gers who search for low-price tickets for vacations, and so one can expect β to be lower during the

vacation season. The value of β is also likely to depend on the ability (technology) of sellers or
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third-party agencies to attract accumulated buyers’ attention. Nowadays, it has become easier for

airlines and price aggregators—like Expedia, Kayak or Orbitz—to track accumulated buyers (win-

dow shoppers) by using “cookies,” that enable them to send deal-alert emails or text messages,

or bid on personalized online advertisements in real time. Although the advance of information

technologies gives the airlines and third parties more flexibility to distinguish between and price

discriminate against consumers, it may have an ambiguous effect on β. On the one hand, the

availability of big data enables third-party agencies to more precisely tailor and lure back high-

value buyers and prioritize their purchases to build long-run customer capital, which increases

β.19 On the other hand, it makes it easier for the seller to target shoppers separately from buyers

by, for example, holding flash sales at inconvenient times for buyers. In addition, the develop-

ment of information technologies also makes it easier for low-value shoppers to react to flash

sales, which may decrease β. The fact that, by Proposition 6, the seller benefits from low values of

β rationalizes the observation that in the airline industry deal-alert services are provided often by

third parties instead of airlines, even though the airline could do so at a lower cost.

4 Further Discussion

This section discusses some possible extensions of our model.

4.1 Multiple Types

We assume that buyers have the same valuation for the good, vH , so that they only differ in their

private histories. This assumption ensures that buyers purchase immediately upon arrival in equi-

librium, which is necessary to keep (t ,Kt ) as the only state variable. The existence of equilibria

without the accumulation of buyers result is robust to perturbing the heterogeneity in buyers’

value: as long as the valuations of the buyers are not too dispersed, there is a Markov equilibrium

where the regular price is immediately accepted by all types of buyers. The following result states

that, when the distribution of valuations is uniform, as long as the buyers’ valuation is bounded

away from vL and is not too sparse, there are equilibria as described in Section 3.

19Öry (2017) assumes that it is costly to attract accumulated buyers’ attention and argues that such a cost has been
lowered with the development of Internet. In this sense, the cost of attracting accumulated buyers in Öry (2017) has
a similar flavor to the 1−β in our model: they both capture the inefficiency that endows the seller some commitment
power. Relatedly, Dana and Orlov (2014) find that airline capacity utilization has dramatically increased since 1993,
and they argue that the popularization of Internet has much to do with it.
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Proposition 7. Fix vH > vL . There exists some vH
∗
> vH such that if the types of buyers are uni-

formly distributed in [vH , vH ] for vH ∈ (vH , vH
∗) then there is an equilibrium without accumulation

as described in Proposition 3.

The logic behind Proposition 7 is the following. In a static model where a monopolist makes a

take-it-or-leave-it offer to a buyer, if the buyer’s valuation is uniformly distributed in [vH , vH ] and

vH ≤ 2vH , it is optimal for the seller to charge a price equal to vH . Indeed, increasing the price

above vH generates a decrease in the probability of trade that is large enough that the monopolist

prefers to ensure trade by setting the price equal to vH . The intuition is similar in our dynamic

model: increasing the price above the reservation price of the buyers with the lowest valuation

effectively implies losing them as potential buyers, since they will not recheck the price in the

future. Even though increasing the price increases the revenue if a buyer with a high valuation

arrives, the negative effect dominates the positive one, as in the static model. This result can be

generalized to distributions of types with a support bounded away from vL and with a probability

density function bounded away from 0.

A higher buyer heterogeneity would prevent the existence of Markov equilibria, making the

model intractable. In this case, all equilibria would feature a history-dependent (and payoff-

relevant), stochastic stock of accumulated buyers, and so the buyers’ strategies would depend

on their private histories. However, we conjecture that the key incentive of our model remains

in a more general setup. Since, in general, one can expect the price to be low when the stock of

goods is high, the seller has the incentive to further lower the price (or hold a flash sale) after a low

realized demand to generate scarcity and increase the future buyers’ willingness to pay. The lack

of commitment of the seller is then likely to accelerate the price decay at some isolated times, and

generate price dynamics similar to the ones in our model.

4.2 Attention Cost

We assume that buyers observe the regular offer at their arrival time for free, while it is costly to

recheck it afterwards. This assumption simplifies our analysis by ensuring that some goods are

sold through regular offers in equilibrium, while the seller has a limited ability to manipulate the

buyers’ beliefs. Other assumptions give similar results. For example, one can assume that the at-

tention cost is zero, while keeping the assumption that buyers can choose to sample the regular

price offer for a finite but arbitrarily large number of times. It is easy to verify that our equilib-

rium remains an equilibrium under this assumption. The reason is that, in our equilibrium, the

buyers’ gain from checking the price and stock is zero: independently of what she observes, she
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is indifferent between accepting the offer and rejecting it. Thus, fixing the seller’s strategy, not

rechecking the price is optimal for a buyer even if paying attention is costless. Once Lemma 1 is

proven to hold, it is clear that the rest of the equilibrium analysis of the new model is identical to

the equilibrium analysis in our base model.

Alternatively, one could assume that, once a buyer arrives, she is not automatically attentive at

her arrival time. She can choose her first (free) attention time, but her subsequent attention times

are chosen at a cost. Also, assume that during a flash sale, a good is assigned to an accumulated

buyer with positive probability even if she has not used her first free attention time yet. In this

model, one can show that there is an equilibrium where buyers choose their free opportunity to

pay attention at their arrival time, and the equilibrium regular price and the timing of the flash

sales are identical to the ones in our model. Intuitively, in our equilibrium, each buyer takes both

the future arrival of other buyers and the dynamics of the regular price into account, making her

indifferent to sampling the price at any moment, and thus she has no incentive to delay the first

(free) sample upon her arrival. Notice that the previous observation does not imply that in our

baseline model a buyer’ expected payoff is independent of her any arrival time. Indeed, a buyer

who arrives later in the game cannot get the good in some early flash sales in which she could

otherwise obtain positive surplus.20

4.3 Observability of Inventory

We assume that the remaining inventory Kt is observable. This assumption is necessary to avoid

a signaling problem: if the seller has payoff-relevant private information, he can use prices to

signal this information, and this results in the standard multiplicity of equilibria and off-the-

equilibrium-path beliefs. It is worthwhile to point out, however, that a simple unraveling argu-

ment shows that if it is costless and verifiable, the seller always reveals the remaining stock.

In practice, buyers may observe imperfect but informative signals of the inventory in some

markets, providing the seller with some incentive to hold a flash sale. For example, in the air-

line industry, airlines sometimes report online the number of remaining available seats. Even

though the advertised number of available seats may not coincide with the actual inventory (air-

lines sometimes block some seats for elite passengers), it is an informative proxy. Escobari (2012)

uses the advertised number of available seats as a proxy for the real inventory and empirically

studies the price patterns in the airline industry. He finds that the price significantly increases as

20For example, it is easy to see that, in the case K = 2, the equilibrium expected payoff of a buyer arriving in [0, t∗2 ]
is independent of the particular arrival time t ∈ [0, t∗2 ], and this is also true for a buyer arriving in (t∗2 ,1]. Nevertheless,
a buyer obtains a strictly higher equilibrium expected payoff if she arrives in [0, t∗2 ] than if she arrives in (t∗2 ,1].
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the number of available seats decreases. This suggests that the number of available seats is a sig-

nal of inventory that is interpreted as credible. Williams (2018) analyzes a new airline dataset that

distinguishes between blocked and occupied seats. He argues that seat maps observed by buyers

are a useful proxy for bookings, even though they overstate the latter by approximately 10%.

4.4 Creating Scarcity by Discarding Inventory

In our model, the seller sometimes finds it optimal to create scarcity by holding flash sales. Hold-

ing a flash sale is profitable for the seller because it reduces the available stock and allows him

to increase the price in the future. Nevertheless, because the seller cannot commit to the timing

of the flash sales and buyers may obtain goods through them, the prospect of future flash sales

lowers the reservation value of the buyers and also their willingness to pay. Thus, after some his-

tories, the seller would like to commit to not selling some of the units (or, equivalently, discarding

them) instead of holding flash sales, which would allow him to effectively lower the stock without

lowering the willingness to pay of the current buyers.

Our results do not change if the seller has access to other mechanisms, in addition to flash

sales, that allow him to lower the stock of goods as long as they generate a lower revenue than

flash sales do. For example, suppose that the seller can reduce the stock by giving goods away in

special promotions and obtaining zero revenue. Given that the seller lacks commitment power

and has access to a market of shoppers, if there were an equilibrium where, after some histories,

the seller would give some goods away, he would rather hold flash sales, as this would give him a

higher revenue.

4.5 Returned Goods and Overbooking

In our model, transactions are irreversible: the inventory Kt weakly declines over time. In reality,

however, some mechanisms make the stock of goods occasionally increase. One such possibility

is when buyers regret buying the good after the purchase and ask to return it. Imagine that, in

our model, returns occur with positive probability and, in such an event, Kt increases. In this

case, as long as the probability of a good being returned is independent of the value that its buyer

attached to it (at the purchase time), it is easy to accommodate our equilibrium construction to

the possibility of returning goods. The reason is that, in this case, (t ,Kt ) remains the state variable

of a Markov equilibrium and the equilibrium flash-sale timing is determined by the corresponding

ceiling function K̄t : if a unit is returned at time t and the inventory becomes higher than K̄t , the

seller immediately holds a flash sale to get rid of the extra unit; otherwise, the seller holds no flash
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sale at t and adjusts the regular price accordingly. Note that the possibility of these stock increases

(and corresponding random flash sales) lowers the buyers’ willingness to pay; as a result, holding

flash sales is less effective to enhance the future regular price.

Similarly, the inventory Kt can go up if the seller was allowed to overbook and buy back sold

goods. In this case, the seller may endogenously buy back sold goods from low-value buyers and

sell it to high-value buyers. See Ely et al. (2017) for a discussion of this topic. Obviously, in this

case, the flash sale is less effective in increasing the buyers’ willingness to pay, but our mechanism

remains as long as such reallocation is sufficiently costly.

4.6 On Commitment and Welfare

The outcome of the unique equilibrium described in Proposition 3 is inefficient when K > 1. In-

deed, since the seller holds flash sales before the deadline with positive probability, some goods

may be allocated to shoppers early in the game. This may result in rationing at later times, as it

may be that more buyers arrive than the number of units left. Proposition 5 illustrates that such

inefficiency is extreme when β is large: in this case, K − 1 goods are purchased by (low-value)

shoppers, rather than arriving (high-value) buyers.21

The (misallocation) inefficiency is mainly due to the lack of commitment by the seller. In our

model, holding flash sales is the only credible way to reduce the buyers’ continuation value and to

raise their current willingness to pay. If the seller were allowed to publicly commit to a selling strat-

egy, as in the so-called Stackelberg game, he would have more flexibility to obtain a higher surplus

from trade (e.g., discarding goods or committing to holding flash sales only at the deadline) and,

therefore, he would hold flash sales less frequently.22 Characterizing the optimal Stackelberg pric-

ing strategy of the seller is beyond the scope of this paper. Instead, we discuss an example of a

strategy where the seller holds flash sales only at the deadline, leading to an efficient allocation.

The example illustrates that, under certain conditions, the seller is better off committing to effi-

ciently allocating goods to low-value shoppers only at the deadline.

Consider the case K = 2. Suppose also that the seller commits to holding flash sales only at

the deadline (for all remaining units) and to offering a regular price that makes attentive buyers

indifferent whether to buy a good. Suppose that buyers buy upon arrival. Lemma 1 still holds: if

a buyer rejects the offer, she obtains a good only in a flash sale. When Kt = 1, the regular price is

21As Dana (1998) points out, misallocation across consumers is typical when prices are rigid. Our result indicates
that it can take place even if the price is optimized by the seller at each moment.

22This is in line with the prediction of Board and Skrzypacz (2016). When the seller can commit to a more general
dynamic mechanism, he has no incentive to hide his inventory.
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given by equation (1). When Kt = 2, then the regular price p̄2(t ) satisfies

vH − p̄2(t ) = e−λ(1−t )β2(vH − vL)
︸ ︷︷ ︸

no buyer arrives

+e−λ(1−t )λ(1− t )β(vH − vL)
︸ ︷︷ ︸

one buyer arrives

, (9)

where the right-hand side of the previous equation represents the continuation value a buyer ex-

pects if she rejects the regular offer. If no other buyer arrives before the deadline, the seller holds

a two-unit flash sale at the deadline, and the accumulated buyer gets a good with probability

β2 ≡ β+ (1−β)β. If exactly one buyer arrives in [t ,1], the seller holds a one-unit flash sale at the

deadline, and the accumulated buyer gets a good with probability β. If multiple buyers arrive,

the accumulated buyer does not obtain a good. Therefore, at time t , the buyer is willing to ac-

cept a regular price p if and only if p ≤ p̄2(t ). One can show that by following this strategy, the

seller’s expected profit at t = 0 is strictly greater than his equilibrium payoff as long as λ is not too

small. Indeed, in the equilibrium described in Proposition 2, before t∗2 , the price that the seller

can charge decreases as t∗2 approaches. By postponing the flash sale to the deadline, for each t

when Kt = 2, the seller increases the buyers’ reservation price from p2(t ) to p̄2(t ), without affect-

ing the continuation equilibrium when Kt = 1. Nevertheless, it is not the case that postponing

the flash sale generates a higher payoff to the seller in all events. Consider, for example, the event

where exactly one buyer arrives, and she arrives at a time t ∈ (t∗2 ,1]. When flash sales occur only

at the deadline, the seller’s payoff is p̄2(t )+ vL , which is strictly lower than the equilibrium pay-

off, vL +p1(t ). Thus, a later flash sale increases the willingness to pay of the buyers when Kt = 2,

but lowers the probability that a buyer purchases a good when Kt = 1. When λ is not small, the

high likelihood that multiple buyers arrive early in the game favors holding a flash sale only at the

deadline. Hence, when the seller has some commitment power, he may find it attractive to delay

or even abandon flash sales. In doing so, he can charge a higher regular price when t is small and

Kt = 2.
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A Proofs

A.1 Proof of Results prior to Section 3.2

Proof of Lemma 1. The proof has three steps.

Step 1. We show that the continuation value that an attentive buyer expects from rejecting a regu-

lar price at some time t depends only on t and the remaining stock (and not on his private history

or the particular on- or off-the-path regular price at the current time). To see this note first that

in an equilibrium, a buyer believes that there is no accumulation regardless of her private history.

A buyer who is attentive at time t assigns a probability of zero to the event that another (newly

arrived or accumulated) buyer observes the price offer. Hence, the buyer believes that if she re-

jects the offer, the probability that there is no transaction at the regular price at time t is 1. Also,

she expects the seller’s continuation strategy to be Markov and hence independent of the current

regular price. Therefore, at any state (t ,k), the continuation value that an attentive buyer expects

from rejecting the regular offer depends on her history only through (t ,k), and it is denoted by

uk (t ).

Step 2. We show that in any equilibrium, the equilibrium price pk (t ) at each state (t ,k) makes

buyers indifferent whether to accept it or not; that is, vH −pk (t ) = uk (t ). Indeed, offering a price

strictly lower than vH −uk (t ) is clearly suboptimal, since the seller can slightly increase such a

price while guaranteeing that it will be accepted. Conversely, if the equilibrium price is higher than

pk (t ), then buyers will reject the offer for sure; however, this is inconsistent with the equilibrium

condition that buyers believe that there is no accumulation.

Step 3. We show that in any equilibrium, it is strictly suboptimal for an accumulated buyer to

recheck the price. Assume to the contrary that there is an equilibrium where off the path, a buyer

that is accumulated pays attention at some future time. Consider then a deviation consisting of

rejecting all equilibrium offers while following the equilibrium strategy regarding the recheck-

ing times. Under such a strategy, the buyer never buys a good through a regular offer, and she

can obtain a good only in flash sales. Also, since she is indifferent between accepting and reject-

ing equilibrium offers, this strategy gives the buyer the same payoff as the equilibrium strategy.

Now, consider a third strategy where an accumulated buyer never pays attention. This strategy

dominates the second strategy since the buyer saves the attention cost while keeping the same

probability of getting the good in a flash sale. Consequently, an accumulated buyer finds it strictly

suboptimal to pay attention in any equilibrium.
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Proof of Proposition 1. Note first that in any equilibrium f1(1) = 1; that is, the seller holds a flash

sale to sell the remaining unit at the deadline. This gives him a payoff of vL instead of a payoff of

0.

Fix an equilibrium and a time t , let τ1(t ) ∈ [t ,1] be the next time when a flash sale happens

according to the equilibrium strategy. Formally,

τ1(t ) = inf{t ′′ ∈ [t ,1]| f1(t ′′) = 1}.

Note that τ1(t ′) = τ1(t ) for all t ′ ∈ [t ,τ1(t )]. This is the case because if τ1(t ) > t , then, by the

definition of τ1(t ), f1(t ′′) = 0 for all t ′′ ∈ [t ,τ1(t )). Hence, for any t ′ ∈ [t ,τ1(t )), f1(t ′′) = 0 for all

t ′′ ∈ [t ′,τ1(t )).

By Lemma 1, the equilibrium regular price at time t , denoted by p1(t ;τ1(t )), is such that the

payoff a buyer obtains from purchasing is equal to the payoff she expects from rejecting the equi-

librium price; that is,

vH −p1(t ;τ1(t )) = e−λ(τ1(t )−t )β(vH − vL) .

The first argument of p1(·; ·) corresponds to the calendar time, and the second one corresponds

to the time a buyer expects the next flash sale to happen if there is no regular sale before then. If

a buyer rejects a regular price at time t , she obtains the good with probability β if no other buyer

arrives in (t ,τ(t )]. Note that p1(·;τ1(t )) is increasing in [t ,τ1(t )]. Therefore,

p1(t ;τ1(t )) ≥ p1(τ1(t );τ1(t )) = (1−β)vH +βvL > vL .

The corresponding payoff of the seller at time t is

Π1(t ;τ1(t )) =

buyers arrive in[t ,τ1(t )]
︷ ︸︸ ︷
∫τ1(t )

t
e−λ(t ′−t )p1(t ′;τ1(t ))λdt +

no buyer arrives
︷ ︸︸ ︷

e−λ(τ1(t )−t )vL .

Now we prove that there is no equilibrium where τ1(t ) < 1 for some t < 1. Suppose to the

contrary that there exists such an equilibrium. This implies that the payoff of the seller at time

τ1(t ) is Π1(τ1(t );τ1(t )) = vL . If the seller instead deviates by charging the price p1(t ′;τ1(t ′)) > vL

for all t ′ ≥ t (which is accepted by arriving buyers) and holding a flash sale only at the deadline (if
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no buyer has arrived), he obtains

∫1

t
e−λ(t ′−t )p1(t ′;τ1(t ′))λdt ′+e−λ(1−t )vL > vL .

This is a contradiction. Therefore, in any equilibrium, it must hold that τ1(t ) = 1, for all t ∈ [0,1],

and that p1(t ) = p1(t ;1). Therefore, the regular price satisfies equation (1).

We can now verify that no player has a profitable deviation in the candidate equilibrium where

τ1(t ) = 1, for all t . Buyers have no incentive to deviate since the equilibrium regular price makes

them indifferent whether to reject the offer. Consider the seller’s incentive to deviate. Fix a time

t . Consider the deviation for the seller consisting of setting some t1 ∈ [t ,1) for the next flash sale

and charging some price p̃1(t ′) at each time t ′ ∈ [t ,1]. Let B be the set of times t ′ ∈ [t , t1] where

p̃1(t ) ≤ p1(t ); then buyers accept the price at time t ′ if and only if t ′ ∈ B . Therefore, the seller’s

continuation payoff from the deviation is given by

Π̃t ≡

∫t1

t
e−

∫t ′

t λIB (t ′′)dt ′′ p̃1(t ′)IB (t ′)λdt +e−λµ(B)vL ,

where IB (·) is the indicator function and µ is the Lebesgue measure in R. Since p1(·) is decreasing

and strictly higher than vL , it is clear that the seller is better off setting p̃1(t ) = p1(t ) for all t and

t1 = 1. More formally,

Π̃t ≤

∫t1

t
e−

∫t ′

t λIB (t ′′)dt ′′p1(t ′)IB (t ′)λdt +e−λµ(B)vL

≤

∫t+µ(B)

t
e−λ(t ′−t )p1(t ′)λdt +e−λµ(B)vL

≤

∫1

t
e−λ(t ′−t )p1(t ′)λdt +e−λ(1−t )vL =Π1(t ;1) ,

where Π1(t ;1) ≡Π1(t ) is the seller’s equilibrium payoff at time t . Therefore, the seller does not gain

from the deviation.

A.2 Proof of Results in Section 3.2

Proof of Proposition 2. We first obtain some necessary conditions satisfied by any equilibrium.

Then we verify that these conditions are satisfied by a unique equilibrium. Notice that, in any

equilibrium, if at some time t ∈ [0,1], Kt = 1, then the continuation play is given by Proposition

1. Indeed, given our focus on equilibria where a buyer believes that there is no accumulation, the
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reservation value of a buyer arriving at t and observing Kt = 1 satisfies equation (1) and, therefore,

the seller finds it optimal to charge a regular price p1(t ) and to set f1(t ) = 0 for all t < 1 and f1(1) =

1.

Fix an equilibrium. For each time t we use τ2(t ) ≥ t to denote the next time when a flash sale

occurs if Kt = 2 and no regular sale takes place. That is,

τ2(t ) ≡ inf{t ′ ≥ t | f2(t ′) > 0} ∈ [t ,1]∪ {∞},

where we use the convention inf;=∞. Notice that, as we argued for τ1 in the proof of Proposition

1, if τ2(t ) > t and t ′ ∈ [t ,τ2(t )], then τ2(t ′) = inf{t ′′ ≥ t ′| f2(t ′′) > 0} = τ2(t ).

We divide the proof into two steps. The first step sets some properties that τ2(·) must satisfy

in equilibrium, and the second step establishes that (i) there is a unique τ2 which satisfies these

properties, and (ii) there is a unique equilibrium.

Step 1. In any equilibrium, the seller holds a flash sale for two units only at the deadline, i.e., f2(t ) =

2 if and only if t = 1.

Proof. At time t = 1 it is clear that the seller holds a flash sale for all remaining units, i.e., f2(1) = 2.

Assume by way of contradiction that f2(t ) = 2 for some t < 1. Notice that if Kt = 2, the payoff

of the seller at t is 2vL . If the seller deviates and holds a flash sale for only one unit, he obtains a

payoff of vL +Π1(t ) > 2vL where Π1 is given in equation (3), a contradiction.

Before proceeding, we introduce some notation. In any equilibrium, the continuation value a

buyer expects from rejecting the offer at state (t ,2) with t < 1 can be written in terms of the next

flash-sale time τ2(t ) ∈ [t ,1]. Indeed, if another buyer arrives at t ′ ∈ [t ,τ2(t )], then by equation (1),

the equilibrium continuation value of the buyer equals vH −p1(t ′) at time t ′, whereas if no buyer

arrives in [t ,τ2(t )], her expected equilibrium payoff at time τ2(t ) is

β(vH − vL)+ (1−β)(vH −p1(τ2(t ))) .

Thus, for each t ∈ [0,1] and t2 ∈ [t ,1], if the buyer expects the next flash sale to take place at t2, her

reservation price p2(t ; t2) which makes her indifferent whether or not to accept satisfies

vH−p2(t ; t2) =

one buyer arrives in [t , t2]
︷ ︸︸ ︷
∫t2

t
(vH−p1(t ′))e−λ(t ′−t )λdt ′+

no buyer arrives in [t , t2]
︷ ︸︸ ︷

e−λ(t2−t )(β(vH−vL)+(1−β)(vH−p1(t2))
)

. (10)
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Combining equations (1) and (10), we can write

p2(t ; t2) = vH −β(vH − vL)
(

e−λ(1−t )(1−β+λ(t2 − t ))+e−λ(t2−t )
)

(11)

for all t2 ∈ [0,1] and t ≤ t2. Notice that p2(·; t2) has a bounded slope and is continuous in t ∈ [0, t2].

In equilibrium, the buyer’s belief is consistent with the seller’s strategy, so p2(t ;τ2(t )) is the highest

price that the buyer is willing to accept at time t both on and off the path of play.

Similarly, the payoff of the seller at t can also be written in terms of τ2(t ). Indeed, for each

t ∈ [0,1] and t2 ∈ [t2,1] we define

Π2(t ; t2) ≡

one buyer arrives in [t , t2]
︷ ︸︸ ︷
∫t2

t
(p2(t ′, t2)+Π1(t ′))e−λ(t ′−t )λdt ′+

no buyer arrives in [t , t2]
︷ ︸︸ ︷

e−λ(t2−t )(vL +Π1(t2)) , (12)

so the equilibrium payoff of the seller at state (t ,2) is Π2(t ;τ2(t )) regardless of his history.23 The

right-hand side of equation (12) can be interpreted as the payoff of the seller in state (t ,2) in a pu-

tative equilibrium where the next flash sale after t occurs at t2. It is divided between the expected

payoff of the seller if a buyer arrives at some time t ′ ∈ [t , t2], which is equal to p2(t ′; t2)+Π1(t ′), and

his payoff if no buyer arrives in [t , t2]. Therefore, the seller holds a flash sale at time t2 and obtains

vL +Π1(t2).

Step 2. There is a unique equilibrium in which τ2(t )=max{t , t∗2 } for some t∗2 ∈[0,1).

Proof. The proof proceeds as follows. First, we obtain a necessary condition for the existence of

some t ∈ [0,1) such that τ2(t ) > t . This condition is written in terms of a function φ2(·) and the

existence of some t2 such that φ2(t2) = 0. If φ2(t2) > 0 for all t2, it is necessarily the case that

τ2(t ) = t for all t , and we verify that there is a unique equilibrium with this property. We then show

that if φ2(0) ≤ 0, then there is a unique t∗2 ∈ [0,1) such that φ2(t∗2 ) = 0. In this case, the unique

equilibrium is such that τ2(t )=max{t , t∗2 }.

Assume that there is an equilibrium and t < 1 such that t2 ≡ τ2(t ) > t . A necessary condition

under which the seller has no incentive to hold a flash sale in [t , t2) is

Π2(t ′; t2) ≥ Π1(t ′)+ vL ,
︸ ︷︷ ︸

holding flash sales immediately

∀t ′ ∈ [t , t2).

23This is because in the continuation play, an accumulated buyer does not increases the seller’s revenue in future
regular sales (by Lemma 1 she never rechecks) or in future flash sales (all units will be sold instantaneously at price
vL).

34



t2

φ2

10 t̄2 t2

φ2

10 t∗2

(Case 1) (Case 2)

Figure 4: Case 1 occurs when φ2(t2) > 0 for all t2 ∈ [0,1]. In Case 2, φ2(t2) = 0 at exactly one t2 ∈ (0,1), which defines
t∗2 in this case.

Since Π2(t2; t2) =Π1(t2)+ vL (by equation (12)), this condition holds only if

0 ≥φ2(t2) , (13)

where

φ2(t2) ≡ lim
tրt2

d(Π2(t ; t2)−Π1(t ))

dt
= (vH−vL)λ

(

β−1+e−(1−t2)λ(1−β2+β(1−t2)λ
)

. (14)

If equation (13) fails, then for some positive and small ε, we have

Π2(t2 −ε; t2) <Π1(t2 −ε)+ vL .

Therefore, the seller has the incentive to deviate by holding a flash sale at t2 − ε. Simple algebra

shows that the derivative of the right-hand side of equation (14) with respect to t2 (which is equal

to φ′
2(t2)) equals 0 only at t̄2 ≡ 1−

β2+β−1
βλ

, and the second derivative at this point is negative. Hence,

t̄2 is a local maximum of φ2(·). Note also since that φ2(1) = (vH − vL)λβ(1−β) > 0, there is no

equilibrium where τ2(t ) = 1 for some t < 1. Since t̄2 is the unique critical point of φ2, there exists

at most one value for t2 ∈ [0,1) that solves φ2(t2) = 0. If a unique solution to φ2(t2) = 0 exists,

we denote it by t∗2 , and we will show that it has the property that τ2(t ) = max{t , t∗2 }. If, instead,

φ2(t2) > 0 for all t2 ∈ [0,1), we will show that it is the case that t∗2 = 0.24 We study the two cases

separately, which are presented in Figure 4.

• Case 1 (φ2(t2) > 0 for all t2 ∈ [0,1]). We claim that in the unique equilibrium, τ2(t ) = t for all

24Using expression (1) for p1 and (3) for Π1, we have that φ2(t∗2 )/λ coincides with the left-hand side of equation
(5) and thus characterizes the value of t∗2 , as argued in the main text.
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t ∈ [0,1]; that is, the seller holds a flash sale immediately at any time t if Kt = 2. Therefore,

f2(t ) = 1 for all t ∈ [0,1), and f2(1) = 2.

Assume by way of contradiction, that there is an equilibrium and a time t ∈ [0,1) such that

τ2(t ) > t ; that is, the seller does not hold flash sale immediately at state (t ,2). Therefore, it

must be the case that the seller has no strict incentive to hold a flash sale in [t ,τ2(t )). As we

proved, this happens only if φ2(τ2(t )) ≤ 0 (see equation (13)), which contradicts that φ2(t2) >

0 for all t2 ∈ [0,1]. Therefore, we have that if an equilibrium exists, it satisfies τ2(t ) = t for all

t .

We now show the existence of an equilibrium satisfying that τ2(t ) = t for all t ∈ [0,1]. If such

an equilibrium exists, the reservation price of a buyer arriving at time t and observing Kt = 2

is

p2(t ; t ) = vH −β(vH − vL)+ (1−β)βe−(1−t )λ(vH − vL) , (15)

which is obtained by plugging the equilibrium condition τ2(t ) = t into (11). Fix a time t ∈

[0,1). The equilibrium payoff of the seller is

Π2(t ; t ) =Π1(t )+ vL . (16)

The payoff of the seller from waiting until t̂2 > t to hold a flash sale while posting the equi-

librium price in (t , t̂2] is

Π̂2(t ; t̂2) ≡

∫t̂2

t
(p2(t ′, t ′)+Π1(t ′))e−λ(t ′−t )λdt ′+e−λ(t̂2−t )(vL +Π1(t̂2)) . (17)

Notice that the main difference between the previous equation and equation (12) is that

now, in the integral term, we have p2(t ′, t ′) given by (15) instead of p2(t ′, t2). This is because,

by assumption, a buyer at each t ′ ∈ [t , t̂2] expects the seller to hold a flash sale immediately,

whereas the seller deviates and holds flash sale at t̂2.

We want to show that the seller wants to hold flash sale as soon as possible; i.e.,

t ∈ arg max
t̂2∈[t ,1]

Π̂2(t ; t̂2).
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Given that Π̂2(t ; ·) is differentiable, we can differentiate it and obtain that

∂Π̂2(t ; t̂2)

∂t̂2
= e−λ(t̂2−t )φ2(t̂2) < 0 . (18)

Then,

Π̂2(t ; t̂2) = Π̂2(t ; t )+

∫t̂2

t

∂Π̂2(t ; t̂ ′2)

∂t̂ ′2
dt̂ ′2 < Π̂2(t ; t ) =Π2(t ; t ) , (19)

where the last equality holds by (16). Therefore, we conclude that the seller’s payoff from

this deviation is lower than his equilibrium payoff. Proceeding similarly, it is easy to see that

if the seller charges a different price in [t , t̂2], his payoff from the deviation is dominated by

Π̂2(t ; t̂2). Indeed, charging a price strictly lower than p2(t ′; t ′) for some t ′ ∈ [t , t̂2] is clearly

suboptimal. Charging a price strictly above p2(t ′; t ′) for some t ′ ∈ [t , t̂2] leads to no trans-

action at these times but increases the probability of transaction afterwards. The seller has

no incentive to do so because the continuation payoff from a regular sale p2(t ′; t ′)+Π1(t ′) is

decreasing in t ′.

The previous arguments show that there is an equilibrium satisfying that τ2(t ) = t for all

t ∈ [0,1], and such a condition uniquely determines the price offered by the seller as well as

his flash-sale policy. Therefore, an equilibrium exists and is unique.

• Case 2 (φ2(t2) = 0 for a unique t2 ∈ [0,1]). Recall that the unique solution to φ2(t2) = 0 in

[0,1] is denoted by t∗2 . Therefore, φ2(t2) < 0 for all t < t∗2 and φ2(t2) > 0 for all t2 > t∗2 . We

claim that, in the unique equilibrium,

τ2(t ) =







t∗2 if t ≤ t∗2 ,

t if t > t∗2 ,

or, τ2(t ) = max{t , t∗2 }; that is, f2(t ) = 0 for all t < t∗2 and f2(t ) = 1 for all t ∈ [t∗2 ,1). The same

argument as in Case 1 can be used to show that in all equilibria, τ2(t ) = t for all t ≥ t∗2 . It is

left to verify that in all equilibria, τ2(t ) = t∗2 for all t < t∗2 ; that is, the seller does not have the

incentive to deviate.

Assume by way of contradiction, that there is an equilibrium and t < t∗2 such that τ2(t ) < t∗2 .

Therefore, we have

Π2(τ2(t );τ2(t )) =Π1(τ2(t ))+ vL .
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Consider the following deviation at τ2(t ) by the seller. Instead of holding a flash sale at time

τ2(t ), the seller offers the regular price in [τ2(t ), t∗2 ] (and holds no flash sales in [τ2(t ), t∗2 ))

and, if no unit has been sold before t∗2 , he holds a flash sale for one unit at t∗2 . By using

equations (11) and (15), we can verify that for all t ′ ∈ [t , t∗2 ), we have that p2(t ′;τ2(t ′)) ≥

p2(t ′; t ′). This is intuitive: the reservation value of a buyer arriving at time t is maximized

when she expects the first flash sale to be held immediately. Therefore, the payoff of the

seller from the deviation is at least Π̂2(τ2(t ); t∗2 ) as defined in equation (17). We then have

Π1(τ2(t ))+ vL =Π2(τ2(t ),τ2(t )) ≥ Π̂2(t ; t2) >Π1(t )+ vL , (20)

which contradicts the fact that Π1(·) is decreasing. The weak inequality in equation (20)

holds because the payoff from the deviation cannot be higher than the equilibrium payoff.

The strict inequality in equation (20) is derived as follows. Simple algebra shows that for any

t2 ∈ [0, t∗2 ] and t < t2, we have that

∂

∂t

(

e−λt
(

Π̂2(t ; t∗2 )−Π1(t )− vL

)

= e−λtφ2(t ) < 0 .

Since e−λt (Π̂2(t ; t2)−Π1(t )− vL) is positive if and only if Π̂2(t ; t2)−Π1(t )− vL is positive, we

have

Π̂2(t ; t2) >Π1(t )+ vL for all t < t2 ≤ t∗2 . (21)

Therefore, we conclude that in any equilibrium, τ2(t ) = t∗2 for all t < t∗2 and, therefore,

τ2(t ) = max{t , t∗2 } for all t ∈ [0,1]. In the rest of the proof, we show that the seller has no

incentive to deviate.

First, assume that t < t∗2 and consider a deviation consisting of holding a flash sale for one

unit at time t . If the seller does so, he obtains vL +Π1(t ). Nevertheless, the payoff from

following the equilibrium strategy and holding the flash sale at t∗2 (if there is no regular sale

before then) is, by the previous argument, not lower than Π̂2(t ; t∗2 ). Since, by equation (21),

Π̂2(t ; t∗2 ) >Π1(t )+ vL , we reach a contradiction. Hence, holding an early flash sale before t∗2

is suboptimal.

Second, assume again that t < t∗2 , and consider a deviation consisting of waiting to hold a

flash sale for one unit at some time t2 > t∗2 , while offering the equilibrium regular price p2(t ′)

for all t ′ ∈ [t , t2]. Notice that the seller’s payoff from following the deviation strategy differs
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from his equilibrium payoff only if no buyer arrives in [t , t∗2 ]. Therefore, the payoff from the

deviation can be written as

Π2(t ; t∗2 )+e−λ(t∗2 −t )(Π̂2(t∗2 ; t2)−Π1(t∗2 )− vL) , (22)

where the first term is the seller’s equilibrium continuation payoff, and the second term re-

places the equilibrium payoff of the seller at t∗2 (equal to Π1(t∗2 )+ vL) by his continuation

payoff under the deviation (equal to Π̂2(t∗2 ; t2)). Proceeding similarly as we obtained equa-

tion (21), we have

Π̂2(t ; t2) <Π1(t )+ vL for all t∗2 ≤ t < t2.

where the inequality is the opposite of the one in (21), as now we use φ2(t ) > 0 for all t ∈

(t∗2 ,1]. Therefore, we have that the second term in equation (22) is negative and hence the

seller is worse off deviating. Consequently, again, this deviation is suboptimal for the seller.

Finally, assume that t ≥ t∗2 , and consider a deviation consisting of waiting to hold a flash sale

for one unit at some t2 > t , while charging the equilibrium regular price p2(t ′) for t ′ ∈ (t , t2].

In this case, proceeding as in Case 1, we have that equation (19) holds when t̂2 is replaced

by t2. As a result, the seller is better off not deviating.

The previous arguments show that the seller has no incentive to deviate from the flash-sale

times while following the equilibrium regular price. By a similar argument to that of Case 1,

we can see that the seller finds it suboptimal to deviate from the equilibrium regular price

(equal to p2(t ;τ2(t ))).

A.3 Proof of Results in Section 3.3

We begin this proof by first providing an additional result characterizing the equilibrium for the

two-unit case. Let Π2(t ) denote the seller’s equilibrium continuation payoff at time t if Kt = 2,

which equals Π2(t ; t∗2 ) if t < t∗2 , and Π1(t )+ vL if t ≥ t∗2 (recall that Π2(·; ·) is defined in equation

(12)). Notice that Π2(·) is continuous. We show that Π2(·) satisfies the so-called smooth pasting

condition.

Lemma A1. When K = 2, if t∗2 ∈ (0,1), then lim
tրt∗2

Π
′
2(t )= lim

tցt∗2

Π
′
2(t )=Π

′
1(t∗2 ).
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Proof. Notice that when t∗2 ∈ (0,1), φ2(t∗2 ) = 0 where φ2(·) is defined in (14). We obtain

lim
tրt∗2

d(Π2(t ; t∗2 )−Π1(t ))

dt
=φ2(t∗2 ) = 0 .

Furthermore, when t approaches t∗2 from the right (and hence the profits at t when Kt = 2 are

Π2(t ; t ), which is equal to Π1(t )+ vL), we have that

lim
tցt∗2

d(Π2(t ; t )−Π1(t ))

dt
= lim

tցt∗2

d(vL)

dt
= 0 .

Therefore, when t∗2 ∈ (0,1), the smooth pasting condition holds: the marginal change in Π2 and

Π1 around t∗2 is the same.

Proof of Proposition 3. The proof proceeds by induction. Fix K ≥ 3. We assume that for all k ≤ K−1

there exists a unique equilibrium as described in the statement of Proposition 3 (notice that, by

Propositions 1 and 2, we know the result is true for K = 1,2). In this equilibrium, we use Πk (t ) to

denote the continuation payoff of the seller in state (t ,k), for all t ∈ [0,1] and k = 1, ...,K −1. We

want to prove that the result also applies to k = K . In particular, we assume that for all 2 ≤ k ≤ K −1

there is some t∗
k
∈[0,1] satisfying t∗

k
<t∗

k−1 if t∗
k−1>0 and t∗

k
=0 if t∗

k−1=0 such that:

• Property 1: fk (t ) = max{k − k̄,0} when t ∈ [t∗
k̄

, t∗
k̄−1

) for some 1 ≤ k̄ ≤ k.

• Property 2: If t ∈ [t∗
k̄

, t∗
k̄−1

) for some k̄, then, if k̄ ≥ k, it is the case that Πk (t ) >Πk−1(t )+ vL ,

while if k̄ < k, it is the case that Πk (t ) =Πk−1(t )+ vL .

• Property 3: Πk is differentiable and, if t∗
k
> 0, then Π

′
k

(t∗
k

) =Π
′
k−1(t∗

k
).

Notice that, by Proposition 2 and Lemma A1, the above properties hold when k = 2. We will later

prove that they hold for 2 ≤ k ≤ K .

Consistently with the proof of Proposition 2, for each time t ∈ [0,1] and Kt = K , τK (t ) denotes

the next time when a flash sale occurs if no regular sale takes place before τK (t ) in a hypothetical

equilibrium. That is,

τK (t ) ≡ inf{t ′ ≥ t | fK (t ′) > 0} ∈ [t ,1]∪ {∞} .

Then, constructively, we prove that an equilibrium exists, that it is unique, and that it satisfies that

there is some t∗K such that τK (t ) = t∗K for t < t∗K and τK (t ) = t for t ≥ t∗K . Finally, we prove that

Properties 1, 2, and 3 hold for K .
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Step 1. In any equilibrium, the seller never keeps K units until the deadline, τK (t ) < 1, for all t < 1.

Proof. Assume to the contrary that τK (t ) = 1 for some t < 1; then, τK (t ′) = 1 for all t ′ ∈ [t ,1].

Therefore, assume without loss of generality that t ∈ (t∗2 ,1). Assume also that there are r ∈ {1, ...,K−

1} regular sales at time t . Note that, by the induction hypothesis, for any time t ′ > t , we have

fK−r (t ′) = K − r −1. Therefore, the seller holds a flash sale for all remaining units except for one

after there is a regular sale at time t . The reservation value of a buyer at time t ∈ (t∗2 ,1) is then

pK (t ;1) which satisfies

vH −pK (t ;1) = e−(1−t )λβK (vH − vL)+e−(1−t )λ(1− t )λ
(

βK−2 + (1−βK−2)β
)

(vH − vL)

+
(

1−e−(1−t )λ−e−(1−t )λ(1− t )λ
)

βK−2(vH − vL),

where, as in the main text, we use βk to denote the probability that an accumulated buyer obtains

a good at a flash sale if k goods are offered and there is no other accumulated buyer, for each k ≤ K .

Notice that if the buyer at time t rejects the offer and no other buyer arrives, she gets the good with

probability βK in the flash sale at the deadline. If, instead, exactly one buyer arrives in [t ,1], say at

time t ′, the t-buyer gets a good with probability βK−2 at the time-t ′ flash sale and, if she does not,

she gets the remaining good with probability β in the flash sale at the deadline; that is, she gets a

good with a total probability of βK−2 + (1−βK−2)β= βK−1. Finally, if more than two buyers arrive

(and the first of them arrives at time t ′), the t-buyer gets a good only with probability βK−2 at the

time-t ′ flash sale. The payoff of the seller at time t is given by

ΠK (t ;1) ≡

∫1

t

(

pK (t ′;1)+ (K −2)vL +Π1(t ′)
)

e−λ(t ′−t )λdt ′+e−λ(1−t )K vL .

Then, proceeding analogously to the K = 2 case, we can differentiate ΠK (t ;1)−Π1(t )− (K −1)vL

with respect to t and obtain that the derivative is positive at t = 1, a contradiction.

Step 2. Assume that Kt = K at time t > t∗K−1. Then, the number of units sold in the flash sale is

fK (t ) = K −k, where k is such that t ∈ [t∗
k+1, t∗

k
).

Proof. By way of contradiction, assume that there is an equilibrium where the seller does not hold

a flash sale immediately at any time t > t∗K−1 such that Kt = K (if there is no regular sale at t ); that

is, τK (t ) > t . There are the following two possibilities:

• Assume first that τK (t ) ∈ (t∗
k+1, t∗

k
). We claim that the seller must offer fK (τK (t )) = K − k

units in the time-τK (t ) flash sale. Note that if at time t the state is (t ,K ), then the seller
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is still in his private stage 0 and Ft−(hs
0) = 0, where hs

0 = ((0,K ), (0,0)). In words, neither

regular sales nor flash sales have taken place up to t . Suppose that fK (τK (t )) < K −k; that is,

the remaining number of units is higher than k. By Property 1, the seller sells excess units

above k immediately after t ; that is, fk ′(t ′) = k −k ′ for all k ′ > k and t ′ ∈ (t , t∗
k

), which holds

in particular for k ′ = K − fK (τK (t )). Hence, we have Ft (hs
0) = fK (τK (t )) and, for all t ′ > t ,

Ft ′(hs
0) = K −k, which contradicts the assumption that Ft (hs

0) is a right continuous function

of t . Hence, it must be that fK (τK (t )) ∈ {1, ...,K −k}. Furthermore, notice that k is the unique

maximizer of

(K −k ′)vL +Πk ′(τK (t )),

among all k ′ ∈ {1, ...,K −k}, where the objective function represents the seller’s continuation

value from holding a k ′-unit flash sale at time τK (t ).

Now, the reservation price of a buyer arriving at state (t ,K ), with t ∈ [t∗
k+1,τK (t )], satisfies

vH−pK (t ;τK (t )) =

∫τK (t )

t

(

βK−k−1(vH−vL)+(1−βK−k−1)(vH−pk (t ′))
)

e−(t ′−t )λλdt ′

+e−(τK (t )−t )λ(

βK−k (vH−vL)+ (1−βK−k )(vH−pk (τK (t )))
)

. (23)

The right-hand side of equation (23) represents the buyer’s continuation value if she de-

clines the offer. In the first term, another buyer arrives and purchases at some time t ′ ∈

(t ,τK (t )), and then the seller holds a flash sale for K −k −1 units. With probability βK−k−1,

the t-buyer gets a flash-sale offer and, with the complementary probability, she does not get

a flash-sale offer and her continuation value becomes vH − pk (t ′). In the second term, no

other buyer arrives until τK (t ), and the seller holds a (K −k)-unit flash sale. Similarly, the

t-buyer gets the flash-sale offer with probability βK−k and, with the complementary proba-

bility, she does get a good in the flash sale and obtains a continuation value of vH−pk (τK (t )).

Notice that, by equation (23),

pK (τK (t );τK (t )) =βK−k vL + (1−βK−k )pk (τK (t )) .

Also, at any time t ∈ (t∗
k+1,τK (t )), we have

pK−1(τK (t )) =βK−1−k vL + (1−βK−1−k )pk (τK (t )) > pK (τK (t );τK (t )) ,

where the inequality holds because βK−k−1 <βK−k and pk (τK (t )) > vL . Formalizing an anal-
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ogous argument as at the end of Section 3.3 in the main text, the seller has an incentive to

hold a flash sale earlier, i.e., at τK (t )−ε, which is a contradiction.

• Assume now that τK (t ) = t∗
k+1. Since, by the induction hypothesis, Πk+1(t∗

k+1) = Πk (t∗
k+1)+

vL , we have that (K −k ′)vL +Πk ′(t∗
k+1) is maximized with respect to k ′ at both k +1 and k.

Consequently, either fK (t∗
k+1) = K − k or fK (t∗

k+1) = K − k − 1. If fK (t∗
k+1) = K − k then the

same argument as the one in the first case applies because

pK (t∗k+1; t∗k+1) =βK−k vL + (1−βK−k )pk (t∗k+1)

<βK−1−k vL + (1−βK−1−k )pk (t∗k+1) = pK−1(t∗k+1) .

If, instead, fK (t∗
k+1) = K −k −1, we have that

pK (t∗k+1; t∗k+1) =βK−k−1vL + (1−βK−k−1)pk+1(t∗k )

<βK−1−k vL + (1−βK−1−k))pk (t∗k+1) = pK−1(t∗k+1) ,

where the inequality holds because pk+1(t∗
k+1) =βvL +(1−β)pk (t∗

k+1) < pk (t∗
k+1). Therefore,

the same argument as before applies.

Step 3. If t∗K−1 > 0 then τK (t ) < t∗K−1 for all t < t∗K−1.

Proof. Assume by way of of contradiction that t∗K−1 > 0 and τK (t ) = t∗K−1 for some t < t∗K−1 (notice

that, by Step 2 of this proof, τK (t ) ≤ t∗K−1 for all t < t∗K−1). The argument is analogous to those used

in Step 2, since now we have

pK (t∗K−1; t∗K−1) =β2vL + (1−β2)pK−2(t∗K−1)

<βvL + (1−β)pK−2(t∗K−1) = pK−1(t∗K−1) .

Step 4. There is a unique equilibrium for K0 = K . In this equilibrium, τK (t ) = max{t , t∗K } for some

t∗K such that t∗K ≤ t∗K−1, and t∗K < t∗K−1 if t∗K−1 > 0.

Proof. Note that, by the previous results, τK (t ) = t for all t ≥ t∗K . We now proceed similarly to

the proof in the case where K = 2 (Step 2 in Proposition 2). Assume then that there is a time t

such that τK (t ) > t . As we have shown in Steps 2 and 3 of this proof, it is the case that τK (t ) > t
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only if t < t∗K−1. Therefore, if the first flash sale after t < t∗K−1 happens at tK = τK (t ) < t∗K−1, the

equilibrium price satisfies

vH −pK (t ; tK ) =

∫tK

t
(vH −pK−1(t ′))e−(t ′−t )λλdt ′

+e−(tK −t )λ(

β(vH − vL)+ (1−β)(vH −pK−1(tK ))
)

, (24)

and, similarly, the equilibrium payoff of the seller is

ΠK (t ; tK ) =

∫tK

t
(pK (t ′; tK )+ΠK−1(t ′))e−λ(t ′−t )λdt ′

+e−λ(tK −t )(vL +ΠK−1(tK )) . (25)

As in the two-unit case, assume that there is an equilibrium and time t < 1 such that t <

τK (t ), and let tK denote τK (t ). Note that the previous results imply that tK < t∗K−1 and, by (25),

ΠK (tK ; tK ) =ΠK−1(tK )+vL . Thus, a necessary condition under which the seller has no incentive to

hold a flash sale in [t , tK ) is that ΠK (t ′; tK ) ≥ΠK−1(t ′)+ vL for all t ′ ∈ [t , tK ), which happens only if

0 ≥ lim
t ′րtK

d(ΠK (t ′; tK )−ΠK−1(t ′))

dt ′
=−(1−β)λ

(

pK−1(tK )− vL

)

−Π
′
K−1(tK )

=λ
(

(1−β)vL −ΠK−1(tK )+ΠK−2(tK )+βpK−1(tK )
)

︸ ︷︷ ︸

≡φK (tK )

.

Simple algebra shows that φK (t∗K−1) =λβ(pK−1(t∗K−1)−vL) > 0. As in the proof of Proposition 2, we

have two cases:

• Case 1 (φK (t ) > 0 for all t ∈ [0, t∗K−1)). Since φK (τK (t )) ≤ 0 is a necessary condition for τK (t ) >

t , there is no equilibrium where τK (t ) > t for some t ∈ [0,1] as in the two-unit case. To

show the existence of an equilibrium, notice that if τK (t ) = t is part of an equilibrium, the

equilibrium price at time t < t∗K−1 satisfies

vH −pK (t ; t ) =β(vH − vL)+ (1−β)(vH −pK−1(t )) . (26)

Hence, the payoff of the seller from holding a flash sale at time t̂K ∈ (t , t∗K−1) (instead of at

time t ) is bounded above by

Π̂K (t ; t̂K ) ≡

∫t̂K

t
(pK (t ′; t ′)+ΠK−1(t ′))e−λ(t ′−t )λdt ′+e−λ(t̂K −t )(vL +ΠK−1(t̂K )) , (27)
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where, at each time t ′ ∈ [t , t̂K ], buyers expect the seller to hold a one-unit flash sale imme-

diately, while the seller waits until t̂K to do so and posts a regular price pK (t ′; t ′). Π̂K (t ; t̂K )

bounds the seller’s payoff for the following reasons. If the seller, instead, charges a regular

price different from pK (t ′; t ′), his payoff is strictly lower, as in the two-unit case. Differentiat-

ing the previous expression with respect to t̂K and evaluating t̂K at t , we obtain an expression

analogous to (18):

∂Π̂K (t ; t̂K )

∂t̂K

∣
∣
∣

t̂K =t
=−φK (t ) . (28)

Then, arguing as in the proof of Proposition 2, we see that the seller has no incentive to

delay the flash sale and therefore τK (t ) = t for all t . Proceeding similarly, it is easy to see that

if the seller charges a different price in [t , t̂K ], his payoff from the deviation is dominated by

Π̂K (t ; t̂K ). As a result, we have a unique equilibrium in this case.

• Case 2 (φK (t ) = 0 for some t ∈ [0, t∗K−1)). Now assume that φK (t ) = 0 for some t ∈ [0, t∗K−1).

Let t∗K < t∗K−1 be the maximum t < t∗K−1 such that φK (t ) = 0 (notice that, by the continuity

of φK , the maximum exists). Clearly, by the same argument as in Case 1 (and, in particular,

equation (28)), in any equilibrium τK (t ) = t for all t ∈ [t∗K ,1]. The following result establishes

that the seller does not have an incentive to hold a flash sale before t∗K :

Lemma A2. ΠK (t ; t∗K )−ΠK−1(t ) > vL for all t < t∗K .

We leave the proof of Lemma A2 for the end of this proof. Notice that Lemma A2 leaves

τK (t ) = t∗K for all t < t∗K and τK (t ) = t for all t ≥ t∗K as the unique candidate for an equilibrium.

Indeed, if τK (t ) < t∗K for some t < t∗K , we can take t̄ to be the supremum of the times with

this property. We have that the payoff of the seller at time t̄ , given by vL +ΠK−1(t̄ ), is lower

than the payoff from deviating and waiting to hold a flash sale at time t∗K , which is ΠK (t ; t∗K ).

Hence, the seller has the incentive to hold a flash sale at t∗K and not before then. Therefore,

there is a unique equilibrium also in this case.

Given that, in the unique equilibrium, τK (t ) = max{t , t∗K }, we let pK (t ) and

ΠK (t ) ≡ΠK (t ; t∗K )

denote the corresponding equilibrium values for the price and the profits in state (t ,K ).

Step 5. Properties 1, 2, and 3 hold for K .

45



Proof. Property 1 holds for K because, as we showed in Steps 1 and 2, the seller holds a (K −k)-

unit flash sales when Kt = K and t ∈ [t∗
k

, t∗
k−1) for all k ≤ K −1. Property 2 holds for K because, by

Step 4, τK (t ) = t for all t ≥ t∗K (so ΠK (t ) = ΠK−1(t )+ vL), and ΠK (t ) > ΠK−1(t )+ vL for all t < t∗K .

Finally, Property 3 holds for K because of the definition of t∗K (notice that t∗K solves for φK (t∗K ) = 0

whenever t∗K > 0, which implies that Π′
K (t∗K ) =Π

′
K−1(t∗K )).

It is left to prove Lemma A2.

Proof of Lemma A2. Define, for each k ∈ {1, ...,K }, ∆Πk (t ) ≡ Πk (t )−Πk−1(t ), with the convention

that Π0(t ) = 0 for all t . We want to prove that ∆Πk (t )− vL > 0 for all t < t∗
k

. To do this, notice that

using some algebra we can obtain

p ′
k (t ) =λ(pk (t )−pk−1(t )) and (29)

0 =Π
′
k (t )+λ

(

pk (t )+Πk−1(t )−Πk (t )
)

(30)

from equations (24) and (25) (using τK (t ) = t∗K ). Furthermore, using these equations and some

algebra, it is easy to show that

d

dt

(

e−λt (∆Πk (t )− vL)
)

=−λe−λt
(

∆Πk−1(t )−∆pk (t )− vL

)

,

where it is convenient to define ∆pk (t ) =−(pk (t )−pk−1(t )) to ensure that it is positive.

Note that ∆Πk (t∗
k

)− vL = 0. It is then only left to prove that the right-hand side of the previ-

ous expression is negative for t < t∗
k

. The following lemma establishes the desired result (which

corresponds to the case of n = 1):

Lemma A3. For all k = 2, ...,K and n ≤ k, there exists some tk,n ∈ [t∗
k

, t∗
k−1] such that ∆Πk−1(t )−

n∆pk (t )>vL for all t <tk,n and ∆Πk−1(t )−n∆pk (t )<vL for all t ∈(tk,n , t∗
k−1].

Proof. Consider first the case of k = 2. In this case, by Proposition 1, we have that, for n = 0,

∆Π1(t ) =Π1(t ) is decreasing for all t , and is equal to vL only at t∗1 = 1. For n = 1 we have

d

dt

(

e−λt (∆Π1(t )−∆p2(t )− vL)
)

=
(

2βe−λ−e−λt
)

λ(vH − vL) .

This is increasing in t . Also, the right-hand side of the expression is equal to 0 at t̄ ≡ 1−
log(2β)

λ
. It

is only left to show that t∗2 ≤ t̄ . If β ≤ 1
2 , then the result is clear. Thus, assume β > 1

2 . In this case,

notice that t∗2 is defined by φ2(t∗2 ) = 0 (defined in (14)), where φ2(t ) is negative for all t < t∗2 . We
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then have

φ2(t̄ ) = (vH−vL)λ
1

2

(

β+
1

β
−2+ log(2β)

)

.

Notice that since β> 1
2 we have that both β+ 1

β
> 2 and log(2β) > 0. Therefore, φ2(t̄ ) > 0 and hence

t̄ > t∗2 , which proves the result.

Now we proceed by induction: take k > 2 and assume that for all k̃ < k and for all n ∈ {0, ..., k̃ −

1}, ∆Πk̃−1(t )−n∆pk̃ (t ) satisfies the property of the statement of the lemma for some tk̃,n . Simple

algebra (again from equations (29) and (30)) shows that the following formula is true for all k ≥ 3

and n ∈ {0, ...,k −1}:

d

dt

(

e−λt (∆Πk−1 −n∆pk (t ))
)

=−λe−λt
(

∆Πk−2(t )− (n+1)∆pk−1(t )
)

. (31)

We first want to show that the statement of the lemma holds for k and n = 0. In this case, note

first that

d

dt
(e−λt

∆Πk−1(t ))
∣
∣
∣

t=t∗
k−1

=−λe−λt∗
k−1∆Πk−1(t∗k−1)+e−λt∗

k−1∆Π
′
k−1(t∗k−1) =−e−λt∗

k−1 vL

where we used the fact that the value-matching and smooth-pasting conditions hold for Πk−1(t )

at t = t∗
k−1 (Properties 2 and 3). Also, we evaluate the expression in (31) at n = 0:

d

dt
(e−λt

∆Πk−1(t )) =−λe−λt (∆Πk−2(t )−∆pk−1(t )) .

By assumption, there is at most one time t ∈ [t∗
k−1, t∗

k−2] at which the right-hand side of the pre-

vious equation equals −λe−λt vL . Denote it by tk−1,1. Due to its minus sign, the right-hand side

of the previous equation is strictly below −λe−λt vL for all t < tk−1,1. Then, d
d t

(e−λt
∆Πk−1(t )) is

negative for all t < t∗
k−1, and so the result holds for n = 0.

Notice now that for all n ∈ {1, ...,k −1} we have, again from equations (29) and (30), that

d

dt

(

e−λt (∆Πk−1(t )−n∆pk (t ))
)

=−λe−λt (∆Πk−2(t )− (n+1)∆pk−1(t )) .

By the induction argument, again, the right-hand side of the previous equation equals to−λe−λt vL

in [0, t∗
k−2] in at most one time, t = tk−1,n+1, and due to the minus sign, it is strictly below−λe−λt vL <
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0 for all t < tk−1,n+1. Now, given that ∆pk−1(t ) ≥ 0 for all t < t∗
k−1, we have

∆Πk−2(t )− (n +1)∆pk−1(t ) ≤∆Πk−2(t )−∆pk−1(t ) < 0 ,

where the strict inequality follows from the case where n = 0. So, we have that the derivative of

e−λt (∆Πk−1(t )−n∆pk (t ))
)

is negative for all t < t∗
k−1, and then the result holds.

A.4 Proof of Results in Sections 3.4 and 4

Proof of Proposition 4. To examine the effect of a change in λ on the equilibrium outcome, we

label the equilibrium regular price, the seller’s profit, and the equilibrium flash-sale times as pλ
k

(t ),

Π
λ
k

(t ), and tλ
k

for k = 1, ...,K , respectively.

Suppose that λ′ < λ. We want to show that the corresponding flash-sale times satisfy, for all

k = 1, ...,K ,

tλ
′

k ≤ tλk .

That is, for each k, the flash-sale time in the λ′-model is earlier than the one in the λ-model.

Consider an auxiliary model where we lower the λ-model’s deadline from 1 to λ′/λ < 1 while

keeping the buyer’s arrival rate equal to λ. Since the equilibrium is solved backwardly, for each

state (t ,k) with t ≥ 0, the continuation play in the auxiliary game is identical to that in the original

λ model at state (t +1−λ′/λ,k). Therefore, in the auxiliary game, for t ∈ [0,λ′/λ] and k = 1, ...,K ,

the equilibrium regular price and the seller’s continuation value satisfy

pa
k (t ) = pλ

k (t +1−λ′/λ)

and

Π
a
k (t ) =Π

λ
k (t +1−λ′/λ),

respectively, and for each k = 1, ...,K , the flash sale time satisfies

t a
k = max{0, tλk −1+λ′/λ}.
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Now consider the λ′-model. An induction argument shows that

pλ′

k (t ) = pa
k

(

t λ′

λ

)

and Π
λ′

k (t ) =Π
a
k

(

t λ′

λ

)

,

for each k = 1, ...,K , t ∈ [0,1] in equilibrium. Additionally, if there is some t ∈ [0,1) such that

φa
k

(

t λ′

λ

)

≡λ
(

(1−β)vL −Π
a
k−1

(

t λ′

λ

)

+Π
a
k−2

(

t λ′

λ

)

+βpa
k−1

(

t λ′

λ

))

= 0,

then

φλ′

k (t ) ≡λ((1−β)vL −Π
λ′

k−1(t )+Π
λ′

k−2(t )+βpλ′

k−1(t )) = 0,

and so

tλ
′

k = t a
k

λ
λ′ .

Notice that when φa
k

(·) > 0, φλ′

k
(·) > 0 for all t , and tλ

′

k
= t a

k
= 0 as well. It is then easy to see that

tλk − tλ
′

k = min
{

tλk ,
(
λ
λ′ −1

)

(1− tλk
)

} ≥ 0,∀k,

and that the inequality is strict if tλ
k
> 0.

Proof of Proposition 5. Recall that t∗2 equals the unique solution to φ2(t2) = 0, defined in equation

(14), for t2 ∈ [0,1] if it exists; t∗2 = 0 otherwise. We want to prove that when the solution to φ2(t2) =

0, denoted by t2(β), exists, it is decreasing in β. We first assume that β is such that φ2(0) < 0. Since

φ2(1) > 0 for all values of β ∈ (0,1) (see the proof of Proposition 2), we have t2(β) ∈ (0,1). We then

differentiate equation (14) with respect to β. After some algebra, we obtain

dt2(β)

dβ
=−

2

λ
(1+eλ(1−t2))−1








1−
1

√

1+4 1+eλ(1−t2)(1+λ(1−t2)eλ(1−t2)(λ(1−t2)−1))
(λ(1−t2)+e(1−t2)λ(eλ(1−t2))+λ(1−t2))2








−1

,

where, to ease notation, we omitted the explicit dependence of t2 on β on the right-hand side of

the expression. Notice that the term (1+λ(1− t2)eλ(1−t2)(λ(1− t2)− 1)) in the numerator of the

term inside the square root is weakly positive for all t2 ≤ 1, since it is equal to 0 when t2 = 1 and

its derivative with respect to t2 is −λ(1+ eλ(1−t2))λ(1− t2) < 0. Therefore, the right-hand side of

the previous expression is negative, and hence t2(·) is strictly decreasing. When, instead, β is such

that φ2(0) > 0, we have that small changes in β do not affect t∗2 , which is equal to 0. The previous
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result implies that t∗2 is a decreasing function of β: it is strictly decreasing when t∗2 > 0 and weakly

decreasing otherwise. Therefore, there is some value β̄ ∈ [0,1] such that t2(β) > 0 when β< β̄ and

t2(β) = 0 when β> β̄.

We finally prove that β̄ ∈ (0,1). We first show that β̄ < 1. Note that e−λtφ2(t ) is a concave

function:

d2

dt 2
(e−λtφ2(t )) =−(vH − vL)λ3(1−β)e−λt < 0 .

Also, e−λφ2(1) = (vH−vL)λ(1−β)βe−λ > 0, and limβ→1φ2(0) = (vH−vL)λ2e−λ > 0. So, by continuity

of φ2, if β is close to 1, both φ2(0) and φ2(1) are strictly positive and, since e−λtφ2(t ) is concave,

φ2(t ) is also strictly positive for all t ∈ [0,1], so t∗2 = 0 in the unique equilibrium. Second, we show

that β̄> 0. Suppose not, then for every β ∈ (0,1), t2(β) = 0. In other words, φ2(t ) ≥ 0 for all t . But

φ2(0) =β−1+e−λ(1−β2 +βλ),

which is strictly negative when β is close to 0, a contradiction.

Proof of Proposition 6. Using equation (1) it is clear that the result is true for K = 1. Then, we can

proceed analogously to show limβ→0 t∗2 = 1 and limβ→0 p2(t ) = vH for all t ∈ [0,1]. The reason is

that, when β is low, even when the time is close to the flash sale, the willingness to pay of the

buyers is close to vH , since obtaining the good in a flash sale is unlikely. As a result the seller has

the incentive to postpone flash sales toward the deadline. This argument can be applied iteratively

for any K .

Proof of Proposition 7. First, consider the case where K0 = 1, and for notational convenience, let

G(vH ) =
vH−vH

vH−vH
denote the CDF of a uniform distribution in [vH , vH ]. Assume that there is an

equilibrium as described in Proposition 1, where now p1(t ) is the price corresponding to the case

where the valuation of the buyers is vH . Fix a rechecking cost c, if vH is sufficiently close to v H , no

type of buyer rechecks the price. Therefore, if a buyer with valuation vH arrives at time t , the price

she is willing to pay equals

p1(t , vH ) ≡ vH −e−λ(1−t )(vH − vL)β> vH −e−λ(1−t )(vH − vL)β= p1(t ) .

Consider the seller’s gain from deviating. By increasing the price from p1(t ) to p1(t )+ ε, for

some small ε > 0, the seller increases the price conditional on acceptance, but lowers the prob-

ability of acceptance conditional on arrival to 1−G(vH (t , p1(t )+ε)), where vH (t , p) is defined as
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follows:

p = vH (t , p)−e−λ(1−t )(vH (t , p)− vL)β ⇒ vH (t , p) = vL +
p − vL

1−e−(1−t )λβ
.

Consider the benefit from deviating at all s ∈ [t , t +∆] to offering p1(s)+ ε, for ∆ > 0 small. This

deviation is not profitable only if p1(t ) is higher than (p1(t )+ε)(1−G(vH (t , p1(t )+ε))) for all ε> 0.

The derivative of this last expression with respect to ε yields

1−G(vH (t , p1(t )+ε))−
(p1(t )+ε)G ′(vH (t , p1(t )+ε))

1−e(1−t )λβ
< 1−

vL

vH−vH
.

If vH − vH is small enough, the last term to the right of the previous function is negative, so it is

optimal to choose ε= 0.

For a general K , a similar argument applies. Indeed, at any given time, the reservation price of

a buyer with valuation is vH −bKt (t )(vH − vL), where bk (t ) is the probability of obtaining a good

in the future (in a flash sale) if at time t the stock is k, for all k = 1, ...,K . Therefore, in general, the

payoff gain from offering a price equal to p1(t )+ε divided by ε, as ε→ 0,is

1−G(vH (t , p1(t )+ε))−
(p1(t )+ε)G ′(vH (t , p1(t )+ε))

1−bKt (t )
+O(ε) < 1−

vL

vH−vH
.

Therefore, again, if vH − vH is sufficiently small, the right-hand side of the inequality of the previ-

ous function is negative, and so it is optimal to choose ε= 0.
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