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Abstract

We study a model of information transmission through an informal election. Par-

tially informed senders send binary messages to a receiver, and the receiver chooses a

policy after observing the number of messages sent. Our leading example is protests in

which the citizens’ participation choices are their messages, and there may be positive

costs or benefits of participation. A policy maker infers information from the aggregate

turnout. However, the presence of activists who obtain direct benefits from participa-

tion adds noise to turnout. We show that the interplay between noise and costs leads to

strategic substitution and strategic complementarity effects in the participation deci-

sions, and we characterize their implications for the informativeness of protests. When

there is no noise, information aggregates and the outcome is efficient. Our findings

contrast with existing work, which shows that for many informal election scenarios

with costless participation, a bias of the policy maker may prohibit any information

transmission.
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1 Introduction

We present and study a model of certain political processes that we call informal elections.
Examples are protests, petitions, polls, surveys, and nonbinding shareholder voting. These
scenarios share some qualitative features with elections. First, the citizens (or experts,
shareholders, etc.) take a coarse action that is often effectively binary: participate in a
protest or not, sign a petition or not, etc. Second, what matters is the aggregate outcome:
how many citizens participate in a protest, how many people sign a petition, etc., with
the protest or petition being more effective at convincing an audience the more citizens
participate. However, there is an important difference: In a formal election, there is a
prespecified rule that determines the policy as a function of the vote count. This is not
the case in these scenarios. Instead, the main effect of the informal election is due to
the information that the audience infers from it, where the audience could be a particular
policy maker but also the general electorate. So, informal elections are primarily about
communication.

The Condorcet Jury Theorem and its modern versions have shown that formal elections
effectively aggregate dispersed opinions of the citizens under quite general conditions (Fed-
dersen and Pesendorfer, 1997; Myerson, 1998a,b).1 We explore whether informal elections
share these information aggregation properties. Examples of informal election scenarios
include the following:

1. Nonbinding Elections. The board of a firm holds a nonbinding vote among the share-
holders to decide whether to approve an executive compensation package or a shareholder-
submitted proposal on corporate governance (Levit and Malenko, 2011).2

2. Petitions and Protests. A policy maker decides whether to change a policy based on
the petitions signed by the citizens or based on the turnout in a protest. For example,
the Gezi Park movements informed citizens living in rural parts of Turkey about the
government’s plans to replace a park with a shopping mall and influenced the citizens’
opinions. Many other examples are provided in Battaglini (2017).

3. Polls. A manager holds a survey among the employees to learn about the prospects
of a new product or the effectiveness of a marketing strategy. A king asks his generals
for advice in war (Wolinsky, 2002). A policy maker organizes polls to elicit citizens’
information regarding current policies (former US President Nixon did this regularly,
as does the current Turkish President, Erdogan; for more examples, see Morgan and
Stocken, 2008).

These scenarios have been studied before, as we discuss below. However, there are two
features of informal political processes that have been somewhat neglected but that we
believe to be inherent to these settings: There are costs of participation, and there can be

1However, see Feddersen and Pesendorfer (1997), Razin (2003), Mandler (2012), Bhattacharya (2013),
Acharya (2016), Ekmekci and Lauermann (Forthcoming), and Ali et al. (2017) for related models of elections
that perform poorly in aggregating information.

2The Five Star Movement, a political organization in Italy, holds nonbinding votes on various decisions
including the organization’s policy stance, the votes of its members in the parliament, and its candidates in
local and general elections.



significant noise in the turnout. Participation costs can arise, for example, due to the time
commitment or possible repercussions of participating in a protest or a petition. Noise stems
from the policy maker’s inability to distinguish the motives of citizens in a protest, counting
errors in the number of messages, or the presence of citizens who answer poll questions
randomly.

More generally, the meaning of turnout in protests—and, therefore, its ability to influence
policy or public opinion—depends on the motivations of its participants. If the participants
are thought to be participating based on their information, then the turnout is informative.
This is further strengthened if participation is costly because this makes the participation
decision an even stronger signal. On the other hand, if the protesters are thought to be
motivated by non-informational motives, such as monetary incentives for participation via
astroturf politics,3 entertainment value,4 or extremist tendencies, then the turnout is unin-
formative.

Indeed, it is no surprise that politicians frequently try to undermine the meaning of
protests by arguing that the protesters have motivations that are orthogonal to informational
motivations, such as the protesters being paid or having ulterior motives.5 Similarly, senators
are worried about “bot-calling” when making an inference from calls to their office. There
are, of course, many other sources of noise, including the possibility that turnout itself is
only imperfectly observable.

In this paper, we consider the following protest model, based on Battaglini (2017), to
study informal elections with costly participation and noise: A policy maker needs to choose
one of two policies, A or B.6 He prefers the policy to match the unknown state α or β,
respectively. There is a pool of citizens who are privately and imperfectly informed about
the state of the world. The citizens, like the policy maker, prefer policy A in state α and
policy B in state β. (However, when there is uncertainty, the policy maker may have a bias
for policy B in the form of a higher “threshold of doubt”.) Each citizen draws a participation
cost c from a distribution F with support [c, c̄] with c < 0 < c̄. Each citizen also observes a
private binary signal, a or b, that is indicative of the state. After observing her participation
cost and signal, each citizen chooses whether to participate in the protest. Then, the policy
maker observes the total turnout and chooses the policy.7

In this model, citizens communicate their information to the policy maker via their
participation decision. A priori, the protest may be in favor of A or B. The meaning of the
protest is determined in equilibrium, and we look at equilibria in which protests are in favor

3There are plenty of examples of astroturfing: Tobacco industry, McDonald’s, Walmart. See
https://en.wikipedia.org/w/index.php?title=Astroturfing&oldid=887263113 for more details and examples.

4There is anecdotal evidence that many people participated in anti-war protests during the Vietnam war
era simply to meet with friends and to socialize.

5US President Trump sent a tweet in the aftermath of the Supreme Court nomination of Brett Kavanaugh
stating that the protesters against Kavanaugh’s nomination were paid to participate in the protests. The
Hungarian Prime Minister Orban, and many other politicians, often claim that left-wing protests or petitions
across the world are Soros-funded. Turkey’s President Erdogan called Gezi Park protesters "çapulcu" (looters
with nothing else to do), to undermine the meaning of the protests.

6The policy maker in our model can be interpreted as the rest of society.
7The presence of random participation costs is the only significant departure from Battaglini (2017), who

assumes that participation is costless, c ≡ 0; we discuss the prior results in greater detail later.
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of policy A.8 In such equilibria, the policy maker chooses policy A if the turnout is large and
policy B if the turnout is small. In particular, there is a tipping point for the turnout above
which the policy maker chooses policy A. The participation of a citizen is critical exactly
when the turnout is at the tipping point. Therefore, how likely the turnout is at the tipping
point determines the effectiveness of participation and, hence, the participation incentives
of the citizens.

Citizens decide whether to participate based on their costs, the information contained
in their signal, and the anticipated effectiveness of their participation. The costs c capture
participation motives that are unrelated to the effect of the protest on the policy maker’s
choice, with negative costs capturing direct benefits from the participation itself. For any
given signal, a or b, a citizen participates if her cost is low enough, implying signal-dependent
cost-cutoffs ca and cb, respectively. Since the protest is in favor of policy A, a citizen
with signal a is more eager to “tip” the policy from B to A, compared to a citizen with
signal b. Therefore, ca is larger than cb. So, citizens with high costs—larger than ca—never
participate, those with intermediate costs—between cb and ca—participate based on their
signal (informative citizens), and those with low costs—smaller than cb—always participate
(activists). Because of the signal-dependent participation of the informative citizens, the
distribution of the turnout differs across the two states, with larger participation in state α
than in state β.

The policy maker faces an inference problem where he learns about the state from the re-
alized turnout. The informativeness of the turnout as a signal is determined by the expected
number of informative citizens relative to the expected number of activists.

At the one extreme, if there are many informative citizens relative to activists, the turnout
is very informative, and the correct policy is likely to be chosen. In this case, it is very unlikely
that the turnout is at the tipping point, which implies weak participation incentives. More-
over, we show that, if the number of informative citizens increases further, the probability
that turnout is at the tipping point decreases, which decreases the incentives to participate
even further. This is a strategic substitution effect that captures the natural free-rider prob-
lem among citizens when participation is costly. The free-rider problem limits how much
information can be transmitted in equilibrium.

At the other extreme, if there are few informative citizens relative to activists, the turnout
distributions are close to each other, and turnout contains little information. In this case, the
policy maker is unlikely to react to turnout; hence, it is unlikely for the turnout to be at the
tipping point. In this case, we show that if the number of informative citizens increases, then
the probability that turnout is at the tipping point increases, which increases the incentives
to participate, potentially inducing even more participation by informative citizens. This
is a strategic complementarity effect. We show that this positive participation feedback can
lead to a multiplicity of equilibria and also to the fragility of information transmission, with
small changes in costs potentially leading to a full unraveling of participation by informative
citizens.

To formalize these observations, we study a setting with a large population, which simpli-
fies the analysis and allows us to give precise characterizations. In particular, we can utilize
the central limit theorem to approximate the turnout distribution.

8All results will also hold for protests that are in favor of B.
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When there are many citizens, the probability that a citizen can sway the policy maker’s
decision is small. Therefore, almost all citizens with negative costs are activists, while
informative citizens have costs close to 0. The activists affect the inference problem by adding
to the standard deviation of the turnout, while informative citizens affect the difference in
the means of the turnout distributions. The power of this inference is then determined by
the ratio of the difference in the expected turnout in the two states to the standard deviation
of the turnout; we call this ratio the informativeness of the protest.

In our main result, we characterize the maximal equilibrium informativeness of protests
in large populations. It depends on the cost distribution F only through its reverse hazard
rate at 0, f(0)/F (0). For a fixed citizen strategy, the expected number of informative citizens
is proportional to f(0). Hence, the density of the cost distribution at 0 scales the difference
in the expected turnouts across the two states. The variance of the turnout (i.e., the noise) is
approximately state independent and equal to the expected number of citizens with negative
costs. Hence, the noise is proportional to F (0). Our main result shows that, if the reverse
hazard rate is smaller than a threshold, τ , then there is no information transmission in equi-
librium.9 If the reverse hazard rate is larger than τ , then some information is transmitted.
At τ , there is a discontinuity in the maximal informativeness. Above τ , the maximal infor-
mativeness is increasing in the reverse hazard rate. Moreover, both the policy maker and
the citizens are better off if the informativeness of the turnout increases. When the reverse
hazard rate is large, turnout reveals the state almost perfectly. In particular, if there are
no benefits from participation (no noise), that is, if c = 0 < c̄ and so f(0)/F (0) = ∞, then
information aggregates, and the correct policy is chosen.

We conduct comparative statics for the maximal informativeness of the protest with
respect to the informativeness of the citizens’ signals and the policy maker’s bias towards
policy B. The maximal informativeness of the protest is increasing in the informativeness
of the citizens’ signals: If the citizens’ signals are more informative in the Blackwell order,
then the maximal informativeness of the protest increases. The effect of an increase in the
policy maker’s bias towards policy B on the maximal informativeness is ambiguous. If the
reverse hazard rate is smaller than a cutoff, then increasing the bias reduces the maximal
informativeness. If the reverse hazard rate is larger than the cutoff, then the maximal
informativeness is single-peaked in the bias.

As previously argued, additional noise decreases the maximal informativeness of the
protests. However, we identify a countervailing, positive effect of noise on citizens’ partic-
ipation incentives: If noise is small, an increase in noise (i.e., a higher F (0) given a fixed
f(0)) increases the participation rate of informative citizens. In other words, noise results
in an encouragement effect that mobilizes citizens. When noise is not too large, the encour-
agement effect partly compensates for the adverse effect of noise on the informativeness of
the turnout and leads to a nontrivial amount of information transmission in equilibrium.

Our results for informal elections with costs and noise contrast with those from previous
work (Battaglini, 2017; Wolinsky, 2002; Levit and Malenko, 2011; Morgan and Stocken,
2008). This work demonstrated that informal political processes face a difficulty in infor-
mation transmission: Information transmission is impossible—babbling is the unique equi-

9The threshold τ depends on the preferences of the citizens and the policy maker, the prior distribution
of the states, and the signal distribution.
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librium outcome—if the policy maker’s preferences and the citizens’ preferences differ too
much or if each citizen’s information is poorly informative. By way of contrast, we show
that if there are only costs and no activists (i.e., c = 0 < c̄), information is fully aggregated
with many citizens for all parameters. When we allow for activists, then equilibrium is still
partially informative—provided the reverse hazard rate is above τ—and the informativeness
changes continuously in the policy maker’s bias. The babbling equilibria that arise in this
case when the reverse hazard rate drops below τ are due to reasons different than those
identified previously. In particular, babbling arises in our setting even if there is no bias and
even if citizens are perfectly informed.

Whether participation in protests exhibits strategic substitutes or complements has been
debated in political economy and empirically investigated. For example, in a field experiment
on participation in a protest, Cantoni et al. (2017) find evidence of strategic substitution
effects, with a citizen’s participation probability decreasing in their belief about the par-
ticipation level of others. Whereas in prior work on protests the form of the participation
incentives is often assumed to be exogenous, in our model, the effectiveness of the turnout is
endogenous, and each citizen can affect the outcome with a strictly positive probability. The
complementarity and substitution effects are driven by how this probability changes with
the citizens’ and the policy maker’s strategy.

Our model and results also speak to a variety of public debates. First, there was a recent
discussion of an SEC ruling that was enacted in 2011 as part of the Dodd–Frank Act, which
requires all publicly traded companies to have a nonbinding vote on executive compensation
and golden parachute compensation.10 An important policy discussion was with respect to
whether institutional investors are allowed to abstain from participation (see Malenko and
Malenko, Forthcoming for a more detailed discussion). In our model, mandatory participa-
tion would correspond effectively to zero participation costs. Thus, in view of our results,
when there are (small) costs of participation, voluntary voting allows information transmis-
sion, whereas mandatory voting may lead to no information transmission when the board is
biased. Second, many protests are often claimed to be astroturfing politics, such as “Soros-
funded” protests, and the aim of such claims seems to be to undermine the meaning of the
protests. Such claims draw attention to the underlying motives of the protesters and try
to persuade the public that the protest has a lot of noise. Our results highlight that even
when the protest movement contains much noise, it may still carry significant information.
Furthermore, such claims may be aiming to utilize the fragility of the informativeness of
protests in order to undermine them.

We discuss our assumptions and potential extensions in Section 9. In particular, in our
main model, we formalize “noise” by allowing c < 0, i.e., introducing citizens with negative
costs (activists). This choice of modeling is made for expositional compactness. Alternative
modeling choices—such as allowing for a random number of activists, randomly behaving
poll subjects, or allowing counting errors—lead to similar results as we discuss in Subsection
9.2.

We discuss the related literature in more detail in Section 8. Unless otherwise noted,
all proofs are in the Appendix. The Online Appendix contains proofs of Theorems for the
case without activists in Section 7. Supplementary Material with the formal analysis of the

10See https://www.sec.gov/news/press/2011/2011-25.htm.
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deterministic population size case is available on the authors’ websites.

2 Model

A policy maker wishes to implement one of the two policies, A (reform) or B (status
quo). There is also a population of citizens (experts, protesters, or shareholders), each of
whom is privately informed about the state of the world. The population size is a Poisson
distributed random variable with mean n. That is, the probability that there are m ≥ 0
citizens is e−n nm

m!
.11

The policy maker’s and the citizens’ preference over the policies depends on an unknown
state of the world, ω ∈ {α, β}. Both the policy maker and the citizens prefer the policy that
matches the state of the world, i.e., policy A in state α and policy B in state β. However,
they have different preferences when the state is uncertain.

In particular, the policy maker’s preferences are as follows: If the state is α, his payoff is
1 −µ ∈ (0, 1/2] if the outcome is A and 0 if it is B; if the state is β, his payoff is µ ∈ [1/2, 1)
if the outcome is B and 0 if it is A. This payoff function implies that he prefers to implement
A when his belief that the state is α is greater than µ, and he prefers to implement B when
this belief is less than µ. The ex-ante probability that the state is α is equal to q ∈ (0, µ],
i.e., the policy maker (weakly) prefers to implement policy B without further information
and needs to see some evidence in favor of state α in order to implement policy A.

Citizens have common preferences: If the state is α, a citizen’s payoff is 1 if the policy is
A and 0 if it is B; if the state is β, her payoff is 1 if the outcome is B and 0 if it is A. Hence,
citizens prefer policy A when they believe the state is α with a probability greater than 1/2,
and they prefer policy B when they believe the state is α with a probability less than 1/2.12

The preferences of the policy maker and citizens are aligned when the state is known;
however, when µ 6= 1/2, the policy maker’s and the citizens’ preferences are misaligned
when the state is uncertain. We assume that µ ≥ 1/2, which makes the policy maker biased
towards policy B compared to the citizens (i.e., he is more conservative than the citizens
in his willingness to implement a reform). The difference µ − 1/2 measures the conflict of
interest between the citizens and the policy maker.

Each citizen receives a binary signal, θ ∈ {a, b}.13 Conditional on the state ω, signals are
identically and independently distributed across the population according to a probability
distribution function P(θ|ω) that denotes the conditional probability that a citizen’s signal
is θ. We assume that P(θ|ω) > 0 for θ = a, b; ω = α, β. We also assume that the signal
distribution satisfies the monotone likelihood ratio property (MLRP), i.e.,

∞ >
P(a|α)

P(a|β)
> 1 >

P(b|α)

P(b|β)
> 0.

There is a protest movement in place, and each citizen decides whether to participate in

11Assuming that the population size is Poisson-distributed simplifies some of the analysis (see Myerson,
1998b), but our results do not rely on this specification. In the Supplementary Appendix, available on the
authors’ websites, we show that our results still hold when the number of citizens is deterministic.

12We assume that citizens care equally about the mistakes across the two states for simplicity. We discuss
how our results change with more general citizen preferences in Subsection 9.5.

13Our results do not depend on the binary signal assumption, and we give a detailed discussion in Sub-
section 9.3.
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the protest or not. Participation in the protest is costly; some citizens have positive costs
while others have negative costs. Each citizen’s cost c is a random variable drawn according
to a cumulative distribution function (c.d.f.) F with support [c, c̄], for some c < 0 < c̄,
independently across the citizens. We assume that F is a strictly increasing and continuous
function, and it admits a continuous density function denoted by f .14

Each citizen, after observing her signal and cost, chooses whether to participate in the
protest or to abstain. The strategy states the probability that a citizen participates and we
denote it by

ψ : {a, b} × [c, c̄] → [0, 1].

We denote by t the realized turnout, that is, the number of citizens who participate.
Each citizen strategy ψ, together with signal distribution P and cost distribution F , induces
a distribution of the turnout. In particular, the turnout is again Poisson-distributed (from
the decomposition property of the Poisson distribution; see Myerson, 1998b), and we denote
its mean in state ω = α, β by λ(ω).15

The policy maker observes t and then chooses the policy. A strategy for the policy maker
is a probability of choosing A for each t, and we denote it by

ρ : N → [0, 1].

The policy maker forms his beliefs about the state after observing the realization of
the turnout, t. We assume that the policy maker does not observe the realization of the
population size. This assumption does not change our results qualitatively but makes the
analysis simpler.16

A symmetric Nash equilibrium is a strategy profile (ψ, ρ) such that ψ is a best reply to
other citizens playing according to strategy ψ and the policy maker playing according to
strategy ρ, and ρ is a best reply by the policy maker to the citizens’ strategy ψ. Myerson
(1998b) showed that in Poisson games, all Nash equilibria are symmetric; hence, focusing on
symmetric Nash equilibria is without loss of generality.

Moreover, by the environmental equivalence property (Myerson, 1998b), for any citizen,
the distribution of the number of other citizens is also Poisson distributed with mean n, as
is the distribution of other citizens who participate in each state with mean λ(ω). Now,
consider a citizen with a signal θ and cost c. For a given strategy profile (ψ, ρ), the payoff
difference between participating in the protest and abstaining for such a citizen is given by

u(θ, c) =
∑

t∈N

(ρ(t+ 1) − ρ(t))

(

P(α|θ)e−λ(α)λ(α)t

t!
− P(β|θ)e−λ(β)λ(β)t

t!

)

− c. (1)

A citizen joins the protest when u(θ, c) > 0 and abstains when u(θ, c) < 0. Notice that the
net payoff from participation is decreasing with the cost c, so any best reply of a citizen to
other citizens’ strategy and to the policy maker’s strategy has a cutoff structure: There exist

14The essential property we use is that F is atomless and f is continuous in a neighborhood of 0. We will
also analyze the cases in which c = 0, or F may have an atom later in Section 7.

15The mean is simply λ(ω) = n
(
P(a|ω)

∫
ψ(a, c)dF (c) + P(b|ω)

∫
ψ(b, c)dF (c)

)
.

16Our results hold if n is publicly observed by the citizens and the policy maker; see the supplementary
material on the authors’ websites.
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cutoffs (ca, cb) such that a citizen with a signal θ and cost c participates in the protest if
c < cθ and abstains if c > cθ. Henceforth, we identify a citizen strategy ψ that has a cutoff
structure with the cutoff pair (ca, cb) that refers to the participation cutoffs of citizens with
a and b signals. Note that the cost cutoffs satisfy u(θ, cθ) = 0.

3 Responsive Equilibria

There is always an uninformative equilibrium (or babbling equilibrium) with the citi-
zens protesting when c < 0, and abstaining when c ≥ 0; i.e., ca = cb = 0. A citizen’s
behavior in such a strategy profile is independent of her signal, and hence the turnout is
state-independent, i.e., λ(α) = λ(β). Therefore, turnout is uninformative about the state,
and the policy maker implements policy B for each realization of the turnout, i.e., ρ(t) = 0
for every t ≥ 0. Hence, u(θ, 0) = 0 for θ = a, b, and the citizens act only based on their cost.

We are interested in non-babbling equilibria in which λ(α) 6= λ(β). To avoid tedious
case distinctions, in the main text, we will consider only non-babbling equilibria in which
λ(α) > λ(β), and we will refer to those as "responsive equilibria". We will refer to citizens’
strategies that induce turnouts λ(α) > λ(β) as responsive strategies. In responsive equilibria,
citizens with a signals are more likely to join the protest than citizens with b signals.17

Responsive equilibria may not exist for every n. We first present the properties of such
equilibria when they exist, and then move to the comprehensive analysis of when such
equilibria exist for large n in Section 5. Such equilibria also give a meaning to the protest
being in favor of A, and we confirm this in the development below.18

In a responsive equilibrium, the turnout is Poisson-distributed with mean given by

λ(ω) = n (P(a|ω)F (ca) + P(b|ω)F (cb)) for ω = α, β. (2)

For given λ(α) and λ(β), the policy maker’s posterior belief for a given realization of the
turnout t, expressed as the likelihood ratio that the state is α, is given by

L(t) =
q

1 − q

P(t|α)

P(t|β)
=

(

q

1 − q

)

e−(λ(α)−λ(β))

(

λ(α)

λ(β)

)t

.

In a responsive equilibrium, the posterior likelihood ratio L is strictly increasing in t,
L(0) < q

1−q
, and limt→∞ L(t) = ∞. Consider the largest T such that L(t) < µ

1−µ
for all

t ≤ T . If t ≤ T , the policy maker’s posterior belief that the state is α is less than µ, and
he implements policy B, and when t > T + 1, his posterior belief that the state is α is
greater than µ, and he implements A. If t = T + 1, he implements A if L(T + 1) > µ

1−µ
,

and is indifferent between the two policies if L(T + 1) = µ
1−µ

. Therefore, in any responsive

equilibrium, ρ(t) is an increasing function, with ρ(t) = 0 for t ≤ T , ρ(t) ∈ [0, 1] for t = T +1,
and ρ(t) = 1 for t > T +1. This confirms our intuition that in responsive equilibria, protests

17So, in a slight abuse of the term, equilibria with λ(α) < λ(β) are not responsive. We refer to these
together with the responsive ones as non-babbling equilibria. Note also that λ(α) > λ(β) together with the
MLRP implies that F (ca) > F (cb). This requires ca > cb.

18We also analyze properties of equilibria in which citizens with b signals participate more often than a
signals, i.e., F (cb) > F (ca). The maximal informativeness of protests when n is large is identical in such
equilibria and in responsive equilibria, as we show in Theorem 1.
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carry a meaning being in favor of A, and that participation in the protest increases the
chances of A being implemented.

In a responsive equilibrium, let

P(piv|ω) =
∑

t∈N

(ρ(t+ 1) − ρ(t)) e−λ(ω)λ(ω)t

t!
, (3)

be the probability that an additional protester changes the outcome in favor of A in state ω,
that is, the probability of being pivotal. The payoff difference in equation (1) depends on the
probability that the citizen is pivotal for the outcome in each state, and her cost. Equation
(1) simplifies to

u(θ, c) = P(α|θ)P(piv|α) − P(β|θ)P(piv|β) − c.

Therefore, in a responsive equilibrium,

cθ = P(α|θ)P(piv|α) − P(β|θ)P(piv|β) for θ = a, b. (4)

In general, the cutoffs may be outside the support of F , i.e., we allow for cθ < c and for
cθ > c̄. Note also that if ca = cb, then λ(α) = λ(β). Therefore, in this case, the posterior
likelihood ratio L is constant and is equal to q

1−q
≤ µ

1−µ
for every t, delivering that ρ(t) = 0

for every t is a best reply for the policy maker, i.e., we obtain a babbling equilibrium.
Because the policy maker’s strategy has a threshold structure, a citizen is pivotal in

two events. The first pivotal event is when there are T other protesters, and the policy
maker chooses A when there are T + 1 protesters. The probability of this first event is

e−λ(ω) λ(ω)T

T !
ρ(T + 1). The second pivotal event is when there are T + 1 other protesters, and

the policy maker chooses B when there are T + 1 protesters. The probability of this event

is e−λ(ω) λ(ω)(T +1)

(T +1)!
(1 − ρ(T + 1)). Therefore, equation (3) simplifies to

P(piv|ω) = e−λ(ω)λ(ω)T

T !
ρ(T + 1) + e−λ(ω)λ(ω)(T +1)

(T + 1)!
(1 − ρ(T + 1)).

In a responsive equilibrium, the incentives of the citizens to participate in the protest
are determined by the probability of the pivotal events in states α and β, given by equation
(4). Because P(α|a) > P(α|b), and because in every responsive equilibrium P(piv|α) > 0, we
have ca > cb. When ca and/or cb are in the interior of the support of F , this implies that
F (ca) > F (cb). This will be the case when P(piv|α) and P(piv|β) are small. Hence, when
the policy maker perceives the protest to be in favor of A, the citizen’s best reply induces a
higher participation rate in state α than in state β.

Thus, in responsive equilibria, citizens with costs between cb and ca participate in the
protest based on their signal, those with costs less than cb participate independent of their
signals, and those with costs above ca abstain regardless of their signals. In other words,
citizens whose costs are between cb and ca provide information in the protest movement (in-
formative citizens), whereas those with costs less than cb add noise to the protest movement
(activists); see Figure 1 for a depiction.

9



c < 0 c̄cb ca

activists

informative citizens

Figure 1: In responsive equilibria, citizens with costs between cb and ca participate if their
signal is a, and do not participate if their signal is b.

4 Large Populations with Activists: Best Responses

We are interested in the properties of responsive equilibria as the expected number of
citizens grows without bound. Fix all the parameters of the model except n (i.e., P, F , q, µ).
As a first step towards analyzing equilibrium, we derive here the best-responses of the policy
maker and the citizens iteratively. Specifically, we consider some sequence of responsive
cutoffs {ca,n, cb,n}n for which ca,n, cb,n → 0 as n → ∞. (As we will verify later, in equilibrium,
cutoffs will indeed necessarily vanish to 0.) In the first subsection, we characterize the
policy maker’s best-response threshold T̂n to the cutoff sequence. In the second subsection,
we characterize the citizens’ best response cutoffs {ĉa,n, ĉb,n}n to the cutoffs and the policy

maker’s best response,
{

ca,n, cb,n, T̂n

}

n
. An equilibrium must be a fixed point of the resulting

“composite” best response mapping from cost cutoffs to cost cutoffs. We provide a closed-
form characterization of this necessary condition for large n at the end of the section. An
intermediate finding is the identification of regions with complementarities and free-riding,
respectively, in citizens’ participation decisions. In Section 5, we then use this condition to
characterize the equilibrium informativeness.

4.1 Protest Informativeness and the Inference Problem

Given any responsive participation strategy, turnout is Poisson-distributed, and the mean
of the distribution is state-dependent. Hence, the policy maker faces an inference problem
where he observes the realization of the turnout, a single sample point. The inference problem
of the policy maker is simplified by the fact that the Poisson distribution is well-approximated
by the normal distribution.

In general, if some random variable Ñ follows a Poisson distribution with mean k, then the
standard deviation of Ñ is

√
k, and for any z ∈ R, lim

k→∞
Pr
(

Ñ ≤ k + z
√
k
)

= Φ(z) ∈ (0, 1),

where Φ is the c.d.f. of the standard normal distribution.19 Thus, the Poisson distribution
becomes concentrated on an interval proportional to its standard deviation,

√
k, around its

19This can be seen by observing that Ñ is the sum of ⌊k⌋ independent random variables, each of which
is Poisson-distributed with mean k

⌊k⌋ . Applying the central limit theorem and observing that limk
k

⌊k⌋ = 1

delivers the approximation.
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0
t

√
kP (t| ω)

//

φ(0)

k k + z
√
k

φ(z)

Figure 2: Visualization of the Normal approximation of Poisson distributions with mean k,
given by equation 5.

mean k. Moreover, the approximation can be used locally as well, namely,20

Pr
{

Ñ = k + z
√
k
}

≈ φ(z)√
k
, (5)

where φ is the density of the standard normal distribution.21 Figure 2 illustrates the ap-
proximation.

Since the turnout in state ω is Poisson-distributed with mean λn(ω), the standard devi-

ation in state ω is
√

λn(ω). Because ca,n, cb,n → 0, we have

√

λn(ω) ≈
√

nF (0) := σn, (6)

i.e., the expected turnout in each state grows approximately proportional to the expected
number of citizens with negative costs. Therefore, there is more noise in the turnout dis-
tribution if F (0) is larger. Moreover, the standard deviation of the turnout distributions
are approximately equal in the two states. Yet, the difference in the expected protest sizes
(normalized by the standard deviation) may be different from 0. Hence, the policy maker’s
inference problem is akin to an inference problem where the policy maker draws a single
observation from a normal distribution with state-dependent mean and known standard de-
viation. In such an inference problem, the larger the difference in the means of the normal
distributions, the more informative the sample draw is about the true distribution (see Fig-
ure 3). This motivates us to define the measure of informativeness of the protests as the
difference in the expected turnout in the two states, normalized by the standard deviation

20For any two sequences of numbers {fn}n, {gn}n, fn ≈ gn means limn→∞
fn

gn
= 1.

21Using again that Ñ is the sum of ⌊k⌋ independent, Poisson-distributed random variables, the local central
limit theorem delivers the approximation (see Theorem 1.1 of Davis and McDonald, 1995, or Gnedenko, 1948).
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//

|∆λ| = p
√

nF (0)

0
t

√

nF (0)P (t| ω)

φ(−k)
k
√

nF (0)

φ(p− k)

φ(0)

λ(β) λ(α)

Figure 3: This figure illustrates the inference problem of the policy maker when he observes
a turnout t that is k standard deviations away from the mean of the turnout in state α.

σn =
√

nF (0), i.e., given a sequence of responsive cutoffs ca,n, cb,n → 0, we define

p := lim
n→∞

∣
∣
∣
∣
∣

λn (α) − λn (β)

σn

∣
∣
∣
∣
∣

(7)

to be the informativeness of the protest when the limit in (7) exists. The information content
of the protest is increasing in p in Blackwell order (Figure 4 illustrates how the threshold the
policy maker uses for the policy choice and the probabilities of the correct outcomes change
with p given the policy maker’s best response).

The informativeness determines the normalized distance between the policy maker’s
threshold and the expected turnout. In particular, fix a responsive sequence of cutoffs
with informativeness p, and take an arbitrary sequence of thresholds, {T ′

n}n, such that

lim T ′
n−λn(α)

σn
= k ∈ (−∞,∞). Then, using the local approximation from equation 5, the pol-

icy maker’s posterior likelihood ratio when the turnout is T ′
n is given by (Figure 3 provides

an insight for this derivation)

lim
n→∞L(T ′

n) =
q

1 − q

φ(k)

φ(k + p)
. (8)

When n is large, the policy maker is approximately indifferent between policies A and B at
the optimal threshold. Therefore, if {T̂n}n is a sequence of best-response thresholds for the
policy maker, then

lim
n→∞

L(T̂n) =
µ

1 − µ
. (9)
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//0
t

√

nF (0)P (t| ω)

T

φ(0)

λ(β) λ(α)

(a) Small p

//0
t

√

nF (0)P (t| ω)

T

φ(0)

λ(β) λ(α)

(b) Intermediate p

//0
t

√

nF (0)P (t| ω)

T

φ(0)

λ(β) λ(α)

(c) Large p

Figure 4: This panel illustrates the pivotal event, T, its probability in each state, and the
probability of each policy choice as a function of p.

We can solve (8) and (9) for k using the analytic expression for φ, yielding:22

κ(p) := −p

2
+

1

p
ln

(

1 − q

q

µ

1 − µ

)

. (10)

Thus, the normalized distance between the policy maker’s best response threshold T̂n and
the expected turnout in state α is approximately κ(p) for large n.

This also determines the probability of being pivotal in state α as (see Figure 3 again):

P(piv|α) ≈ P

(

t = T̂n|α
)

≈ φ(κ(p))

σn

. (11)

For state β, we obtain that lim T̂n−λn(β)
σn

= κ(p) + p, using equation (7). Therefore,

P(piv|β) ≈ φ(κ(p) + p)

σn

. (12)

Two observations will be important. First, given some p ∈ (0,∞), the probability of being
pivotal is on the order of 1/σn. Thus, to a first approximation, the larger F (0) and, hence σn,
the smaller the probability that a citizen is pivotal. Second, the probability of being pivotal
is non-monotone in p and, more specifically, hump-shaped. This is illustrated by Figure 4.

4.2 Citizens’ Best-Response Cutoffs

We are now interested in the citizens’ best-response cutoffs {ĉa,n, ĉb,n} given some se-

quence of responsive cutoffs {ca,n, cb,n}, and the policy maker’s best response T̂n to it. As
observed above, the policy maker’s best response determines the probability of being pivotal
in each state. The probabilities of being pivotal in each state, in turn, determine the citizens’
cost cutoffs, as stated in equation (4). Finally, the cost cutoffs imply a new difference in the
expected turnout.

In particular, from the policy maker’s optimal choice of the threshold, the relative prob-
ability of being pivotal is:

lim
n→∞

P(piv|α)

P(piv|β)
=

µ

1 − µ
.

22We use the convention that, when µ > q, κ(0) := limp→0 κ(p) = ∞, and φ(κ(0)) = 0. When µ = q, then
κ(p) = −p/2 for p > 0, so we use the convention that κ(0) := limp→0 κ(p) = 0; therefore, φ(κ(0)) > 0.
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Using this and the optimality condition (4) for the cost cutoffs, we get that the difference in
the best-response cost cutoffs is:

ĉa,n − ĉb,n ≈ (P(α|a) − P(α|b))
(

1 +
q

1 − q

1 − µ

µ

)

P(piv|α). (13)

Thus, the expected number of informative citizens is proportional to the probability of being
pivotal. This should not be a surprise, since the probability of being pivotal measures the
effectiveness of the protest.

From here, the difference in the expected turnout in states α and β given the citizens’
best response is:

λ̂n(α) − λ̂n(β) = n (F (ĉa,n) − F (ĉb,n)) (P(a|α) − P(a|β)) ,

using equation (2). Using L’Hopital’s rule and ĉa,n, ĉb,n → 0, this implies

λ̂n(α) − λ̂n(β) ≈ nf(0) (ĉa,n − ĉb,n) (P(a|α) − P(a|β)) . (14)

Dividing both sides by σn and using equation (13), we get that the best response of the
citizens implies the following new normalized difference in means,

λ̂n(α) − λ̂n(β)

σn

≈ nf(0)

σn

Z P(piv|α), (15)

with

Z :=

(

1 +
q

1 − q

1 − µ

µ

)

(P(a|α) − P(a|β)) (P(α|a) − P(α|b)) .

Finally, substituting for P(piv|α) from the optimality of the policy maker (11), we get the
implied “best-response” informativeness p̂,

p̂(p) :=
f(0)

F (0)
Zφ (κ(p)) . (16)

In other words, for large n, if the policy maker and the citizens expect cutoffs (ca,n, cb,n) that
imply an informativeness of approximately p and the policy maker chooses a best response
threshold T̂n to (ca,n, cb,n), then the citizen’s best response to (ca,n, cb,n, T̂n) implies that the
expected informativeness is approximately p̂(p).

The informativeness of a responsive equilibrium sequence must be a fixed point of p̂.
Thus, the previous discussion is summarized by the following lemma.

Lemma 1. For every responsive equilibrium sequence with informativeness p∗,

p̂(p∗) = p∗. (17)

Therefore, the shape of p̂ is critical for understanding the equilibrium properties and
performing comparative statics, so we discuss its shape in the next subsection in more detail.
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y(p) = p

0
pp0

p̂(p) = f(0)
F (0)Zφ(κ(p))

p1

Figure 5: Equilibrium informativeness p is the largest intersection of f(0)
F (0)

Zφ (κ(p)) with the

45 degree line. The reverse hazard rate f(0)
F (0)

scales the function. (The figure is a sketch of

the qualitative features of p̂, not a computed example.)

4.3 The Participation Incentives: Free-Riding and Complementarities

Figure 5 illustrates the function p̂ when µ > q. The basic “hump shape” follows from the
properties of the normal density φ and the monotonicity of κ.23 From this, three observations
about the citizens’ participation incentives follow.

Stationarity. First, suppose that the difference of the original cutoffs is on the order
of 1/σn; that is, for some k we have ca,n − cb,n ≈ k/σn. It follows from equation (14) that
the expected number of informative citizens is on the order σn.24 As a consequence, the
informativeness is close to some interior number p. Then, the best-response threshold of the
policy maker T̂n is finitely many standard deviations σn away from the means. Hence, the
probability of being pivotal is on the order 1/σn; see (11). But for the citizens’ best response,
the difference of the cutoffs is proportional to the probability of being pivotal, by equation
(13), and so the citizens’ best response implies that the number of informative citizens is
again on the order σn. So, in summary, we find that if the anticipated number of informative
citizens is on the order of the standard deviation, σn, then the best-response number of
informative citizens is also on the order of the standard deviation, σn.

Complementarity and Free-Riding. We now discuss the implications of an increase
in the anticipated protest informativeness p. Figure 5 shows that p̂ is first increasing and
then decreasing. Put differently, for small anticipated p, an increase of p will increase the
incentives for citizens to participate, and hence increase the number of informative citizens.
We call this a strategic complementarity effect: If the policy maker anticipates a larger p, as
implied by a larger number of informative citizens, and reacts optimally, then the citizens’
best response will imply that more informative citizens participate. As p increases further,
however, the participation incentives decrease, due to a free-riding problem.

To understand this further, recall that the number of informative citizens is proportional
to the probability of being pivotal by equation (13). In addition, as illustrated by Figures 3
and 4, the probability of being pivotal is first increasing and then decreasing in p. Intuitively,

23In particular, p̂ is continuous, p̂(0) = p̂′(0) = 0, limp→∞ p̂(p) = 0, p̂ is first increasing and then decreasing.
24It is on the order n k

σn
= n k√

nF (0)
, which has order σn.
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for small p, the policy maker is initially unlikely to react to the protest because turnout is
not very informative. However, as p increases, the turnout becomes more informative and
the policy maker is more likely to be swayed by the turnout. In this region, the participation
decision of the informative citizens are complementary. Finally, as p becomes very large,
the participation of the “other” protesters is almost certain to ensure the correct choice and,
hence, an individual protester has little incentive to participate (free riding).25

Reverse Hazard Rate. As suggested by the function p̂, the cost distribution F enters
the participation incentives only via its (reverse) hazard rate at 0, f(0)

F (0)
. In particular, the

reverse hazard rate “scales” the best response map p̂ : For any given p, the larger f(0)
F (0)

,
the larger the implied informativeness of the best response. To understand this, note the
following: First, the density f(0) enters only in equation (14) where it is scaling the best
response cutoffs; for a given difference ĉa,n − ĉb,n, the larger the density, the larger the implied
number of informative citizens. Second, F (0) enters via σn in two ways. First, a larger σn

mechanically reduces the informativeness of the protest for a given number of informative
citizens because it appears in the denominator of p̂; see equation (15). Second, a larger
σn implies a small probability of being pivotal—see equation (11)—thereby reducing the

participation incentives; see equation (13). In both cases,
√

F (0) enters multiplicatively in

the denominator and, so, F (0) appears in p̂.

5 Characterization of Equilibrium Informativeness

Here, we study the maximal information transmission that is sustainable in equilibrium.
Specifically, we look for the largest informativeness of protests achievable in some equilibrium
sequence. Our first result shows how the maximal informativeness depends on F only via
its reverse hazard rate, f(0)

F (0)
. Then, we provide further comparative statics with respect to

the other parameters of the model (the distribution of the citizens’ signals and the bias of
the policy maker).

5.1 Main Result: Characterization

From our previous discussion, summarized in Lemma 1, we know that for any sequence of
responsive cutoffs with informativeness p > 0, the composite best response implies a strictly
positive informativeness, p̂(p) > 0. However, this does not mean that there will always exist
an equilibrium sequence with positive informativeness: it may be that for any p, we have
p̂(p) < p, which means that, starting from any level of informativeness, the iterated best
response will lead to an ever-decreasing number of informative citizens, eventually taking us
to the babbling equilibrium with p = 0. Indeed, as the next result shows, if f(0)

F (0)
is too small,

then there is no responsive equilibrium sequence, and, in fact, for n large enough, babbling
is the unique equilibrium outcome. However, if f(0)

F (0)
is sufficiently large, then there is an

equilibrium with positive informativeness and, as f(0)
F (0)

grows further, the informativeness

25Note that the argument above is via the “composite” best response, p̂. A similar observation is the
following: Fix some strategy profile (ca,n, cb,n, T̂n) such that the implied informativeness pn is small and T̂n

is a best response threshold. Then, a marginal increase in ca,n increases the best response cutoff ĉa,n. This

follows from the same idea: For initially small pn, the best response cutoff T̂n is in the right tail (see the
left panel in Figure 4). In this case, an increase in ca,n implies an increase in P(piv|α) because it moves the

mean closer to threshold (keeping cb,n and T̂n fixed). Conversely, for large pn, an increase in ca,n implies a
decrease in P(piv|α). An analogous argument applies to the cutoff cb,n.
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increases without bound.
The previous section showed that the informativeness of any equilibrium sequence must

be a fixed point of the (approximation of the) composite best responses stated in equation
(17). Thus, the fixed points of this equation are candidates for equilibrium informativeness.
Our main result shows that the largest fixed point is indeed an equilibrium outcome, and it
spells out the implications of this for equilibrium informativeness. In particular, the maximal
equilibrium informativeness depends on F only through its reverse hazard rate, i.e., f(0)

F (0)
,

and the result shows how the maximal equilibrium informativeness is changing as a function
of f(0)

F (0)
. To this end, we define P

(
f(0)
F (0)

)

to be the largest p−solution of equation (17) when

the other parameters (q, µ,P (θ|ω)) are fixed.

Theorem 1. When the other parameters (q, µ,P (θ|ω)) are fixed, there is some cutoff τ ≥ 0

such that, for every cost distribution F with f(0)
F (0)

6= τ , the sequence of equilibria with the
maximal informativeness satisfies

lim
n→∞

∣
∣
∣
∣
∣

λn (α) − λn (β)

σn

∣
∣
∣
∣
∣
= P

(

f (0)

F (0)

)

.

The cutoff τ = 0 if and only if µ = q. Moreover, P is as follows:

1. P (x) = 0 for x < τ ,

2. P is continuous and strictly increasing for x > τ ,

3. If µ > q, that is, τ > 0, then limx↓τ+ P (x) > 0,

4. limx→∞ P (x) = ∞.

Theorem 1 characterizes the informativeness of protests in relation to the cost distribu-
tion, F , when all other parameters of the model are fixed. In particular, for a fixed reverse
hazard rate f(0)

F (0)
= x and n large, the difference in the expected turnout in the two states,

normalized by the standard deviation of the turnout, is close to P (x).
Figure 6 illustrates the properties of the function P : There is some τ such that, below

it, P is constant and equal to zero, meaning there is no information transmission, (Item
1). In fact, when n is large, we show that babbling is the unique equilibrium in this case
(Lemma 4, and the proof of Theorem 1 in the Appendix). Above τ , P is continuous and
strictly increasing (Item 2). At τ , there is a discontinuity if µ > q (Item 3).26 Finally, P
grows without bound, i.e., protests become arbitrarily informative, as the reverse hazard
rate grows without bound (Item 4).27

Figure 5 illustrates the function p̂ and its intersection points with the function y(p) := p,
when µ > q. The properties of the P function follow from the hump shape of the function
p̂ and the fact that p̂ is scaled by f(0)

F (0)
, as previously discussed.28

26Because τ = 0 if and only if µ = q, the discontinuity appears only when µ > q.
27We study the case F (0) = 0, corresponding to f(0)

F (0) = ∞, in Subsection 7.1.
28As mentioned before, p̂ is continuous, p̂(0) = p̂′(0) = 0, limp→∞ p̂(p) = 0, and p̂ is first increasing and

then decreasing.
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f(0)
F (0)

τ x

P (x)

Babbling: No information transmission Some information transmission

0

P

Figure 6: The maximal informativeness for n large as a function of the reverse hazard rate.
If f(0)

F (0)
= x ∈ (τ,∞), then, as n increases, the equilibrium informativeness converges to

P (x) ∈ (0,∞).

To see why, suppose p1 > 0 is the largest intersection of y(p) = p̂(p). An increase in
f(0)
F (0)

will scale up the function p̂, and p1 increases. On the other hand, if f(0)
F (0)

decreases

sufficiently, eventually p̂ and y will be tangent. The magnitude of f(0)
F (0)

that makes the two

curves tangent is τ . For f(0)
F (0)

< τ , there is no longer any positive intersection point. Thus,
there is a discontinuity at τ . This implies that informative protests may be fragile. Small
changes in the cost distribution may unravel the informativeness of protests completely.

When µ = q, the function p̂ peaks at p = 0 at a positive number, and is decreasing.
Therefore, τ = 0 in this case.

Lemma 1 shows that the informativeness of an equilibrium sequence must be a solution
of equation (17). When f(0)

F (0)
> τ , there are two positive solutions to equation (17). Both

solutions are candidate equilibria. However, p̂ is only an approximation of the actual best
responses, hence it is not guaranteed that fixed points are equilibria. We show in the Ap-
pendix that the largest solution of equation (17) corresponds to the informativeness of some
responsive equilibrium sequence. The existence proof uses a sequence of auxiliary games
with restricted strategy spaces. We choose the restrictions in order to ensure that, along the
equilibrium sequence of the auxiliary games, the restrictions do not bind for large n, and
the informativeness of the equilibrium sequence converges to P

(
f(0)
F (0)

)

. What facilitates that

the restrictions do not bind is the “pseudo-stability” of the approximate best response, p̂,
at the maximal solution of equation (17). The smaller positive fixed point of p̂ lacks this
pseudo-stability, hence our proof method does not apply for that candidate equilibrium. As a
consequence, we do not know whether the smaller fixed point corresponds to an equilibrium
sequence.
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5.2 Policy Choice: Indeterminacy and Welfare

We now investigate the implications of our characterization for the equilibrium behavior
and welfare.

Theorem 2. For any cost distribution F with f(0)
F (0)

6= τ , let p = P
(

f(0)
F (0)

)

. In the sequence

of equilibria with maximally informative protests:29

1. (Policy choice)

(a) The probability that A is chosen in state α converges to

1 − Φ (κ (p)) ,

(b) The probability that B is chosen in state β converges to

Φ (κ (p) + p) .

2. (Welfare) The expected payoffs of the policy maker and the citizens are strictly increas-
ing in the informativeness of the protest p.

The first part of the theorem follows from our previous discussions: As we stated earlier,
the distance between the expected turnout and the policy maker’s threshold, normalized by
the standard deviation of the turnout, converges to κ(p) in state α and κ(p) + p in state β.
Therefore, in state α, policy A is chosen with probability 1−Φ (κ (p)), and in state β, policy

B is chosen with probability Φ (κ (p) + p). Therefore, when f(0)
F (0)

< τ , p = P
(

f(0)
F (0)

)

= 0,

κ(p) = ∞, and policy B is chosen in both states. In this case, there is no information

transmission in equilibrium. If f(0)
F (0)

> τ , then the policy is indeterminate conditional on the

state even for large n since 1−Φ (κ (p)) and Φ (κ (p) + p) are both interior. The indeterminacy
arises because the expected number of informative citizens is proportional to the the standard
deviation of the turnout, i.e., σn.

In terms of welfare, the policy maker utilizes the information transmitted through the
protests for a single-person decision problem. Because the information content of the protest
is increasing in p in Blackwell order, the policy maker is better off when the informativeness of
protests increases. Citizens’ welfare consists of their costs from participation and the policy
choice. Because the equilibrium cost cutoffs converge to 0, a change in the informativeness
of the protests does not alter the expected cost from participation for large n. For the policy
choice, an increase in p increases the probability that A is chosen in state α because κ is
a decreasing function. An increase in p has an ambiguous effect on the probability that B
is chosen in state β. However, the citizens are unambiguously better off when p increases.
This is because µ > 0.5, i.e., the policy maker is more concerned about a mistake in state
β compared to the citizens and the policy maker’s optimal choice implies that he is strictly
better off when p increases.

29Recall that we use the convention that κ(0) = ∞ when µ > q.

19



5.3 Encouragement Effect

The complementarity effect we discussed in Subsection 4.3 leads to the following com-
parative statics: For small noise, i.e., small F (0), in responsive equilibrium sequences with
maximal informativeness, the expected number of informative citizens increases with F (0).
We call this the encouragement effect of noise in the participation decisions of the informative
citizens.

Theorem 3. For any two cost distributions F 1, F 2 with f 1(0) = f 2(0) > 0, there exists
F̄ > 0 such that 0 < F 1(0) < F 2(0) < F̄ implies that for any corresponding responsive

equilibrium sequences with maximal informativeness
{

ci
a,n, c

i
b,n, ρ

i
n

}

for i ∈ {1, 2},

lim
n→∞

F 1
(

c1
a,n

)

− F 1
(

c1
b,n

)

F 2
(

c2
a,n

)

− F 2
(

c2
b,n

) < 1.

Note that the maximal informativeness, P , is decreasing in F (0). Hence, additional noise
unambiguously decreases the maximal informativeness of protests. However, when the initial
noise is small, an increase in it leads to an increase in the probability of being pivotal, and
thus an increase in the expected number of informative citizens. So, the citizens react to
an increase in noise that partially offsets the impact of noise in the informativeness.30 We
thus conclude that when the noise in the turnout is sufficiently small, then an increase in
the noise has an encouragement effect on the citizens to use their information: Citizens join
their voices to overcome the noise.

5.4 Comparative Statics

We now investigate how the threshold τ and the function P change with µ and the
informativeness of the signals. First, consider an increase in the informativeness of the
citizens’ signals in Blackwell order. Because we have 2 states and 2 signals, this amounts to
an increase in P(a|α)

P(a|β)
, and a decrease in P(b|α)

P(b|β)
.

Recall that the informativeness of the protests is given by the maximal solution of the
equality (17):

p =
f(0)

F (0)

(

1 +
q

1 − q

1 − µ

µ

)

(P(a|α) − P(a|β)) (P(α|a) − P(α|b))φ (κ(p)) .

Inspection of this equation shows that the impact of such a change of the informativeness of
the signals on the right-hand side of the equation depends on the term (P(a|α) − P(a|β)) (P(α|a) − P(α|b)).
However, this term is equal to the difference in the expected posterior beliefs of a citizen
across states31 and this difference is easily shown to be increasing when signals are more

30One may be reminded of the role of noise in the incentives to acquire information in noisy rational
expectations equilibrium (Grossman and Stiglitz, 1980) and in social learning settings (Duffie et al., 2009),
where the addition of noise to the signal of an aggregate statistic of agents’ actions leads to more information
acquisition.

31That is,

(P(a|α) − P(a|β)) (P(α|a) − P(α|b)) = P(a|α)P(α|a) + P(b|α)P(α|b) − (P(a|β)P(α|a) + P(b|β)P(α|b)).
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informative in the Blackwell order. From this, it follows that the right-hand side of the
equality (p = p̂(p)) is indeed increasing in the informativeness of the citizens’ signals, hence
τ decreases while the informativeness of the protests increase with the informativeness of the
citizens’ signals. However, even when the signal distribution approaches the perfectly infor-
mative signal distribution, the informativeness of the protests remain bounded when f(0)

F (0)
is

finite since (P(a|α) − P(a|β)) (P(α|a) − P(α|b)) is bounded by 1. (This observation implies,
in particular, that our qualitative results do not depend sensitively on the citizens’ update
about the state from being pivotal, since our results also hold when citizens are certain of
the state.)

Let >B denote the Blackwell order on distributions P : {α, β} → ∆{a, b} that satisfy
the MLRP condition, and let P (x,P) denote the maximal informativeness of protests when
the signal distribution is P and when the reverse hazard rate is x. Our previous discussion
proves:

Theorem 4. P1 >B P2 implies P (x;P1) > P (x;P2) for every x ≥ τ (P1) . Moreover, if
µ > q, then τ (P1) < τ (P2).

We now investigate how the policy makers bias, µ, affects the maximal informativeness
of the protests.

Theorem 5. Fixing (q,P, f(0)
F (0)

), the maximal informativeness of the protests P viewed as a
function of µ satisfies the following comparative statics:

1. If f(0)
F (0)

(P(a|α) − P(a|β)) (P(α|a) − P(α|b)) < 1
φ(1)

, then P (µ) is decreasing in µ, and is
maximized at µ = q.

2. If f(0)
F (0)

(P(a|α) − P(a|β)) (P(α|a) − P(α|b)) > 1
φ(1)

, then P (µ) is single peaked, and is

maximized at some µ ∈ (q, 1).

Recall that the informativeness of the protests is given by the maximal solution of the
equality

p =
f(0)

F (0)

(

1 +
q

1 − q

1 − µ

µ

)

︸ ︷︷ ︸

A(µ)

(P(a|α) − P(a|β)) (P(α|a) − P(α|b))φ (κ(p;µ))

where κ(p;µ) = −p
2

+ 1
p

ln
(

1−q
q

µ
1−µ

)

. Hence, the comparative statics depend on the impact

of the term 1−µ
µ

on the terms A(µ) and φ(κ(p;µ)). The term A(µ) is decreasing in µ while

the impact of µ in the function φ(κ(p;µ)) is ambiguous because κ is increasing in µ while φ
is a single-peaked function. Therefore, the comparative statics depend on the details of the
other parameters of the model.

6 An Illustrative Numerical Example

Here, we consider a numerical example in which the citizens’ participation costs are
deterministic and equal to a constant c > 0. In addition, the citizens are perfectly informed
about the state, i.e., P(a|α) = P(b|β) = 1,32 and µ > q = 1/2.

32Recall that we observed in the discussion of Theorem 4 that our results continue to hold for perfectly
informative signals.
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Figure 7: The benefit of participation in state α given expected turnout λ.

We look for a responsive equilibrium, i.e., an equilibrium in which λ(α) > λ(β). In any
responsive equilibrium, citizens abstain in state β because the signal is perfectly informative
and because the citizens prefer policy B in state β. Hence, λ(β) = 0. Therefore, in a
responsive equilibrium, the policy maker’s posterior belief that the state is α equals 1 if
turnout is positive and is less than the prior (so less than µ) if turnout is 0. Hence, the
policy choice is B if turnout is 0, and it is A if turnout is positive.

How do the citizens behave in state α? From a citizen’s perspective, participation provides
a public good to the rest of the population, but it is costly. Hence, the problem becomes a
standard free-riding problem.

The benefit from participation (without the costs) for a given λ(α) is equal to the prob-
ability of being the only participant,

B(λ) := e−λ.

Figure 7 shows the function B.
The function B is strictly decreasing. When c < 1, there is a unique λ∗ > 0 such that

B(λ∗) = c. If n ≥ λ∗, then there is a unique responsive equilibrium in which a citizen with
an a signal mixes between participating and abstaining, participating with a probability
ψ(a) = λ∗

n
. If n < λ∗, then all citizens join the protest in state α. We observe that the

participation decision in state α exhibits a strategic substitutes effect: The higher λ(α) is,
the lower the incentive to participate. Moreover, when n ≥ λ∗, the expected turnout in state
α is independent of n (it is stationary).

We now add noise to the turnout. A citizen is either an “activist” who always participates
in the protest or an informative citizen who has the payoff function as described previously.
The expected number of activists is m, and the expected number of informative citizens
is n; so, the expected population size is m + n. In any responsive equilibrium, as before,
informative citizens abstain in state β, hence we have λ(β) = m. Let λ be the expected
number of informative citizens who participate in state α. Then, the posterior likelihood
ratio that the state is α when the turnout is t is given by

L(t) =
q

1 − q

e−(λ+m)(λ+m)t

e−mmt
= e−λ

(

λ+m

m

)t

,

where we used q = 1/2 for the last equality. The threshold turnout T then becomes the
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Figure 8: The benefit of participation in state α when the expected number of informative
participants is λ. The parameters are µ = 0.8 and m = 100. If c = 0.01, then the largest
solution of Bnoise(λ) = 0.01 is at λ∗ = 41.60415.

largest t such that L(t) ≤ µ
1−µ

, which implies that

T (λ) = ⌊
λ+ ln

(
µ

1−µ

)

ln
(

λ+m
m

) ⌋.

Then, the benefit from participation in state α for a given λ is equal to33 (see Figure 8)

Bnoise(λ) := e−(λ+m) (λ+m)T (λ)

T (λ)!
.

We observe that limλ→0 Bnoise(λ) = limλ→∞ Bnoise(λ) = 0, and Bnoise(λ) is single-peaked.
The shape of Bnoise highlights the complementarity and substitution effects: When λ is small,
an increase leads to larger incentives to participate. When λ is large, an increase leads to
smaller incentives to participate. When c is above the peak of Bnoise, there is no responsive
equilibrium. When c is smaller than the peak of Bnoise, there are at least 2 solutions to
Bnoise(λ) = c.34 Note that there is a discontinuity in the equilibrium informativeness as c
increases above the peak (or, similarly, m increases slightly). The largest intersection point,
λ∗, generates a higher turnout from the informative citizens compared to the case in which
there is no noise, for a fixed but small c. Observe also that there is stationarity: When
n > λ∗, in the equilibrium with maximal turnout, the expected turnout is independent of n.

For a numerical example, let c = 0.01. Then, the solution of B(λ) = 0.01 (no noise) is
at λ∗ = 4.60517. If m = 100, then the maximal solution of Bnoise(λ) = 0.01 is obtained at
λ∗ = 41.60415. Observe that the equilibrium turnout by the informative citizens in state
α is significantly higher when there is noise. In this case, the policy maker’s threshold is
T = 123. The equilibrium turnout distributions in states β and α are given in Figure 9.

33This is exact only when T (λ) <
λ+ln( µ

1−µ )
ln(λ+m) . When T (λ) =

λ+ln( µ
1−µ )

ln(λ+m) , the policy maker may be mixing

between the two policies when turnout is T (λ). Hence, Bnoise is a correspondence, and not a function, and
is depicted in Figure 8.

34The number of solutions to the equality Bnoise(λ) = c is typically 2, with the possibility of more solutions
resulting from the policy maker’s mixing.
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Figure 9: Turnout distributions in states β (the distribution with smaller mean) and α (the
distribution with larger mean), when m = 100 and λ = 41.60415. The threshold turnout is
T = 123.

7 Information Aggregation Without Activists

In the following two subsections, we study the case without activists (i.e., c = 0). In
the first subsection, we consider the case where costs are distributed without atoms on [0, c̄],
and in the second and third subsections, the case with an atom at 0, including the case in
which all citizens have 0 participation costs (costless participation). The analysis in this
section provides some insights into the role of the costs and benefits of participation (noise)
by considering only costly participation in isolation, and by comparing the results to the
case with neither costs nor benefits.

7.1 Costly Protests

We analyze the case in which c = 0 and c̄ > 0, i.e., there are still costs of participation but
there are no longer non-informational benefits from participation in the protest movement.
We maintain the assumptions that F is strictly increasing in the interval [0, c̄], has no atoms,
and admits a density f with the following regularity property at 0:

Assumption 1. For every d > 1

lim inf
c→0+

F (dc)

F (c)
> 1.

Note that any atomless and increasing cost distribution F with f(0) ∈ (0,∞) satisfies
Assumption 1. Moreover, distributions of the form F (c) = cγ for any γ ∈ (0,∞) also satisfy
the assumption.

In the analysis of the maximally informative equilibrium sequences when c < 0, we
showed that if f(0) > 0 and F (0) is close to 0, then protests become arbitrarily informative;
see the last item of Theorem 1. Therefore, one may conjecture that when c = 0 (i.e., when
F (0) = 0), information aggregation is possible. We show that this conjecture is indeed
correct and that information also aggregates when f(0) = 0, provided that Assumption 1
holds. We devote a separate section to this part of the analysis because the proof technique
is different and the strategic nature of the problem is different from the case in which c < 0.

Take a sequence of strategy profiles {ca,n, cb,n, ρn} where each strategy profile is a respon-
sive equilibrium of a protest game in which the expected number of citizens is n, and along
the sequence, all the parameters of the model except n (i.e., P, F , q, µ) are fixed. We say
that such a sequence is a large responsive equilibrium sequence if
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lim
n→∞

λn(α) = ∞.

Remark 1. Under some parameter values, one can show that there are responsive equilibrium
sequences where, as n → ∞, expected turnout goes to 0 in both states. Along such equi-
librium sequences, protests become uninformative. When µ = q, there are also responsive
equilibrium sequences with lim λn(α) ∈ (0,∞). Hence, we focus on equilibria in which the
expected turnout increases without bound.

Theorem 6. Assume that c = 0 < c̄ and that F is atomless, strictly increasing and satisfies
Assumption 1. Then:

1. There always exists a large responsive equilibrium sequence.

2. Every large responsive equilibrium sequence aggregates information: the probability that
A is implemented in state α goes to 1, and the probability that B is implemented in
state β goes to 1, i.e.,

lim
n→∞P ({t : ρn(t) = 1}|α) = 1,

lim
n→∞P ({t : ρn(t) = 0}|β) = 1.

3. In every responsive equilibrium sequence,

lim sup
n→∞

λn(ω)

lnn
< ∞.

Theorem 6 presents three results. First, a large responsive equilibrium sequence exists.
Second, such equilibria aggregate information. These two results are as expected given our
analysis for the case with c < 0 and a large reverse hazard rate f(0)

F (0)
.

The third result is that participation increases at a rate not faster than lnn in both
states. This implies that the expected number of informative citizens also increases at a rate
not more than lnn. Comparing this rate with the corresponding rate when c < 0, which
is

√
n (see the discussion in Section 4.3), we conclude that when there are only costs of

protests, citizens in equilibrium have less incentive to participate. Broadly speaking, this
is an instance of the “encouragement effect” of noise discussed in Section 5.3. Basically,
protests are already very informative when participation is small (at the order of lnn), so
there is little incentive to increase their informativeness any further.

We now provide intuition for the information aggregation result. We start with two
observations. First, cost cutoffs converge to 0 as n grows without bound. This is because
the expected turnout grows without bound and so the pivot probability vanishes to 0. Our
second observation is that the ratio of the expected protest sizes across the states stays
bounded away from 1. This is because the optimality condition for the cost cutoffs (4)

implies that ca,n > cb,n
P(α|a)
P(α|b)

, and so ca,n

cb,n
is bounded away from 1. When Assumption 1 holds,

this implies that the ratio of the expected protest sizes λn(α)
λn(β)

stays bounded away from 1. To
see why information aggregates, recall that the standard deviation of the Poisson distribution
is the square root of its mean, and the turnout in states α and β are apart from each other
by a factor of the mean in state α, i.e., the distance in the means in standard deviations
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grows without bound. Hence, an application of Chebyshev’s inequality delivers information
aggregation because the policy maker is able to distinguish the two states with probability
converging to 1 based on the realized turnout.

7.2 Costless Participation

We now consider a scenario in which c = c̄ = 0, i.e., there are neither costs nor benefits
of participating that are unrelated to the instrumental effect of the protest itself. This case
was studied in Battaglini (2017). Because participation is costless for all citizens, a strategy
for a citizen is simply the probability of participation based on her signal,

ψ : {a, b} → [0, 1].

As before, an equilibrium is responsive if ψ(a) > ψ(b), and an equilibrium is babbling
if ψ(a) = ψ(b). The following theorem provides a necessary and sufficient condition for the
existence of a responsive equilibrium sequence that aggregates information; otherwise, the
unique equilibrium is babbling. The main insights of the theorem are due to Battaglini
(2017).

Theorem 7. Assume that c = c̄ = 0, i.e., participation in the protest is costless.

1. Battaglini (2017) If
µ

1 − µ

P(a|β)

P(a|α)

P(b|α)

P(b|β)
> 1, (18)

then babbling is the unique equilibrium outcome.

2. If
µ

1 − µ

P(a|β)

P(a|α)

P(b|α)

P(b|β)
< 1, (19)

then there is a responsive equilibrium sequence that aggregates information.

The inequality (19) is satisfied if µ =1
2

because the MLRP condition implies that P(a|β)
P(a|α)

< 1

and P(b|α)
P(b|β)

< 1. Conversely, if µ > 1
2
, inequality (18) is satisfied whenever the likelihood ratios

are sufficiently close to 1 (i.e., signals are relatively uninformative).
The intuition for the first part of the theorem is that, when the conflict is large, or when

the signals are imprecise, then citizens with b signals have strong incentives to participate
because, conditional on being pivotal, their posterior belief that the state is α is larger than
1/2. This was shown in Battaglini (2017).35 For the second claim, we construct a responsive
equilibrium sequence. Hence, we show that the necessary condition that was previously
identified is also tight.36

To see more precisely why the first claim is true, take any candidate for a responsive
equilibrium, consisting of some participation probabilities for which the turnout is expected

35In fact, Battaglini (2017) shows that this result also holds if the cost distribution is discrete with finite
support, provided there is one atom at 0. Intuitively, for large n, the cost cutoffs are close to 0 and so only
citizens with 0 costs participate.

36Battaglini (2017) shows that, given any signal distribution, there exists some cutoff µ∗ such that there
is a responsive equilibrium for all µ < µ∗ and there does not exist a responsive equilibrium for all µ > µ∗,
for large populations.
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to be higher in state α than in state β, and the policy maker’s best response threshold
given those cutoffs. Then, a citizen is pivotal only when the policy maker is on the verge of
choosing A, yet, without any further protester, his decision is B. More precisely, as noted
before, a citizen is pivotal when there are T other protesters, and the policy maker’s posterior
belief when there are T protesters is close to µ (it is weakly smaller than µ when there are
T protesters and it is weakly above µ when there are T + 1 protesters). Now, if a b signal
is not very informative relative to µ, then, when a citizen is pivotal because there are T
other protesters, the probability that the state is α remains close to µ and, in particular,
is strictly above 1/2, even when the citizen has signal b. Therefore, conditional on being
pivotal and her own signal, a citizen has strict incentives to participate not only with an
a signal but also with a b signal. In other words, in any best response to any candidate
for a responsive equilibrium, the citizens’ participation decisions are signal-independent,
and so, the turnout is state-independent as well. Thus, “babbling” is the unique equilibrium
outcome.37

Battaglini’s observation that, when inequality (18) holds, there is no information trans-
mission in equilibrium is striking because, arguably, the model has little room for a conflict of
interests between the policy maker and the citizens: The preferences are completely aligned
under complete information about the state ω. Moreover, suppose that we interpret the
realization of the citizens’ signal profile as the effective state of the world. Then, the number
of effective states in which the policy maker’s and the citizens’ preferred policies differ is
bounded above, independently of n. Hence, both the policy maker and all citizens would
be better off if the policy maker could delegate, before the protest, the policy decision to
any one of the citizens. Likewise, if the policy maker could commit to a referendum with
a fixed voting rule, then information would aggregate, and everybody would be better off
(see Battaglini, 2017). Hence, the lack of commitment by the policy maker is detrimental to
receiving informative advice.

In light of the difficulty of information transmission highlighted in Theorem 7, Theorem
6 shows that participation costs help information transmission and aggregation. The basic
idea is the following: Whatever is the belief of a citizen conditional on being pivotal, a
citizen with a signal a believes the state is α with a probability that is strictly higher than
a citizen with a signal b. Hence, the cost that a citizen with a signal a is willing to incur
to participate is strictly higher than the cost that a citizen with a signal b is willing to
incur.38 This induces participation decisions that are signal-dependent, hence turnout
is informative about the state of the world. We discuss the relation of this observation to
prior work on costs in voting—and in sender-receiver games more generally—in the literature
review below in Section 8.

7.3 Cost Distributions with an Atom at 0

Finally, we consider the case in which participation is costless for some citizens while it
is costly for others. In particular, c = 0, F (0) ∈ (0, 1), and F is strictly increasing on [0, c̄]
with a continuous density f .39 We will see that the results for this case are, in a sense, “in

37The same argument also holds for strategy profiles where the turnout is expected to be larger in state β
than in state α. Hence, there is no equilibrium in which the protest transmits information.

38Formally, as observed before, for any best response, ca > cb
P(α|a)
P(α|b) .

39Here, let f(0) := limǫ↓0 f(ǫ).
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between” the result for costly participation without noise from Theorem 6 and the result for
costly participation with noise from Theorem 1.

Specifically, if there is an atom at 0, then the inequalities from Theorem 7 determine
whether there is information aggregation (as in Theorem 6) and, if not, how much information
can be transmitted (as in Theorem 1).

Theorem 8. Assume that c = 0 < c̄, F (0) ∈ (0, 1), and F is atomless with a continuous
density on (0, c̄].

1. If inequality (19) holds, then there is a responsive equilibrium sequence that aggregates
information.

2. If inequality (18) holds, then the maximally informative responsive equilibrium sequence
generates protests with an informativeness given by the P function identified in Theo-
rem 1.

To gain some intuition, recall that, if F is atomless and if its support includes negative
costs, then, in a responsive equilibrium, the expected number of informative citizens is equal
to n (F (ca) − F (cb)). Moreover, when n is large, the expected number of informative citizens
is approximately nf(0) (ca − cb) when ca and cb are close to 0. This approximation is also
valid when F has an atom at 0, provided that cb > 0. As we show in the proof of Theorem
7, if inequality (18) holds, then cb > 0 in every best response to any responsive strategy
profile. (Citizens have a strict incentive to participate even with a b signal.) Thus, in this
case, the analysis of the problem with an atom at 0 becomes identical to the analysis of the
case c < 0 < c̄.

Conversely, if inequality (19) holds, then we showed that there is a responsive equilibrium
in which citizens with b signals prefer to abstain, i.e., cb < 0. In this case, citizens with no
cost of participation use their signals in their participation decision, and the expected number
of informative citizens is approximately nF (0). This opens up the possibility that the ratio
of the expected protest sizes in the two states stays bounded away from 1 as n grows, leading
to information aggregation.

Finally, note that given the other parameters of the model (that is, given (q, µ,P (θ|ω))),
if F (0) > 0 and f(0) is sufficiently small, then the outcome is equivalent to the outcome
with costless participation in Theorem 7.

8 Related Literature

Our paper is related to four strands of literature. The first one is on communication
between multiple senders and a receiver, the second one is on information aggregation in
elections, the third one is on costly voting, and the fourth one is on communication with
money burning.

Communication models with multiple senders resemble voting models in that the senders
send a message. Different from voting models, the receiver does not commit to a particular
voting rule ex ante. The most closely related work is Battaglini (2017). He shows that when
the citizens’ information is poor, or when the policy maker and the citizens’ preferences are
not sufficiently aligned, then no information is transmitted in equilibrium (see Theorem 7).
We build on his model and extend it by adding costs and benefits to participation. Wolinsky
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(2002) studies a model of receiving advice from a group of experts who receive independent
signals. He shows that information transmission is not possible if the preferences of the
experts and the advisor are not aligned.40 Morgan and Stocken (2008) study a model of
polling in which the receiver makes a continuous policy choice after seeing the results of a
poll obtained from a group of experts with heterogeneous preferences and with dispersed
information. They show (in Proposition 13) that when there is a conflict of interest between
the policy maker and the experts, the amount of information transmitted is limited regardless
of the size of the population. In our model, citizens’ preferences are homogeneous, the policy
maker has a binary policy choice, and when participation is costless, a similar conclusion
holds. Levit and Malenko (2011) model nonbinding shareholder voting where the board and
the shareholders have a conflict of interest. They show that when the conflict is sufficiently
large, the unique equilibrium is babbling.41 Different from our model, in these other papers,
there are no direct costs or benefits from either participation or from sending any of the
messages.

The papers mentioned above propose certain policies or the availability of other means
that facilitate information transmission and aggregation in such environments. Battaglini
(2017) suggests that communication via social media may facilitate information aggregation
by increasing the precision of signals among groups. Wolinsky (2002) studies the receiver’s
optimal elicitation mechanism. Morgan and Stocken (2008) show that the existence of citi-
zens with sufficiently small conflicts of interest with the decision-maker facilitates informa-
tion aggregation. Levit and Malenko (2011) suggest that the existence of an additional third
party who can pressure the decision-maker for not following the advice of the sharehold-
ers may facilitate information aggregation. Our analysis complements these other proposed
solutions and offers a simple and new channel by which costly participation may increase
efficiency and information aggregation. Importantly, we show that participation costs help
information transmission and aggregation regardless of the precision of citizens’ signals and
the size of the conflict of interest. Hence, we highlight that nonbinding voting may be an
effective way to elicit dispersed information when participation or voting is costly and when
voting is voluntary. Moreover, our main results are derived in the presence of “noise” in the
communication via the presence of orthogonal participation benefits, and we characterize
the effects of noise on the citizens’ behavior and on information transmission.

Information aggregation in elections has been studied extensively. Notably, Austen-Smith
and Banks (1996) show that sincere voting is typically not consistent with rational behavior,
and Feddersen and Pesendorfer (1997) show that under any supermajority voting rule except
unanimity, large elections aggregate information. In these models, voting is costless and
the voting rule is fixed before the game, i.e., these models study costless formal elections.
In relation to this literature, we study the information aggregation properties of informal
elections, with or without participation costs and benefits.

Our model is closely related to costly voting models, especially our results regarding the
case without noise in the later part of the paper in Section 7. Recall that, in private value
elections, when voting is costless, the distribution of ordinal preferences determines the voting
outcome. In the case of simple majority rule, this leads to the median voter theorem. When

40Gradwohl and Feddersen (2018) reach a similar conclusion in a related advisory committee setting.
41Yildirim (2012) also discusses the commitment problem of a policy maker in elections.
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there are participation costs, the voting mechanism utilizes the costs in a way that is akin to
monetary transfers and may elicit the intensity of the citizens’ preferences. For example, in
the case of the simple majority rule, Ledyard (1984) and Krishna and Morgan (2015) show
that costly voting leads to outcomes that maximize the utilitarian welfare. Krishna and
Morgan (2011) show that if the election has both private and common value components,
then majority voting with costs results in the utilitarian outcome state by state.42

In our model, costs also help screen citizens’ types. Different from the aforementioned
papers, costs induce differential participation across citizens with different interim beliefs.
Thus, turnout can identify the unknown state and aggregates information when participation
is costly, while it would fail to do so in the benchmark model of costless participation.
Therefore, in our model, costs lead to improvements that have a different nature, namely, by
enabling information transmission to the policy maker. While our results from Section 7 for
the case without noise are related to the costly voting literature, our main results account for
the presence of noise. We study the interplay of costs and noise in shaping the participation
incentives and information transmission, giving rise to complementarity and encouragement
effects.

Our framework is an example of a sender–receiver game, first modeled by Crawford
and Sobel (1982) with a single sender. They show that communication is limited when
there are differences in the preferences of the sender and the receiver. Austen-Smith (1990,
1993) studies models in which there are multiple senders and the receiver does not commit
to a voting rule ex ante. However, these papers focus on the case when the number of
senders is small, and there is no cost of communication.43 In sender–receiver games, the
existence of purely dissipative signals, i.e., the possibility of “money burning,” may increase
the equilibrium amount of information transmission (see Austen-Smith et al., 2000; Kartik,
2007). Importantly, our finding from Section 7 that costs help information transmission is
similar to the insight that is uncovered in this literature. The main differences from these
papers are as follows: First, we consider a setting with a large number of senders. Second,
the motives of the senders are unknown. Importantly, the citizens cannot choose the amount
of costs they burn, and furthermore, they may have benefits from participation. Using the
large number of senders, we show that information aggregates when costs are nonnegative.
Finally, as in the case of costly voting, our main results regarding the presences of noise are
new.44

42In another related paper, Krishna and Morgan (2012) study costly voting in a pure common-value
model. They show that, despite the costs inducing a free-riding problem, information still aggregates as in
the costless voting model. Borgers (2004) studies a symmetric private values setting and shows that costly
voting is welfare-superior to a random decision despite the dissipation of its benefits through voting costs
and excessive participation.

43See also Battaglini and Benabou (2003); Battaglini (2004) on the related topic. Likewise, there is
literature on cheap talk with multiple senders, and in this literature, it is typically assumed that the sender’s
information is not dispersed (see Battaglini 2002).

44Other related papers on polling and protests (that either address different questions or work with different
model assumptions) are Lohmann (1993), Lohmann (1994), Banerjee and Somanathan (2001), Cukierman
(1991), and McKelvey and Ordeshook (1985).
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9 Discussion and Conclusion

9.1 Deterministic Population Size

We used a model in which the number of citizens is Poisson-distributed because calcula-
tions related to probability of pivotal events become simpler in this setting. However, this
may not be an ideal assumption in some of the applications we consider, such as shareholder
voting, in which the number of shareholders is deterministic, or in surveys, in which the
number of survey requests sent out is known to the policy maker. If we assume a determin-
istic population size with n citizens, then our results do not change qualitatively. There are,
however, two differences that are noteworthy. The first one is that the policy maker, after
observing the turnout t, would also know the number of absentees, which is n−t. The second

one is that the standard deviation of the turnout is approximately
√

nF (0)(1 − F (0)). In
the Supplementary Appendix, we show that our main results continue to hold if the pop-
ulation size is deterministic, with the main difference being in the equation that gives the
maximal informativeness of the protests (i.e., equation (17)). We show that the maximal

informativeness of protests depends on f(0)
F (0)(1−F (0))

in this case.

9.2 Modeling the Noise

In our model, the main source of noise in the turnout is the assumption that c < 0. This
modeling choice leads to protest sizes that are of the same order of magnitude as n, having
a standard deviation on the order of

√
n.

An alternative way of modeling noise is by assuming that there are activists who always
join the protest. More precisely, suppose that a citizen is either an activist who always joins
the protest or a non-activist who receives an informative signal and incurs a random positive
cost of participation with distribution F . The number of non-activists, tna, is Poisson-
distributed with mean n, while the number of activists, ta, is Poisson-distributed with mean
nr for some r > 0. The policy maker observes the sum of the number of non-activists who
choose to participate, and the number of activists ta, and chooses the policy. The equilibria
of this model produces results that are qualitatively similar to the results in our model when
n is large. (In fact, we present a simplified version of this setup in our illustrative example
in Section 6.)

Another way of modeling noise would be to consider a setting without activists (i.e., c=0),
but assume that the policy maker observes the turnout with noise. Suppose that when the
turnout is t, the policy maker observes a size t̃ = t + t̃1, where t̃1 = tnoise − nr and tnoise is
Poisson-distributed with mean nr for some r > 0. This model again produces equilibrium
properties that are very similar to our model.

9.3 Multiple Signals

We assume that citizens have binary signals. Our results do not rely on this assumption
and can easily be generalized to a signal space with an arbitrary finite number of elements. To
see how we can accommodate multiple signals, suppose that there are K signals, {1, 2, ..., K},
and suppose that the probability distribution over the signals satisfies the monotone likeli-
hood ratio property, i.e., P(i|α)

P(i|β)
is strictly decreasing in i, and the bounded likelihood ratio

property that P(i|ω) ∈ (0, 1) for each i = 1, 2, ..., K, and ω = α, β. In a responsive equilib-
rium of the model when c < 0 < c̄, citizens follow a cutoff strategy {ci} i∈{1,2,...,K} where ci
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is decreasing in i and is given by

ci,n = P(α|i)P(piv|α) − P(β|i)P(piv|β).

Take a responsive equilibrium sequence with

lim
λn(α) − λn(β)
√

nF (0)
= p ∈ (0,∞).

Then, similar to what we show for the binary signal case in item 1 of Lemma 3 in the

Appendix, for every i ∈ {1, 2, ..., K}, lim ci,n

c1,n
=

P(α|i) 1−q
q

µ
1−µ

−P(β|i)
P(α|1) 1−q

q
µ

1−µ
−P(β|1)

=: γi. Therefore,

p = lim
λn(α) − λn(β)
√

nF (0)
= limn

f(0)
√

nF (0)
c1,n

∑

i=1,..,K

((P(i|α) − P(i|β)) γi) . (20)

Recall equations (11) and (12) that imply lim
√

nF (0)P(piv|α) = φ(κ(p)) and lim
√

nF (0)P(piv|β) =

φ(κ(p) + p). Therefore,

lim
√

nF (0)c1,n = φ(κ(p))

(

P(α|1) − P(β|1)
q

1 − q

1 − µ

µ

)

. (21)

Combining equations (20) and (21), we have

p =
f(0)

F (0)
φ(κ(p))

(

P(α|1) − P(β|1)
q

1 − q

1 − µ

µ

)


∑

i=1,..,K

((P(i|α) − P(i|β)) γi)



 . (22)

The right-hand side of equation (22) is the analogue of equation (17) when there are
multiple signals. The difference between the two equations is a multiplicative constant, i.e.,
equation (22) is of the form f(0)

F (0)
φ(κ(p))Z for some constant Z that does not depend on

F , and hence, the qualitative features of the maximally informative equilibrium sequences
identified in Theorem 1 hold when there are multiple signals.

9.4 Multiple Messages

Our analysis studied a protest model in which a citizen can choose either to participate
or abstain. In applications such as polls, nonbinding shareholder voting, and surveys, a
participant can choose one of many messages to communicate her opinion. In nonbinding
shareholder voting, a shareholder may abstain or choose to cast a vote for approval or dis-
approval of a new policy. When there is a protest movement or a petition for a policy,
occasionally there is another protest or petition for the alternative policy. Surveys con-
ducted by the management of a company, or polls, typically contain multiple choices for
each question.45

45In fact, Wolinsky (2002), Morgan and Stocken (2008), and Levit and Malenko (2011) observe similar
results with costless participation in settings in which an expert can provide one of multiple messages, express
different responses in a poll, or vote in favor or against a proposal, respectively.
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In our model, if the number of absentees is also observed, then abstention can be inter-
preted as a second message. Note that the number of absentees is observed if the number
of citizens is deterministic, and we show that our results go through without much alter-
ation in this case in the Supplementary Appendix. When there are nonnegative costs of
participation, then the interpretation is that sending one message (participation) is costly,
while sending the second message (abstention) is costless. When costs of participation can
be positive or negative, then the interpretation is that citizens may have non-informational
motives to support one policy over the other.

In order to facilitate the applications mentioned above with the abstention option, sup-
pose that each citizen, after observing a signal and participation cost (if participation is
costly), chooses whether to participate together with a message m ∈ {mA,mB} or to ab-
stain. The policy maker observes the number of citizens that sent each message, tA and tB,
and then chooses the policy. To avoid tedious case distinctions, we focus on “monotone”
equilibria in which the probability that A is chosen is weakly increasing in tA and weakly
decreasing in tB.

Our first observation is that, in this model, there is always an equilibrium in which one
of the messages (for example, mB) conveys no information, and the policy maker ignores
tB in his policy choice. Such equilibria (partially babbling) always exist with costly or
costless participation and simply replicate the responsive equilibria of the model where the
citizens have a single message. Hence, when information aggregates with a single message
(for example, if participation is costless and inequality (19) holds, or if participation is costly
and cost distribution satisfies the assumptions made in Section 7), then there is a partially
babbling equilibrium sequence that aggregates information.

Next, suppose that participation is costless and inequality (18) holds. Then, there is
a unique equilibrium outcome, and it is babbling outcome. To see this, note that, first,
any partially babbling equilibrium is babbling; this follows from the analysis in Section 7.3.
Second, any monotone equilibrium is partially babbling. This is because, conditional on being
pivotal with a message mB, the posterior belief that the state is α is at least µ. Therefore, a
citizen with signal b has a posterior likelihood ratio that the state is α conditional on being
pivotal for message mB that is at least

µ

1 − µ

P(b|α)

P(b|β)
>

µ

1 − µ

P(b|α)

P(b|β)

P(a|β)

P(a|α)
> 1.

Therefore, no citizen sends the message mB in equilibrium.
Finally, suppose that the support of the cost distribution for participation, F , is [c, c̄],

with c < 0 < c̄, and the costs are independent of the message the citizen sends. This model
is similar to the model with a single message where the cost distribution has an atom at 0. If
inequality (18) holds, then any monotone equilibrium is partially babbling, and the maximal

informativeness is given by P
(

f(0)
F (0)

)

. In other words, the conclusions of Theorem 8 hold. If
µ

1−µ
P(b|α)
P(b|β)

< 1, then there is a monotone equilibrium sequence that aggregates information.

When µ
1−µ

P(b|α)
P(b|β)

P(a|β)
P(a|α)

< 1 < µ
1−µ

P(b|α)
P(b|β)

, we conjecture that there is a monotone equilibrium
sequence that aggregates information, but we have not been able to show this.
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9.5 General Citizen Preferences

We assumed that citizens’ preferences are symmetric across states. However, we can relax
this assumption. More generally, suppose that a citizen’s payoff is as follows: If the state is
α, her payoff is r if the policy is A and 0 if it is B; if the state is β, her payoff is 1 − r if the
outcome is B and 0 if it is A. In this case, citizens’ best reply cutoffs—given previously by
equation (4)—change to

cθ = P(α|θ)P(piv|α)r − P(β|θ)P(piv|β)(1 − r) for θ = a, b.

Hence, we obtain

ca,n − cb.n ≈ (P(α|a) − P(α|b))
(

r + (1 − r)
q

1 − q

1 − µ

µ

)

P(piv|α).

Moreover, κ(p) is unchanged; hence,

lim
n→∞

√
n (ca,n − cb.n) =

1
√

F (0)
(P(α|a) − P(α|b))

(

r + (1 − r)
q

1 − q

1 − µ

µ

)

φ (κ (p)) .

The definition of p is unchanged; hence,

lim
n→∞

√
n (ca,n − cb.n) =

p
√

F (0)

f(0) (P(a|α) − P(a|β))
.

Therefore, the limit equilibrium informativeness p must be a solution of the equation

p =
f(0)

F (0)

(

r + (1 − r)
q

1 − q

1 − µ

µ

)

(P(a|α) − P(a|β)) (P(α|a) − P(α|b))φ (κ(p)) .

Therefore, changing the payoff function of the citizens results only in a change in the
multiplicative constant term in the function p̂(p). Therefore, all of our results regarding
the characterization of the maximally informative equilibria continue to hold qualitatively.
However, not all the conclusions of Theorem 5 hold if r 6= 0.5. In particular, if r 6= 0.5, then
for all but possibly one value of f(0)

F (0)
, the µ that maximizes p is not equal to q. Similarly, for

all but possibly one value of f(0)
F (0)

, the µ that maximizes p is not equal to 1−r
r

either. Thus,
in general, maximizing the informativeness of the protests requires some conflict between
the policy maker and the citizens as well as the policy maker not being indifferent between
two policies ex ante. Similarly, the welfare conclusion of Theorem 2 for the citizens does not
necessarily hold if the citizens’ preferences are sufficiently different from the policy maker’s.

9.6 Preference Heterogeneity

A key feature of models of nonbinding voting that prevent information transmission is
the existence of a conflict of interest between the citizens and the policy maker. If citi-
zen preferences are heterogeneous, and if the support of the preference distribution includes
preferences that are aligned with that of the policy maker, then information transmission is
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possible, and information aggregates as the expected population size grows without bound.
This insight was shown in Morgan and Stocken (2008) in a model of polls. However, if there
is a conflict of interest between the policy maker and every citizen, then information trans-
mission is not possible when there are no costs of participation and the citizens’ information
is poor. In contrast, in our model when there are nonnegative costs of participation, infor-
mation transmission and aggregation is possible, even if there is preference heterogeneity.
Conversely, our main results regarding the effects of noise on the informativeness of protests
also hold if there is no policy maker bias, µ = 1

2
.

Regarding our results for the case without noise in Section 7.3, note the following. With
preference heterogeneity, information still aggregates by the following intuition: In a puta-
tive responsive equilibrium, conditional on being pivotal, holding constant the preference
of a citizen, the citizen has strictly more incentives to participate when receiving signal a
compared to when signal b is received. Therefore, in such an equilibrium, the turnout is
expected to be larger in state α than in state β. To show that such an equilibrium exists
and aggregates information when n is large, we can use the same method we use to prove
Theorem 6.

9.7 Privately Informed Policy Maker

We have assumed throughout the paper that the policy maker is uninformed. In fact,
one reason why a policy maker may wish to hold a nonbinding vote instead of committing
to a fixed voting rule is to utilize the flexibility offered by nonbinding voting, which allows
him to incorporate private information in the policy choice. Suppose that the policy maker
receives a signal from a finite set of signals, and suppose that the signal is imperfectly
informative about the state. If participation is costless, then the reasoning that delivers
uniqueness of the babbling equilibrium when the conflict of interest is large (see Theorem
7) continues to hold. Likewise, when participation is costly (but there are no benefits) and
the cost distribution F satisfies the assumptions made in Subsection 7.1, then conditional
on being pivotal, a citizen with signal a has strictly more incentive to participate than a
citizen with signal b. Hence, the same reasoning for the existence of responsive equilibrium
sequences and information aggregation also applies here without alteration, even if the policy
maker has private information. Finally, we expect the basic qualitative features of our main
characterization result in Theorem 1 to extend to the case in which there are both costs and
benefits to participation (noise).

9.8 Conclusion

Citizens affect policies through formal political processes, such as elections, and what we
call informal political processes, such as protests, polls, petitions, and referenda. Condorcet’s
Jury Theorem has shown that formal elections effectively aggregate information. The ro-
bustness of these results has been studied extensively, and it is considered as a rationale
for why elections are commonly used to select candidates or policies. Despite their frequent
occurrence, there are relatively few similar results for informal elections.

Recent results have shown that informal elections do not aggregate information robustly
and have identified an important difficulty in information transmission. Our first substantive
contribution is to show that participation costs may help overcome this difficulty. Hence,
with costs, participation is a more effective way of transmitting information and influencing
policy. Our second substantive contribution is to introduce noise to informal elections via

35



activist citizens and to study the interplay of costs and noise in shaping the participation
incentives and informativeness of the process. One may expect noise to be bad for partici-
pation incentives. However, we show that, surprisingly, noise can increase participation via
an encouragement effect that compensates at least partly for the adverse effect of noise on
the informativeness of turnout.

In a formal election, the policy maker is bound by the voting rule, while in an informal
election, such as nonbinding voting or polling, the policy maker retains some flexibility. One
reason why informal elections may be preferred to formal elections is that this flexibility
allows the policy maker to adjust the decision based on private information or the anticipated
amount of noise in the turnout. For example, if the voting rule is fixed, and if the expected
number of activists is large, then the activists determine the policy. If the voting rule is not
fixed, then the policy maker can “deduct” the expected number of activists from the turnout
and make a decision based on his inference.
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10 Regular Appendix: Proofs for the Case with Activists

In this Appendix, we first analyze the properties of responsive equilibrium sequences.
In particular, in Lemma 4, we show that the informativeness of a responsive equilibrium
sequence must be a p−solution of equation (17). This brings us to examine the properties of
the p−solutions to equation (17), which we do in Lemma 5. We then show in Lemma 7 that
when equation (17) has a positive p−solution, then there exists a responsive equilibrium
sequence with informativeness equal to the largest p−solution of equation (17). We then
summarize the proofs of Theorem 1 and 2 by giving references to the set of lemmas that
conclude the proof of each result. We then provide the proofs of Theorems 3, 4 and 5 about
the comparative statics.

10.1 Proofs for the General Characterization

Recall κ(p) = −p
2

+ 1
p

ln
(

1−q
q

µ
1−µ

)

, and equation (17), i.e.,

p =
f(0)

F (0)

(

1 +
q

1 − q

1 − µ

µ

)

(P(a|α) − P(a|β)) (P(α|a) − P(α|b))φ (κ(p)) =: g(p).

Lemma 2. Take a sequence of strategy profiles {ca,n, cb,n, ρn}n∈N where each ρn is a best re-
sponse of the policy maker to the citizens’ strategy (ca,n, cb,n) when the mean of the population
size is n. If lim ca,n = lim cb,n = 0, and if

lim
n→∞

λn(α) − λn(β)
√

nF (0)
= p ∈ (0,∞),

then:

1. limn→∞
Tn−λ(α)√

nF (0)
= κ(p), where Tn is the threshold of ρn,

2. limn→∞
√

nF (0)P(piv|α) = φ(κ(p)),

3. limn→∞
√

nF (0)P(piv|β) = φ(κ(p) + p).

Proof. Recall that

λn(α) = n (F (ca,n)P(a|α) + F (cb,n)P(b|α))

λn(β) = n (F (ca,n)P(a|β) + F (cb,n)P(b|β))

Let
∆λn := λn(α) − λn(β) = n(F (ca,n) − F (cb,n))(P(a|α) − P(a|β)). (23)

Note that because ca,n, cb,n → 0, and because F is continuously differentiable at 0, lim 1
n

∆λn

(ca,n−cb,n)
=

f(0)(P(a|α) − P(a|β)), i.e., ∆λn is approximately proportional to (ca,n − cb,n). More impor-
tantly, lim ∆λn

λn(α)
= lim ∆λn

λn(β)
= lim ∆λn

nF (0)
= 0. For t ∈ R+, let

L(t) :=
q

1 − q

(

1 − ∆λn

λn(α)

)−t

e−∆λn .
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Let tn ∈ R+ be the solution of the following equality:

L(tn) =
µ

1 − µ
.

A positive solution exists because ∆λn > 0, and thus L(0) < q
1−q

≤ µ
1−µ

, and L is an
increasing function without bound. The policy maker’s best reply, ρn, will choose policy A
for every t > tn, policy B for every t < tn and if tn is an integer, then the policy maker is
indifferent between two policies when t = tn and ρn(tn) ∈ [0, 1]. Taking the natural logs of
both sides, we get

− tn ln

(

1 − ∆λn

λn(α)

)

− ∆λn = ln

(

µ

1 − µ

1 − q

q

)

. (24)

Then,

tn − λn(α)
√

λn(α)
=

− ∆λn

ln
(

1 − ∆λn

λn(α)

)+
− ln

(
µ

1−µ
1−q

q

)

ln
(

1 − ∆λn

λn(α)

) − λn(α)

√

λn(α)
.

In order to show the first claim that limn
Tn−λ(α)√

nF (0)
= κ(p) for the threshold Tn of ρn, first note

that |tn − Tn| ≤ 1, and second note that lim λn(α)√
nF (0)

= lim λn(β)√
nF (0)

= 1. Hence,

lim
n→∞

Tn − λ(α)
√

nF (0)
= lim

n→∞
tn − λn(α)
√

λn(α)
.

We now proceed to show that

lim
tn − λn(α)
√

λn(α)
= −p

2
+

1

p
ln

(

µ

1 − µ

1 − q

q

)

= κ(p).

To do so, we will first show (in Step 1 below) that

lim

− ∆λn

ln
(

1 − ∆λn

λn(α)

)− λn(α)

√

λn(α)
= −p

2
,

and second show (in Step 2 below) that

lim

− ln
(

µ
1−µ

1−q
q

)

ln
(

1 − ∆λn

λn(α)

)

√

λn(α)
=

1

p
ln

(

µ

1 − µ

1 − q

q

)

.

Step 1:
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lim

− ∆λn

ln
(

1 − ∆λn

λn(α)

)− λn(α)

√

λn(α)
= lim

λn(α)




− ∆λn

λn(α)

ln
(

1 − ∆λn

λn(α)

)− 1





√

λn(α)
.

Let yn := − ∆λn

λn(α)
. Observe that lim yn = 0. Note also that ln is analytic on 1 +x for |x| < 1,

i.e.,

ln (1 + x) = x− x2

2
+
x3

3
− ...+ (25)

we get

yn

ln (1 + yn)
− 1 =

(yn)2

2
− (yn)3

3
+ ....

yn − (yn)2

2
+ (yn)3

3
− ...

=
yn

2




1 − 2(yn)

3
+ ...

1 − (yn)
2

+ (yn)2

3
− ...



 .

Hence, we get

lim
√

λn(α)

(

yn

ln(1 + yn)
− 1

)

= lim
√

λn(α)
yn

2
.

Putting yn = − ∆λn

λn(α)
, we get

lim
√

λn(α)
yn

2
= lim

−∆λn

2
√

λn(α)
= lim

−∆λn

2
√

nF (0)
= −p

2
.

Step 2:

First note limx→0
1
x
ln(1 + x) = 1. Therefore, we get

lim

− ln
(

µ
1−µ

1−q
q

)

ln
(

1 − ∆λn

λn(α)

)

√

λn(α)
= − ln

(

µ

1 − µ

1 − q

q

)

lim
1

√

λn(α)

1

− ∆λn

λn(α)

=
1

p
ln

(

µ

1 − µ

1 − q

q

)

.

Hence, we conclude from the calculations in Steps 1 and 2 above that

lim
tn − λn(α)
√

λn(α)
= −p

2
+ ln

(

µ

1 − µ

1 − q

q

)

1

p
= κ(p). (26)

Because the pivotal events Tn ∈ N satisfy |tn − Tn| ≤ 1, we have for every pivotal event
Tn,

lim
Tn − λn(α)
√

λn(α)
= κ(p).
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Note that if tn is not an integer, then Tn = ⌊tn⌋, and46

P(piv|α) = e−λn(α)λn(α)Tn

Tn!
.

If tn is an integer, then

P(piv|α) = e−λn(α)λn(α)tn−1

(tn − 1)!
ρn(tn) + e−λn(α)λn(α)tn

tn!
(1 − ρn(tn)) .

Using the normal approximation of Poisson distribution, i.e., equation (5), if

lim
tn − λn(α)
√

λn(α)
= −p

2
+ ln

(

µ

1 − µ

1 − q

q

)

1

p
= κ(p) (27)

then,
√

λn(α)P(piv|α) → φ(κ(p)).

Because lim

√
λn(α)√
nF (0)

= 1, we obtain

√

nF (0)P(piv|α) → φ(κ(p)).

Because lim λn(α)−λn(β)√
nF (0)

= lim λn(α)−λn(β)√
λn(α)

= lim λn(α)−λn(β)√
λn(β)

= p, we obtain that

lim
tn − λn(β)
√

nF (0)
= κ(p) + p.

Using the same argument, we obtain that

√

nF (0)P(piv|β) → φ(κ(p) + p).

Lemma 3. Take a sequence of strategy profiles {ca,n, cb,n, ρn}n∈R+ where each ρn is a best
response of the policy maker to the symmetric citizen strategy (ca,n, cb,n) when the mean of the
population size is n. Take another sequence of citizen strategy profiles {ĉa,n, ĉb,n}n∈N where
each (ĉa,n, ĉb,n) is a best reply of the citizens to (ca,n, cb,n, ρn). If lim ca,n = lim cb,n = 0, and
if

lim
λn(α) − λn(β)
√

nF (0)
= p ∈ (0,∞),

then:

1. lim
ĉb,n

ĉa,n
=

P(α|b) µ
1−µ

1−q
q

−P(β|b)

P(α|a) µ
1−µ

1−q
q

−P(β|a)
=: γ, and γ ∈ (−∞, 1).

46The term ⌊x⌋ denotes the largest integer less than or equal to x.

43



2. lim
√

nF (0) (ĉa,n − ĉb,n) = φ(κ(p))
(

P(α|a) − P(β|a)1−µ
µ

q
1−q

)

(1 − γ) .

Proof. Item 1: If ρn is a best reply to (ca,n, cb,n), then for every pivotal event Tn, L(Tn) ≤
µ

1−µ
≤ L(Tn+1). Moreover,

lnL (Tn+1) − lnL (Tn) = ln
λn(α)

λn(β)
.

Because lim λn(α)
nF (0)

= lim λn(β)
nF (0)

= 1, lim ln λn(α)
λn(β)

= 0. Therefore, for each pivotal event Tn,

lim q
1−q

P(t=Tn|α)
P(t=Tn|β)

= µ
1−µ

. Since this is true for each pivotal event, and since there are at most
two pivotal events for each n, we have

lim
q

1 − q

P(piv|α)

P(piv|β)
=

µ

1 − µ
. (28)

Recall that the best reply cost cutoffs of the citizens are given by:

ĉa,n = P(α|a)P(piv|α) − P(β|a)P(piv|β),

ĉb,n = P(α|b)P(piv|α) − P(β|b)P(piv|β).

Dividing the cost cutoffs, and using equation (28) we obtain:

lim
ĉb,n

ĉa,n

= lim
P(α|b)P(piv|α) − P(β|b)P(piv|β)

P(α|a)P(piv|α) − P(β|a)P(piv|β)

=
P(α|b) µ

1−µ
1−q

q
− P(β|b)

P(α|a) µ
1−µ

1−q
q

− P(β|a)
.

Observe that the denominator of γ, P(α|a) µ
1−µ

1−q
q

− P(β|a) > 0 because µ ≥ 0.5, and

because of the MLRP condition. If the numerator is nonpositive, then γ ∈ (−∞, 0]. If
the numerator is positive, then because P(α|a) < P(α|b), and because P(β|a) < P(β|b),
γ ∈ (0, 1).

Item 2:
From Lemma 2, lim

√

nF (0)P(piv|α) = φ(κ(p)), and lim
√

nF (0)P(piv|β) = φ(κ(p) + p).
Observe also that

q

1 − q

φ(κ(p))

φ(κ(p) + p)
=

µ

1 − µ
.

Therefore,

lim
√

nF (0)ĉa,n = lim
√

nF (0)P(piv|α)

(

P(α|a) − P(β|a)
1 − µ

µ

q

1 − q

)

= φ(κ(p))

(

P(α|a) − P(β|a)
1 − µ

µ

q

1 − q

)

.
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Because lim
ĉb,n

ĉa,n
= γ, we obtain

lim
√

nF (0) (ĉa,n − ĉb,n) = φ(κ(p))

(

P(α|a) − P(β|a)
1 − µ

µ

q

1 − q

)

(1 − γ) .

Lemma 4. Take a responsive equilibrium sequence with lim λn(α)−λn(β)√
nF (0)

= p ∈ [0,∞) ∪ {∞}.

1. If p ∈ (0,∞), then p is a solution of equation (17).

2. p < ∞.

3. If µ > q, then p > 0. Hence, if equation (17) has no positive solution, then there exists
no responsive equilibrium sequence.

Proof. Pick a sequence of responsive equilibria {ca,n, cb,n, ρn}n∈R+ with lim λn(α)−λn(β)√
nF (0)

= p.

We start by showing that if p ∈ (0,∞), then p solves equation (17).
Recall equation (23)

∆λn = n ((F (ca,n) − F (cb,n)) (P(a|α) − P(a|β))) .

In any responsive equilibrium sequence, ca,n, cb,n → 0, therefore

lim
∆λn

n (ca,n − cb,n)
= f(0) (P(a|α) − P(a|β)) . (29)

Combining the finding from Lemma 3 that

lim
√

nF (0) (ca,n − cb,n) = φ(κ(p))

(

P(α|a) − P(β|a)
1 − µ

µ

q

1 − q

)

(1 − γ) ,

with equation (29) we obtain

lim
∆λn

√

nF (0)
=
f(0)

F (0)
φ(κ(p)) (P(a|α) − P(a|β))

(

P(α|a) − P(β|a)
1 − µ

µ

q

1 − q

)

(1 − γ) .

Because lim ∆λn√
nF (0)

= p, we get that

p =
f(0)

F (0)
φ(κ(p)) (P(a|α) − P(a|β))

(

P(α|a) − P(β|a)
1 − µ

µ

q

1 − q

)

(1 − γ) ,

i.e., p solves equation (17).
We now show that in any responsive equilibrium sequence, p < ∞. Suppose on the way

to a contradiction that p = ∞. Then, repeating the calculations in steps 1 and 2 of the

proof of Lemma 2, we obtain that lim tn−λn(α)√
λn(α)

= −∞. Therefore,
√

nF (0)P(piv|α) → 0. A
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similar calculation shows that
√

nF (0)P(piv|β) → 0. Therefore, lim
√

nF (0) (ca,n − cb,n) = 0.

Because f(0) < ∞, we have lim λn(α)−λn(β)√
nF (0)

= 0, which contradicts that p = ∞.

We now show that if µ > q, then in any responsive equilibrium sequence, p > 0. This
implies that if there is no positive p−solution of (17), then there is no responsive equilibrium
sequence.

Suppose to the contrary that the sequence of responsive equilibria {ca,n, cb,n, ρn}n∈R+ sat-
isfies the equality lim ∆λn√

nF (0)
= 0. Observe that if lim ∆λn√

nF (0)
= 0, then lim

√
n (ca,n − cb,n) =

0. Because lim
cb,n

ca,n
= γ ∈ (−∞, 1), we have that lim

√
nca,n = 0.

We will first show that (Tn − λn(α)) ca,n → K ∈ (0,∞).
From equation (24) we get

tn − λn(α) =
− ∆λn

ln
(

1 − ∆λn

λn(α)

)+
− ln

(
µ

1−µ
1−q

q

)

ln
(

1 − ∆λn

λn(α)

) − λn(α)

= λn(α)




− ∆λn

λn(α)
− ln

(

1 − ∆λn

λn(α)

)

ln
(

1 − ∆λn

λn(α)

)



+
− ln

(
µ

1−µ
1−q

q

)

ln
(

1 − ∆λn

λn(α)

) .

Letting again yn := − ∆λn

λn(α)
, and using equation (25), we obtain that

lim ca,nλn(α)




− ∆λn

λn(α)
− ln

(

1 − ∆λn

λn(α)

)

ln
(

1 − ∆λn

λn(α)

)



 = lim ca,nλn(α)
∆λn

2λn(α)
= lim (ca,n)2 n → 0.

Observe that using equation (25), we obtain that

lim ca,n

− ln
(

µ
1−µ

1−q
q

)

ln
(

1 − ∆λn

λn(α)

) = lim ca,n
λn(α)

∆λn

ln

(

µ

1 − µ

1 − q

q

)

→ K (30)

for some K ∈ (0,∞). K ∈ (0,∞) because µ > q, ∆λn is approximately nf(0)(ca,n − cb,n),
and because lim

cb,n

ca,n
= γ ∈ (−∞, 1). Because |tn − Tn| ≤ 1, and because ca,n → 0, we have,

(Tn − λn(α)) ca,n → K ∈ (0,∞). (31)

We will now show that (Tn − λn(α))P(piv|α) → 0.
Observe that because

√
nca,n → 0, equation (31) implies that

(Tn − λn(α))
√

λn(α)
→ ∞. (32)

Because the density of the Poisson distribution is decreasing when above the mean,

∑

t>
λn(α)+Tn

2

e−λn(α) (λn(α))t

t!
>

1

2
(Tn − λn(α)) e−λn(α) (λn(α))Tn

Tn!
.
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Moreover, Chebyshev’s inequality together with the equation (32) delivers that

∑

t>
λn(α)+Tn

2

e−λn(α) (λn(α))t

t!
→ 0.

Hence, we obtain that

(Tn − λn(α)) e−λn(α) (λn(α))Tn

Tn!
→ 0.

Therefore,
(Tn − λn(α))P(piv|α) → 0. (33)

Equalities (31) and (33) imply that lim ca,n

P(piv|α)
= ∞, which contradicts to lim ca,n

P(piv|α)
=

P(α|a)−P(β|a)1−µ
µ

q
1−q

< ∞. Therefore, in any responsive equilibrium sequence, lim ∆λn√
nF (0)

=

p > 0, which concludes the proof of the last claim of the lemma.

We now present an auxiliary result that characterizes the properties of the p−solutions
of equation (17).

Lemma 5.

1. There exists a function P : R+ → R+, with P (x) the largest p−solution of equation

(17) when x = f(0)
F (0)

.

2. If µ = q, then equation (17) has a unique solution if f(0)
F (0)

> 0. For x > 0, P (x) > 0.

3. If µ > q, then there is a τ > 0 such that:

(a) P (x) = 0 for x < τ , i.e., equation (17) has a unique solution with p = 0 if
f(0)
F (0)

< τ .

(b) P (x) > 0 for x > τ , and equation (17) has two positive solutions if f(0)
F (0)

> τ .

4. P (x) is continuous and strictly increasing in x for x > τ .

5. limx↓τ P (x) > 0 if µ > q.

6. limx→∞ P (x) = ∞.

Proof. We first argue that when q < µ, depending on f(0)
F (0)

, the curves y(p) = p and

g(p) =
f(0)

F (0)

(

1 +
q

1 − q

1 − µ

µ

)

(P(a|α) − P(a|β)) (P(α|a) − P(α|b))φ (κ(p))

may have two positive intersection points, the curves may be tangent to each other at a
positive p, or they may never intersect at a positive p. We will investigate the properties of
the two curves when q = µ, after analyzing the case q < µ.
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Taking the natural logs of the two sides of equation (17), we get

ln p = K + ln

(

f(0)

F (0)

)

− 1

2
κ(p)2,

where K is a constant (that depends on q, µ, and P).

Let f1(p) := ln p, f2(p) := K + ln
(

f(0)
F (0)

)

− 1
2
κ(p)2. Because κ(p) is a decreasing function,

f2(p) is a single-peaked function. The derivative of f1(p) with respect to p is

f ′
1(p) =

1

p
.

Note that −κ(p)2 = −p2

4
− m2

p2 +m, where m := ln
(

µ
1−µ

1−q
q

)

. Note that if µ > q, then m > 0.
Hence,

f ′
2(p) = −p

4
+
m2

p3
.

We now investigate the sign of

f ′
1(p) − f ′

2(p) :=
1

p
+
p

4
− m2

p3
=

1

p3

(

p2 +
p4

4
−m2

)

.

The term
(

p2 + p4

4
−m2

)

is continuous and strictly increasing in p, and is negative at p = 0.

Hence, there is some p∗∗ > 0 such that f ′
1(p

∗∗) = f ′
2(p

∗∗), and f ′
1(p)−f ′

2(p) is strictly negative
for p ∈ (0, p∗∗) and is strictly positive for p > p∗∗. Moreover, there is some ǫ > 0 such that
f1(p) > f2(p) for all p ∈ (0, ǫ). Therefore, if the two curves have a positive intersection point
at some p > 0, it has to be that there is some p0 ∈ (0, p∗∗] where they intersect. If p0 < p∗∗,
then f1(p) crosses f2(p) from above.

Because f ′
1(p) − f ′

2(p) is negative in p for p ∈ (0, p∗∗), there is no other intersection point
in the interval (0, p∗∗]. If p0 < p∗∗, then f1(p

∗∗) < f2(p
∗∗), and f ′

1(p)−f ′
2(p) is strictly positive

for p > p∗∗, and converges to ∞ with p, so they intersect exactly once in the interval (p∗∗,∞),
at some p1. Moreover, at p1, f1(p) crosses f2(p) from below. If p0 = p∗∗, then the two curves
never intersect again, and because f ′

1(p
∗∗) = f ′

2(p
∗∗) in this case, p∗∗ is a tangency point of

the two curves. We conclude that the two curves intersect at most twice, and hence there is
a function P : R+ → R+, with P (x) the largest p−solution of equation (17) when x = f(0)

F (0)
.

Suppose 0 < p0 < p1 are two intersection points of the two curves for some f(0)
F (0)

. Take

some f̃(0)

F̃ (0)
> f(0)

F (0)
, and let h (p; y) := K + ln (y) − 1

2
κ(p)2. Note that h

(

p1;
f̃(0)

F̃ (0)

)

> f1(p1),

and h
(

p0;
f̃(0)

F̃ (0)

)

> f1(p0). Because f1(p) diverges to +∞ while h
(

p; f̃(0)

F̃ (0)

)

diverges to −∞
with p, and because limp→0 f1(p) − h

(

p; f̃(0)

F̃ (0)

)

= ∞, the two curves f1 and h also have two

intersection points p̃0, p̃1 with 0 < p̃0 < p0 < p1 < p̃1. Notice also that for p > 0, h (p; y)
is increasing without bound in y, hence P (x) > 0 for some x > 0. This proves that there
exists a τ ≥ 0 such that there are two positive p-solutions to equation (17) if and only if
f(0)
F (0)

> τ , and that P (x) is strictly increasing for x > τ . A similar argument shows that if

the two curves intersect only once, i.e., if p0 = p∗∗ for some f(0)
F (0)

, then f̃(0)

F̃ (0)
> f(0)

F (0)
implies
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h
(

p0;
f̃(0)

F̃ (0)

)

> f1(p0). Therefore, the two curves have two positive intersection points when

f̃(0)

F̃ (0)
> f(0)

F (0)
. Likewise, if f̃(0)

F̃ (0)
< f(0)

F (0)
, then h

(

p; f̃(0)

F̃ (0)

)

< f1(p) for every p > 0, hence the two

curves have no positive intersection point. We thus conclude that P (x) > 0 if and only if
x ≥ τ .

To see that τ > 0, note f1(p) −h (p; y) achieves its minimum at p∗∗ > 0 independently of
y, and h (p∗∗; y) is an increasing function of y and approaches −∞ as y goes to 0. Therefore,
there exists ǫ > 0 such that f1(p) − h (p; y) > 0 for all p > 0, y ∈ [0, ǫ).

Because κ(p) diverges to −∞ with p, limp→∞ φ(κ(p)) = 0. Moreover, for every p > 0,
limy→∞ h (p; y) = ∞ and limy→∞ f1(p) − h (p; y) = −∞. Therefore,

lim
x→∞

P (x) = ∞.

We now show that P (x) is continuous when x > τ . Observe that the function z(p, y) :=

f1(p) − h (p; y) is continuously differentiable for p > 0, y > 0, and ∂z(p,y)
∂p

6= 0 for all p > p∗∗.

Because the largest solution of z(p(y), y) = 0 is greater than p∗∗ when y > τ , by the implicit
function theorem, P (x) is differentiable (hence continuous) for x > τ .

We now show that limx↓τ P (x) > 0. Note that z(p∗∗, τ) = 0, and that P (x) > p∗∗ for
x > τ . We have already shown that p∗∗ > 0, hence this completes the proof of this claim.

We now turn to the case when µ = q, i.e., when m = 0. In this case,

f ′
1(p) − f ′

2(p) :=
1

p
+
p

4
=

1

p3

(

p2 +
p4

4

)

.

Therefore, f ′
1(p) > f ′

2(p) for every p > 0. Moreover, limp→0 f1(p) − f2(p) = −∞ and
limp→∞ f1(p) − f2(p) = ∞. Therefore, f1 crosses f2 from below only once at a positive p for

every f(0)
F (0)

> 0, and therefore, τ = 0. The other claims of the lemma (items 4 and 6) for the
case µ = q follow from a similar analysis of the case µ > q.

Lemma 6. If f(0)
F (0)

< τ , then there is no responsive equilibrium sequence.

Proof. Note that if µ = q, then τ = 0, and the statement is vacuously true. If µ > q, then it
follows from Lemma 5 that if f(0)

F (0)
< τ , there is no positive p−solution of equation (17). By

Lemma 4, if µ > q, and if there is a responsive equilibrium sequence, then p = lim ∆λn√
nF (0)

> 0

and solves equation (17), which is not possible when f(0)
F (0)

< τ .

Lemma 7. If equation (17) has two positive p−solutions (i.e., when f(0)
F (0)

> τ) or if µ = q,

then there exists a responsive equilibrium sequence with informativeness P
(

f(0)
F (0)

)

, i.e., the

maximal informativeness of the protests is given by the largest solution of equation (17).

Proof. Recall that for p ∈ (0,∞), κ(p) := −p
2

+ 1
p

ln
(

µ
1−µ

1−q
q

)

, φ(·) and Φ(·) denote the
density and cumulative distribution for the standard normal distribution. Recall that

γ :=

µ

1 − µ

1 − q

q
P(α|b) − P(β|b)

µ

1 − µ

1 − q

q
P(α|a) − P(β|a)

.
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Note that γ < 1 by Lemma 3.
The existence of a solution p > 0 of equation (17) determines whether there exists a

responsive equilibrium sequence or not. Recall that if f(0)
F (0)

> τ , then equation (17) has two
positive solutions, 0 < p0 < p1 as shown in Lemma 5, when µ > q. When µ = q, let p0 = 0,
and set p1 to be the unique positive solution of equation (17).

Auxiliary Game with Restricted Strategies

We now proceed by defining an auxiliary protest game in which the strategies of the
citizens (ca, cb) are restricted to be in a strict subset of [c, c̄]2, and the policy maker’s choices
are restricted such that he implements A when t ≥ 2n. We will show that the auxiliary game
has an equilibrium. We will also show that when n is large, all equilibria of the auxiliary
game will have the property that the equilibrium strategies of the citizens are in the strict
interior of their restricted strategy set, and that policy maker’s choice Tn < 2n. This allows
us to conclude that the equilibria of the auxiliary game are also equilibria of the protest
game when n is large.

We start with describing the boundaries of the restricted strategy sets of the citizens.
Let

c0 :=
p0 + p1

2

√

F (0)
1

f(0)

1

P(a|α) − P(a|β)

1

1 − γ
.

The term c0 is defined so that if along a sequence ca,n = c0√
n
, and if lim

cb,n

ca,n
= γ, then

lim λn(α)−λn(α)√
nF (0)

= p0+p1

2
, which will imply that in the auxiliary game, the sequence of best

responses of citizens {ĉa,n, ĉb,n} to such a sequence of strategy profiles have ĉa,n >
c0√

n
when

n is large. Hence there is no such an equilibrium sequence of a sequence of auxiliary games,
as we show in Lemma 4.

Consider the following restricted set of citizen strategies:

Cn :=

{

(ca, cb) ∈ [c, c̄]2 : ca ∈
[

c0√
n
,

1

n1/4

]

, cb ∈ [ca(γ − ε), ca(γ + ε)]

}

,

where the term ε > 0 satisfies the following restrictions:

• γ + ε < 1,

•
√

F (0)c0 <
(

P(α|a) − P(β|a)1−µ
µ

q
1−q

)

φ(κ(p)) for all p ∈
[

p0+p1

2
1−γ

1−(γ−ε)
, p0+p1

2
1−γ

1−(γ+ε)

]

.

Existence of such a ε > 0 is guaranteed, because γ < 1, and because when µ > q,

√

F (0)c0 <

(

P(α|a) − P(β|a)
1 − µ

µ

q

1 − q

)

φ
(

κ
(
p0 + p1

2

))

(which follows because for all p ∈ (p0, p1), the right-hand side of equation (17) is larger than
the side of that equation, see also Figure 5 and Lemma 5).

Consider the set of restricted strategies for the policy maker:

Ψn := {l:{0, 1, ..., 2n− 1}→[0, 1] | l(t) is nondecreasing.}
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For every l ∈ Ψn, let the extension of l,l̄ : N → [0, 1] such that l̄(t) = l(t) for t < 2n, and
l̄(t) = 1 for all t ≥ 2n. Observe that l̄ is a nondecreasing function.

Each ca, cb, l̄ induces pivot probabilities in state ω = α, β as given in the main text
through equality (3), where λ(ω) > 0 is found by equation (2).

Note that (Cn × Ψn) is a closed and convex subset of R2+2n. Let

Γn : (Cn × Ψn) 7→ (Cn × Ψn)

be a correspondence that

(c′
a, c

′
b, l

′) ∈ Γ(ca, cb, l) if and only if

c′
a = max

{

min
{

P(α|a)P(piv|α) − P(β|a)P(piv|β),
1

n1/4

}

,
c0√
n

}

,

c′
b = max {min {P(α|b)P(piv|α) − P(β|b)P(piv|β), (γ + ǫ)c′

a} , (γ − ǫ)c′
a} ,

∃l̄ ∈ BRDM(ca, cb) such that l′(t) = l̄(t) for all t < 2n.

Where, P(piv|ω) is calculated using ca, cb, l̄, and BRDM(ca, cb) denotes the set of best replies
of the policy maker to citizen strategies with cutoffs ca and cb.

Claim 1. Γn has a fixed point for every n.

Proof. Note that, by construction, (c′
a, c

′
b) ∈ Cn and are uniquely determined from ca, cb, l̄,

and any l̄ ∈ BRDM(ca, cb) is nondecreasing and l̄(0) = 0, so any l′ in the image of the
correspondence is in Ψn. Γn(ca, cb, l) is a closed and convex set because c′

a, c
′
b are uniquely

chosen, and the projection of BRDM(ca, cb) on t ∈ {0, 1, .., 2n − 1} is a closed and convex
set. Γn is upper hemicontinuous because P(piv|α) is a continuous function of ca, cb, l, and
BRDM is upper hemicontinuous. Cn and Ψn are closed convex sets in R

2 and R
2n. Hence,

Kakutani’s fixed-point theorem delivers that there exists a fixed point of Γn for every n.

Fixed points of Γn correspond to equilibria of the protest game when n is large.

For each fixed point (ca, cb, l) of Γn, associate a strategy profile (ca, cb, l̄) of the protest
model. We now claim and proceed to show that there exists n̄ ∈ N such that n > n̄ implies
any strategy profile

(

ca,n, cb,n, l̄n
)

associated with a fixed point of Γn is a Bayesian Nash
equilibrium of the protest model. In particular, we will show that in any sequence of fixed
points of {Γn}n, when n is large, the restrictions on the citizens’ strategies do not bind, and
that Tn < 2n with the following three lemmas.

Claim 2. There is n̄ ∈ N such that n > n̄ implies Ln(2n) > µ
1−µ

at any fixed point (ca, cb, l)
of Γn.

Proof. Note that

ln (Ln(2n)) = ln

(

q

1 − q

)

− ∆λn − 2n ln

(

1 − ∆λn

λn(α)

)

.
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Because when (ca, cb) ∈ Cn, ∆λn(α)
λn(α)

→ 0, by equation (25) we have that

ln (Ln(2n)) ≈ ln

(

q

1 − q

)

− ∆λn + 2n
∆λn

λn(α)
.

Because 2n
λn(α)

> 2, and because ∆λn → ∞, we have that Ln(2n) → ∞, proving the
claim.

Claim 3. If P(α|a)P(piv|α) − P(β|a)P(piv|β) ∈
(

c0√
n
, 1

n1/4

)

for every n larger than a cutoff

n̄0, then there exists n̄1 such that for all n > n̄1, cb,n ∈ (ca,n(γ − ε), ca,n(γ + ε)).

Proof. Suppose P(α|a)P(piv|α) − P(β|a)P(piv|β) ∈
(

c0√
n
, 1

n1/4

)

.
Because

q

1 − q

P(piv|α)

P(piv|β)
→ µ

1 − µ
,

we have

lim
P(α|b)P(piv|α) − P(β|b)P(piv|β)

P(α|a)P(piv|α) − P(β|a)P(piv|β)
= γ ∈ (γ − ε, γ + ε). (34)

Therefore, cb,n = P(α|b)P(piv|α) − P(β|b)P(piv|β) and cb,n ∈ (ca,n(γ − ε), ca,n(γ + ε)) for
every n larger than some cutoff n̄1.

Claim 4. There is n̄ > 0 such that n > n̄ implies P(α|a)P(piv|α) − P(β|a)P(piv|β) ∈
(

c0√
n
, 1

n1/4

)

.

Proof. Suppose on the way to a contradiction that the claim is false and first assume that
there is a subsequence with P(α|a)P(piv|α)−P(β|a)P(piv|β) ≤ c0√

n
for every n along the sub-

sequence. Because cb,n ∈ [(γ − ǫ) ca,n, (γ + ǫ) ca,n], we have along a convergent subsequence

lim
∆λn

√

λn(α)
= lim

∆λn
√

nF (0)
= p

where p ∈
[

p0+p1

2
1−γ

1−(γ−ε)
, p0+p1

2
1−γ

1−(γ+ε)

]

due to our choice of ε. Therefore, by Lemma 3,

√

nF (0)P(piv|α) → φ(κ(p)).

Hence,

√
n (P(α|a)P(piv|α) − P(β|a)P(piv|β)) → 1

√

F (0)

(

P(α|a) − P(β|a)
1 − µ

µ

q

1 − q

)

φ(κ(p)).

Because p ∈
[

p0+p1

2
1−γ

1−(γ−ε)
, p0+p1

2
1−γ

1−(γ+ε)

]

, and because

√

F (0)c0 <

(

P(α|a) − P(β|a)
1 − µ

µ

q

1 − q

)

φ(κ(p))
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for all

p ∈
[

p0 + p1

2

1 − γ

1 − (γ − ε)
,
p0 + p1

2

1 − γ

1 − (γ + ε)

]

,

we have

lim
√
n (P(α|a)P(piv|α) − P(β|a)P(piv|β)) =

1
√

F (0)

(

P(α|a) − P(β|a)
1 − µ

µ

q

1 − q

)

φ(κ(p))

> c0 =
√
nca,n.

This implies when n is large, (P(α|a)P(piv|α) − P(β|a)P(piv|β)) > c0√
n

, leading to a
contradiction.

To show that the upper bound is not binding, notice that if along a subsequence we have
P(α|a)P(piv|α) − P(β|a)P(piv|β) = 1

n1/4 , then

lim
∆λn

√

λn(α)
= ∞,

and √

nF (0)P(piv|α) → 0.

However, then
lim

√
n (P(α|a)P(piv|α) − P(β|a)P(piv|β)) = 0,

leading to a contradiction.

Claims 2, 3 and 4 together imply that there exists a n̄ such that the restrictions on the
strategy sets Cn and Ψn do not bind in any fixed point of Γn for every n > n̄. This establishes
that the fixed points of Γn are responsive equilibria of the protest game.

Lemma 8. All responsive equilibrium sequences associated with fixed points of {Γn}n have
the feature that lim

√
nca,n = c0

p0+p1
p1, lim

cb,n

ca,n
= γ, and lim ∆λn√

nF (0)
= p1.

Proof. We have already shown that lim
cb,n

ca,n
= γ in equation (34).

Because

lim
√
nca,n ≥ c0 =

p0 + p1

2

√

F (0)
1

f(0)

1

P(a|α) − P(a|β)

1

1 − γ
,

and because lim
cb,n

ca,n
= γ,

lim
∆λn

√

λn(α)
= lim

∆λn
√

nF (0)
= p ≥ p0 + p1

2
> 0.

Because in all responsive equilibrium sequences the term p is a solution of equation (17),
and because p ≥ p0+p1

2
, we conclude that p = p1. Because lim

cb,n

ca,n
= γ, we conclude that

lim
√
nca,n =

c0

p0 + p1

p1.
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Lemma 9. All responsive equilibrium sequences associated with fixed points of {Γn}n have
the feature that the probability that A is selected in state α converges to 1 − Φ(κ(p1)), and
the probability that B is selected in state β converges to Φ(κ(p1) + p1).

Proof. Because
Tn − λn(α)
√

λn(α)
→ κ(p1),

applying the normal approximation to Poisson distribution we get

P(t > Tn|α) → 1 − Φ(κ(p1)).

Note that
Tn − λn(β)
√

λn(β)
=
Tn − λn(α) + ∆λn

√

λn(α)
→ κ(p1) + p1.

Hence, applying the normal approximation to Poisson distribution we get

P(t ≤ Tn|β) → Φ(κ(p1) + p1).

Lemma 10. limp→∞ 1 − Φ(κ(p)) = limp→∞ Φ(κ(p) + p) = 1.

Proof. Recall

κ(p) = −p

2
+

1

p
ln

(

µ

1 − µ

1 − q

q

)

limp→∞ κ(p) = −∞, and limp→∞ κ(p)+p = ∞, therefore limp→∞ 1−Φ(κ(p)) = limp→∞ Φ(κ(p)+
p) = 1.

Proof of Theorem 1:

Proof. We will first prove the Theorem along responsive equilibrium sequences. Then, we
will argue that the informativeness of all equilibrium sequences are bounded above by the P
function.

If µ = q, equation (17) has a unique positive solution by Lemma 5, P
(

f(0)
F (0)

)

. Moreover,

there exists a responsive equilibrium sequence with informativeness P
(

f(0)
F (0)

)

by Lemma 7.
By Lemma 5, it follows that τ = 0, items 2 and 4.

If µ > q, then equation (17) has two positive solutions if f(0)
F (0)

> τ > 0, and has no

positive solution if f(0)
F (0)

< τ , by Lemma 5. By Lemma 6, if f(0)
F (0)

< τ , then there is no

responsive equilibrium sequence, hence P
(

f(0)
F (0)

)

= 0, proving the first item. By Lemma 7, if
f(0)
F (0)

> τ , then there exists a responsive equilibrium sequence with informativeness P
(

f(0)
F (0)

)

.
By Lemma 5, items 2, 3 and 4 follow.
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We will now show that the informativeness of all equilibrium sequences are bounded above
by the P function. This is true along responsive equilibrium sequences, since any P is the
largest solution of equation (17), and the informativeness of every responsive equilibrium
sequence is a solution of equation (17). Suppose there is an equilibrium sequence with

lim λn(α)−λn(β)√
nF (0)

= p < 0. Then, there is a n̄ such that for all n > n̄, λn(β) > λn(α). In this

case, the policy maker’s best reply ρn(t) is a nonincreasing function, and there is a Tn such
that ρn(t) = 1 for all t < Tn, and ρn(t) = 0 for all t > Tn. In this case, the net payoff from
participation becomes

u(θ, c) = P(β|θ)P(piv|β) − P(α|θ)P(piv|α) − c,

where P(piv|ω) = P(Tn − 1|ω)(1 − ρn(Tn)) + P(Tn|ω)ρn(Tn).

With these changes, Lemma 2 goes through under the hypothesis that lim λn(α)−λn(β)√
nF (0)

=

p < 0. Likewise, the second claim in Lemma 3 changes to lim
√

nF (0) (ĉa,n − ĉb,n) =

−φ(κ(p))
(

P(α|a) − P(β|a)1−µ
µ

q
1−q

)

(1 − γ), and the proof goes through without any major
alteration. Therefore, Lemma 4 changes without any major alteration in the proof to the
following claim:

Claim 5. Take a sequence of equilibria {ca,n, cb,n, ρn} with lim λn(α)−λn(β)√
nF (0)

= p ≤ 0.

1. If p ∈ (−∞, 0), then p is a solution of the following equation:

|p| =
f(0)

F (0)

(

1 +
q

1 − q

1 − µ

µ

)

(P(a|α) − P(a|β)) (P(α|a) − P(α|b))φ (κ(p)) = g(p).

(35)

2. p > −∞.

3. If µ > q, then p < 0. Hence, if equation (35) has no solution, then there exists n∗ such
that for all n > n∗, babbling is the unique equilibrium.

Because φ (κ(p)) = φ (κ(−p)), if p < 0 is a solution of equation (35), then −p > 0 is
a solution of equation (17). Hence, for the smallest p solution of equation (35), −p is the
largest solution of equation (17). Because we showed the existence of a responsive equilibrium
sequence with informativeness equal to the maximal p solution of equation (17), there does
not exist any informative equilibrium sequence that has informativeness greater than the
maximal p-solution of equation (17).

Proof of Theorem 2:

Proof. The first claim: If f(0)
F (0)

< τ , then P = 0, and babbling is the unique equilibrium for

all n sufficiently large, and the claim follows. If f(0)
F (0)

> τ , then the claim follows from Lemma
9.

The second claim: The claim that the expected payoff of the policy maker is increasing
in p follows from the information content of the turnout increasing in Blackwell order in p,
and from the policy maker’s choice being a single person decision problem. For the citizens,
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in any equilibrium sequences, the cost cutoffs converge to 0, hence the costs and benefits of
participation do not change with p. To compare the citizens’ expected payoff from policy
choice with p, note that the policy maker’s expected payoff along an equilibrium sequence
with informativeness p converges to:

UP M(p) := q(1 − µ) (1 − Φ(κ(p))) + (1 − q)µΦ (κ(p) + p) ,

while the citizens’ expected payoff along the same sequence converges to (not counting
the cost and benefit of participation):

Uc(p) := q (1 − Φ(κ(p))) + (1 − q)Φ (κ(p) + p) .

The function UP M(p) is strictly increasing in p as we argued previously. Moreover, be-
cause κ is decreasing in p, 1−Φ(κ(p)) is increasing in p. Finally, because µ ≥ 1/2, U ′

P M(p) > 0
implies U ′

c(p) > 0, completing the proof.

10.2 Proofs for the Comparative Statics

Proof of Theorem 3:

Proof. Recall that lim
√
n (F (ca,n) − F (cb,n)) = lim

√
nf(0) (ca,n − cb,n). Using the defini-

tion of informativeness, equation (7) and the difference in the expected turnouts given by
equation (14), we obtain that

lim
n (F (ca,n) − F (cb,n))√

n
=
P
(

f(0)
F (0)

)√

F (0)

P(a|α) − P(a|β)
.

Thus, lim
√
n (F (ca,n) − F (cb,n)) is proportional to P

(
f(0)
F (0)

)√

F (0). Hence, to prove the

theorem, it suffices to show that
∂(P( f(0)

F )
√

F)
∂F

> 0 when F is smaller than a cutoff, F̄ > 0.

Recall that P
(

f(0)
F

)

is the largest p solution of the equation p = f(0)
F
Zφ(κ(p)), for some

constant Z. Rewriting the equation in logs, we have

ln p = ln
f(0)

F
+ lnZ − 1

2
κ(p)2 − ln

√
2π. (36)

At the largest solution (i.e., P
(

f(0)
F

)

, when this is strictly positive), we have that the

curve ln p crosses the curve ln f(0)
F

+ lnZ − 1
2
κ(p)2 − ln

√
2π from below, i.e., the derivative

of the left-hand side of equation (36) with respect to p is greater than the derivative of the

right-hand side of equation (36) with respect to p, at P
(

f(0)
F

)

. Hence, at p = P
(

f(0)
F

)

,

1

p
> −κ(p)κ′(p).

Taking the total derivative of equation (36) with respect to p and F , we obtain

1

p
dp = − 1

F
dF − κ(p)κ′(p)dp.
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Rearranging, we have
dp

dF
=

− 1
F

1
p

+ κ(p)κ′(p)
< 0.

The sign of the expression
∂(p

√
F)

∂F
is equal to the sign of the expression

∂(ln p+ln
√

F)
∂F

. The
latter is equal to

1

p

dp

dF
+

1

2

1

F
=

1

F

(

1

2
− 1

p+ κ(p)κ′(p)

)

.

Note that p + κ(p)κ′(p) = 1 + p2

4
− 1

p2

(

ln
(

µ
1−µ

1−q
q

))2
, and is an increasing function of

p, without bound. Hence, there exists some p̄ > 0 such that when p > p̄,
∂(p

√
F)

∂F
> 0.

Observing that P
(

f(0)
F

)

is monotone increasing in 1
F

, and without bound, we obtain that

there exists some F̄ > 0 such that if F (0) < F̄ , then
∂(P( f(0)

F )
√

F)
∂F

> 0.

Proof of Theorem 4:

Proof. We will show that if P1 >B P2, then

(P1(a|α) − P1(a|β)) (P1(α|a) − P1(α|b)) > (P2(a|α) − P2(a|β)) (P2(α|a) − P2(α|b)) .

This will suffice to prove the two claims, because the expression (P1(a|α) − P1(a|β)) (P1(α|a) − P1(α|b))
is a constant that multiplies the function g, and if the multiplier increases, then the largest
intersection point of the function with the 45 degree line increases. Likewise, when the
function g increases, then the cutoff τ on the reverse hazard rate that makes this function
intersect with the 45 degree line at a tangency point decreases. We now proceed to show the
inequality above. If P1 >B P2, then

P1(a|α)

P1(a|β)
≥ P2(a|α)

P2(a|β)
,

P1(b|α)

P1(b|β)
≤ P2(b|α)

P2(b|β)
,

with at least one of the inequalities being a strict inequality. Note first that, (P1(α|a) − P1(α|b)) >
(P2(α|a) − P2(α|b)), due to the inequalities above. We now proceed to show that (P1(a|α) − P1(a|β)) ≥
(P2(a|α) − P2(a|β)). Note that

P1(a|α) − P1(a|β) = P1(b|β) − P1(b|α),

and

P1(a|α) − P1(a|β) = P1(a|β)

(

P1(a|α)

P1(a|β)
− 1

)

,

P1(b|β) − P1(b|α) = P1(b|β)

(

1 − P1(b|α)

P1(b|β)

)

.
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Because P1(a|β)+P1(b|β) = 1 = P2(a|β)+P2(b|β), either P1(a|β) ≥ P2(a|β), or P1(b|β) ≥
P2(b|β). Suppose P1(a|β) ≥ P2(a|β). Then, because

(
P1(a|α)
P1(a|β)

− 1
)

≥
(
P2(a|α)
P2(a|β)

− 1
)

, we have

(P1(a|α) − P1(a|β)) ≥ (P2(a|α) − P2(a|β)). If P1(b|β) ≥ P2(b|β), then P1(a|α) − P1(a|β) =

P1(b|β)
(

1 − P1(b|α)
P1(b|β)

)

≥ P2(b|β)
(

1 − P2(b|α)
P2(b|β)

)

= (P2(a|α) − P2(a|β)), completing the proof.

Proof of Theorem 5:

Proof. Theorem 5 states comparative statics of the function P with respect to µ. We start
by investigating the relationship between maximal information transmission in equilibrium
and the policy maker’s indifference belief µ. A simplified version of the equation (17) gives
us the following condition for the maximal informativeness of protests, p.

Recall

m :=
1 − µ

µ

q

1 − q
,

p = K(1 +m)φ

(

p

2
+

1

p
lnm

)

(37)

where47

K :=
f(0)

F (0)
(P(a|α) − P(a|β)) (P(α|a) − P(α|b)) .

Our analysis will utilize the following properties of the function

R(p,m) := K(1 +m)φ

(

p

2
+

1

p
lnm

)

.

1. R(p,m) = R(p, 1/m).

2. R2(p,m) = 0 for m = 1, where R2 denotes the derivative of R with respect to its
second argument.

3. R(p,m) viewed as a function of m is single-peaked for p < 2, hence by the previous
property, is maximized at m = 1 .

4. R2(p,m) = 0 has 3 solutions for p > 2: at m = 1, at m = y for some y < 1, and at
m = 1/y > 1. R(p,m) is maximized at m = y or m = 1/y.

5. maxm R(p,m) − p is a decreasing function of p.

These 5 properties give us the following Proposition, which proves Theorem 5.

Proposition.

1. If K < φ(1)−1, then the largest solution of (37) viewed as a function of m = 1−µ
µ

q
1−q

is

maximized at m∗ = 1, i.e., µ = q, and is increasing in m for m ≤ 1 (or equivalently,
decreasing in µ). At the maximized value, P < 2.

47Note the expression in equation (17) has the inverse of m, and we use the identity ln 1
x

= − ln x to derive
equation (37).
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2. If K > φ(1)−1, then largest solution of (37) viewed as a function of m is maximized at
some y < 1 (or at 1/y) that solves R2(p

∗,m∗) = 0 and R(p∗,m∗) = p∗ simultaneously
for p∗ > 2.

Proof. If K < φ(1)−1, then for p < 2, R is maximized at m = 1 by property 3, and when
K < φ(1)−1, at m = 1, R(p, 1) = p has a unique solution at p∗ < 2. From property 5, we
have that maxm R(m, p) − p is decreasing in p, hence, there is no p > p∗ that can solve (37)
for any m ≥ 0.

If K > φ(1)−1, at m = 1, the solution of (37) has P (µ) > 2. Hence, R(P (µ),m) is
maximized at some m = y < 1, and R(P (q), y) > R(P (q), 1) = P (q). From property
5, we have that the maximum p is achieved when m∗(p∗) ∈ arg maxR(m, p∗) and p∗ =
R(p∗,m∗(p∗)).

Proof of Property 1

Follows from the following equality:

(1+m)φ

(

p

2
+

1

p
lnm

)

=
(1 +m)√

m

1√
2π
e

−
(

p2/8+ 1
2p2 (ln m)2

)

=

(

1 + 1
m

)

√
1
m

1√
2π
e

−
(

p2/8+ 1
2p2 (ln 1

m)
2
)

,

which uses the identity (1+m)√
m

=
(1+ 1

m)√
1
m

.

Proof of Property 2

For some constant B := 1√
2π
K,

lnR(p,m) = lnB + ln(1 +m) − 1

2
(p/2 + 1/p lnm)2 .

Taking the derivative with respect to m, we obtain:

d lnR(p,m)

dm
=

1

1 +m
− (p/2 + 1/p lnm)

(

1

pm

)

.

Clearly, for m = 1
d lnR(p,m)

dm
= 0.

Proof of Property 3

We will argue that for every p < 2, d ln R(p,m)
dm

> 0 for all m < 1. This will also imply (due

to property 1) that d ln R(p,m)
dm

< 0 for m > 1, hence R(p, ·) is single-peaked, and is maximized
at m = 1.

Recall that

d lnR(p,m)

dm
=

1

1 +m
− (p/2 + 1/p lnm)

(

1

pm

)

=
m− 1

m+ 1

1

2m
− 1

p2

lnm

m
.
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For m < 1, we want to show that

m− 1

m+ 1

1

2m
− 1

p2

lnm

m
> 0,

which is equivalent to showing that

− 1

p2

lnm

m
>

1 −m

m+ 1

1

2m
,

which in turn is equivalent to showing that

− 1

p2
lnm >

1 −m

m+ 1

1

2
.

Because lnm < 0 , showing the inequality at p = 2 suffices. So we need to show

−1

4
lnm >

1 −m

m+ 1

1

2
,

or equivalently

−1

2
lnm >

1 −m

m+ 1

for m < 1. Consider the function

t(m) :=
1 −m

m+ 1
+

1

2
lnm.

Note that t(1) = 0, so if we show that t′(m) > 0 for m < 1, we will be done. Indeed,

t′(m) =
−2m

(m+ 1)2
+

1

2m
=

1

2m

(

1 −
(

2m

m+ 1

)2
)

> 0

because 2m < m+ 1.
Proof of Property 4

We have shown that R2(p,m) = 0 for m = 1. Likewise, because

d lnR(p,m)

dm
=
m− 1

m+ 1

1

2m
− 1

p2

lnm

m
,

when d ln R(p,m)
dm

|m̄ = 0, we have that d ln R(p,m)
dm

| 1
m̄

= 0. So we want to show that for p > 2,

there is a unique y < 1 with d ln R(p,m)
dm

= 0 at m = y. Note that rewriting the condition
d ln R(p,m)

dm
= 0, we get

p2 =
2(m+ 1)

m− 1
lnm.

The function z(m) := 2(m+1)
m−1

lnm has the property that limm→0 z(m) = ∞, and limm→1 z(m) =
4 (obtained using L’Hopital’s rule). What we will show is that z′(m) < 0 for m < 1, hence
z(m) = p2 has a unique solution for m < 1, and only when p > 2. To show that z′(m) < 0,
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we use the following equalities on the sign of z′(m), which follows from usual calculations:

sign(z′(m)) = sign

(((

1 +
2

m− 1

)

lnm
)′)

= sign

(

−m+ 1

m
+

2 lnm

m− 1

)

= sign

(

m2 − 1

m
− 2 lnm

)

.

Let

η(m) :=
m2 − 1

m
− 2 lnm.

Note that η(1) = 0. We will show that η′(m) > 0 which will allow us to infer that
η(m) < 0, hence z′(m) < 0:

η′(m) = 1 +
1

m2
− 2

m
=

1

m2
(m− 1)2 > 0.

To see that R(p, ·) is maximized at m < 1, note that lnR(p,m) is decreasing in m in a
small neighborhood of 1 when m < 1, and lnR(p,m) is increasing in m for sufficiently small
m. Hence, R is maximized at some m̄, and the value at m̄ is higher than the value at m = 1.

Proof of Property 5

Let m(p) be the maximizer of R(p,m) at some p. For p < 2, the claim is clearly true
because then m(p) = 1, and φ(p

2
) is decreasing in p. We want to show that

dR(p,m(p))

dp
− 1 < 0,

or equivalently by the envelope theorem,

−K(1 +m)

(

p

2
+

1

p
lnm

)(

1

2
− 1

p2
lnm

)

φ

(

p

2
+

1

p
lnm

)

− 1 < 0.

Note that at m(p), we have

1

1 +m
−
(

p

2
+

1

p
lnm

)(

1

pm

)

= 0,

i.e., p
2

+ 1
p

lnm = pm
m+1

> 0. Also notice that 1
p

lnm = pm
m+1

− p
2
, hence

1

2
− 1

p2
lnm =

1

p

(
p

2
−
(

pm

m+ 1
− p

2

))

=
1

m+ 1
> 0.

Thus, we have

−K(1 +m)

(

p

2
+

1

p
lnm

)(

1

2
− 1

p2
lnm

)

φ

(

p

2
+

1

p
lnm

)

− 1 < 0.
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11 Online Appendix: Proofs for the Case without Activists

11.1 Proof of Theorem 6

We proceed first by showing properties of large responsive equilibrium sequences, i.e.,
the second claim of the theorem, and then proceed to showing the existence of such an
equilibrium sequence, i..e, the first claim of the theorem. We finally show the third claim of
the theorem. For the following, fix a large responsive equilibrium sequence, {ca,n, cb,n, ρn}n.

Lemma 11. lim inf F (ca,n)
F (cb,n)

> 1.

Proof. Recall that

cθ = P(α|θ)P(piv|α) − P(β|θ)P(piv|β) for θ = a, b.

Therefore, when c = 0, cb ≤ 0 implies F (cb) = 0. Because in a responsive equilibrium
ca,n ≥ cb,n, and because large responsive equilibrium sequences must have F (cθ,n) > 0 for
some θ when n is large, we have ca,n > 0.

Notice that in any responsive equilibrium, if ca = cb, then P(piv|α) = P(piv|β) = 0, due
to the MLRP condition. Hence, when ca = cb, we have ca = cb = 0. This together with
ca,n > 0 for n large imply that P(piv|α) > 0. The MLRP condition implies that ca,n > cb,n

for large n. If cb,n ≤ 0 along the (sub)sequence we are looking, then the claim is true along
such a sequence, because ca,n > 0, hence F (ca,n) > 0 while F (cb,n) = 0, and the claim is
true. So assume that cb,n > 0 for every n along a subsequence.

Because cb,n ∈ (0, c̄) when n is large, we have

cb,n = P(α|b)P(piv|α) − P(β|b)P(piv|β).

Because cb,n > 0, we have

P(piv|α) > P(piv|β)
P(β|b)
P(α|b) .

Rewriting the indifference condition for an a signal with cost ca,

ca,n = P(α|a)P(piv|α) − P(β|a)P(piv|β)

=
P(α|a)

P(α|b) cb,n +
P(α|a)

P(α|b)P(β|b)P(piv|β) − P(β|a)P(piv|β).

Because P(α|a)
P(α|b)

P(β|b) > P(β|a) (which follows because P(α|a)
P(α|b)

> 1 and P(β|a)
P(β|b)

< 1), we have that

ca,n >
P(α|a)

P(α|b) cb,n.

Because ca,n, cb,n → 0, because ca,n >
P(α|a)
P(α|b)

cb,n, and because P(α|a)
P(α|b)

> 1, by assumption (1)
we have

lim inf
F (ca,n)

F (cb,n)
> 1.
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Lemma 12.

1. lim inf λn(α)
λn(β)

> κ for some κ > 1.

2. lim sup λn(α)
λn(β)

≤ P(a|α)
P(a|β)

.

Proof. If for some n, cb.n ≤ 0, then F (cb,n) = 0, and we have

λ(α)

λ(β)
=

P(a|α)

P(a|β)
> 1.

If cb,n ≤ 0 for every n larger than a cutoff n̄, then both claims are true.
Now assume cb,n > 0 for every n along a (sub)sequence of equilibria.
We then have

λ(α)

λ(β)
=
F (cb) + P(a|α)(F (ca) − F (cb))

F (cb) + P(a|β)(F (ca) − F (cb))

= 1 +
(F (ca) − F (cb))(P(a|α) − P(a|β))

F (cb) + P(a|β)(F (ca) − F (cb))

= 1 +
P(a|α) − P(a|β)

F (cb)
F (ca)−F (cb)

+ P(a|β)

Proof of lim inf λn(α)
λn(β)

> κ > 1:
In the proof of Lemma 11 we showed that if cb,n > 0 for every n larger then a cutoff, then

lim inf ca,n

cb,n
> P(α|a)

P(α|b)
> 1. Therefore, assumption (1) implies

lim sup
F (cb,n)

F (ca,n) − F (cb,n)
= lim sup

1
F (ca,n)
F (cb,n)

− 1
< ∞,

i.e., this term is bounded. Because P(a|α) − P(a|β) > 0, we have

P(a|α) − P(a|β)
F (cb,n)

F (ca,n)−F (cb,n)
+ P(a|β)

is bounded away from 0, proving the first part of the claim lim inf λn(α)
λn(β)

> κ for some κ > 1.
Going forward, this is very important for some information revelation, since in equilibrium,
expected turnout depends on the state, and hence the policy maker learns something from
the turnout.

Proof of lim sup λn(α)
λn(β)

≤ P(a|α)
P(a|β)

:
Because ca,n, cb,n → 0, and because the sequence is a large responsive equilibrium se-

quence, we have F (ca,n) > F (cb,n) for n larger than some n̄. Therefore,

lim sup
λn(α)

λn(β)
= 1 + lim sup

P(a|α) − P(a|β)
F (cb,n)

F (ca,n)−F (cb,n)
+ P(a|β)

≤ 1 +
P(a|α) − P(a|β)

P(a|β)
=

P(a|α)

P(a|β)
.
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Lemma 13. lim λn(β) = ∞.

Proof. The signals have bounded information, i.e., P(a|α)
P(a|β)

< ∞, and P(b|α)
P(b|β)

> 0, therefore when

λn(α) → ∞, λn(β) → ∞.

Lemma 14. There is y ∈ (0, 1) such that when n is sufficiently large, for every pivotal event
Tn, λn(α)(1 − y) > Tn > λn(β)(1 + y).

Proof. We start noting that for x > 0,

ln x ≤ x− 1,

and ln x = x − 1 if and only if x = 1. Note also that x−1
ln x

is a strictly increasing function
of x for x > 1, and is a strictly decreasing function of x for x < 1. Recall that we have
lim inf λn(α)

λn(β)
= κ > 1.

Using the policy maker’s optimality, we have L (Tn) ≤ µ
1−µ

< L (Tn + 1), and taking the

log’s of the term L(·) gives us

λn(β)

(

1 − λn(α)

λn(β)

)

+Tn ln
λn(α)

λn(β)
≤ ln

µ

1 − µ
−ln

q

1 − q
< λn(β)

(

1 − λn(α)

λn(β)

)

+(Tn+1) ln
λn(α)

λn(β)
.

or equivalently,

(

1 − λn(α)

λn(β)

)

+
Tn

λn(β)
ln
λn(α)

λn(β)
≤

ln µ
1−µ

− ln q
1−q

λn(β)
<

(

1 − λn(α)

λn(β)

)

+
Tn + 1

λn(β)
ln
λn(α)

λn(β)
.

Because λn(β) → ∞ as shown in Lemma 13, and because ln λn(α)
λn(β)

≤ ln P(a|α)
P(a|β)

, and hence
is bounded from above, we have

lim

((

1 − λn(α)

λn(β)

)

+
Tn

λn(β)
ln
λn(α)

λn(β)

)

= 0.

Hence,

lim inf
Tn

λn(β)
= lim inf

λn(α)
λn(β)

− 1

ln λn(α)
λn(β)

.

Because lim inf λn(α)
λn(β)

> 1, because x−1
ln x

> 1 and because for x > 1, x−1
ln x

is increasing in x,

relabeling x = λn(α)
λn(β)

gives that

lim inf





λn(α)
λn(β)

− 1

ln λn(α)
λn(β)



 > 1.

Therefore, lim inf Tn

λn(β)
> 1.

A similar argument delivers that Tn < λn(α)(1 − y) for some y > 0.
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Lemma 15. Every large responsive equilibrium sequence aggregates information: the prob-
ability that A is implemented in state α goes to 1, and the probability that B is implemented
in state β goes to 1, i.e.,

lim
n→∞P ({t : ρn(t) = 1}|α) = 1,

lim
n→∞P ({t : ρn(t) = 0}|β) = 1.

Proof. We will show that in every large equilibrium sequence, limn P(t > Tn + 1|α) = 1 and
limn P(t ≤ Tn|β) = 1, which will complete the proof due to the monotonicity of ρn(·).

We will use Chebyshev’s inequality. Note that E(n|ω) = λn(ω), and V ar(n|ω) = λn(ω).
Therefore,

P

(

| t

λ(ω)
− 1| ≥ y

)

≤ 1

y2λ(ω)
.

Because for some y > 0, (1 − y)λn(β) < Tn < (1 − y)λn(α) by Lemma 14, we have that

limP(t > Tn + 1|α) ≥ limP(t ≥ (1 − y)λn(α)|α) ≥ 1 − 1

y2λn(α)
.

Because λn(α) → ∞, the right-hand side term goes to 1. A similar argument proves the
second claim.

We now proceed to show the existence of a large responsive equilibrium sequence.

Proposition 1. There exists a large responsive equilibrium sequence if µ > 1
2
.

Proof. The proof structure is similar to the proof of Lemma 7. We first define an auxiliary
game with restricted strategy sets, and show that when n is large, the restrictions do not
bind for the equilibria of the auxiliary game.

Auxiliary Game with Restricted Strategy Sets

Consider the sets

Cn : =
{

(ca, cb) ∈ [0, c̄]2 : F (ca) ≥ 1/n, cb ≤ ca

1 + ǫ

}

,

Ψn := {l:{0, 1, ..., 2n− 1}→[0, 1] : l(t) is nondecreasing.} ,

where ǫ ∈
(

0, P(α|a)
P(α|b)

− 1
)

. For every l ∈ Ψn, let the extension of l be l̄ : N → [0, 1] such

that l̄(t) = l(t) for t < 2n, and l̄(t) = 1 for all t ≥ 2n. Observe that l̄ is a nondecreasing
function.

Each ca, cb, l̄ induces pivot probabilities in state ω = α, β as given in the main text
through equality (3), where λ(ω) is found by equation 2. Note that (Cn × Ψn) is a closed
and convex subset of R2n+2. Let

Γn : (Cn × Ψn) 7→ (Cn × Ψn)

be a correspondence that
(c′

a, c
′
b, l

′) ∈ Γn(ca, cb, l) iff
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c′
a = min

{

max
{

P(α|a)P(piv|α) − P(β|a)P(piv|β), F−1
(

1

n

)}

, c̄
}

c′
b = min

{

max {P(α|b)P(piv|α) − P(β|b)P(piv|β), 0} , 1

1 + ǫ
c′

a

}

∃l̄ ∈ BRDM(ca, cb) such that l′(t) = l̄(t) for all t < 2n.

Where, P(piv|ω) is calculated using ca, cb, l̄, and BRDM(ca, cb) denotes the set of best
replies of the policy maker to citizen strategies with cutoffs ca and cb.

Lemma 16. Γn has a fixed point for every n.

Proof. Note that, by construction, (c′
a, c

′
b) ∈ Cn and is uniquely determined by ca, cb, l̄.

Moreover, any l̄ ∈ BRDM(ca, cb) is nondecreasing and l̄(0) = 0, so any l′ in the image of
the correspondence is in Ψn. Γn(ca, cb, l) is closed and convex set because c′

a, c
′
b are uniquely

chosen, and the projection of BRDM(ca, cb) on t ∈ {0, 1, .., 2n − 1} is a closed and convex
set. Γn is upper-hemicontinuous because, F is continuous, P(piv|α) is a continuous function
of F (ca), F (cb), l, and BRDM is upper-hemicontinuous. Cn and Ψn are closed convex sets in
R

2 and R
2n. Hence, Kakutani’s fixed-point theorem delivers us a fixed point of Γn, for every

n.

We now proceed to show that the fixed points of Γncorrespond to equilibria of the protest
game when n is large.

Fixed points of Γn correspond to equilibria of the protest game when n is large

For each fixed point (ca, cb, l) of Γn, associate a strategy profile (ca, cb, l̄) of the protest
model. We will show that there exists n̄ ∈ N such that n > n̄ implies any strategy profile(

ca,n, cb,n, l̄n
)

associated with a fixed point of Γn is a Nash equilibrium of the protest model.

Suppose strategy profile
(

ca,n, cb,n, l̄n
)

is associated with a fixed point (ca,n, cb,n, ln) of

Γn. Because ca,n ≥ cb,n (1 + ǫ), and because q ≤ µ, l̄n(0) = 0. Because l̄n is nondecreasing,
and because l̄n(2n) = 1, l̄ is not constant everywhere. Moreover, because F (ca,n) ≥ 1/n,
lim inf λn(ω) > 0 for ω = α, β. We will show in Lemmata 17, 18 and 19 when n is sufficiently

large, any strategy profile
(

ca,n, cb,n, l̄n
)

associated with a fixed point of Γn satisfies the
following inequalities:

F (ca,n) > 1/n,

ca,n > cb,n (1 + ǫ) ,

Ln(t) >
µ

1 − µ
for all t ≥ 2n,

i.e., the strategy profile
(

ca,n, cb,n, l̄n
)

is a responsive equilibrium of the protest game
when n is large.

Lemma 17. limnF (ca,n) = ∞, and lim(ca,n + cb,n) = 0. Therefore, there exists n̄ such that
n > n̄ implies F (ca,n) > 1/n for every ca.n that is part of a fixed point of Γn.
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Proof. First part: Suppose the contrary, and suppose that limnF (ca,n) = k < ∞. Because
ca,n ≥ cb,n (1 + ǫ), limnF (cb,n) ≤ k. Then, λn(ω) stays bounded from above for each state

ω. Because λn(α)
λn(β)

is bounded from below and away from 1, any sequence of pivotal events

Tn stays bounded. Moreover, because F (ca,n) ≥ 1/n, lim inf λn(ω) > 0. Moreover, because
λn(α) > λn(β) and because q ≤ µ, L(0) < µ

1−µ
, and hence P(piv|ω) stays bounded from

below by a strictly positive number.
Observe that

P(α|a)P(piv|α) − P(β|a)P(piv|β) = P(piv|β)P(β|a)

(

P(α|a)

P(β|a)

P(piv|α)

P(piv|β)
− 1

)

≥ P(piv|β)P(β|a)

(

µ

1 − µ
− 1

)

,

where the last inequality follows because q
1−q

P(piv|α)
P(piv|β)

λn(α)
λn(β)

≥ µ
1−µ

, and because P(a|α)
P(a|β)

≥ λn(α)
λn(β)

.

Because µ > 1
2
,
(

µ
1−µ

− 1
)

> 0, and if P(piv|β) is bounded from below by a strictly positive
number, then

lim inf (P(α|a)P(piv|α) − P(β|a)P(piv|β)) > 0.

Therefore, lim inf ca,n > 0, which contradicts to limnF (ca,n) = k < ∞.
Second part: Suppose the contrary. Then, λn(ω) diverges. Observe that P(piv|ω) ≤

maxt∈N e
−λ(ω) λ(ω)t

t!
, and limλ→∞ maxt∈N e

−λ λt

t!
= 0. Therefore, P(piv|ω) → 0. Then,

lim sup (P(α|a)P(piv|α) − (β|a)P(piv|β)) = 0,

hence, lim ca,n = 0. Because 0 ≤ cb,n < ca,n, we get lim(ca,n + cb,n) = 0.

Lemma 18. ca,n > (1 + ǫ) cb,n for every n > 0.

Proof. If cb,n = 0, then ca,n ≥ 1/n > (1 + ǫ)cb,n. Suppose cb,n > 0. Note that,

P(α|a)P(piv|α) − P(β|a)P(piv|β) > P(α|b)P(piv|α) − P(β|b)P(piv|β),

therefore, when cb,n > 0, P(α|a)P(piv|α) − P(β|a)P(piv|β) > 0. Observe that by MLRP, we
have,

P(α|a)P(piv|α) − P(β|a)P(piv|β)

P(α|b)P(piv|α) − P(β|b)P(piv|β)
>

P(α|a)

P(α|b) .

Therefore, when ǫ ∈
(

0, P(α|a)
P(α|b)

− 1
)

, ca,n > (1 + ǫ)cb,n.

Lemma 19. Ln(t) > µ
1−µ

for all t ≥ 2n for all n sufficiently large.

Proof. Because ca,n ≥ cb,n (1 + ǫ), and because lim(ca,n + cb,n) = 0, lim inf λn(α)
λn(β)

> 1. An

argument that is analogous to the one used for Lemma 17 delivers that λn(ω) → ∞. From
Lemma 14, it follows that there is y > 0 such that L(t) > µ

1−µ
for all t ≥ λn(α)(1 − y), for

all n when n is sufficiently large. Because 2n > λn(α), the result follows.
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Lemmata 17, 18 and 19 imply that there exists a n̄ such that for every n > n̄, any
strategy profile

(

ca,n, cb,n, l̄n
)

associated with a fixed point of Γn is an equilibrium of the
protest game. This completes the proof of Proposition 1, i.e., existence of a large responsive
equilibrium sequence when µ > 1/2.

Proposition 2. There exists a large responsive equilibrium sequence if µ = 1
2
.

Proof. The proof is by construction. For the following, let l := P(a|α)
P(a|β)

. By the MLRP, l > 1.

Let {zk}k∈N
be a sequence of real numbers where for each k ≥ 1,

zk :=
k ln l + ln

(
q

1−q

)

1 − l−1
.

Note that {zk}k∈N
is a strictly increasing sequence without any upper bound, hence there

exists a k̄ ≥ 1 such that zk > 0 for all k > k̄. We will show that there exists a sequence
{nk}k∈N,k>k̄ of positive real numbers such that for every n > nk, there exists an equilibrium

in which cb,n ≤ 0, ca,n = F−1
(

zk

nP(a|α)

)

, ρn(t) = 0 if t < k, ρn(t) = 1 if t > k and ρn(k) ∈ [0, 1].
This suffices to prove the Proposition, because then for each λ > 0, there exists a n̄ such
that for every n > n̄, there exists an equilibrium in which λn(α) > λ.

To this end, fix k ≥ k̄, and let pk(α) = e−zk (zk)k

k!
, pk(β) = e−( zk

l ) ( zk
l )

k

k!
,

ñk :=
zk

P(a|α)F (P(α|a)pk(α) − P(β|a)pk(β))
,

and

nk := max

{

ñk,
P(a|α)

zkF (c̄)

}

.

Let ρn(k) ∈ [0, 1] be the unique solution of

F ((1 − ρn(k)) (P(α|a)pk(α) − P(β|a)pk(β))) =
zk

P(a|α)n
.

The solution exists and is unique because nk ≤ n, F is strictly increasing and is continuous
with F (0) = 0.

Step 1: Policy maker’s optimality:
If cb,n ≤ 0, and if ca,n = F−1

(
zk

nP(a|α)

)

≤ c̄, then λn(α) = nF (ca,n)P(a|α) = zk, and

λn(β) = nF (ca,n)P(a|β) = λn(α)
l

= zk

l
. Therefore,

L(k) =
q

1 − q
e−(λn(α)−λn(β))

(

λn(α)

λn(β)

)k

=
q

1 − q
e−(zk(1−l−1))lk = 1.

Because µ = 1
2
, the policy maker is indifferent between the two policies if there are k

protesters, hence ρn is a best reply to (ca,n, cb.n).
Step 2: Citizens’ optimality.
The best reply of the citizens with a b signal is to abstain, because P(α|piv, b) < 1

2
. This
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is because the pivotal events are when Tn = k − 1 and when Tn = k, and L(k) = 1, while
L(k − 1) < 1.

For citizens with an a signal, notice that P(piv|α) = e−zk (zk)k−1

(k−1)!
ρn(k)+e−zk (zk)k

k!
(1 − ρn(k))

while P(piv|β) = e−( zk
l ) ( zk

l )
k−1

(k−1)!
ρn(k) + e−( zk

l ) ( zk
l )

k

k!
(1 − ρn(k)). The incentives of a signals

to participate is given by

ĉa,n := P(α|a)P(piv|α) − P(β|a)P(piv|β)

= ρn(k)




P(α|a)e−zk

(zk)k−1

(k − 1)!
ρn(k) − P(β|a)e−( zk

l )

(
zk

l

)k−1

(k − 1)!
ρn(k)






+ (1 − ρn(k)) (P(α|a)pk(α) − P(β|a)pk(β)).

Because P(α|a)
P(β|a)

= q
1−q

P(a|α)
P(a|β)

and because of the indifference of the policy maker at t = k−1,
we have 


P(α|a)e−zk

(zk)k−1

(k − 1)!
ρn(k) − P(β|a)e−( zk

l )

(
zk

l

)k−1

(k − 1)!
ρn(k)




 = 0.

Therefore,

ĉa,n = P(α|a)P(piv|α) − P(β|a)P(piv|β) = (1 − ρn(k)) (P(α|a)pk(α) − P(β|a)pk(β)) .

Note that ca,n = F−1
(

zk

nP(a|α)

)

= (1 − ρn(k)) (P(α|a)pk(α) − P(β|a)pk(β)) = ĉb,n, completing

the proof that ca,n = F−1
(

zk

nP(a|α)

)

is a best reply to the strategy profile (ca,n, cb,n, ρn) .

Lemma 20. In any responsive equilibrium sequence, {ca,n, cb,n, ρn}n, lim sup λn(ω)
ln n

< ∞.

Proof. Suppose to the contrary that there is a subsequence of responsive equilibrium sequence
with lim λn(ω)

ln n
> z for every z > 0.

By Lemma 14, in such a sequence, there is a y > 0 such that when n is large, the
pivotal event Tn < (1 − y)λn(α). The following result on the tail properties of the Poisson
distribution is shown in Cannone (2017), as Fact 6 of Theorem 1:

P (t ≤ (1 − y)λn(α)|α) ≤ e
−
(

(yλn(α))2

λn(α)(1+y)

)

.

(The inequality is analogous to Hoeffding’s inequality for independent Bernoulli random
variables.) Therefore,

ca,n ≤ P (α|a)P(piv|α) ≤ P (α|a) e
−
(

y2λn(α)
1+y

)

when n is sufficiently large. Therefore, lim supnca,n ≤ lim supne
−
(

y2λn(α)
1+y

)

. Now, if the

initial hypothesis holds for z = 21+y
y2 , then λn(ω) > 21+y

y2 lnn, implies that e
−
(

y2λn(α)
1+y

)

<
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e−2 ln n = 1
n2 . Hence, from the displayed equation, lim supnca,n ≤ lim sup n

n2 = 0, which
contradicts limλn(ω) > lim 21+y

y2 lnn = ∞.

11.2 Proof of Theorem 8

Proof. The second part of the Theorem follows because if condition 18 holds, then, γ > 0,
and hence in any responsive equilibrium cb,n > 0. Therefore, the analysis is identical to the
case in which c < 0 and γ > 0.

We now proceed to show the first item of the Theorem, i.e., when condition 19 holds.
Observe that if

µ

1 − µ

P(b|α)

P(b|β)
≤ 1,

then there is a responsive equilibrium sequence in which for large n, b signals abstain,
and all a signals with 0 costs (and costs below a positive number) participate. This is not
straightforward, but the argument is analogous to the existence of a large responsive equi-
librium when F (0) = 0, so we skip the formal proof. Such equilibrium sequences aggregate

information, because lim inf λn(α)
λn(β)

> 1, and because λn(ω) → ∞ for ω = α, β. So, we now
consider the case in which

µ

1 − µ

P(b|α)

P(b|β)
> 1.

For x, y ∈ [0, 1], satisfying 1 − y > x, let

1

n
λ(ω; y, x) := (1 − y)F (0)P (a|ω) + xF (0)P (b|ω)

Lemma 21. The following inequalities hold:

d

dx

ln
(

λ(α;y,x)
λ(β;y,x)

)

λ(α;y,x)−λ(β;y,x)
n

< 0,

and

d

dy

ln
(

λ(α;y,x)
λ(β;y,x)

)

λ(α;y,x)−λ(β;y,x)
n

> 0.

Proof. We start by calculating the derivatives of the following functions:

d

dx
ln

(

λ(α; y, x)

λ(β; y, x)

)

= nF (0)

(

P (b|α)

λ(α; y, x)
− P (b|β)

λ(β; y, x)

)

d

dy
ln

(

λ(α; y, x)

λ(β; y, x)

)

= −nF (0)

(

P (a|α)

λ(α; y, x)
− P (a|β)

λ(β; y, x)

)

d

dx
(λ(α; y, x) − λ(β; y, x)) = nF (0) (P (b|α) − P (b|β))

d

dy
(λ(α; y, x) − λ(β; y, x)) = −nF (0) (P (a|α) − P (a|β))
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Now taking the derivative d
dx

ln(λ(α;y,x)
λ(β;y,x) )

λ(α;y,x)−λ(β;y,x)
n

we get

d

dx

ln
(

λ(α;y,x)
λ(β;y,x)

)

λ(α;y,x)−λ(β;y,x)
n

= n
2

F (0)
(

P (b|α)
λ(α;y,x)

−
P (b|β)

λ(β;y,x)

)
(λ(α; y, x) − λ(β; y, x)) − F (0) (P (b|α) − P (b|β)) ln

(
λ(α;y,x)
λ(β;y,x)

)

(λ(α; y, x) − λ(β; y, x))2

=
n2F (0)

(λ(α; y, x) − λ(β; y, x))2

(

P (b|α)

(

1 −
λ(β; y, x)

λ(α; y, x)
+ ln

(
λ(β; y, x)

λ(α; y, x)

))

+ P (b|β)

(

1 −
λ(α; y, x)

λ(β; y, x)
+ ln

(
λ(α; y, x)

λ(β; y, x)

)))

.

Note that for any z > 0, z−1 ≥ ln z, with equality satisfied only at z = 1.Because x+y < 1,
we have 0 < λ(β;y,x)

λ(α;y,x)
< 1. Therefore,

1 − λ(β; y, x)

λ(α; y, x)
+ ln

(

λ(β; y, x)

λ(α; y, x)

)

< 0,

and

1 − λ(α; y, x)

λ(β; y, x)
+ ln

(

λ(α; y, x)

λ(β; y, x)

)

< 0.

Therefore, d
dx

ln(λ(α;y,x)
λ(β;y,x) )

λ(α;y,x)−λ(β;y,x)
n

< 0. Moreover, note that n2F (0)

(λ(α;y,x)−λ(β;y,x))2 is independent of n,

and is bounded away from 0 and ∞. Doing the similar exercise for the second claim, we
have

d

dx

ln
(

λ(α;y,x)
λ(β;y,x)

)

λ(α;y,x)−λ(β;y,x)
n

= −n
2

F (0)
(

P (a|α)
λ(α;y,x)

−
P (a|β)

λ(β;y,x)

)
(λ(α; y, x) − λ(β; y, x)) − F (0) (P (a|α) − P (a|β)) ln

(
λ(α;y,x)
λ(β;y,x)

)

(λ(α; y, x) − λ(β; y, x))2

=
−n2F (0)

(λ(α; y, x) − λ(β; y, x))2

(

P (a|α)

(

1 −
λ(β; y, x)

λ(α; y, x)
+ ln

(
λ(β; y, x)

λ(α; y, x)

))

+ P (a|β)

(

1 −
λ(α; y, x)

λ(β; y, x)
+ ln

(
λ(α; y, x)

λ(β; y, x)

)))

> 0.

We now proceed by setting the boundaries of the citizens’ restricted strategies.
Note that, by Lemma 21, we have that for some ǫ1, ǫ2 > 0:

ln
(

λ(α;ǫ2,0)
λ(β;ǫ2,0)

)

λ(α;ǫ2,0)−λ(β;ǫ2,0)
n

>
ln
(

λ(α;0,0)
λ(β;0,0)

)

λ(α;0,0)−λ(β;0,0)
n

>
ln
(

λ(α;0,ǫ1)
λ(β;0,ǫ1)

)

λ(α;0,ǫ1)−λ(β;0,ǫ1)
n

,

and

ln
(

λ(α;0,0)
λ(β;0,0)

)

λ(α;0,0)−λ(β;0,0)
n

=
ln
(

λ(α;ǫ2,ǫ1)
λ(β;ǫ2,ǫ1)

)

λ(α;ǫ2,ǫ1)−λ(β;ǫ2,ǫ1)
n

There exists a ξ > 0 and a ψ ∈ (0, 1) such that
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ψ > (1 + ξ)
λ(α;0,0)−λ(β;0,0)

n

ln
(

λ(α;0,0)
λ(β;0,0)

) = (1 + ξ)
ln
(

λ(α;ǫ2,ǫ1)
λ(β;ǫ2,ǫ1)

)

λ(α;ǫ2,ǫ1)−λ(β;ǫ2,ǫ1)
n

,

ψ < (1 − ξ)
λ(α;0,ǫ1)−λ(β;0,ǫ1)

n

ln
(

λ(α;0,ǫ1)
λ(β;0,ǫ1)

) .

Let Tn be the closest integer to ψn (in case of a tie, choose one of the closest integers
arbitrarily).

Consider an auxiliary game in which the auxiliary policy maker implements A iff the
turnout is at least Tn, b signals with 0 costs participate with a probability that is bounded
above by ǫ1, and b signals with positive costs abstain, and a signals with 0 costs participate
with a probability at least 1 − ǫ2 .

This auxiliary game has an equilibrium, in an analogous way to our existence results for
responsive equilibria.

We will show that when n is large, the restrictions on citizen strategies are not binding,
and that when there are Tn protesters, the policy maker’s belief that the state is α is at least
µ, and when there are Tn − 1 protesters, his belief that the state is α is not more than µ,
which justifies this strategy being an equilibrium strategy (i.e., a best reply) in the protest
game.

Let (ca,n, cb,n, yn, xn) denote that equilibrium strategy of the citizens in the auxiliary
game, with the understanding that the first two arguments represent the cost cutoffs, and
the last two are randomizations (in line with the definition of x, y above) at cost 0 for a and
b signals respectively.

The first observation is that because ψ ∈ (0, 1), Tn → ∞, hence pivot probabilities
converge to 0, and so ca,n, cb,n → 0.

Step 1: xn = 0 and yn → y ∈ [0, ǫ2] is not an equilibrium configuration:
Suppose on the way to a contradiction that there is a sequence of equilibria of the auxiliary

game with xn = 0 and yn → y ∈ [0, ǫ2]. Then,

lim
1

n
lnL(Tn) = lim

(

1

n
ln

q

1 − q
− 1

n
(λ(α) − λ(β)) +

1

n
Tn ln(

λ(α)

λ(β)
)

)

= lim

(

− 1

n
(λ(α) − λ(β)) + ψ ln(

λ(α)

λ(β)
)

)

= − 1

n
(λ(α; y, 0) − λ(β; y, 0)) + ψ ln(

λ(α; y, 0)

λ(β; y, 0)
) > 0

Where we have used ca,n, cb,n → 0,

ψ > (1 + ξ)
λ(α;0,0)−λ(β;0,0)

n

ln
(

λ(α;0,0)
λ(β;0,0)

)
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and that
λ(α;0,0)−λ(β;0,0)

n

ln
(

λ(α;0,0)
λ(β;0,0)

) ≥
λ(α;y,0)−λ(β;y,0)

n

ln
(

λ(α;y,0)
λ(β;y,0)

) ,

for all y ∈ [0, ǫ2].
Therefore, lnL(Tn) → ∞, which contradicts that xn = 0 is a best reply for the citizens

with b signals in the auxiliary game.
Step 2: xn = ǫ1 is not an equilibrium configuration:
Note that it cannot be that xn = ǫ1 and yn > 0, since if xn > 0, then yn = 0 since if b

signal is willing to participate, best reply of an a signal with no cost cannot be to stay out.
Therefore, if xn = ǫ1, then yn = 0.

Suppose on the way to a contradiction that there is a sequence of equilibria of the auxiliary
game with xn = ǫ1 and yn = 0. Then,

lim
1

n
lnL(Tn) = lim

(

1

n
ln

q

1 − q
− 1

n
(λ(α) − λ(β)) +

1

n
Tn ln(

λ(α)

λ(β)
)

)

= lim

(

− 1

n
(λ(α) − λ(β)) + ψ ln(

λ(α)

λ(β)
)

)

= − 1

n
(λ(α; 0, ǫ1) − λ(β; 0, ǫ1)) + ψ ln(

λ(α; 0, ǫ1)

λ(β; 0, ǫ1)
) < 0

Where again we have used ca,n, cb,n → 0, and

ψ < (1 − ξ)
λ(α;0,ǫ1)−λ(β;0,ǫ1)

n

ln
(

λ(α;0,ǫ1)
λ(β;0,ǫ1)

) .

Therefore, lnL(Tn) → −∞, which contradicts that xn = ǫ1 is a best reply for the citizens
with b signals in the auxiliary game.

From Steps 1 and 2 above, we conclude that the constraints on the randomizations
of citizens with 0 costs are not binding, and xn ∈ (0, ǫ1) for all n larger than a cutoff.
Therefore, b signals with 0 costs are indifferent between participating and abstaining, hence,
P (α|t = Tn − 1, b) = q

1−q
P(t=Tn−1|α)
P(t=Tn−1|β)

P(b|α)
P(b|β)

= 1.
Step 3: Policy maker’s optimality:
Because µ

1−µ
P(b|α)
P(b|β)

> 1, q
1−q

P(t=Tn−1|α)
P(t=Tn−1|β)

< µ
1−µ

, i.e., P (α|t = Tn − 1) < µ. Hence, it is
optimal for the policy maker to implement policy B when there are less than Tn protesters.
To see that P (α|t = Tn) ≥ µ, notice that, if ǫ1 is sufficiently small, then, λn(α)

λn(β)
is close to

P(a|α)
P(a|β)

, hence

P (t = Tn|α)

P (t = Tn|β)
=

P (t = Tn−1|α)

P (t = Tn−1|β)

λn(α)

λn(β)
=

(

q

1 − q

P (b|α)

P (b|β)

)−1
λn(α)

λn(β)

which can be made arbitrarily close to
(

q
1−q

P(b|α)
P(b|β)

)−1
P(a|α)
P(a|β)

by choosing ǫ1 arbitrarily small.

Because L(Tn) = q
1−q

P(t=Tn|α)
P(t=Tn|β)

, when ǫ1 is small, L(Tn) is arbitrarily close to
(
P(b|α)
P(b|β)

P(a|β)
P(a|α)

)−1
.

73



Because the assumed condition is

µ

1 − µ

P(b|α)

P(b|β)

P(a|β)

P(a|α)
< 1,

By choosing ǫ1 small, we can ensure that L(Tn) > µ
1−µ

.

11.3 Proof of Theorem 7

The first part is proved in Battaglini (2017), so we skip it. We will show the second part
of the theorem.

If
µ

1 − µ

P(b|α)

P(b|β)
≤ 1,

clearly there is an equilibrium that aggregates information with a signals participating, and
b signals abstaining (Battaglini, 2017 also notes this, so we skip the proof). So we now
consider the case where

µ

1 − µ

P(b|α)

P(b|β)
> 1.

We will construct a responsive equilibrium sequence in which ψ(a) = 1, i.e., citizens with
a signals participate, and ψ(b) = x ∈ [0, ǫ] for some ǫ > 0, and ǫ arbitrarily small. Let
λn(ω;x) := n(P(a|ω) +xP(b|ω)). Such a sequence of equilibria aggregates information, since
the ratio of expected protest sizes in the two states stays bounded away from 1, and since
expected protest sizes increase without bound.

For every n, consider the integer Tn found by the following equality:

Tn := min






t ∈ N :

q

1 − q
e−(λn(α;0)−λn(β;0))

(

λn(α; 0)

λn(β; 0)

)t

>
µ

1 − µ







We will show the following inequality shortly:

d

dx

ln
(

λn(α;x)
λn(β;x)

)

λn(α;x)−λn(β;x)
n

|x=0 < 0. (38)

Then, for some ǫ > 0,

lim
q

1 − q
e−(λn(α;ǫ)−λn(β;ǫ))

(

λn(α; ǫ)

λn(β; ǫ)

)Tn

= 0

Because λn(ω;x)
n

is continuous in x, by the intermediate value theorem, there is some {ǫn}
with ǫn < ǫ such that for every large n we have

q

1 − q
e−(λn(α;ǫn)−λn(β;ǫn))

(

λ(α; ǫn)

λ(β; ǫn)

)Tn−1
P(b|α)

P(b|β)
= 1.

It is easy to verify that the strategy profile in which ψ(a) = 1 and ψ(b) = ǫn, and the
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policy maker chooses policy A iff when the turnout is at least Tn is a Nash equilibrium,
if λn(α;ǫ)

λn(β;ǫ)
P(b|β)
P(b|α)

> µ
1−µ

. This last inequality is true when ǫ is chosen small enough because
λn(α;0)
λn(β;0)

= P(a|α)
P(a|β)

, and because of the assumption that µ
1−µ

P(b|α)
P(b|β)

P(a|β)
P(a|α)

< 1.

We now show that inequality (38) holds.

d

dx
ln

(

λn(α;x)

λn(β;x)

)

= n

(

P(b|α)

λn(α;x)
− P(b|β)

λn(β;x)

)

d

dx
(λn(α;x) − λn(β;x)) = n (P(b|α) − P(b|β))

d

dx

ln
(

λn(α;x)
λn(β;x)

)

λ(α;x,y)−λ(β;x,y)
n

=
n2
(

P(b|α)
λn(α;x)

−
P(b|β)

λn(β;x)

)
(λn(α; x) − λn(β; x)) − n (P(b|α) − P(b|β)) ln

(
λn(α;x)
λn(β;x)

)

(λn(α; x) − λn(β; x))2

=
n2

(λn(α; x) − λn(β; x))2

(

P(b|α)

(

1 −
λn(β; x)

λn(α; x)
+ ln

(
λn(β; x)

λn(α; x)

))

+ P(b|β)

(

1 −
λn(α; x)

λn(β; x)
+ ln

(
λn(α; x)

λn(β; x)

)))

Note that for any z > 0, z − 1 ≥ ln z, with equality satisfied only at z = 1. When x < 1,
we have 0 < λn(β;x)

λn(α;x)
< 1, therefore,

1 − λn(β;x)

λn(α;x)
+ ln

(

λn(β;x)

λn(α;x)

)

< 0

and

1 − λn(α;x)

λn(β;x)
+ ln

(

λn(α;x)

λn(β;x)

)

< 0

Therefore, d
dx

ln(λn(α;x)
λn(β;x) )

λn(α;x)−λn(β;x)
n

< 0.
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