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Abstract

We study the aggregation of dispersed information in elections in which

turnout may depend on the state. State-dependent turnout may arise from the

actions of a biased and informed “election organizer.” Voters are symmetric ex

ante and prefer policy a in state α and policy b in state β, but the organizer

prefers policy a regardless of the state. Each recruited voter observes a private

signal about the unknown state but does not learn the turnout.

First, we characterize how the outcomes of large elections depend on the

turnout pattern across states. In contrast to existing results for large elections,

there are equilibria in which information aggregation fails whenever there is

an asymmetry in turnout; information aggregation is only guaranteed in all

equilibria if turnout is state independent. Second, when the turnout is the result

of costly voter recruitment by a biased organizer, the organizer can ensure that

its favorite policy a is implemented with high probability independent of the

state as the voter recruitment cost vanishes. Moreover, information aggregation

will fail in all equilibria. The critical observation is that a vote is more likely

to be pivotal for the decision if turnout is smaller, leading to a systematic bias

of the decision toward the low-turnout state.
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1 Introduction

Voting is considered an effective mechanism for aggregating information about the

available policies that is dispersed among voters to determine which policy is best.

For instance, consider an election in which voters have to decide between two policies:

policy a and policy b. Voters have common interests and prefer policy a in state α

and policy b in state β; that is, voters prefer that the implemented policy matches

the state of the world. However, no individual voter knows the state, and thus the

voters are uncertain about the correct policy. Instead, each voter has a small piece of

information about the state in the form of a noisy signal. Feddersen and Pesendorfer

(1997, 1998) showed that in large elections, the majority decision will be as if there

were no uncertainty, in all1 equilibria. Thus, simple majority rules allow society to

aggregate noisy information in order to correctly choose among available options.

In this paper, we uncover an essential feature of this and related models of

elections that is necessary for majority rules to reliably aggregate information and

implement the voters’ preferred outcome in all equilibria: The number of voters

has to be independent of the state. We show that if the number of participating

voters across the states is not identical, then large elections admit a new type of

equilibrium in which information aggregation fails. In both states of the world, the

same policy receives the majority of the votes with probability close to 1. The policy

that wins in this equilibrium is the policy that is preferred by the voters in the state

in which the participation is smaller. For example, whenever voters expect lower

participation in state α, policy a wins with probability close to 1 in both states.

This finding raises two concerns. First, a simple majority rule does not aggregate

information as reliably as may have been thought previously.2 Second, and this is

the focus of the paper, the failure of information aggregation opens up the possibility

of “manipulation.” Consider an interested agent (“election organizer”) who prefers

policy a independently of the state. He may manipulate the outcome in his favor

by creating an expectation that the turnout is lower in state α. As discussed, this

expectation induces a voting equilibrium that implements his privately preferred

outcome a with high probability in both states.

There are numerous examples of activities that may allow an interested party to

affect voter turnout. Consider a shareholder vote on a compensation package for the

management. Shareholders have a common interest in choosing the package that

1When referring to equilibrium without further qualification, we mean symmetric and “respon-
sive” (“non-trivial”) equilibria. This is the class of equilibria typically considered in this setting.

2Section 7 discusses other mechanisms by which information aggregation may fail, for example,
Feddersen and Pesendorfer (1997, Section 6), Mandler (2012), and Bhattacharya (2013).



maximizes the company’s value. The management may reasonably be expected to

be better informed about the appropriate compensation package and to be biased

in the direction of larger compensation. Finally, the management has many tools

available to manipulate the shareholder voting turnout; see Yermack (2010). Other

examples of activities by which biased agents affect turnout are the bussing of voters

to polls in elections or referenda, the strategic choice of the timing and location of

elections, and the prodding of colleagues by a department chair. In this paper, we

study the effectiveness of such tools to affect election outcomes.

We start our analysis by characterizing voting equilibria for elections in which

the participation depends exogenously on the state. We verify the initial claim that

whenever there is an imbalance in the number of voters across states–any ratio

different from 1–information aggregation fails: there are equilibria in which the

majority vote is almost independent of the state as the election becomes large. In-

formation is aggregated in all (symmetric and interior) equilibria only if the number

of voters in the two states is the same.

Equilibria in which information aggregation fails are sustained because of a par-

ticipation curse that appears when the number of voters is not identical across

states. Holding everything else equal, a vote is more likely to be pivotal in the state

with fewer voters. Thus, the election outcome can be systematically biased toward

the state with lower participation.

The analysis for exogenously state-dependent numbers has several applications.

First, it corresponds to the case in which participation is the result of the organizer’s

recruitment and the organizer can publicly commit to a recruitment strategy before

learning the state. Our results imply that in this case, there is an equilibrium in

which the organizer gets his favorite outcome, a: if the organizer commits to any

recruitment strategy that implies the participation of fewer voters in state α than

in state β, then there will be a continuation equilibrium among the voters in which

a majority supports a. Note that, by our general result, any imbalance across states

is sufficient when the total number of voters is large, and so there is a sense in which

the required commitment power may be small. Second, there are many reasons that

the size of the electorate may depend on the state, the strategic manipulation by

an organizer is only one of them. Finally, the analysis for a given state-dependent

participation is an input into the analysis of a larger game in which the participation

is chosen by the organizer without commitment.

Specifically, for the second part of the paper, we introduce an election organizer

as an additional player in the election: the organizer privately learns the state of the

world, α or β, and then recruits an odd number of voters. Recruitment is a costly

2



activity, and the total recruitment cost is linear in the number of recruited voters.

Each voter then has an equal chance of being selected to participate in the election,

after which the recruited voters observe noisy signals and cast votes simultaneously.

As noted before, the election organizer is biased, in the sense that he prefers policy a

independently of the state, and the voters are aware of this conflict of interest. Also

as before, the number of recruited voters is not observed by the voters. However,

the voters make Bayesian inferences about the state from being recruited. Since the

organizer chooses the recruitment privately and after observing the state, this is a

scenario in which the organizer cannot commit.

We show that the ability to manipulate turnout still affects the performance of

elections significantly: for sufficiently small recruitment costs, there are equilibria

in which the election organizer chooses to recruit many voters in each state, with

more voters in state β than state α, and the voters, who correctly anticipate the

chosen numbers in each state, support a with a strict majority in expectation; see

Theorem 2.

Two observations provide intuition. First, as a consequence of our first set of

results for general state-dependent participation, if the voters expect the organizer

to recruit fewer voters in state α, then there is a voting equilibrium given this

expectation in which each individual voter is more likely to support policy a than

policy b in both states. Second, we show that if each individual voter is more likely

to support policy a than policy b in both states, then it is indeed optimal for the

organizer to recruit fewer voters in state α. Finally, we use a fixed-point argument

to show that this loop of best replies can be closed. Importantly, in these equilibria,

the number of recruited voters is large in both states and the ratio of these numbers

is interior in the limit.

We discuss extensions and conduct several robustness checks (abstention, costly

voting, competition between multiple organizers, etc.).3 In particular, we consider

the case in which, even conditional on the state, there is residual aggregate un-

certainty about the vote totals. As argued by Evren (2012) and others, aggregate

uncertainty is natural in many settings, and it implies that the magnitude of the

probability of being pivotal is significant and can rationalize realistic turnout lev-

els. Our results extend if the aggregate uncertainty is small. In addition, we argue

that when voters receive a noisy public signal about the size of the election, in-

formation aggregation continues to fail when there is an imbalance in the number

of voters. Moreover, we complete the analysis of the full equilibria from the sec-

3We conduct a more extensive robustness check in an older version of this paper, Ekmekci and
Lauermann (2014).

3



ond part and characterize the equilibrium behavior across all equilibria when the

recruitment cost is small and when the population is large. There are no equilibria

in which information is fully aggregated in the limit. We also show how the extent

of the manipulation can be diminished when certain policy tools are used (election

design) or there is competition between organizers with opposing biases.

Finally, we discuss the paper’s contribution to the existing literature and com-

pare our results especially to those from previous work on elections with an uncertain

number of voters. Myerson (1998a) shows that there always exists some equilibria

that aggregate information. Compared to this work, we show that additional (sym-

metric and responsive) equilibria exist in which information fails to aggregate unless

the population size is essentially state independent.4 In addition, we endogenize the

relation between the number of voters and the state through the activity of an

election organizer. Given this endogenous relationship, no equilibrium with full in-

formation aggregation exists. We also discuss the relation to a failure of information

aggregation in auctions with a state-dependent number of bidders in Lauermann and

Wolinsky (2017).

2 Model

A finite number of potential voters, N , has to choose between two policies, {a, b},
and there are two states of the world, ω ∈ {α, β}. Voters share the following utility
function:

u(a, α) = u(b, β) = 1,

u(a, β) = u(b, α) = −1,

where u(x, ω) denotes the utility if policy x is chosen in state ω. In other words, the

voters have common interests but are uncertain which policy serves their interest

better because this depends on an unknown state of the world.

Information Structure. There is a common prior belief ρ ∈ (0, 1) that the state is α.
Each voter receives a private signal, s ∈ S := [0, 1]. Conditional on the state, the

signals are independent across voters and distributed according to a c.d.f. F (s|ω).
4 In a separate paper, Ekmekci and Lauermann (2018), we show the existence of equilibria that

fail to aggregate information with a state-dependent participation rate in a model where the number
of voters is Poisson distributed, both with compulsory voting and with voluntary voting (allowing
abstention). As mentioned, we also discuss the case with exogenous aggregate noise leading to
significantly higher pivotality probabilities. We discuss that paper in Sections 5.1 and 7 in more
detail.
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The distribution F admits a continuous density function, denoted by f(s|ω). We
assume the strict Monotone Likelihood Ratio Property (MLRP):5

f (s|α)
f (s|β) is strictly decreasing in s. (1)

Assumption (1) implies that voters who receive higher signals attach a strictly

larger probability to the state of the world being state β.

Our second assumption puts a bound on the informativeness of the signals: There

exists a number η > 0 such that

η < f (s|ω) < 1

η
for all ω ∈ {α, β} and s ∈ S. (2)

The Organizer’s Actions and Preferences. There is a single election organizer who

observes the realization of the state of the world ω and recruits the voters who

participate in the election. If the organizer recruits n pairs of voters, then the

number of participants in the electorate is equal to

2n+ 1 ∈ {1, 3, 5, ..., N} .

If the organizer recruits no one, n = 0, then one randomly chosen voter becomes

the unique voter. Only the recruited voters participate in the election, and so the

organizer chooses the turnout. Note that the number of voters is always odd, and a

tie in the vote count cannot occur.

The organizer prefers that policy a be implemented, irrespective of the state

of the world. Recruitment is costly, and each additional pair of voters costs the

organizer c > 0. Therefore, the organizer’s payoff is

uO(a, n) = 1− cn,
uO(b, n) = −cn,

where the first argument is the policy that the majority of the electorate chooses to

implement, and the second argument is the number of pairs of voters the organizer

recruits.

We assume that the number of potential voters, N , is not too small relative to

5Continuity of the densities f(·|ω) and the strict version of the MLRP are for expositional
simplicity. All of our results continue to hold without continuity of the density functions and with
the weak version of MLRP, together with a condition that states “f(·|α) is not everywhere identical
to f(·|β).”
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c,

N ≥ 2

c
. (3)

This assumption ensures that the size of the population is never a binding con-

straint for the organizer.6 Finally, the choice n is not observed by the voters.7

The Timing of the Voting Game.

1. The organizer learns the state.

2. The organizer chooses n.

3. Nature chooses (recruits) 2n+1 voters, each equally likely, from the population.

4. Each recruited voter observes her private signal, s, but does not observe the

number of recruited voters, n.

5. Only the recruited voters participate in the election. Each recruited voter

casts a vote for policy a or policy b.

6. The policy that receives the most votes is implemented.

Strategies and Equilibrium. A strategy for the organizer is a pair of distributions

over integers,

ñ = (ñα, ñβ) ∈ ∆({0, 1, ..., (N − 1)/2})2,

which denotes the organizer’s recruitment choice in states α and β, respectively. We

denote as n = (nα, nβ) a pure strategy.

A pure strategy8 for a voter is a function

d : S → {a, b},

that prescribes which policy the voter supports as a function of her signal if she is

recruited.9

6The assumption is a lower bound on the size of the population. Our analysis remains unchanged
when the number of potential voters is infinite. The advantage of a finite population is that being
recruited is a positive probability event, which facilitates the application of Bayes’ formula.

7This assumption captures the idea that the voters cannot exactly infer the organizer’s re-
cruitment effort (the number of busses, the phone calls made to others, etc.). Note that voters
nevertheless make an inference about n from being recruited, as discussed below. In Section 6, we
discuss an extension in which voters receive an imperfect public signal about n.

8As will become clear, voters’ best replies will have a cutoff structure, and therefore, focusing
on pure strategies for the voters is without loss of generality.

9Recall that when a voter is not recruited, she does not have a ballot to cast.
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In the first part of the paper, in Section 3, we consider the voting game for

an exogenous participation pattern given by a fixed recruitment strategy ñ. A

symmetric strategy d is a voting equilibrium given ñ if d is a best response to the

strategy profile in which the organizer’s strategy is ñ and all other voters use strategy

d.

In the second part of the paper, in Section 4, we endogenize ñ. Then, a symmetric

Nash equilibrium is a pair (ñ, d) in which (i) the organizer’s strategy ñ is a best

response to the voters’ strategy d, and (ii) the strategy d is a voting equilibrium

given ñ. We generally refer to a symmetric Nash equilibrium with an endogenous ñ

simply as an equilibrium.

3 Voting Equilibria with Exogenous Participation Pat-

tern

In this section, we study the voting equilibria of large elections in which the number

of voters depends on the state in an arbitrary way. Except for an initial example,

we will consider pure participation patterns (nα, nβ) here.

The analysis of elections with an exogenously state-dependent number of voters

is interesting in its own right, as discussed in the introduction. There are many

scenarios in which the number of voters may be state-dependent. By studying all

voting equilibria that arise when the number of voters is state dependent, we gain

insights across such scenarios without being distracted by the details. Instead, we

can focus on the basic and, we believe, robust mechanism that is driving the failure

of information aggregation: Voters are less likely to be pivotal if the electorate is

larger.

One immediate scenario to which the analysis applies–in addition to the one

considered later–is an organizer who can commit to a recruitment policy that cre-

ates a state-dependent participation rate. Such a policy may be implemented in

the form of rules (say, rules affecting the timing and location of elections, informa-

tion disclosure requirements, voter ID laws, etc.) that affect participation across

elections and that affect participation differentially depending on some state.

Moreover, our analysis for an exogenously state-dependent number of voters lets

us connect our work to prior work on such settings by Myerson (1998a), which we

discuss later in more detail.
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3.1 Inference of Voters and Cutoff Strategies

We first discuss the basic voters’ problem for a given participation pattern to prepare

the analysis. In our model, voters are consequential, that is, they care only about

the implemented policy and not directly about how they vote. A single vote changes

the implemented policy only when the number of the other votes that are cast for

either alternative is equal. In this event, a single vote is pivotal : If she votes for a,

then a has a majority and if she votes for b, then b has a majority. In any other

event, no single vote can affect the outcome. Thus, when deciding how to vote, it is

optimal to condition on the pivotal event and to behave as if her vote were known

to be pivotal, as is typical in voting models with incomplete information.

For a given symmetric voter strategy d, the expected vote share for policy a in

state ω is

qω(d) := Pr (d (s) = a|ω) =
∫

s∈[0,1]
1d(s)=af (s|ω) ds.

The probability of being pivotal in state ω if the expected vote share is qω and the

number of recruited voter pairs is nω is

(
2nω
nω

)
(qω)

nω(1− qω)nω .

In our model, there is additional information contained in the event that a voter

is recruited. This is because the probability of being recruited depends on the state

of the world: The probability of being recruited in state ω if the number of recruited

voter pairs is nω is
2nω + 1

N
.

Taken together, when all other voters are using strategy d and the organizer

is using a pure strategy n = (nα, nβ), then the posterior likelihood ratio that the

state is α, conditional on (i) receiving a signal s, (ii) being recruited, and (iii) being

pivotal, is given by10

Φ(s,piv, rec;n, d) :=
ρ

1− ρ︸ ︷︷ ︸
prior

f(s|α)
f(s|β)
︸ ︷︷ ︸
signal

2nα+1
N

2nβ+1
N︸ ︷︷ ︸

recruited

(
2nα
nα

)
(qα)

nα(1− qα)nα
(
2nβ
nβ

)
(qβ)

nβ (1− qβ)nβ
︸ ︷︷ ︸

pivotal

, (4)

where we omit the dependence of qω on the voter strategy d for ease of reading.
11

10The extension of the expression to the case in which the organizer uses a mixed strategy ñ is
straightforward. For completeness, we write the critical likelihood ratio when ñ is a mixed strategy
in Equation (20) in the Appendix.
11We also assume here and for the following discussion that either 0 < qβ < 1 or nβ = 0, so
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This likelihood ratio, which we refer to as the critical likelihood ratio, guides a

voter’s decision. In particular, a voter having a signal s supports policy a if the

critical likelihood ratio Φ(s,piv,rec;n, d) is above 1, and supports policy b other-

wise. From the MLRP condition from Assumption (1), Φ is strictly decreasing in s.

Therefore, voters use cutoff strategies in all equilibria.12

Lemma 1. Any equilibrium voting strategy has a cutoff structure. There is a signal

ŝ such that a recruited voter casts a vote for policy b if s > ŝ and for policy a if

s < ŝ.

From here on, we use ŝ ∈ S to denote a generic cutoff strategy and qω(ŝ) to denote
the expected vote share for policy a in state ω when voters use a cutoff strategy ŝ.

Given a cutoff ŝ, the expected vote share for policy a is simply qω (ŝ) = F (ŝ|ω).
By the continuity of Φ, an interior cutoff, 0 < ŝ < 1, is an equilibrium cutoff

given ñ if and only if the cutoff type is indifferent between voting for a and voting

for b, that is, if and only if

Φ(ŝ,piv, rec; ñ, ŝ) = 1.

In the following, we often omit (ñ, ŝ) from the argument of Φ.

3.2 Small Electorates: An Example

As an example, we consider the following participation pattern ñ: In state α, there

is 1 participant; in state β, there is 1 participant with probability λ and there are

3 participants with probability 1− λ. We want to show that when λ is small, then
ŝ = 1 is a (strict) voting equilibrium, that is, all participating citizens vote for a

independent of their signal.

For this participation pattern and voting behavior, a citizen is pivotal if and only

if she is the only participant; so, the probability to be pivotal in state α is 1 and the

probability to be pivotal in state β is λ. The critical likelihood ratio is, therefore,13

Φ(s,piv, rec) =
ρ

1− ρ
f(s|α)
f(s|β)

1

λ
. (5)

For λ small enough, Φ is arbitrarily large for all s. At the extreme, at λ = 0,

that the probability of being pivotal is strictly positive in state β, and hence Φ is well-defined. We
follow the convention that if n = 0, then

(
2n
n

)
= 1.

12 If d is such that 0 < qω (d) < 1, the lemma follows from the previous discussion. If d is such
that qω (d) = 0 or = 1, then d is equivalent to a cutoff strategy with cutoff ŝ = 0 or ŝ = 1. This
proves the lemma.
13With a mixed ñ, the critical likelihood ratio is formally stated in (20).

9



a voter can affect the outcome only in state α, and hence should condition on the

state being α. Thus, when λ is small, it is a voting equilibrium that all citizens vote

for a, that is, ŝ = 1. Note that this is a strict, nontrivial equilibrium because there

is a positive probability that a voter is pivotal.

The example shows that if a biased organizer could commit to a participation

pattern in which there is only one voter in state α and sufficiently many voters in

the state β, then there is a natural equilibrium in which voters support the biased

organizer’s preferred policy a with probability 1.

Moreover, there is an interior equilibrium with similar properties for some λ

whenever ρ
1−ρ

f(1|α)
f(1|β) < 1. (This condition rules out the situation in which voters

believe α to be more likely for all signals, even if s = 1.) Given this condition, we

show that there exists a voting equilibrium with a cutoff ŝ that is close to 1. To see

this, note that the condition implies that, for λ = 1 and for any fixed s′ close enough

to 1, we have Φ(s′,piv,rec) < 1.14 Moreover, by the same arguments as before, for s′

and λ→ 0, we have Φ(s′,piv,rec)→∞. The intermediate value theorem, therefore,
implies that for any such s′ there is a λ (s′) for which Φ(s′,piv,rec) = 1; meaning,

ŝ = s′ is a voting equilibrium given the participation pattern associated with λ (s′).

Note that, for s′ ∈ (0, 1), the participation pattern ñ enters in two ways; first, by
affecting the inference from participating in the election, and, second, by affecting

the inference from being pivotal. These inferences point to opposite states because

participation is more likely in state β and being pivotal is more likely in state α;

however, for s′ close to 1, the inference from being pivotal dominates.

The general result below shows that, for large elections, this construction can be

turned around: Starting from any given participation pattern that is asymmetric

across states, an interior voting equilibrium with a large cutoff can be found.

3.3 Voting Equilibria with Large, State-Dependent Participation

We now study the voting equilibria of a large election with state-dependent par-

ticipation. The large number of voters simplifies the characterization of the set of

equilibrium outcomes and facilitates the comparison to the existing work on infor-

mation aggregation in elections. The large election aggregates information if, in

each state, the majority chooses the correct policy with probability 1 in the limit.

14From (20), the critical likelihood ratio for s′ ∈ (0, 1) is

Φ(s′, piv, rec; ñ, s′) =
ρ

1− ρ
f(s′|α)
f(s′|β)

1
N
1

λ 1
N
1 + (1− λ) 3

N

(
2
1

)
F (s′|β) (1− F (s′|β))

.

For s′ close to 1, it follows that Φ(s′,piv,rec; ñ, s′) is close to Φ(1,piv,rec; ñ, 1), as expected.

10



So, we consider a sequence of elections indexed by k, in which the number of

voters in each state is given by nkα and n
k
β, with n

k
α = θn

k
β for some θ > 0 and all k.

We study the outcomes of the voting equilibria, ŝk, given (nkα, n
k
β) in the limit with

nkα →∞ and nkβ →∞.
We show that, as the number of voters becomes large, the election reliably

aggregates information in all equilibria if and only if θ = 1. Otherwise, if there

is an asymmetry in the number of voters across states, that is, θ 6= 1, there exists
an additional equilibrium in which the policy that is best for the voters in the state

with a smaller participation rate wins independent of the state.

For the statement of the theorem, let sω be the median signal in state ω,

qω (sω) = F (sω|ω) = 1/2.

The limit cutoff is denoted by s∗ = lim ŝk.

Theorem 1. Fix θ > 0. Take a sequence of elections in which the number of voters

is {nkα, nkβ}∞k=1, with nkα = θnkβ for all k, nkα →∞, and nkβ →∞.

1. For all θ > 0, there exists a sequence of voting equilibria with limit cutoff

s∗ ∈ (sα, sβ) that aggregates information.

For θ = 1, there are no other limit outcomes of interior voting equilibria:

Information is always aggregated.

2. For all θ < 1, there are additional sequences of voting equilibria with limit

cutoff s∗ ∈ (sβ , 1) in which policy a wins in the limit in both states.

There are no other limit outcomes of interior voting equilibria: Either infor-

mation is aggregated or a wins in both states.

3. For all θ > 1, there are additional sequences of voting equilibria with limit

cutoff s∗ ∈ (0, sα) in which policy b wins in the limit in both states.

There are no other limit outcomes of interior voting equilibria: Either infor-

mation is aggregated or b wins in both states.

The basic intuition for the existence of additional equilibria is as described in

the introduction and in the previous example: If there are more voters in one state

than in the other, a voter may be arbitrarily less likely to be pivotal in the state

in which the election is larger and hence exclude the possibility of that state when

voting. Let us now discuss the argument behind each claim in more detail.
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Sketch of the Argument. First, if nkα = n
k
β for all k, meaning, θ = 1, then infor-

mation is aggregated in all equilibria. This is simply the “modern Condorcet jury

theorem” by Feddersen and Pesendorfer (1998) and others15 for elections in which

the number of voters is independent of the state. The main argument here and in

the following is that, in an interior equilibrium, the inference from being pivotal

must remain bounded in order for Φ(ŝk,piv,rec) = 1. As will be discussed, this re-

quires that the limit cutoff s∗ satisfies qα (s∗)− 1/2 = 1/2− qβ (s∗): In both states,
the election must be equally close to being tied in expectation. This limit cutoff

implies that all equilibria aggregate information since then qα (s
∗) > 1/2 > qβ (s∗).

Therefore, as nkα and n
k
β diverge to infinity, the weak law of large numbers implies

that the majority supports a in state α and b in state β with probability converging

to 1.

To see why it cannot be that, in expectation, the election is closer to being tied

in one state, note that the ratio of the pivot probabilities is

(
2n
n

)
(qα(s))

n(1− qα(s))n(
2n
n

)
(qβ(s))n(1− qβ(s))n

, (6)

where nα = nβ = n. Now, the state in which the election is closer to being tied be-

comes arbitrarily more likely: Inspection shows that the likelihood ratio goes to∞ as

n→∞ if |qα (s)− 1/2| < |1/2− qβ (s)| and to 0 if |qα (s)− 1/2| > |1/2− qβ (s)|.16
Thus, we have that limΦ(ŝk,piv,rec) ∈ {0,∞} if qα (s∗) − 1/2 6= 1/2 − qβ (s∗), in
contradiction to ŝk being an interior equilibrium which requires Φ(ŝk,piv,rec) = 1.

Now, consider the case in which the number of voters differs, and suppose there

are more voters in state β, meaning, θ < 1. To gain intuition, consider first a

situation in which the expected vote share is the same in both states, meaning,

qα = qβ ∈ (0, 1) (e.g., the vote shares are the same if the signals are pure noise).
Then, the asymmetric number of voters affects the critical likelihood ratio in two

ways. First, because there are more voters in state β than in state α, a voter is more

likely to be recruited in state β, and her posterior belief that the state is β increases

when she is recruited. This is the recruitment effect. The other effect that works in

the opposite direction is the pivotality effect. Because there are more voters in state

β than in state α, the pivotality probability in state α is larger than the pivotality

15Large elections with pure common values are also analyzed in Wit (1998) and Duggan and
Martinelli (2001). Feddersen and Pesendorfer (1997) consider a setting with private and common
values.
16The expression x (1− x) for x ∈ [0, 1] is maximized at 1/2 and symmetric around 1/2. Thus,

qα > 1 − qβ and qα > qβ implies qα (1− qα) < qβ (1− qβ). Similarly, qα < 1 − qβ and qα > qβ
implies qα (1− qα) > qβ (1− qβ). The claims now follow from n → ∞. The extreme points, s = 0
and s = 1 can be excluded as limit points by a similar argument using l’Hospital’s rule.
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probability in state β. Among the two effects, the pivotality effect is dominant, and

the net effect supports voting in favor of policy a (provided qα = qβ 6= 1
2). To see

why the pivotality effect dominates, note that the probability of being recruited is

increasing linearly in the number of voters, but the probability of being pivotal is

decreasing exponentially.17 Thus, if the expected vote shares were the same but

the turnout was lower in state α, then a voter’s posterior probability of state α

conditional on being recruited and pivotal would be close to 1.

However, since signals are informative and voters use cutoff strategies, the ex-

pected vote share of policy a is necessarily larger in state α than in state β. Given a

cutoff ŝk for which 1 > qβ
(
ŝk
)
> 1/2, it must be that 1 > qα

(
ŝk
)
> qβ

(
ŝk
)
> 1/2.

Since the election is closer in state β, for any given and large number of voters,

the election is much more likely to be tied in state β than in state α. Thus, if the

expected vote share is larger in state α but the number of voters was the same,

then a voter’s posterior probability of state α conditional on being pivotal would be

close to 0, as we just argued for the case θ = 1. In a voting equilibrium, this effect

favoring state β can be shown to exactly balance with the previous effect via the

difference in the number of voters that favored state α, establishing the existence of

interior cutoffs ŝk for which 1 > qβ
(
ŝk
)
> 1/2.

Finally, there always exists an equilibrium that aggregates information as the

election becomes large, for any θ. This can be seen using the common interest

structure of the game. As observed by McLennan (1998), in a game with common

interests, any symmetric strategy profile that maximizes the social surplus is also a

Nash equilibrium.18 Now, if there exists some strategy profile in which the correct

action is taken with probability 1 in the limit (meaning, information is aggregated),

then this is in particular true for the social surplus maximizing strategy profile;

hence, there is a Nash equilibrium sequence that aggregates information. To see

that there is such a strategy profile, notice that for any cutoff s′ between the median

signals, s′ ∈ (sα, sβ), we have qα (s′) > 1
2 > qβ (s

′). Hence, if all voters follow cutoff

s′, then as nkα and n
k
β diverge to infinity, by the weak law of large numbers, the

majority supports a in state α and b in state β with probability 1.

The limit analysis in the proofs of this and later results in the appendix is greatly

simplified by the use of Stirling’s approximation, which allows us to approximate

17See the end of the section for a derivation of the exact rate of convergence.
18 In our companion paper, Ekmekci and Lauermann (2018), we clarify how the result by McLen-

nan (1998) for a standard game with a fixed number of players extends to a game with a state-
dependent and potentially uncertain number of players. With a state-dependent population, this
requires some care to determine the correct social surplus criterion.
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the probability of being pivotal as follows (dropping the subscript ω):19

(
2n

n

)
(q)n (1− q)n ≈ (4q(1− q))n√

πn
. (7)

In particular, inspection of the formula verifies the claim that the probability of

being pivotal is exponentially declining in n. This is because, for all interior q 6= 1/2,
the base 4q(1− q) is strictly smaller than 1, and so the probability of being pivotal
is asymptotically equivalent to an expression of the form xn√

πn
for some x ∈ (0, 1),

which vanishes exponentially fast to 0 as n→∞.

Preview of Discussion and Extensions. In Section 5, we provide additional

results and extensions.

Population Uncertainty. We discuss the relation to prior work on elections

with an uncertain number of voters by Myerson (1998a) and Evren (2012). In

particular, allowing for “aggregate uncertainty” as in Evren (2012) implies that the

probability of being pivotal is no longer exponentially small. Instead, the probability

of being pivotal is linear in this case. This is one response in the literature to address

a common concern that the benefits of voting are too small with an exponential

pivotality probability.

Election Design and Unanimity. With asymmetric participation, the sim-

ple majority rule leads to the existence of bad equilibria. Is there a rule that is

potentially more "robust"? We show that unanimity has good properties when par-

ticipation can be state dependent, in contrast with prior work that has demonstrated

that the inferiority of the unanimity rule; see Feddersen and Pesendorfer (1998).

4 Endogenous Participation with a Biased Organizer

We now discuss the extension in which participation in the two states, that is,

(nα,nβ), is determined endogenously by the actions of a biased organizer. This

sheds light on what ratios θ = nα
nβ
one may expect. In particular, the model shows

that an asymmetry across the two states may arise endogenously if the number of

voters can be affected by the actions of an informed party, even if the informed

party cannot commit, meaning, its actions must be sequentially rational.20 An

extension shows a stronger result: With endogenous participation, all equilibria fail

to aggregate information.

19For two functions, we write f ≈ g if limn→∞

f(n)
g(n)

= 1.
20The simple example in Section 3.2 with a small number of voters demonstrated that the orga-

nizer can achieve his favorite outcome if he can commit to some n.
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4.1 Organizer’s Best Response

Recall that the organizer chooses n in order to maximize the probability with which

policy a is implemented, less the recruitment cost. The voters do not observe the

chosen n of the organizer, and so the organizer’s choice of n does not affect voter be-

havior directly. Thus, the organizer takes the voters’ cutoff strategy ŝ as given when

choosing n in each state. (The essential strategic interaction is as in a simultaneous-

move game.)

The organizer’s (pure) best-reply correspondence in state ω to a given cutoff

strategy ŝ of the voters is

argmax
n∈{0,1,..., 12 (N−1)}

2n+1∑

i=n+1

(
2n+ 1

i

)
(qω (ŝ))

i (1− qω (ŝ))2n+1−i − nc. (8)

The first term in the organizer’s objective function is the probability that policy

a is implemented when the probability that a randomly selected voter supports

policy a is qω(ŝ), and the turnout is 2n+1. The second term is the cost of choosing

a turnout of 2n+ 1.

To get more insight into the organizer’s best reply, we calculate the increase in

the probability that policy a gets selected when the organizer recruits an additional

pair of voters, that is, the marginal benefit of increasing n, which is

∆(n− 1, ω, ŝ) :=
2n+1∑

i=n+1

(
2n+ 1

i

)
(qω (ŝ))

i (1− qω (ŝ))2n+1−i

−
2n−1∑

i=n

(
2n− 1
i

)
(qω (ŝ))

i (1− qω (ŝ))2n−1−i .

This expression can be rewritten as21

∆(n− 1, ω, ŝ) = 1

2

(
2n

n

)
(qω)

n (1− qω)n (2qω − 1) . (9)

The increase in the probability that policy a is implemented when the number of

21Adding an additional voter pair when there are 2n−1 voters changes the outcome only if either
n − 1 voters already support a and both of the additional voters support a, or if n voters already
support a, and neither of the additional voters support a. Hence, dropping subscript ω,

∆(n− 1, ω, ŝ) =
(
2n− 1
n− 1

)

(q)n−1 (1− q)n (q)2 −
(
2n− 1
n

)

(q)n (1− q)n−1 (1− q)2

=
1

2

(
2n

n

)

(q)n (1− q)n (q − (1− q)) .
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recruited voters increases from 2n−1 to 2n+1 is equal to the probability of a tie in
the vote counts for policies a and b, multiplied by the term 1

2(2q− 1). It is intuitive
that the marginal benefit is proportional to the probability that the election is tied

since additional voters matter only if the election is close. The term (2q− 1) enters
because the additional pair may either both vote for a (good) or both vote for b

(bad).

If qω(ŝ) ≤ 1/2, then ∆(n− 1, ω, ŝ) ≤ 0 for every n (the additional pair is more
likely to vote for b than a). Therefore, the organizer recruits no additional voter,

since recruitment is costly: When the odds are against him, the organizer recruits

as few people as possible in order to maximize the variance in the outcome of the

election and to save on recruitment cost.

If, however, 1 > qω(ŝ) > 1/2, then ∆(n− 1, ω, ŝ) > 0 and ∆(n− 1, ω, ŝ) >
∆(n, ω, ŝ). Therefore, the objective function is strictly concave. There is a unique

n such that ∆(n− 1, ω, ŝ) ≥ c and ∆(n, ω, ŝ) < c. Notice that when q > 1/2, the
odds are with the organizer, so he wants to minimize the variance of the election

outcome by recruiting many people. For instance, if the organizer recruits an infinite

number of voters, then by the law of large numbers, policy a is implemented (but,

given positive recruitment costs, the number of voters remains finite for any c > 0,

of course).

By the strict concavity of the objective function, in both cases, the organizer’s

best reply is either unique (meaning one integer for each state), or a mixed strategy

with support on two adjacent integers for one or for both states. (So, the number of

voters is almost deterministic conditional on the state. This justifies also our focus

on this case in Section 3.)

Note that qω(ŝ) ≶ 1/2 if ŝ ≶ sω; thus, what matters for the organizer’s incentives

to recruit voters is the relation of the cutoff to the median signal in state ω. So, if

sα < ŝ < sβ, then organizer recruits voters only in state α but not in β; if sβ < ŝ,

then the organizer recruits voters in both states and if ŝ < sα, the organizer recruits

voters in neither state.

Remark 1. The number of potential voters, N , appears in the recruitment effect

in Equation (4) and as a constraint in the organizer’s best reply in Equation (8).

However, the term N cancels out in the recruitment effect. Moreover, by Assumption

(3), the number N is sufficiently large that it is never a binding constraint in the

organizer’s best reply in Equation (8). Therefore, N plays no further role in the

analysis.
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4.2 Manipulated Electorates

We study election outcomes when c is small. When c is small, the organizer may

recruit many voters, and thus we can compare our result to those for exogenously

large elections. To this end, we fix the common prior ρ and some information

structure F that satisfies Assumptions (1) and (2). Let {G(c)}c>0 be a collection
of voting games in which, for each game G(c), the prior belief is ρ, the information

structure is F , the recruitment cost to the organizer is c, and the number of potential

voters, N(c), is some integer that satisfies Assumption (3).

Theorem 2. Let {ck}k=1,2,... be a sequence of positive numbers that converge to 0.
Then, there is a sequence of symmetric Nash equilibria of G(ck) such that in both

states:

1. The probability that policy a is implemented converges to 1.

2. The number of recruited voters increases without bound.

3. The organizer’s payoff converges to 1.

Theorem 2 states that, as the recruitment cost vanishes and the number of

potential voters becomes large, there are equilibria in which policy a is elected

with a probability that is arbitrarily close to 1 in both states. Moreover, in both

states the number of recruited voters becomes large, and the organizer’s expected

payoff becomes 1. Thus, an endogenously large electorate may lead to the failure

of information aggregation, and in the limit, the organizer incurs no cost from the

recruitment efforts although he recruits an unbounded number of voters.

As we will see, in all such manipulated equilibria a randomly selected voter

supports policy a with a probability strictly larger than 1/2 in both states of the

world, and the organizer recruits more voters in state β than in state α.22 The

following two observations provide intuition. First, if the organizer is expected to

recruit more voters in state β than in state α, then it is a voting equilibrium that

voters support policy a with a probability strictly larger than 1/2 in both states (as

in our previous result, Theorem 1). Second, if this is the voters’ behavior, then it is

optimal for the organizer to recruit more voters in state β than in state α.

Observation 1. If the organizer recruits {nkα, nkβ}∞k=1 voters in the two states,
with nkα → ∞, nkβ → ∞, and 0 < limk→∞ nkα/n

k
β < 1, then there exists a voting

22So, the ratio nα
nβ
< 1. Still, as we discuss at the end of this section, the ratio is strictly positive

in the limit. It may even approach 1.
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equilibrium for every (nkα, n
k
β) in which the voters use a cutoff strategy ŝ

k for which

1 > limk→∞ qα(ŝk) > limk→∞ qβ(ŝk) > 1/2.23

Thus, by creating an expectation of an imbalance in the number of voters across

states–no matter how small–the organizer can manipulate the election in his favor

and induce an equilibrium in which his favorite outcome wins with a probability

approaching 1.

Observation 2. If the voters use cutoff strategies {ŝk}∞k=1 that imply that 1 >
limk→∞ qα(ŝk) > limk→∞ qβ(ŝk) > 1/2, and (nkα, n

k
β) is an optimal recruitment

strategy given ŝk and ck for all k as ck → 0, then it must be that nkα →∞, nkβ →∞,
and limk→∞ nkα/n

k
β < 1.

24

To see why it is optimal to recruit more voters in state β under the hypothesis

that voters support policy a with a probability larger than 1/2 in both states,

consider Figure 1. The figure depicts the probability that the majority selects policy

a as a function of n for an example with qα = 0.7 and qβ = 0.6. When n is large,

then the curve given qβ is steeper than the curve given qα; that is, for any given n

that is sufficiently large, the marginal benefit of an additional voter is larger in state

β. This property holds true for all 1 > qα > qβ > 1/2 and is a simple consequence

of the fact that both functions must approach 1 eventually, with the function for qβ

starting from a lower point.

Taken together, the two previous observations imply the following: If the orga-

nizer is expected to create an imbalance by recruiting more voters in state β and

the voters behave optimally given this expectation, then it is, in fact, optimal for

the organizer to recruit more actively in state β. Our proof of the theorem uses

a fixed-point argument to show that this loop of best responses can be closed and

establishes the existence of a manipulated equilibrium.

Optimal Recruitment Bounds the Critical Likelihood Ratio

As we discuss now, the organizer’s recruitment decision is linked to the expected

vote shares in such a way that the implied participation rates necessarily keep the

inference from being pivotal moderate, for any fixed voting strategy in which a has

a larger vote share.

In particular, the organizer’s optimal recruitment strategy has the following

implications for the pivot probabilities in different states: Take any arbitrary cutoff

ŝ ∈ (sβ, 1)–not necessarily an equilibrium–for which the vote share is 1 > qω (ŝ) >
23Observation 1 is a special case of our characterization of all voting equilibria in large elections

in Theorem 1, as remarked at the end of its proof.
24Observation 2 is a special case of our characterization in Lemma 3 in the Appendix.
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Figure 1: The probability that policy a receives the majority of votes given the
number of recruited voter pairs n for qβ = 0.6 (straight) and for qα = 0.7 (dashed).
The curve is steeper for qβ = 0.6 when n is large, implying a larger marginal benefit.

1/2. Then, the organizer chooses the number of recruited voters, 2n+1, such that25

∆(n− 1, ω, ŝ) ≥ c ≥ ∆(n, ω, ŝ), meaning (dropping the argument ŝ),

(
2n

n

)
qnω(1− qω)n(2qω − 1) ≥ 2c ≥

(
2n+ 2

n+ 1

)
qn+1ω (1− qω)n+1(2qω − 1).

These bounds relate the pivot probability to c in both states, and so they can

be used to bound the ratio of the pivot probabilities. Rewriting the bounds and

taking their ratio, Lemma 2 in the appendix shows that whenever the voters’ cutoff

ŝ satisfies 1 > qω (ŝ) > 1/2, the ratio of the pivot probabilities is bounded as follows:

3qβ (1− qβ)
2qβ − 1
2qα − 1

≤
(
2nα
nα

)
(qα)

nα (1− qα)nα
(
2nβ
nβ

)
(qβ)

nβ (1− qβ)nβ
≤ 1

3qα (1− qα)
2qβ − 1
2qα − 1

. (10)

Evaluating both sides shows that the ratio of the pivot probabilities stays bounded

away from 0 and ∞ whenever 1 > qω (ŝ) > 1/2.

Importantly, the bounds are independent of c (and nω). This is because the or-

ganizer’s choice of the size of the electorate keeps the pivot probabilities in each state

relatively at the same order, and when c vanishes, the relative pivot probabilities

stay bounded away from 0 and infinity.

25Recall the derivation of the marginal benefit of an additional voter from (9).
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Nevertheless, the bounds on the ratio are wide, approaching 0 and∞ for qβ → 1

and qα → 1, respectively. Thus, while optimality gives us some constraints on nα

and nβ , the integer constraint in the maximization problem still allows for a wide

range of pivotality ratios since the ratio can be quite different for nω versus nω + 1.

This range is important in our proof.

We use a version of (10) to derive a bound on the equilibrium ratio nα/nβ,

where Stirling’s approximation simplifies the left-hand side. In particular, we show

in Lemma 7, located in the appendix, and in the subsequent remark, that the ratio

of the number of recruited voters in states α and β stays bounded away from 0 and

infinity in the sequence of the manipulated equilibria of Theorem 2. With nkα and n
k
β

denoting the expected number of recruited pairs of voters in those equilibria given

ck, if n
k
α/n

k
β converges (along some subsequence), then

0 < lim
k→∞

nkα
nkβ

≤ 1.

Preview of Discussion and Extensions. In Section 6, we provide additional re-

sults and extensions.

All Equilibria. We complete our analysis of the equilibria with endogenous

participation and show that for small c, every nontrivial equilibrium is either of the

manipulated form discussed here or of one specific form. In particular, there are no

equilibria in which information is aggregated. This is immediate: For information

to aggregate, voters must support b with probability larger than 1/2 in state β.

Hence, the organizer would not recruit additional voters in that state. Our analysis

identifies the exact properties of the equilibria that are not fully manipulated.

Election Design. What voting rule is robust to this type of manipulation via

asymmetric participation patterns? We introduce and discuss a particular variation

of unanimity as a potential safeguard.

Competing Organizers. When two organizers compete, with one wishing

to implement a and the other wishing to implement b, then there are two types of

equilibria. We show that there are still fully manipulated equilibria but the presence

of competition also opens up the possibility for information aggregation.

5 Discussions and Extensions: Exogenous Participation

This and the next sections contain some extensions of the model that (i) complete the

analysis, (ii) highlight the robustness of our model to variations of the assumptions,

and (iii) add some additional observations.
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We split the discussion and extensions into two parts following the previous

structure of the two main results. The first part, presented now, considers the case

with exogenous participation. The second part, presented later, considers the case

with endogenous participation.

5.1 Robustness: (Aggregate) Population Uncertainty

In the previous analysis, conditional on the state, there is no uncertainty in the

number of voters. That the number of voters is exactly known conditional on the

state may be too demanding. This may be a concern, especially in the interpretation

as the outcome of an organizer who can affect the election size. It may be more

realistic to think that the number of voters is uncertain in both states, but, on

average, there are more voters in state β than in state α. The first discussion

below captures this using a Poisson model of population uncertainty. The second

discussion introduces further uncertainty on the aggregate level with the important

consequence of increasing the pivotality probability by an order of magnitude.

All Voting Equilibria in a Poisson Model. Myerson (1998a) studied a common

value environment analogous to ours in which the number of voters is Poisson dis-

tributed. The mean of the Poisson distribution depends on the state and is k and

θk, respectively.26 Myerson (1998a) shows that for all θ > 0, there exists a sequence

of equilibria that aggregates information as k becomes large.

In a companion paper, Ekmekci and Lauermann (2018), we study the equilibria

of Poisson Elections, which includes the setting by Myerson (1998a). We derive a

result that is analogous to Theorem 1: for a large election with a Poisson distributed

number of voters, if θ 6= 1, then there are additional, nontrivial interior equilibria

that do not aggregate information. In such equilibria, the policy that is best for the

voters in the state with the smaller participation rate wins with probability close

to 1 independent of the state, in a large election. Thus, information aggregation is

guaranteed only when θ = 1 (i.e., when the expected number of voters is the same

across states).27

We also consider a scenario with voluntary voting so that voters can abstain.

For that case, we also show the existence of an equilibrium that fails to aggregate

information in large elections whenever participation rates are asymmetric.

26 In our setting, the described Poisson distribution arises as a special case for a mixed recruitment

strategy ñ for which ñα (n) =
kne−k

n!
and ñβ (n) =

(θk)ne−θk

n!
, provided that N =∞.

27Myerson (1998a) notes the existence of non-interior equilibria in which voters support a par-
ticular policy independently of their signal, for some parameter constellations. To the best of our
knowledge, the existence of interior (“responsive”) equilibria that fail to aggregate information in
the model by Myerson (1998a) has not been noted.
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Aggregate Uncertainty. Several authors have argued that elections may be sub-

ject to aggregate uncertainty, even with a large population.28 In addition to the

added realism, aggregate uncertainty is shown to have desirable implications. In

particular, with aggregate uncertainty, the probability of a tied election is signif-

icantly larger: instead of being exponentially small, the probability is decreasing

linearly.29 Thus, with aggregate uncertainty, the predicted turnout can be signifi-

cant even if there are voting costs, addressing a common criticism of pivotal voting

models.30

Since we stressed the differential speeds of convergence of the “recruitment effect”

(linear) and the “pivotality effect” (exponential), it is natural to wonder whether our

results are robust to aggregate uncertainty. We study this question in our companion

paper, Ekmekci and Lauermann (2018). There, we show that our results still hold

in the presence of aggregate uncertainty if it is sufficiently small.

Specifically, aggregate uncertainty is modeled by assuming the presence of “noise

voters” in addition to the standard voters. In the companion paper, we assume that

the difference of the noise votes for a and b is distributed according to a normal

distribution with mean 0. The variance is on the order of the expected number of

standard voters, that is, there is aggregate uncertainty even in the limit. When the

standard deviation of the noise is small, the outcomes of the model with aggregate

uncertainty continuously approach the outcomes of a model with no noise.

Unboundedly Informative Signals. Our analysis here has considered boundedly in-

formative signals. In Ekmekci and Lauermann (2018), we also discuss the case with

an unboundedly informative signals, that is, lims→0
f(s|α)
f(s|β) = 0 and lims→1

f(s|α)
f(s|β) =

∞. We show that the basic insights continue to hold. In particular, information

aggregates in all equilibria if θ = 1 and, if θ 6= 1, there exist additional interior

equilibria in which information fails to aggregate.31

28Aggregate uncertainty refers to uncertainty that remains large relative to the total number of
voters, even in the limit. Population uncertainty of the Poisson variety does not have this feature.
The standard deviation of a Poisson distribution of mean n is

√
n and hence negligible relative to

the total.
29The probability of being pivotal is of order n−1 rather than e−n for n→∞; see Evren (2012),

Myatt (2017), Edlin, Gelman, and Kaplan (2007), and early contributions by Good and Mayer
(1975) and Chamberlain and Rothschild (1981). We thank Christian Hellwig for bringing this
literature to our attention.
30 In addition, a number of authors note that voters will often be socially motivated and do not

just consider their own material benefit from the election outcome but also the benefits to others,
increasing the benefits of participation even further.
31 In fact, with an unboundedly informative signal and a Poisson distributed number all equilibria

are necessarily interior because there is a strictly positive chance that the population size is 1.
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5.2 Election Design: Unanimity with Asymmetric Participation

It is well known that unanimity is a uniquely bad rule for information aggregation,

in the sense that the modern Condorcet jury theorem holds for all (super-)majority

rules but unanimity; see Duggan and Martinelli (2001) and Feddersen and Pesendor-

fer (1998). Here, we will see that unanimity is a good rule in the context of asym-

metric participation rates. In particular, unanimity can act as a potential safeguard

against manipulation by a biased organizer who can choose (commit to) the partic-

ipation rates ex ante.

Recall our initial example with nα (0) = 1 and nβ (0) = λ, nβ (1) = 1 − λ,
meaning there is 1 voter in state α and in state β, there is 1 voter with probability

λ and 3 voters with probability 1− λ. We observed that for λ small enough, there
is an equilibrium where all voters vote for a. The critical observation is that when

all votes are for a, then the probability of being pivotal is 1 in state α and λ in state

β. Therefore, for λ small enough, being pivotal implies that the probability of α is

arbitrarily large.

Now, consider voting given the unanimity rule, with any voter being able to

veto outcome a as follows: the outcome is b if and only if there is at least one vote

for it; if there is no vote for b, the outcome is a. It is easy to see why unanimity

upsets the reasoning behind the manipulated equilibrium. If all voters support a

with probability 1, then the outcome is a in both states. Hence, in both states, each

voter is pivotal with probability 1 independent of λ: if a voter chooses to support a

as well, the outcome is a, otherwise, if she supports b (“vetoes a”), the outcome is

b.

The same argument also applies to any strategy profile for which the outcome

is a with probability close to 1 (but not necessarily equal to it). Again, in this case,

the probability of being pivotal would be close to 1 in both states, and hence being

pivotal would contain no further information.

As a consequence, the fully manipulated outcome will typically not be an equilib-

rium with asymmetric participation rates.32 So, given the unanimity requirement,

a biased organizer who can choose (commit to) the number of voters in each state

would not be able to fully manipulate the outcome. In this sense, unanimity may

be a potential “safeguard.”

32 In particular, it will not be an equilibrium if signals are such that a voter believes β is more
likely than α conditional on being recruited and having the highest signal, s = 1.
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6 Discussions and Extensions: Endogenous Participa-

tion

We now continue the discussion of the case where participation is endogenous and

chosen by a biased organizer, subject to sequential optimality. First, we sharpen

the result by showing that information aggregation fails in all equilibria. Then, we

discuss extensions.

6.1 All Limit Equilibria

This section completes the equilibrium analysis. Theorem 3 characterizes the set of

all limiting equilibrium outcomes that are generated by some sequence of equilibria

as the organizer’s recruitment cost vanishes. The first part of the theorem shows

that there are only two types of limit cutoffs: the limit cutoff is either strictly

larger than sβ or equal to sα. (Recall that sω is the median signal in state ω, that

is, F (sω|ω) = 1/2.) The equilibria with limit cutoff s∗ > sβ are analogous to the

equilibrium outcomes of the equilibria presented in Theorem 2 in which the majority

selects policy a with probability 1.

The second part of the theorem characterizes equilibria with s∗ = sα. If the

following inequality holds,
ρ

1− ρ
f(sα|α)
f(sα|β)

> 1, (11)

then for these equilibria, policy a wins with a probability converging to 1 in state α

and b wins with a probability converging to (1− F (sα|β)) ∈ (0, 1) in state β.
If Inequality (11) holds, then there are no trivial equilibria in which the orga-

nizer recruits no additional voter in either state, for a sufficiently small c.33 If the

inequality fails, there is always a trivial equilibrium in which each voter supports

policy a with a probability below 1/2 in both states of the world, which justifies the

organizer’s strategy to recruit no additional voters.34

Theorem 3. Let {ck}k=1,2,... be a sequence of positive numbers converging to 0 and
{G(ck)}k=1,2,... be the induced voting games.

1. For every limit cutoff s∗ of nontrivial equilibria, either s∗ = sα or s
∗ > sβ.

Therefore, information is never aggregated in the limit.

33This is because, if nα = nβ = 0 (there is only one voter in each state), then voters with signals
above but close to sα support policy a, implying a vote share for a larger than 1/2 in state α. Thus,
for c small enough, the organizer would choose to recruit additional voters.
34Equivalently, information aggregates with sincere voting in large electorates if and only if

Inequality (11) holds. (Sincere voting means voting for the alternative which is more likely to be
correct based on one’s individual signal.)
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2. There exists a sequence of nontrivial equilibria with limit cutoff s∗ > sβ and

another sequence with limit cutoff s∗ = sα.

3. If inequality (11) holds, then along all nontrivial equilibrium sequences with

limit cutoff s∗ = sα

• The number of recruited voters increases without bounds in state α and
is 0 in state β.

• Policy a is implemented in state α with probability converging to 1 and
with probability converging to F (sα|β) in state β.

The proof of the theorem is in the appendix. The characterization of the set of

all equilibrium outcomes may be the technically most demanding part of the analysis

in the paper.

To give a rough idea of the characterization of equilibria with limit cutoff sα,

note that, for a sequence of cutoffs with limit s∗ ∈ (sα, sβ), the pivotality probability
would vanish at an exponential rate in state α but stay positive and equal to 1 in

state β. This is because the number of recruited voters increases without bounds

in state α and is 0 in state β. Therefore, the critical likelihood ratio explodes and

such cutoffs are not equilibria. However, when the cutoff ŝk converges to sα at

exactly the right speed, then the probability of being pivotal declines linearly in

state α, precisely balancing the linearly increasing probability of being recruited in

that state, allowing the critical likelihood ratio to remain bounded.

In the appendix, we also discuss the case in which inequality (11) fails. In that

case, there is an additional nontrivial equilibrium sequence in which the number of

recruited voters in state α remains bounded.

6.2 Robust Election Design

We explore whether election design can be a remedy for an organizer’s ability to

manipulate election outcomes by inducing asymmetric participation rates. To this

end, we discuss a design based on the unanimity rule that provides protection against

such manipulation.

Unanimity Rule. We already observed that the unanimity rule can be beneficial

with an exogenous asymmetry in participation. With endogenous participation,

there is yet another potential benefit. As discussed before, suppose the outcome is a

unless one or more voters support b (that is, unless there is a “veto” against it). It is

immediate that, under this rule, the organizer recruits no additional voters. This is
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because an additional voter only changes the outcome if she submits a veto against

the organizer’s preferred outcome. As a consequence, with this rule, the organizer

has no incentives to induce an asymmetric participation pattern. Also, even though

just one voter chooses for all, her choice is still preferred by the voters to the fully

manipulated equilibrium outcome from Theorem 2 in which the outcome is almost

surely a.

Near Unanimity with a Quorum. The unanimity rule has two drawbacks. First,

only the information from one voter is included because the organizer will cease re-

cruitment. To remedy this, one may require the organizer to recruit a certain mini-

mal number of voters; that is, to impose a quorum: The organizer has to recruit at

least m additional pairs of voters, otherwise the outcome is b.

Second, as noted in the literature, unanimity is generally not a good rule for

information aggregation. Intuitively, since one veto already decides the outcome,

the outcome cannot reflect the information from much more than one signal.35 To

remedy this second problem, one may reduce the veto power and stipulate that some

number k (m) of vetoes are needed for b to win. So, “near unanimity with a quorum”

stipulates that the outcome is b if the quorum m fails or more than k (m) vetoes

are submitted; otherwise, the outcome is a.36 Informally, the organizer is required

to ask the opinion of at least m agents, and of those, not more than k (m) must

be against his preferred alternative. A result by Chakraborty and Ghosh (2003)

implies that, with this rule, information is fully aggregated if and only if m− k (m)
and m both grow to infinity.37

In practice, many decisions by committees require a quorum in order to ensure

that a certain minimal number of members is heard. It seems likely that this rule

is useful to limit the ability of an organizer to implement policies with the help of a

small minority.38

35See Feddersen and Pesendorfer (1998), Duggan and Martinelli (2001), and Chakraborty and
Ghosh (2003). Chakraborty and Ghosh (2003) shows that with unanimity there is a cutoff n̄ such
that increasing the number of voters beyond n̄ does not increase the voters’ payoffs. In fact, when
symmetric equilibria are considered, increasing the number of voters will generally strictly lower
their payoffs.
36We thank a referee for suggesting a voting rule along these lines and prodding us to think about

it.
37This result is reminiscent of the double-largeness requirement for information aggregation in

auctions by Pesendorfer and Swinkels (1997a).
38Note that, while a quorum is frequently required, it is rare that a voting rule requires an exact

number of voters to participate. While such a rule would theoretically also curb the possibility of
asymmetric participation, it would seem impractical in most circumstances.
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6.3 Multiple Organizers

In this paper, a single organizer makes all the recruitment choices. Suppose that

there is a second organizer, whom we refer to as O1, who prefers that policy b be

implemented regardless of the state. O1 incurs the same marginal recruitment cost

as the organizer, whom we refer to as O0, who prefers that policy a be implemented

regardless of the state.

In this scenario, there is always a sequence of manipulated equilibria in which

policy a is implemented with a probability that converges to 1 in both states and

in which only O0 recruits voters while O1 is passive. There is another sequence

of manipulated equilibria in which policy b is implemented with a probability that

converges to 1 in both states and in which only O1 is active while O0 is passive. There

is, however, one more sequence of equilibria in which O0 chooses to recruit many

voters in state α, O1 chooses to recruit many voters in state β, and information

is aggregated; that is, the correct policy is implemented with a probability that

converges to 1. Therefore, competition among organizers opens up the possibility

of information aggregation.

6.4 Costly Voting and Subsidies

Suppose that, in contrast to our model, all citizens can vote but voting is costly.

Here, recruitment may correspond to a subsidy by the organizer. Concretely, sup-

pose that there are N citizens and each citizen can vote at a cost r. This cost may

correspond to the cost of walking to the voting booth. The organizer can reduce

the cost of voting to 0 by paying c; for example, by bussing voters to the voting

booth. If the voting costs r are not too small, only the citizens who receive a subsidy

actually vote.39

Further analysis of costly voting with subsidies may be an interesting extension

of the current model, and such analysis may yield a better understanding of exactly

what such scenarios may be and when to expect voter subsidies to have substantial

effects on voting behavior.

6.5 Information About Voter Turnout

Thus far, we have assumed that voters do not directly observe the realized turnout.

Note, however, that being recruited already contains information about overall

turnout.

39Note that, in fact, r may be quite low since voters will compare r to the probability of being
pivotal.
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Now, suppose voters observe a public but noisy signal about the realized number

of actual voters (say, by observing the outcome of a likely voter survey or seeing the

queues on TV) and consider the voting game in which the number of voters nα and

nβ is exogenously fixed. Then, as long as the signal stays boundedly informative as

the number of voters grows large, the conclusion of Theorem 1 for large elections

continues to hold; that is, whenever limnα/nβ < 1, there are equilibria of the voting

game in which information fails to aggregate. This is because a public signal moves

the common prior, but we already know that the failure of information aggregation

holds independent of the prior. In particular, it follows that if we take as given

the organizer’s original recruitment strategies from Theorem 2, the original voter

behavior remains close to a best response sufficiently deep into the sequence even if

there are public noisy signals.40 (For this, note that in the manipulated equilibrium

of Theorem 2, the ratio of the number of recruited voters is bounded and bounded

away from 0.41)

However, if voters receive noisy signals about the recruitment activity and if we

now consider the organizer’s optimal recruitment strategy given the noisy signal,

then the organizer recruits differently in order to signal the state. We do not know

how this signaling incentive affects the equilibrium outcome. Signaling may be

considered an additional and somewhat different mechanism to affect voting from

the one we consider here.

Thus, we believe our results are robust to adding noisy information about voter

turnout when we take the original recruitment strategies as given. However, adding

such information implies signaling incentives for the organizer that likely lead to a

different behavior. We leave this analysis for future research since this additional

signaling mechanism is likely to function differently from the mechanism that we

focus on here.

6.6 Other Extensions

In the working paper version, we include a few other extensions. In particular, we

consider (i) heterogeneous voter preferences, (ii) many states (continuum), (iii) the

possibility for abstention, (iv) a simple quorum as a safeguard, and (v) the role of

the organizer’s private information and recruitment costs.

40We do not know how equilibrium looks like with private signals on turnout. In this case, types
are two-dimensional (the original signal s and the additional signal about n). This complicates the
analysis significantly because voting strategies are no longer characterized by a one-dimensional
cutoff.
41This is discussed in the text after Theorem 2 and proven in Lemma 7 in the Appendix.
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7 Literature Review

Information aggregation in elections with strategic voters has been studied by Austen-

Smith and Banks (1996), Feddersen and Pesendorfer (1996, 1997, 1998, 1999a,b),

McLennan (1998), Myerson (1998a,b), and Duggan and Martinelli (2001), among

others.42 These papers study equilibrium outcomes with an exogenously large num-

ber of voters.

In particular, Feddersen and Pesendorfer (1997) show that in a model with mul-

tiple states–and private and common values–under all supermajority rules except

the unanimity rule, large electorates aggregate information. Similar to this pa-

per, they provide a complete characterization of all equilibria. The main difference

between their model and ours is that here the number of participating voters is se-

lected by a conflicted organizer, so the number of voters participating in the election

is endogenously state dependent.

Myerson (1998a) introduces a Poisson model with population uncertainty in

which the expected number of voters may be state dependent. He shows that large

electorates aggregate information along some sequence of equilibria. In his model,

the ratio of the expected number of voters across states is fixed along the sequence

as the expected number of voters grows. In our model, similar to Myerson’s, the

number of voters participating is state dependent. However, the ratio of the number

of voters is endogenously determined via the choice of an organizer who incurs a

cost for increasing the number of participating voters. A second difference is that we

characterize the limiting outcomes of all symmetric equilibria. We show that there

is no equilibrium in which information fully aggregates when the number of voters is

endogenous and there also exist equilibria in which the organizer’s favorite outcome

is implemented regardless of the state. We study Poisson models with exogenous

population uncertainty in a companion paper, Ekmekci and Lauermann (2018).

Information aggregation fails in our setting because whenever the number of

voters depends nontrivially on the state, equilibria exist in which the same policy

becomes certain to win in both states. This is driven by the effect of the number

of voters on the inference voters make about the state from being pivotal. To the

best of our knowledge, this has not been observed before. The literature has iden-

tified other circumstances in which information may fail to aggregate. Feddersen

and Pesendorfer (1997) show such a failure in an extension (Section 6) when the

aggregate distribution of preferences remains uncertain conditional on the realized

state. Mandler (2012) demonstrates a similar failure if the aggregate distribution of

42For example, Bouton and Castanheira (2012) consider information aggregation with more than
two candidates.

29



signals remains uncertain. In these settings, the effective state is multi-dimensional.

Intuitively, this implies an invertibility problem from the relevant order statistic

of the vote shares to payoff-relevant states. A recent generalization was made by

Barelli, Bhattacharya, and Siga (2017). Bhattacharya (2013) observes the neces-

sity of preference monotonicity for information aggregation.43 Gul and Pesendorfer

(2009) show that information aggregation fails when there is policy uncertainty.

Razin (2003) shows that information aggregation fails when voters have a signaling

motive to affect the policy choice of the winning candidate. In our setting, condi-

tional on the state, there is no residual aggregate uncertainty about the distribution

of signals or preferences, the preferences over policies are monotone in the state, and

there is no policy uncertainty.

Methodologically, information aggregation in elections is related to work on large

auctions, which were studied, for example, by Wilson (1977), Milgrom (1979), Pe-

sendorfer and Swinkels (1997b, 2000), and Atakan and Ekmekci (2014). Some recent

papers consider related questions with state-dependent bidder participation: e.g.,

Atakan and Ekmekci (2016), Murto and Välimäki (2015), and, in particular, Lauer-

mann and Wolinsky (2017).

The latter paper shows the following: if the number of bidders is exogenous,

sufficiently large, and asymmetric across value-states, the auction fails to be com-

petitive; instead, the bidders inevitably pool on a common bid below the expected

value. As a consequence, the auction fails to aggregate any information. When

bidder participation is endogenized via costly recruitment by an auctioneer, such an

asymmetric participation pattern is shown to arise in an equilibrium.

The literatures streams on auctions and voting share the criticality of updating

conditional on a certain event. However, the strategic nature of the environments

is different, requiring a different analysis, reflecting different economic mechanisms,

and implying different results. In particular, voters are in a common interest game,

while bidders play a competitive (Bertrand) game. One consequence is that, in an

election, information aggregation is the preferred outcome for the voters whereas, in

an auction, information aggregation is the worst outcome for the bidders (because

the price equals the value). Another difference regards the nature of the effect of

asymmetric participation on the critical posterior. In our setting, the smaller par-

ticipation in one state shifts the critical posterior toward that state. By contrast,

in an auction, what matters is the expected value conditional on winning. However,

the expected posterior across winning bids has to equal the prior by Bayesian con-

sistency; thus, the critical posterior cannot be moved systematically in the direction

43See also Acharya (2016), Bhattacharya (2018), and Ali, Mihm, and Siga (2017).
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of a particular state at all bids.44

Related studies of voter (non-)participation in elections include especially Fed-

dersen and Pesendorfer (1996), who identify the swing voters’ curse when voters can

abstain, and the vast literature on costly voting, especially Ledyard (1984), Palfrey

and Rosenthal (1985), and Krishna and Morgan (2011, 2012). In these models,

the number of votes cast depends on the private signals of the voters. In Fedder-

sen and Pesendorfer (1996), abstention facilitates information aggregation, whereas

in Krishna and Morgan (2011), the cost of voting helps to increase (utilitarian)

welfare by screening according to preference intensities in a model with common

and private values. In Krishna and Morgan (2012), voluntary voting also results

in signal-dependent participation, which leads to information aggregation across all

equilibria. These models emphasize choice on the voters’ side, showing how this can

improve election outcomes, whereas our model emphasizes the organizer’s ability

to affect turnout and how it decreases efficiency. Critically, in these models, the

underlying population of eligible voters is assumed to be independent of the state.

Our companion paper Ekmekci and Lauermann (2018) allows for abstention in such

models where the expected number of voters is state dependent.

A related paper that endogenizes the issues that are voted on by a strategic

proposer is Bond and Eraslan (2010). Similar to us, they show that the unanimity

rule may be superior to other supermajority voting rules. In their model, voting

behavior under different rules has different implications for the proposals put on

the table by a strategic proposer. In particular, the unanimity rule disciplines the

proposer to make offers preferred by the voters. In contrast, here the alternatives are

fixed but the turnout is endogenously determined by a strategic organizer. Moreover,

the unanimity rule restricts the organizer’s ability to utilize the asymmetry of voter

turnout across the states.

Finally, a large body of literature analyzes a conflicted agent’s ability to ma-

nipulate one or more decision makers to act in favor of the agent’s interests, either

through using informational tools or by taking actions that directly affect the deci-

sion makers’ incentives. This includes models of cheap-talk, emanating from Craw-

ford and Sobel (1982), which analyzes a biased sender’s ability to transmit informa-

tion and induce behavior that is beneficial to the sender. Our model shares with

these models the feature that the organizer has superior information, no commit-

ment power, and biased preferences. Our model differs from the cheap talk literature

44Asymmetric participation affects the expected value conditional on winning differentially across
bids at different positions. In Lauermann and Wolinsky (2017), the main finding is driven by the
fact that larger participation in the low-value state increases the expected value conditional on
winning at low bids but decreases the expected value conditional on winning at high bids.
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in that information transmission is not through cheap talk messages. The recent

literature on Bayesian persuasion, initiated by Kamenica and Gentzkow (2011) and

applied to a voting context by Wang (2013), Alonso and Câmara (2016), and Bardhi

and Guo (2018) (among others), assumes that a sender can commit to an information

disclosure rule that generates public or private signals. Similar to that literature,

we are interested in an agent’s ability to induce others to undertake his preferred

action. However, the agent’s tools are different, and the agent cannot commit.

8 Conclusion

Understanding the performance of voting mechanisms to pick the best alternatives

for society has always received attention, dating all the way back to the Athenian

leader Cleisthenes and, later, to Condorcet. In this paper, we have studied the

ability of voting mechanisms to aggregate dispersed information among voters when

the election takes place in the presence of an organizer who has the tools to change

the turnout and whose interests are not aligned with those of the voters. Our main

result is that such an organizer can influence the election outcomes in his favor and

thus prevent information aggregation. This result indicates that although voting

mechanisms may be very effective in aggregating information, they may be quite

susceptible to manipulation activities by outsiders, and thus may not be robust.

An interesting feature of our model is that small electorates in which the orga-

nizer is not allowed to intervene may perform better than large electorates with an

organizer (in fact, a single voter would choose better than the electorate). More

generally, we discuss how a combination of a participation requirement (“quorum”)

and a certain generalization of a unanimity requirement can function as a safeguard

against manipulation (election design).

The organizer’s ability to achieve his desired outcome relies on his ability to

recruit many voters. It does not rely on cherry-picking voters who have information

supporting his favorite policy or voters who are a priori more inclined to vote for

his favorite policy. In practice, however, many of the manipulation schemes involve

the use of additional tools, such as the timing of elections or subsidies that target

particular voters. Because, in our model, the organizer can affect only the overall

turnout and cannot distinguish between voters with different characteristics, our

results suggest that the manipulation of elections might be even easier if we afforded

the organizer some of the additional targeting possibilities that can be found in

practice.
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A Appendix

In this appendix, we use Stirling’s approximation,

lim
n→∞

n!√
2πn

(
n
e

)n = 1. (12)

Using Stirling’s approximation for the pivot probability yields:

(
2n

n

)
(q)n (1− q)n = (2n)!

(n!)2
(q)n (1− q)n

≈
√
2π2n

(
2n
e

)2n
(√
2πn

(
n
e

)n)2 (q)
n (1− q)n = (4q(1− q))n√

π
√
n

. (13)

Thus, given a sequence
(
nkα, n

k
β

)
→ (∞,∞) and

(
ŝk
)
with ŝk ∈ (0, 1) for all k, the

limit of the likelihood ratio of being pivotal is:
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k→∞

(2nkα
nkα

)
(qα
(
ŝk
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.

(14)

A.1 Proof of Theorem 1 (Large Voting Equilibria)

Proof. By hypothesis, n
k
α

nk
β

= θ for some θ > 0 and all k. Let s∗ be a limit point of

some sequence of cutoffs ŝk ∈ (0, 1). Rewriting Stirling’s approximation from (14),

the critical likelihood is

lim
k→∞

Φ(ŝk, piv, rec;nk, ŝk) =
ρ

1− ρ
f(s∗|α)
f(s∗|β)θ limk→∞

1√
θ

(
(4qα(1− qα))θ
4qβ(1− qβ)

)nk
β

, (15)

where ŝk is dropped as an argument from qω. Recall that ŝ
k is an interior equilibrium

if and only if the cutoff satisfies Φ(ŝk,piv,rec ;nk, ŝk) = 1.

Auxiliary Claims. Let s∗ be a limit point of some sequence of cutoffs ŝk ∈ (0, 1).

1. If s∗ = 0, then limk→∞Φ(ŝk,piv,rec ;nk, ŝk) = 0 if θ > 1 and =∞ if θ ≤ 1.

2. If s∗ = 1, then limk→∞Φ(ŝk,piv,rec ;nk, ŝk) = 0 if θ ≥ 1 and =∞ if θ < 1.

3. If s∗ = sβ , then limk→∞Φ(ŝk,piv,rec;nk, ŝk) = 0.

4. If s∗ = sα, then limk→∞Φ(sk,piv,rec;nk, sk) =∞.
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Proof of the Claim.

Claim 1, for s∗ = 0. Abbreviate Fω := F (·|ω) and fω := f (·|ω). Then, from
qω
(
ŝk
)
= Fω

(
ŝk
)
, using the continuity of Fω and fω (0) > 0, the limit on the

right-hand side of (15) is

lim
k→∞

1√
θ

(
4Fα

(
ŝk
) (
1− Fα

(
ŝk
)))θnk

β

(4Fβ (ŝk) (1− Fβ (ŝk)))n
k
β

= lim
k→∞

1√
θ

(
4θ
(
ŝk
)θ
(fα (0))

θ

4ŝkfβ (0)

)nk
β

.

The limit is = 0 if θ > 1 and it is = ∞ if θ < 1 because the fraction in the

brackets is dominated by the behavior of
(ŝk)

θ

ŝk
in these cases and nkβ →∞. If θ = 1,

then the limit is = ∞ because then
4θ(ŝk)

θ
(fα(0))

θ

4ŝkfβ(0)
= fα(0)

fβ(0)
> 1. Now, the claim 1

follows from (15) because ρ
1−ρ

f(0|α)
f(0|β)θ > 0.

Claim 2, for s∗ = 1. The argument for s∗ = 1 is analogous to the one for s∗ = 0.

Claim 3, for s∗ = sβ. If s
∗ = sβ, then Φ(ŝ

k,piv,rec ;nk, ŝk) → 0. This follows

from (15): Note that qβ (sβ) =
1
2 (from definition of sβ) implies that 4qβ(1−qβ) = 1,

qα (sβ) 6= 1
2 implies that (4qα(1− qα))

θ < 1, and nkβ →∞.

Claim 4, for s∗ = sα. If s∗ = sα, then Φ(ŝk,piv,rec;nk, ŝk) → ∞. This follows
since then (4qα(1− qα))θ = 1, 4qβ(1− qβ) < 1, and nkβ →∞.

An implication of the claims is that for every limit point of a sequence of voting

equilibria,

s∗ /∈ {0, sα, sβ, 1} . (16)

Step 1: We show that there always exists a sequence of equilibria along which

information is aggregated, for every θ > 0. The continuity of Φ(s,piv,rec;nk, s)

in s for every k, the intermediate value theorem, and the claims 3 and 4 to-

gether imply that, for all k large enough, there exists some ŝk ∈ (sα, sβ) such

that Φ(ŝk,piv,rec;nk, ŝk) = 1. By (16), ŝk → s∗ ∈ (sα, sβ) for every convergent
subsequence of such cutoffs. Thus, by the weak law of large numbers, along all

convergent subsequences, information is aggregated. It follows that information is

aggregated for the original sequence as well.

Step 2: We show that if θ = 1, then there is no other equilibrium. Suppose ŝk is

an interior voting equilibrium with limit s∗. By (15), this requires that

lim
k→∞

4qα
(
ŝk
)
(1− qα

(
ŝk
)
)

4qβ (ŝk) (1− qβ (ŝk))
= 1.
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From claims 1 and 2, s∗ /∈ {0, 1}. Therefore, ŝk → s∗ ∈ (0, 1), which requires

4qα (s
∗) (1−qα (s∗)) = 4qβ (s∗) (1−qβ (s∗)). Now, since q (1− q) is symmetric around

its peak at q = 1
2 , and qα (s

∗) > qβ (s∗), this requires qα (s∗)− 1/2 = 1/2− qβ (s∗),
which implies that s∗ ∈ (sα, sβ). This and Step 1 prove part 1 of the theorem.

Step 3: Suppose that θ < 1. Given claims 2 and 3 and the continuity of

Φ(s,piv,rec;nk, s) in s, the intermediate value theorem implies that, for all k large

enough, there exists some ŝk ∈ (sβ, 1) such that Φ(sk,piv,rec;nk, sk) = 1. By (16),
sk → s∗ ∈ (sβ , 1) for every convergent subsequence. Thus, by the weak law of large
numbers, policy b is implemented in both states for every convergent subsequence

of such cutoffs and, hence, for the original sequence.

Step 4: We now argue that there can be no equilibria for which s∗ is not in (sβ , 1)

or (sα, sβ). Given the observation (16), it only remains to rule out s
∗ ∈ (0, sα). But

this cannot hold since, for 0 < s∗ < sα, we have
(qα(s∗)(1−qα(s∗))θ
qβ(s∗)(1−qβ(s∗)) > 1 (by the

behavior of q (1− q) on (0, 1) together with 1
2 > qα (s

∗) > qβ (s∗) > 0 and θ < 1),

and, therefore, Φ→∞. This and Step 3 prove part 2 of the theorem.

Step 5: The case θ > 1 is symmetric to θ < 1. This proves part 3 of the theorem

and finishes the proof.

Remark 2. An alternative argument to prove the existence of an equilibrium se-

quence with information aggregation utilizes the common interest structure of the

voting game, as observed by McLennan (1998). This is discussed in the main text.

Remark 3. The proof implies Observation 1 on Page 17 in the main text because

Stirling’s approximation also works if 0 < limk→∞ nkα/n
k
β = θ < 1 but nkα 6= θnkβ

along the sequence.

In addition, a different method of proof can be used to consider sequences for

which limk→∞ nkα/n
k
β = 1 but nkα < nkβ and to show that information aggregation

can fail in such cases as well, depending on the speed at which nkα/n
k
β → 1.

A.2 Auxiliary Results: Full Equilibrium

In this part, we explore several properties of the organizer’s best-reply correspon-

dence and the critical likelihood ratio that are used in proving the theorems.

Organizer’s Best Reply:
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The set of mixed strategies for the organizer in the voting game with recruitment

cost c is denoted by Ñ(c). Given a generic mixed strategy ñ = (ñα, ñβ), the term

ñω(i) denotes the probability that the strategy ñ assigns to integer i in state ω. The

organizer’s best-reply correspondence to the voter cutoff s when the recruitment

cost is c is denoted by η(s, c) := (ηα(s, c), ηβ(s, c)) ⊂ Ñ(c). Thus, ñ ∈ η(s, c) if and
only if each positive integer that is in the support of ñω solves

max
n∈{0,1,..., 12 (N−1)}

2n+1∑

i=n+1

(
2n+ 1

i

)
(qω (s))

i (1− qω (s))2n+1−i − nc.

We abuse notation and write n ∈ η(s, c) if the pure strategy n is optimal.
We will frequently need to evaluate binomial coefficients. For this, the following

observations are useful:

(
2n+ 1

n

)
=
(2n+ 1) 2n (2n− 1) · · · (n+ 2) (n+ 1)n (n− 1) · · · 1

n (n− 1) · · · 1 (n+ 1)n (n− 1) · · · 1

=
(2n+ 1) 2n (2n− 1) · · · (n+ 2) (n+ 1)

(n+ 1)n (n− 1) · · · 1
n (n− 1) · · · 1
n (n− 1) · · · 1

=
2n+ 1

n+ 1

(
2n

n

)
,

and

1

2

(
2n

n

)
=
1

2

2n (2n− 1) · · · (n+ 2) (n+ 1)n (n− 1) · · · .1
n (n− 1) · · · 1n (n− 1) · · · 1

=
(2n− 1) · · · (n+ 2) (n+ 1)n (n− 1) · · · .1

(n− 1) · · · 1n (n− 1) · · · 1

=

(
2n− 1
n− 1

)
,

and

1

2

(
2n+ 2

n+ 1

)
=
1

2

(2n+ 2)

(n+ 1)

(2n+ 1) 2n (2n− 1) · · · (n+ 2) (n+ 1)n (n− 1) · · · .1
n (n− 1) · · · 1 (n+ 1)n (n− 1) · · · 1

=
1

2
(2)

(2n+ 1) 2n (2n− 1) · · · (n+ 2) (n+ 1)n (n− 1) · · · .1
n (n− 1) · · · 1 (n+ 1)n (n− 1) · · · 1

=

(
2n+ 1

n

)
.

In particular,

(
2n+ 2

n+ 1

)
= 2

(
2n+ 1

n

)
= 2

2n+ 1

n+ 1

(
2n

n

)
. (17)
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Properties of η(s, c):

Recall the marginal benefit of an additional voter pair,

∆(n− 1, ω, ŝ) = 1

2

(
2n

n

)
(qω (ŝ))

n (1− qω (ŝ))n (2qω (ŝ)− 1) .

We will therefore often consider the function

g (n, q) :=

(
2n

n

)
(q)n (1− q)n (2q − 1) .

Note that, using (17),45

g (m,x)

g (m+ 1, x)
=

1

4x(1− x) +
1
2

2 (2m+ 1)x(1− x) > 1. (18)

This follows from x(1−x) ≤ 1
4 . So, g (m,x) is decreasing inm. Also, limm→∞ g (m,x) =

0, as one would expect.

If ŝ is such that qω(ŝ) ≤ 1/2, then ∆(n− 1, ω, ŝ) ≤ 0 for every n. Thus, ηω(ŝ, c)
is single-valued with ñω(0) = 1.

If qω(ŝ) > 1/2, then ∆(n− 1, ω, ŝ) > 0 and ∆(n− 1, ω, ŝ) > ∆(n, ω, ŝ), and

limn→∞∆(n− 1, ω, ŝ) = 0, by the corresponding behavior of g. So, for any c small
enough, there is a unique n such that ∆(n− 1, ω, ŝ) ≥ c > ∆(n, ω, ŝ). Hence, the
support of any ñω ∈ ηω contains at most two integers, and if it includes two integers,
they have to be adjacent.

We prove the following implication of the optimality condition ∆(nω−1, ω, x) ≥
c ≥ ∆(nω, ω, x). Here, nω(x, c) is some pure best reply of the organizer if the voters
use the cutoff strategy x. We drop the arguments occasionally to save notation.

Recall that sω is the median signal with F (sω|ω) = 1/2.

Lemma 2. Given any x ∈ (sω, 1), c > 0 and nω ∈ ηω(x, c): If nω ≥ 1 then

2c

2qω − 1
≤
(
2nω
nω

)
(qω)

nω (1− qω)nω ≤
c

qω (1− qω) (2qω − 1)
(nω + 1)

(2nω + 1)
.

45Rewriting
(2mm )x

m(1−x)m

(2m+2

m+1 )xm+1(1−x)m+1
=

(2mm )
2 2m+1

m+1 (
2m
m )x(1−x)

= m+1
2(2m+1)x(1−x)

=
m+ 1

2

4(m+ 1
2 )x(1−x)

+

1
2

2(2m+1)x(1−x)
.
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Proof. Rewriting the hypothesis, using (17)

∆(nω, ω, x) ≤ c⇒
2nω + 1

nω + 1

(
2nω
nω

)
(qω)

nω+1 (1− qω)nω+1(2qω − 1) ≤ c⇒

(2nω + 1)

(
2nω
nω

)
(qω)

nω (1− qω)nω ≤
c(nω + 1)

qω (1− qω) (2qω − 1)
,

and

1

2

(
2nω
nω

)
(qω)

nω (1− qω)nω(2qω − 1) ≥ c⇒
(
2nω
nω

)
(qω)

nω (1− qω)nω ≥
2c

2qω − 1
.

Taken together, the claim follows.

Using the lemma to bound the numerator and the denominator of the ratio of

the pivotality probabilities yields for nω ∈ ηω(s, c) that

3qβ (1− qβ)
2qβ − 1
2qα − 1

≤
(
2nα
nα

)
(qα)

nα (1− qα)nα
(
2nβ
nβ

)
(qβ)

nβ (1− qβ)nβ
≤ 1

3qα (1− qα)
2qβ − 1
2qα − 1

, (19)

using that 3 ≤ 2(2nβ+1)
(nβ+1)

and (nα+1)
2(2nα+1)

≤ 1
3 .

Lemma 3. For x ∈ (sβ, 1) and for any selection of pure strategy best replies by the
organizer to it, {nα(x, c), nβ(x, c)}c>0, for c→ 0,

lim
c→0

nβ (x, c)

nα (x, c)
=
ln (4qα(1− qα))
ln (4qβ(1− qβ))

> 1.

Proof. From x ∈ (sβ, 1) and sβ > sα, it follows that qω (x) ∈ (0.5, 1) for ω ∈ {α, β}.
So, both sides of (19) are bounded and bounded away from 0. Hence, from (14),

lim
c→0

√
nβ(x, c)

nα(x, c)



 (4qα(1− qα))

(4qβ(1− qβ))
nβ(x,c)

nα(x,c)




nβ(x,c)

must be bounded and bounded away from 0 as well. This requires that

0 < lim inf
c→0

nβ(x, c)

nα(x, c)
≤ lim sup

c→0

nβ(x, c)

nα(x, c)
6=∞,
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since otherwise, if limc→0
nβ
nα
= 0, then the ratio (14) vanishes, and if limc→0

nβ
nα
=∞,

then the ratio explodes. That the ratio (14) is bounded requires therefore that

(4qα(1− qα))

(4qβ(1− qβ))limc→0
nβ(x,c)

nα(x,c)

= 1.

Solving this equation for limc→0
nβ(x,c)
nα(x,c)

proves the lemma.

Critical likelihood ratio when the organizer uses a mixed strategy:

We extend Φ from pure to mixed recruitment strategies (with a slight abuse of

notation) and define

Φ(s,piv, rec; ñ,ŝ) :=
ρ

1− ρ
f(s|α)
f(s|β)

∑
i≥0 ñα(i)(

2i+1
N
)
(
2i
i

)
qα(ŝ)

i(1− qα(ŝ))i
∑
i≥0 ñβ(i)(

2i+1
N
)
(
2i
i

)
qβ(ŝ)i(1− qβ(ŝ))i

. (20)

Lemma 4. Fix ŝ ∈ (0, 1). For every s ∈ [0, 1],

max
ñ∈η(ŝ,c)

Φ(s, piv, rec; ñ,ŝ)

exists, and is attained by some pure strategy n ∈ η(ŝ, c). The set of maximizers is
independent of s. Similarly,

min
ñ∈η(s,c)

Φ(s, piv, rec; ñ,ŝ)

exists, and is attained by some pure strategy n ∈ η(ŝ, c). The set of minimizers is
independent of s.

Proof. The function Φ is continuous in ñ, and the maximum of a continuous function

over a compact domain exists.

Independence of the maximizers from s is seen by inspection of the function Φ.

The extreme values of Φ are attained by a pure strategy n because the numerator

and denominator of the Equation (20) are linear functions of the weights on two

adjacent integers, due to the property of the organizer’s best reply correspondence

η.

Operator Φ̃:
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Definition 1. Let

Φ̃ : [0, 1]× R+ ⇒ R+,

with x ∈ Φ̃(ŝ, c) if and only if Φ(ŝ,piv,rec; ñ,ŝ) = x for some ñ ∈ η(ŝ, c) .

The mapping Φ̃ takes a cutoff strategy ŝ of the voters, calculates the best-reply

correspondence of the organizer to ŝ, and then returns every number that is equal to

the critical likelihood ratio of type ŝ when all other voters follow the cutoff strategy

ŝ and the organizer is following a strategy that belongs to the set of best replies to

ŝ. Note that Φ̃ is well-defined at the boundaries ŝ ∈ {0, 1} since then η(ŝ, c) = {0}.

Lemma 5. The correspondence Φ̃(ŝ, c) is convex valued and upper hemicontinuous

in its first argument ŝ for ŝ ∈ (0, 1).

Proof. The best-reply correspondence, η(ŝ, c) is upper hemicontinuous in ŝ–which

follows from Berge’s maximum theorem–and convex valued. The function Φ(ŝ,piv,rec

; ñ,ŝ) is continuous in ñ. Moreover, because the densities f(·|ω) are continuous for
each ω ∈ {α, β}, the upper hemicontinuity of the organizer’s best-reply correspon-
dence implies that Φ̃ is upper hemicontinuous. Convex-valuedness of Φ̃ follows from

the convex-valuedness of η(ŝ, c), continuity of Φ in ñ, and the fact that Φ is single-

dimensional.

The next lemma is immediate and we skip its proof.

Lemma 6. An interior signal s ∈ (0, 1) is an equilibrium cutoff signal of G(c) if

and only if 1 ∈ Φ̃(s, c).

A.3 Proof of Theorem 2

Recall that sω satisfies qω (sω) = F (sω|ω) = 1/2.
Our proof strategy is to first show that, for all ε > 0 and c small enough, there

is some s(c) > sβ + ε such that 1 ∈ Φ̃(s(c), c). This means there are equilibria in
which the voters support policy a with probability more than 1/2 in both states.

The second part of the proof shows that, in such equilibria, as c vanishes, a gets

selected with probability approaching 1, that the number of voters grows without

bound, and that the organizer’s payoff approaches 1.

We start by showing the existence of equilibria with a large cutoff, utilizing

two claims. We denote by max Φ̃ (s, c) the highest element of the image of the

correspondence Φ̃ at (s, c),

max Φ̃ (s, c) = max
{
x ≥ 0|x ∈ Φ̃(s, c)

}
.
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The maximum exists by Lemma 5.

Claim 1:

∃ε > 0 such that lim
c→0

max Φ̃(sβ + ε, c) < 1.

Claim 2:

∃εc > 0, with lim
c→0

εc → 0, such that lim
c→0

max Φ̃(1− εc, c) =∞.

These two findings together with the upper-hemicontinuity and convex-valuedness

of Φ̃ (Lemma 5) imply, via a version of the intermediate value theorem for correspon-

dences,46 that for all c smaller than a cutoff c̄ > 0, there is an s(c) ∈ (sβ + ε, 1− εc)
such that 1 ∈ Φ̃(s(c), c), which delivers the desired result.

Proof of Claim 1:

From the bounds in Lemma 2, it follows that

max Φ̃(s, c)

= max
(nα,nβ)∈η(s,c)

ρf(s|α)
(1− ρ)f(s|β)

(2nα + 1)
(
2nα
nα

)
(F (s|α)(1− F (s|α)))nα

(2nβ + 1)
(
2nβ
nβ

)
(F (s|β)(1− F (s|β)))nβ

≤ max
(nα,nβ)∈η(s,c)

ρf(s|α)
(1− ρ)f(s|β)

(2nα + 1)
c

qα(1−qα)(2qα−1)
(nα+1)
(2nα+1)

(2nβ + 1)
2c

2qβ−1

= max
(nα,nβ)∈η(s,c)

ρf(s|α)
(1− ρ)f(s|β)

2nα + 1

2nβ + 1

2qβ − 1
2qα (1− qα) (2qα − 1)

nα + 1

2nα + 1
.

The term (nα, nβ) denotes a pure strategy that puts probability 1 to integers nα

and nβ in states α and β respectively. Applying Lemma 3, we obtain that, for any

fixed s such that qβ(s) ∈ (0.5, 1),

lim
c→0

max Φ̃(s, c) ≤ ρf(s|α)
(1− ρ)f(s|β)

ln (4 (qβ) (1− qβ))
ln (4 (qα) (1− qα))

2qβ − 1
4qα (1− qα) (2qα − 1)

.

Note that the right side vanishes for s → sβ from above because qβ (s) → 1/2

while qα (s) stays strictly larger than 1/2. So, there exists some ε and c
∗ such that

for all c ≤ c∗,
max Φ̃(sβ + ε, c) < 1.

This proves Claim 1.

46Claim 1 in the appendix of Shimer and Smith (2000) states an appropriate extension of the
standard intermediate value theorem to convex valued, upper-hemicontinuous correspondences.
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Note also that the number 1 on the right-hand side of the inequality is arbitrary,

and the same proof works to show that one can choose ε so that this inequality holds

for any positive number.

Proof of Claim 2:

Let γ(q) := 2q(1− q)(2q − 1), and let εc > 0 be a number that is close to 0 that
satisfies γ(qα(1 − εc)) = 2c. Existence of such an εc > 0 is guaranteed when c is

small, and limc→0 εc = 0. We show that limc→0max Φ̃(1− εc, c) =∞.
Since γ(qω (s)) = 2∆ (n− 1, ω, s), the definition of 1− εc is such that, in state α,

the organizer with a marginal cost c is indifferent between recruiting no additional

voters and recruiting one pair of voters. Note that,

γ′(q) = 12q (1− q)− 2.

and γ′(q) < 0 for q sufficiently close to 1. Hence, for x close to 1, qβ(x) < qα(x)

implies then if γ(qα(x)) = 2c, then γ(qβ(x)) > 2c. Hence, the organizer’s best reply

to the cutoff 1 − εc is that in state β he recruits at least 1 pair and, actually as
1 − εc → 1, exactly one pair. This is because we have 2∆(1, β, x) =

(
4
2

)
qβ(x)

2(1 −
qβ(x))

2(2qβ(x) − 1) < γ(qα(x)) = 2c for all x sufficiently close to 1, which follows

from
(1−qβ(x))2
(1−qα(x)) →x→1 0.

Writing down the pivot probability in state β, we get 2qβ(x)(1 − qβ(x)), and if
in state α the organizer recruits no one, then the pivot probability in state α is 1.

Because limx→1
qβ(x)
qα(x)

= 1, and limx→1
1−qβ(x)
1−qα(x) =

f(1|β)
f(1|α) , and that

f(1|α)
f(1|β) > 0, we have

that

lim
c→0

max Φ̃(1− εc, c) = lim
c→0

ρf(1− εc|α)
(1− ρ)f(1− εc|β)

1

3

1

2qβ(1− εc)(1− qβ(1− εc))
=∞.

Combining Claims 1 and 2 and Lemma 5:

Because Φ̃(s, c) is upper-hemicontinuous and convex valued (Lemma 5), and

combining this with Claims 1 and 2, it follows via the intermediate value theorem

for correspondences (Footnote 46) that there is a c̄ > 0 and ε > 0 such that for

every c < c̄, there is an s(c) > sβ + ε such that 1 ∈ Φ̃(s(c), c).

Hence, there is an equilibrium in which the voters support policy a with a prob-

ability more than 1/2. However, the theorem makes the stronger claim that the

number of recruited voter pairs grows to infinity. We now show this:

Modifying the Proof of Claim 2 to ensure large turnout:
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In this part, we modify the second part of the above proof (that is, the proof

of Claim 2) to show that εc can be chosen in such a way that the organizer, when

faced with voters using a cutoff 1 − εc, is indifferent between m(c) and m(c) − 1
pairs of voters in state α and recruits m(c) pairs of voters in state β, and that

limc→0m(c) =∞.
The alternative mapping that we consider is xm (c), defined analogously as the

solution to (
2m

m

)
(qα (x))

m (1− qα (x))m(2qα (x)− 1) = 2c.

As before, for any given c that is sufficiently small, for x = xm(c)

(
2m

m

)
(qβ (x))

m (1− qβ (x))m(2qβ (x)− 1)

> 2c >
(
2m+ 2

m+ 1

)
(qβ (x))

m+1 (1− qβ (x))m+1(2qβ (x)− 1).

Thus, we can pick some x̂m (c) just above xm (c) such that in state α, the organizer

recruits m− 1 pairs of voters and in state β recruits m pairs of voters. As c→ 0, it

must be that x̂m (c)→ 1 and similar to before,

lim
c→0

max Φ̃(x̂m(c), c) =∞.

Now consider a sequence of equilibria (whose existence has been shown) with

cutoffs larger than sβ and bounded away from it; i.e., limc→0 s(c) = s∗ > sβ.

If sβ < s
∗ < 1 then limc→0 nω(s(c), c) → ∞. If s∗ = 1 then note the following:

Recall the function g(m,x) =
(
2m
m

)
xm(1−x)m(2x− 1) where m is a positive integer

and x ∈ [0, 1]. By inspection of (18), g(m,x) is decreasing in m and there is some

ε > 0 such that g(m,x) is decreasing in x in the region where x > 1 − ε.47 This
property of the function g together with the property for the equilibrium cutoff s(c)

that s(c) ≤ xm(c), and the hypothesis that limc→0 s(c) = 1 together imply that

nω(s(c), c) ≥ m(c). Since this exercise can be repeated for any arbitrary m, we can
pick the sequence m(c) in such a way that it grows unboundedly. Therefore, the

resulting equilibrium turnout grows without bound.

Showing that policy a gets selected:

Let s (c) denote the equilibrium cutoff sequence from the previous parts of this

47To see that g(m,x) is decreasing in x, note that d
dx
(xm(1− x)m(2x− 1)) is equal to

xm−1 (1− x)m−1 (m (1− x) (2x− 1)−mx(2x− 1) + 2x (1− x)) and the final term is approxi-
mately −m for x close to one.
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proof. By construction, 1 > s (c) > sβ + ε for all c smaller than some c̄ > 0. We

now show that the probability of the majority voting for policy a approaches 1 as

c→ 0. Without loss of generality, suppose s(c) converges. The claim is obvious if

lim
c→0

s(c) = 1.

If not, then

1 > lim
c→0

s(c) ≥ sβ + ε

implies

lim
c→0

qα (s (c)) > lim
c→0

qβ (s (c)) > 0.5,

and limc→0 nω (c) → ∞. This implies the claim for the second case because the

weak law of large numbers applies. Thus, policy a gets implemented as c vanishes

for this sequence of equilibria.

Showing that organizer’s payoff is 1 in both states:

Let U cO(s, ñ) denote the organizer’s payoff in the election in which the marginal

recruitment cost is c and the strategy profile is s, ñ. Consider the equilibrium

from the previous part of the proof, s (c) , ñ (c), and consider following alternative

strategy n̄(c) := (b 1√
c
c, b 1√

c
c); i.e., n̄(c) is the strategy in which the organizer invites

b 1√
c
c pairs of voters in both states. As c → 0 the recruitment cost incurred by

the organizer given strategy n̄ vanishes. Moreover, because c → 0, the number of

recruited voters goes to∞, and because s(c)→ s∗ > sβ+ε, by the weak law of large

numbers the probability that the majority votes for policy a approaches 1 when

the organizer employs strategy n̄(c). Hence, limc→0 U cO(s(c), n̄(c)) → 1. Because

ñ(c) is a best reply to voter cutoff strategy s(c), it has to be that U cO(s(c), ñ(c)) ≥
U cO(s(c), n̄(c)), for every c > 0. Therefore, limc→0 U

c
O(s(c), ñ(c)) = 1, as well. Since

in each state the organizer’s payoff is bounded above by 1, and since each state

occurs with positive probability, the organizer’s payoff conditional on each state

converges to 1, as well. This finishes the proof of Theorem 2. �

Showing that the ratio nα(x(c),c)
nβ(x(c),c)

is bounded:

Lemma 7. Suppose (x (c) , ñ (c)) is a collection of interior equilibria given c and

suppose nα(x(c), c) and nβ(x(c), c) are in the support of ñ (c) with limc→0 x (c) > sβ
and limc→0 nα(x(c), c) = limc→0 nβ(x(c), c) =∞, then

0 < lim inf
c→0

nα(x(c), c)

nβ(x(c), c)
≤ lim sup

c→0

nα(x(c), c)

nβ(x(c), c)
≤ 1.
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Proof. If limc→0 x(c) = x such that qω(x) ∈ (0.5, 1) for ω ∈ {α, β}, then the ratio of
the number of voters in the two states stays bounded as c goes to 0 by a straight-

forward adjustment of the proof of Lemma 3 using only the organizer’s optimality

condition.

By hypothesis, this leaves limc→0 x(c) = 1. We show that
nα
nβ
→ 1 in this case.

Using approximation from (14),

lim
c→0

2nα + 1

2nβ + 1

(
2nα
nα

)
(qα)

nα (1− qα)nα
(
2nβ
nβ

)
(qβ)

nβ (1− qβ)nβ
= lim
c→0

√
nα
nβ

(4qα(1− qα))nα
(4qβ(1− qβ))nβ

. (21)

This approximation stays correct for limc→0 qω (x(c)) = 1, ω ∈ {α, β}, since we
approximate only the binomial terms. Abbreviate fω := f (·|ω). With ∆(c) :=
1−x (c), we have 1− qω (x (c)) ∼= ∆fω (1) by the continuity and boundedness of fω.
Taking logs of the expression on the right-hand side of (21), with fω = fω (1),

ln

√
nα
nβ

(
(4∆fα)

nα

(4∆fβ)
nβ

)

=
1

2
lnnα −

1

2
lnnβ + nα ln 4fα + nα ln∆− nβ ln 4fβ − nβ ln∆

= nα ln∆

(
1
2 lnnα

nα ln∆
+
ln 4fα
ln∆

+ 1

)

− nβ ln∆
(

1
2 lnnβ

nβ ln∆
+
ln 4fβ
ln∆

+ 1

)

.

From nω →∞ for ω ∈ {α, β} and ln∆→ (−∞), the first two terms in each of the
brackets vanish, and we have

lim
c→0

(
ln

√
nα
nβ

(
(4∆fα)

nα

(4∆fβ)
nβ

))
= lim
c→0

(nα − nβ) ln∆.

Case 1. Suppose lim nα
nβ
> 1. Then ln∆ → (−∞) and lim (nα − nβ) = (+∞)

imply that

lim
c→0

(
ln

√
nα
nβ

(
(4∆fα)

nα

(4∆fβ)
nβ

))
= −∞.

Hence, since the natural logarithm of it diverges to −∞, the limit of the right-hand
side of (21) is 0. Note that (21) is proportional to Φ̃. Therefore, lim Φ̃(x (c) , c) = 0,

in contradiction to x (c) being an interior equilibrium, requiring 1 ∈ Φ̃(x (c) , c).
Case 2. Suppose limc→0

nα
nβ
< 1. Then, ln∆ → (−∞) and limc→0 (nα − nβ) =

(−∞) imply that
lim
c→0

(
ln

√
nα
nβ

(
(4∆fα)

nα

(4∆fβ)
nβ

))
= +∞.
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Hence, the limit of (21) is +∞. Therefore, limc→0 Φ̃(x (c) , c) =∞. This is again in
contradiction to x (c) being an interior equilibrium.

Thus, if limc→0 x(c) = 1 then limc→0
nα
nβ
= 1, as claimed.

A.4 Proof of Theorem 3

This proof characterizes all limit points of nontrivial equilibrium cutoffs. The proof

of the theorems proceeds through a sequence of steps that are combined at the end

of the section.

To simplify some of the expressions, we sometimes omit the argument c. More-

over, we sometimes omit s (c) as well in expressions like qω = qω(s(c)).

We also use the following lemma.

Lemma 8. Let {s(c), nα(c), nβ(c)}c>0 be a selection of cutoffs s(c) for the voters,
and a pair of integers (nα(c), nβ(c)) that are in the support of the organizer’s best

reply to voter strategy s(c) with recruitment cost c. If 1 > limc→0 s(c) > sω for

ω ∈ {α, β}, then (dropping the dependence of nω on c)

lim
c→0

(2nω + 1)

(
2nω
nω

)
qω(s(c))

nω(1− qω(s(c)))nω = 0 for ω ∈ {α, β} .

Proof. First, if 1 > lim s(c) > sω, then 1 > lim qω(s(c)) = q∗ > 1/2 implies

limnω(c) =∞. By Stirling’s approximation (see (13)),

lim
c→0

(
2nω
nω

)

4nω
= lim
c→0

4nω√
π
√
nω

4nω
= 0. (22)

Because 1 > q∗ > 1/2, we have 4q∗(1− q∗) < 1. This and nω (c)→∞ imply48

lim
c→0

(2nω + 1)

(
2nω
nω

)
qω(s(c))

nω(1− qω(s(c)))nω

≤ lim
c→0

(2nω + 1)(4qω(s(c))
nω(1− qω(s(c)))nω = 0.

Combining this with (22) delivers the result.

Step 1: To show sα is the only possible limit point of nontrivial equilibria that

is not above sβ.

48Recall nx (n)n → 0 for any sequence x (n) with x (n)→ x∗ ∈ (0, 1) and n→∞.
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There are 3 cases to consider and rule out: s∗ < sα, s∗ ∈ (sα, sβ), and s∗ = sβ.
The first two cases are easier to rule out while the last case is more subtle. We deal

with the first two cases first.

Case 1. Suppose s∗ < sα. If this is true, then the probability that a randomly

selected voter supports policy a is strictly less than 1/2 in both states, and the

organizer recruits no one. However, this is a trivial equilibrium.

Case 2. Suppose sα < s
∗ < sβ. Then, the organizer recruits no one in state β and

many voters in state α as k →∞. In fact, because s∗ > sα, qα(s(c))→ q∗α > 1/2, and

therefore, in any sequence of equilibria, for any selection of integers nα(c) that are

in the support of the equilibrium recruitment strategy of the organizer, nα(c)→∞.
Therefore, by Lemma 8 above,

(2nα(c) + 1)

(
2nα(c)

nα(c)

)
qα(s(c))

nα(c)(1− qα(s(c)))nα(c) → 0.

Therefore, max Φ̃(s(c), c)→ 0, which is a contradiction to s(c) being an equilib-

rium cutoff.

Case 3. Suppose s∗ = sβ. We argue that this cannot be the case either, by show-

ing that

lim
c→0

(
max Φ̃(s(c), c)

)
= 0.

First, note that

lim
c→0

qα(s(c)) = qα(sβ) > 1/2,

and this implies

lim
c→0

(2nα + 1)

(
2nα
nα

)
qnαα (1− qα)nα = 0.

for every sequence of integers nα(c) in the support of the organizer’s best reply, via

Lemma 8. Thus, there cannot be any subsequence of cutoffs in which qβ(s(c)) ≤
1/2. This is because, otherwise, along such a subsequence, nβ(c) = 0, and hence

limmax Φ̃(s(c), c) = 0.

Therefore, consider a subsequence along which qβ > 1/2 (so, qβ → 1/2 from

above). Recall that max Φ̃(s(c), c) is attained by some pure strategy that is in

η(s(c), c). Denote such a pure strategy with a pair of integers (nα, nβ) that corre-

spond to the integers in the support of the strategy in states α and β, respectively.

These integers depend on c, but for the ease of reading we drop the dependence of

these integers on c.

We now bound limc→0max Φ̃(s(c), c) from above, by either putting a lower bound
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on the multiplication of two terms on the denominator, which is

(2nβ + 1)

(
2nβ
nβ

)
qnβ (1− qβ)nβ ,

or by directly arguing that

(2nα + 1)
(
2nα
nα

)
qnαα (1− qα)nα

(2nβ + 1)
(
2nβ
nβ

)
q
nβ
β (1− qβ)nβ

→ 0.

For any given q > 1/2, the function γ(q, n) := (2n + 1)
(
2n
n

)
qn(1 − q)n can have

at most one peak, when viewed as a function of n. This is because, using (17),

γ(q, n+ 1)

γ(q, n)
=
2n+ 3

2n+ 1

(2n+ 2)(2n+ 1)

(n+ 1)2
q(1− q) = 4n+ 6

n+ 1
q(1− q).

A simple calculation shows that the expression for γ(q,n+1)
γ(q,n) is a strictly decreasing

function of n. When q is sufficiently close to 1/2, γ(q, n) is strictly increasing in n at

n = 0, since γ (q, 0) = 1 and γ (q, 1) = 6q (1− q). Therefore, for every nonnegative
integer N∗, the minimum of γ(q, n) in the domain n ∈ {0, 1, · · · , N∗} is attained at
one of the extreme points, i.e., either at n = 0 or n = N∗.

We consider two subsequences. First, consider a subsequence for which γ (qβ, n)

attains its minimum at n = 0. Then, the claim in Case 3 follows because

(2nβ + 1)

(
2nβ
nβ

)
q
nβ
β (1− qβ)nβ ≥ min

n∈{0,1,··· ,N(c)}
γ(qβ, n) = γ(qβ, 0) = 1.

This together with

lim
c→0

(2nα + 1)

(
2nα
nα

)
qnαα (1− qα)nα = 0,

delivers that limc→0max Φ̃(s(c), c) = 0 along such a sequence.

Now, consider an infinite subsequence for which the minimum is attained at

N (c). Also, suppose that, for all c, nα(c) ≥ nβ(c). When c is small,

γ(qβ(s(c)), nβ(c)) ≥ min{γ(qβ(s(c)), nα(c)); γ(qβ(s(c)), 0)}.

To see why, suppose γ(qβ(s(c)), nβ(c)) < γ(qβ(s(c)), 0). So, nβ(c) is larger than

the n′ at which γ(qβ(s(c)), n) attains it peak. Thus, γ is decreasing in n at nβ(c)

and so nα(c) ≥ nβ(c) implies that γ(qβ(s(c)), nβ(c)) ≥ γ(qβ(s(c)), nα(c)).
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So, in this case,

(2nα + 1)
(
2nα
nα

)
qnαα (1− qα)nα

(2nβ + 1)
(
2nβ
nβ

)
q
nβ
β (1− qβ)nβ

≤
(2nα + 1)

(
2nα
nα

)
qnαα (1− qα)nα

(2nα + 1)
(
2nα
nα

)
qnαβ (1− qβ)nα

=
qnαα (1− qα)nα
qnαβ (1− qβ)nα

→ 0;

the last line follows from the facts that qα(1− qα) < qβ(1− qβ) and nα →∞. Here,
qα(1− qα) < qβ(1− qβ) because qα > qβ ≥ 1/2.

Now the only remaining subsequence is the one along which nα(c) < nβ(c). For

such a subsequence, notice that the optimality of the organizer’s best reply delivers

(see Lemma 2),

(
2nβ
nβ

)
q
nβ
β (1− qβ)nβ ≥

2c

2qβ − 1
,

and

(
2nα
nα

)
qnαα (1− qα)nα ≤

c

2qα(1− qα)(2qα − 1)
nα + 1

2nα + 1
≤ c

2qα(1− qα)(2qα − 1)
.

Notice that, 2qβ − 1→ 0, and combining this with nα(s(c)) < nβ(s(c)) delivers

lim
c→0

(2nα + 1)
(
2nα
nα

)
qnαα (1− qα)nα

(2nβ + 1)
(
2nβ
nβ

)
q
nβ
β (1− qβ)nβ

= 0,

which then implies that limc→0max Φ̃(s(c), c) = 0 along such a sequence as well.

Step 2: To show sα is an attainable limit point.

The proof strategy here is similar to the proof for the existence of manipulated

equilibria in Theorem 2.

Using Lemma 8 as before, it is straightforward to show that there exists some

small ε̄ > 0 such that for every 0 < ε < ε̄, limc→0max Φ̃(sα + ε, c) = 0.

We show that there is an ε(c) > 0 with limc→0 ε(c) = 0, such that limc→0max Φ̃(sα+

ε(c), c) = ∞. Then, the intermediate value theorem for correspondences (Foot-

note 46) implies that for small c an equilibrium exists that has a cutoff s(c) ∈
(sα + ε(c), sα + ε). By the previous step, the limit point of s(c) has to be sα.

Note that in state β, the organizer recruits no one, for ε(c) sufficiently small. So

our task is to show that (2nα + 1)
(
2nα
nα

)
qnαα (1− qα)nα can be made arbitrarily large,

for small c, with cutoff sα + ε(c).
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Given any integer a and sufficiently small c, let s(a, c) > sα be such that the

organizer is indifferent between recruiting a and a + 1 pairs of voters when their

cutoff strategy is s(a, c). In particular, g (a, x) = 2c at x = qα(s(a, c)), with g

defined as in the proof of Theorem 2. Since g (a, 1/2) = 0, g (a, q) > 0 for q > 1/2,

and g is continuous in q, we can select s(a, c) such that limc→0 s(a, c)→ sα for every

fixed integer a.

Let s(a) > sα be equal to min{s̃(a), sα+ ε̄}, where s̃(a) is the largest signal that
has the property that, for every q ∈ [1/2, qα(s̃(a))]

2− a(2q − 1)
2

q(1− q) ≥ 0.

For every a, such a s̃(a) > sα exists, by inspection of the inequality. Moreover,

for sufficiently large a, s(a) = s̃(a) < sα + ε̄.

Note that limc→0max Φ̃(s(a), c) = 0 from s (a) > sα. Moreover,

lim
c→0

max Φ̃(s(a, c), c) = lim
c→0

a

(
2a

a

)
qα(s(a, c))

a(1−qα(s(a, c)))a = a
(
2a

a

)(
1

2

)a(1
2

)a
,

so that from Stirling’s approximation,

lim
a→∞

lim
c→0

max Φ̃(s(a, c), c) = lim
a→∞

a
4a√
π
√
a

(
1

2

)a(1
2

)a
=∞.

Therefore, by the intermediate value theorem for correspondences, for each suf-

ficiently large a, there is a c̄ such that for all c < c̄, there is s∗(a, c) ∈ (s(a, c), s(a))
such that 1 ∈ Φ̃(s∗(a, c), c).

Step 3: To show that an equilibrium sequence exists whose limit point is sα and

for which in state α, the majority selects policy a with probability 1 in the limit.

Note that if s∗ = sα, then in state β no one is recruited, and hence there is only

one voter for every c. Therefore, as c → 0, the term (2nα + 1)
(
2nα
nα

)
qnαα (1 − qα)nα

converges to a number k ∈ (0,∞). Now consider the cutoff s∗(a, c) defined in Step
2, above. Note that the organizer’s best reply to this cutoff in state α is to recruit at

least a voters, for c small enough. This is because, s∗(a, c) < s̃(a), where for every

q ∈ [1/2, qα(s̃(a))],
2− a(2q − 1)

2

q(1− q) ≥ 0.

The marginal benefit of the organizer at n = a is increasing in q,

d

dq

(
1

2

(
2a

a

)
(q(1− q))a(2q − 1)

)
=
1

2

(
2a

a

)
(q(1− q))a[2− a(2q − 1)

2

q(1− q) ] > 0, (23)
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for every q ∈ [1/2, qα(s̃(a))]. Hence, the support of the organizer’s best reply at
state α is bounded from below by a pairs of voters, whenever the voters are using

a cutoff between s(a, c) and s̃(a). Because the equilibrium cutoff s∗(a, c) that we

identified is in that interval, the organizer indeed recruits at least a pairs of voters

in state α.

Since a is arbitrary, we can construct a sequence of equilibria along which s(c)→
sα, and the number of voters recruited in state α grows without bound.

Now we show that if s(c) → sα and if the number of voters in state α grows

without bound, then the majority selects policy a with a probability that converges

to 1. As we stated in the previous paragraph, nβ = 0 requires that

lim
c→0

(2nα + 1)

(
2nα
nα

)
qnαα (1− qα)nα = k ∈ (0,∞),

where nα and qα depend on s(c) and c but we dropped the dependence. Because

nα →∞, s(c) > sα. The probability that the majority selects policy a in state α is:

2nα+1∑

i=nα+1

(
2nα + 1

i

)
qiα(1− qα)2nα+1−i.

To show that this probability converges to 1, we use the following lemma.

Lemma 9. Let {q(c)}c>0 be a selection of probabilities with limc→0 q(c) → 1
2 , and

{n(c)}c>0 be a selection of integers such that limc→0 n(c)→∞ . If

lim
c→0

(2n(c) + 1)

(
2n(c)

n(c)

)
q(c)n(c)(1− q(c))n(c) = k ∈ (0,∞),

then

lim
c→0

n(c)∑

i=0

(
2n(c) + 1

i

)
q(c)i(1− q(c))2n(c)+1−i = 0.

Proof. Pick any pair q, n. Let

t(i, n) :=

(
2n+1
n+1

)
qn+1(1− q)n

(
2n+1
i

)
qi(1− q)2n+1−i

= (
q

1− q )
n+1−i (2n+ 1− i)(2n− i) · · · (n+ 2)

n(n− 1) · · · (i+ 1) .

Note that t(i, n) > 1 for i ≤ n because q > 1/2. Moreover, t(i, n) is decreasing
in i.

Pick an arbitrary ε > 0. Let 1 + κ(ε) be a lower bound strictly larger than 1 for

the term
2n+ 1− (n(1− ε))

n(1− ε) + 1 .
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For i ≤ (1− 2ε)n, we have that t(i, n) ≥ (1 + κ(ε))εn. Therefore,

n∑

i=0

(
2n+ 1

i

)
q(n)i(1−q(n))2n+1−i ≤ ((n(1−2ε))(1+κ(ε))−εn+2εn)

(
2n+ 1

n

)
qn+1(1−q)n.

Taking n→∞, and then using the fact that ε was arbitrary, and the fact that

(2n(c) + 1)

(
2n(c)

n(c)

)
q(c)n(c)(1− q(c))n(c) → k ∈ (0,∞)

delivers the result.

Step 4: To prove that if inequality (11) holds, then in all sequences of equilibria

with limit cutoff sα the number of voters diverges and information is aggregated.

On the way to a contradiction, suppose that there is an equilibrium sequence

with limit cutoff sα, which has a bounded number of voters in state α, say less than

k. Notice that,

lim inf
c→0

∑

i≥0
ñα(c)(i)× (2i+ 1)

(
2i

i

)
(qα(s(c)))(1− qα(s(c)))i ≥ 1,

where ñα(c) is the equilibrium strategy of the organizer. This is because, first,

qα(s(c)) → 1/2, second, (2i + 1)
(
2i
i

)
(1/4)i is strictly increasing in i, and third,

ñ(c)(i) = 0 for every i > k. Moreover, f(s|α)
f(s|β) is continuous in s, and hence, for every

s > sα, if (11) holds, then for all s close to sa,

ρ

1− ρ
f(s|α)
f(s|β) > 1.

However, this contradicts the equilibrium requirement that 1 = Φ(s(c),piv,rec ; ñ(c), s(c)).

Finally, by Lemma 9, information is aggregated.

Step 5: To prove that if Inequality (11) fails, then there is an equilibrium with

limit cutoff sα and with a bounded number of voters.

Note that Φ̃(sα, c) is single valued for every c > 0, and that value is equal to
ρ
1−ρ

f(sα|α)
f(sα|β) . This is because η(sα, c) has a single element for every c > 0, and this

single element is a pure strategy that recruits no one in both states.

Hence, if inequality (11) fails, then max Φ̃(sα, c) ≤ 1, for every c > 0. By

the argument in Step 2, there are some a and c̄ > 0 such that for every c < c̄,

max Φ̃(s(a, c), c) > 1. Therefore, by the intermediate value theorem for corre-

spondences, there is some s(c) ∈ [sα, s(a, c)] such that 1 ∈ Φ̃(s(c), c). Because
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s(c) < s(a, c), and because for all sufficiently small c, s(a, c) < s̃(a), and because

s(a, c) is the cutoff signal to which the organizer’s best reply is to recruit at most

a + 1 pairs of voters in state α, the organizer recruits not more than a + 1 pairs

of voters in state α when the voters use the cutoff s(c) (recall that the marginal

benefit is increasing in q for q > 1
2 but close to it, see (23)). Because this is true for

every c < c̄, and because limc→0 s(a, c) = sα, we can construct a sequence of equi-

librium cutoffs that converge to sα, and along such equilibria, the organizer recruits

a bounded number of voters in state α (and no one in state β).

Combining the steps to prove Theorem 3 and the following Remark:

Theorem 3.1 is implied by Step 1. Theorem 3.2 is implied by Theorem 1 (equi-

libria exist with limit s∗ > sβ) and by Step 2 (equilibria exist with limit s∗ = sα).

Theorem 3.3 is implied by Step 3 and 4. The remark in the text when (11) fails is

implied by Step 5.
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