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Abstract

We characterize an optimal financial contract when the firm’s realized cash flow is

unobservable to the investor and the firm’s collateral can only be liquidated partially

by resorting to the services of a costly third party. An optimal contract may exhibit

a piecewise structure and vary with the liquidation cost and the firm’s actual liquidity

shortage. Partial liquidation and wholesale transfers of collateral can coexist in an

optimal contract. In contrast to part of the literature, the incentive-compatibility

constraint incorporates the firm’s limited liability, and may be slack at the optimum.

Allowing the firm to overcome an ex-post liquidity shortage by borrowing surreptitiously

from a third party may reduce the firm’s ex-ante expected utility.
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1 Introduction

Information asymmetry is one of the most important impediments to efficient interactions

in financial markets. In corporate finance firms usually have an informational advantage

after the outcomes of projects are materialized, because it is often difficult for investors to

observe these outcomes directly. Similar problems are prevalent in consumer finance, in

particular the housing market, where fluctuations in the incomes of borrowers are not easily

observed by lenders. Such adverse selection in the post-contracting stage is one of the main

concerns in the theory of financial contracting. In a typical corporate financial contracting

environment with adverse selection, the firm borrows from an investor to invest in a risky

project from which it will receive returns that are only observable to itself. As a response

to such adverse selection ex-post, the parties ex-ante use instruments such as collateral or

threats of bankruptcy agreed upon in an incentive-compatible contract to secure the truthful

execution of their agreement ex-post.

Most of the literature in this agenda assumes that the threats and promises underlying

these contracts can be arbitrarily finely adjusted and costlessly executed. This can be because

the firm’s collateral is infinitely divisible (e.g., Faure-Grimaud 2000; Townsend 1979; Gale

and Hellwig 1985; Hart and Moore 1998), the penalties imposed by the investor can be

applied without cost (e.g., Faure-Grimaud 2000; Lacker 2001), or the firm ex-post has enough

liquidity to offer repayments that would otherwise lead to liquidation (e.g., Faure-Grimaud

2000; Povel and Raith 2004b; Hege and Hennessy 2010). In this paper, we move away from

these assumptions, and ask what happens if the firm’s assets are not perfectly divisible, the

ex-post execution of threats can be costly, or the firm cannot resort to ex-post payments to

avoid liquidation threats. We do this by means of a simple model in the tradition of Hart and

Moore 1998 and Faure-Grimaud 2000 that focuses on the problem of indivisible collateral.

In practice, most collateral comes in indivisible units, and even when these units (such as

small production units) can eventually be divided into smaller pieces, this requires technical

or legal expertise to disentangle the multiple links that make the unit cohere in the first

place. And if the contracting parties agree to play a lottery in order to achieve a division

in expected terms, they may have different opinions on the credibility of the randomization

devices or need an independent auditor for their use. Moreover, the contracting parties may

need an outsider to verify firm’s cash repayment if partial liquidation is contingent on it. All

these procedures are costly.

In this paper, we therefore study a financial contracting problem with ex-post adverse

selection and indivisible collateral. We allow for partial liquidation, but assume that it can

only be implemented by a third party who has technical or legal expertise in dividing the
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collateral or implementing a randomization scheme. Using a third party is costly to the firm,

but it is the only way to avoid the transfer of its collateral as a whole.

Our approach is less drastic than Lacker (2001), who argues that randomization mecha-

nisms in debt contracts cannot be enforced and therefore that they can only be used if they

are ex-post optimal. As a consequence, he shows that with indivisible collateral the optimal

contract takes a bang-bang structure: The firm is obligated to repay a certain amount of

cash to the investor. If it fails to repay this amount, its collateral will be seized as a whole,

and the firm must make a smaller payment. If the costs of relying on a third party is high,

we recover his prediction as a special case of our model.

We characterize a specific type of optimal contracts and discuss how it varies with the

liquidation cost and the firm’s actual liquidity shortage. The optimal contract derived in our

model takes a piecewise linear structure; we name this specific type of contracts piecewise

debt-like contracts (PDC). We show that the optimal PDC is indeed an optimal contract,

and our discussion focuses on the structure and comparative statics of the optimal PDC.

The intuition for the piecewise structure of the optimal PDC is as follows. When the

firm’s cash flow is sufficiently high, it is required to repay a fixed amount of cash to the

investor without any liquidation. When the firm is unable to repay this fixed amount, it

may want to repay all the realized cash to the investor and seek for a third party to perform

partial liquidation. However, when the firm’s cash flow is sufficiently low, it has to liquidate

a large fraction of the collateral even with full cash repayment and partial liquidation. Thus

the firm would rather transfer all of its collateral to the investor without involving a third

party and save the liquidation cost.

The comparative statics of the optimal PDC is straightforward. When the liquidation cost

is sufficiently large, the firm would never want to introduce a third party to perform partial

liquidation, so it will transfer the collateral to the investor whenever its cash flow falls short.

Our optimal contract thus resembles the one derived in Lacker (2001). Similarly, when the

liquidation cost is sufficiently small, the firm would always prefer partial liquidation when it

is insolvent. In this case, our optimal contract resembles the debt contract in Faure-Grimaud

(2000).

We also discuss some important features of the optimal PDC. First, unlike part of the

literature in this agenda (e.g., Faure-Grimaud 2000; Povel and Raith 2004b; Hege and Hen-

nessy 2010), in our model, the IC constraint may not bind in the optimal PDC. The firm

loses its collateral when its cash flow is sufficiently low, but its valuation of the collateral

could be higher than the fixed cash repayment when there is no liquidation. In other words,

the firm is punished more severely when it is insolvent. The reason is that the firm cannot

misreport a state that necessitates a cash repayment higher than its realized cash flow, i.e.,
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the firm cannot exaggerate its cash holdings. That means our IC constraint is specified

consistently with the firm’s limited liability. On the contrary, some papers assumed that

the firm can repay the requested amount of cash for other states irrespective of its realized

cash flow, meaning that the firm must be punished uniformly across the state space. Hence,

our IC constraint is weaker than assumed in part of the literature and may be slack at the

optimum.

Second, we discuss an extension of the model where the firm can surreptitiously liquidate

its collateral to an outside investor after the realization of its cash flow, and before the

execution of the contractual repayments. This assumption relaxes the firm’s limited liability

and enables it to exaggerate its cash flow ex-post. We show that our piecewise structure is

robust to this extension when liquidation to the new investor is less efficient than liquidation

to the incumbent investor in the contractual relationship. When liquidation to the new

investor is sufficiently efficient, the optimal contract is a debt contract without bankruptcy,

i.e., the firm will always liquidate to the new investor to repay the debt, and avoid any

liquidation to the incumbent investor. Moreover, we show that allowing for surreptitious

liquidation may hurt the firm, as it makes the IC constraint stronger by relaxing the firm’s

limited liability.

This paper can be viewed as a synthesized framework of financial contracting with ex-post

adverse selection and indivisible collateral. When the cost of partial liquidation is small, our

model becomes similar to the classical model of Costly State Verification (CSV) established

by Townsend (1979) and Gale and Hellwig (1985). When the cost of partial liquidation is

infinity, there are some common features that our model shares with the one in Hart and

Moore (1998), where the firm’s cash flow cannot be verified by a third party. Moreover, this

paper can also be interpreted as a theory of bankruptcy, if one views the bankruptcy court

as a trusted third party. When the firm is insolvent, it can either turn to a bankruptcy

court which verifies its cash repayment, divides its collateral, and transfers part of it to the

investor, or it can walk away from the contract, keep its remaining cash, and leave the assets

wholesale to the creditor. This latter option resembles the strategy often chosen by defaulting

homeowners in the real estate market. Our model thus provides a benchmark for studying

the firm’s trade-off between these two choices and shows that they can endogenously arise

within the same contract.

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3

presents our main results. Section 4 provides the example of one single indivisible asset to

be used as collateral. Section 5 discusses the literature and extends our benchmark model

to allow for surreptitious liquidation. Section 6 concludes. All the proofs are relegated to

the Appendix.
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2 Model

Consider a financial contracting environment between a firm and an investor. The firm is

endowed with I0 ≥ 0 units of cash (numeraire), and fixed assets of which the measure is

normalized to 1, with a specific future value V > 0 to itself and a market value of W < V .

The investor is assumed to have deep pockets.

The firm has the opportunity to use its assets and expertise to undertake a risky project.

The project needs I > I0 units of cash to initiate, and will generate some cash flow ω,

which is stochastic with c.d.f. F and p.d.f. f over [0, ω̄].1 Moreover, the distribution of ω is

common knowledge, while the realization of ω can be only observed freely by the firm. Thus

ω is the firm’s private information, to which we will sometimes refer as its (ex-post) type.

Assume that f(ω) ∈ [f, f ] for any ω ∈ [0, ω̄], and I < E(ω), meaning that the investment is

profitable. Since I > I0, the firm has to obtain external funds from the investor to start the

project. We let B denote the firm’s initial borrowing, and allow it to borrow more than its

actual liquidity shortage, i.e., B ≥ I − I0. After the realization of ω, the firm can use the

cash or liquidate part of its assets to repay the investor. Due to the information asymmetry

between the two parties, both cash repayment and liquidation can only be contingent on the

firm’s report of the state, which is denoted by ω̂.

We suppose that the firm’s cash repayment cannot exceed its ex-post cash holdings, i.e.,

the firm is protected by limited liability. If we denote by R(ω̂) the firm’s cash repayment

when it reports ω̂, then limited liability requires that

R(ω̂) ≤ I0 +B − I + ω for any ω, ω̂ ∈ [0, ω̄]. (LL)

By assuming limited liability, we rule out the firm’s ability to borrow after the realization

of ω. One may argue that ex-post the firm can obtain additional finance from an outside

investor by pledging some of its remaining assets. However, if refinancing is costly, it will

not be in the firm’s interest to issue new debt. In Section 5 we show this in a variation of our

model in which ex-post borrowing is allowed and takes the form of surreptitious liquidation.

Furthermore, we denote by X(ω̂) the fraction of assets to be liquidated when the firm

reports ω̂. Since the investor and other market participants have the same valuation of

the firm’s assets, which is lower than that of the firm, it does not matter whether the firm

liquidates the assets and pays the liquidation value to the investor or whether the firm

transfers the assets to the investor. For notational convenience, we denote W/V = α < 1.

Hence, as in Hart and Moore (1998), assets should optimally remain in the possession of the

1. Our analysis will go through if ω is distributed over [0,+∞).
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firm; liquidation is socially inefficient.2

We assume that assets consist of finitely many indivisible units and that, without further

action, each such unit can only be transferred as a whole. Hence, the firm’s assets are what

we call partially divisible and thus can be divided into finitely many parts. In other words,

the firm can only choose X(ω̂) from a finite set, denoted by X = {x0, x1, . . . , xn}, with n ≥ 1.

We further assume that 0 = x0 < x1 < · · · < xn = 1, implying that no liquidation and full

liquidation can always be chosen. The case n = 1 of a single indivisible asset (think of a

house as collateral for a mortgage) will serve as a lead example in Section 4; we analyze the

general case n ≥ 1 in Section 3.

While the firm’s asset base as such is only partially divisible, it can be continuously

liquidated if the parties bring in a third party. This costs c ≥ 0 and makes it possible to

liquidate the assets in any desired way. This may either be through technical and legal

expertise with respect to the assets or by using and certifying an appropriate stochastic

mechanism.3 The third party can be interpreted as a court, which supervises the partial

liquidation procedure or which implements stochastic liquidation, but since we do not model

institutional details here, it can also be interpreted as a private out-of-court mediator.4

Liquidation supported by the third party can take any value in the closed interval [0, 1]. Let

ψ be a function of ω̂ that indicates whether the third party should be introduced when the

firm reports ω̂: ψ(ω̂) = 1 if yes, otherwise ψ(ω̂) = 0. Therefore, the liquidation decisionX(ω̂)

is affected by ψ(ω̂). We will formally refer to this constraint as the feasibility constraint, i.e.,

If ψ(ω̂) = 0 then X(ω̂) ∈ X . If ψ(ω̂) = 1 then X(ω̂) ∈ [0, 1]. (FC)

Varying values of c correspond to different cases in the literature. If c = 0, the firm’s

assets are perfectly divisible as in the models of Hart and Moore (1998), Faure-Grimaud

(2000), and others. If c is sufficiently large, the asset is completely indivisible, such as in

Lacker (2001). If c is positive but small, this is as in the models of costly state verification

of Townsend-Gale-Hellwig. For simplicity, we assume the cost c is monetary and borne by

the investor.

A contract now specifies: (1) the firm’s initial borrowing B; (2) the cash repayment R

from the firm to the investor; (3) the fraction of assets to be liquidated X; and (4) a function

ψ indicating whether the third party is called upon. (2), (3), and (4) are all functions of ω̂ .

2. In Hart and Moore (1998), the cash flow is observable by both parties but not verifiable by outsiders,
in order to simplify the problem of ex-post renegotiation.

3. Hence, there is continuous liquidation in expected value, which is all that matters in our risk-neutral
setting. Stochastic liquidation has been discussed, e.g., by Mookherjee and Png (1989).

4. See, e.g., Aghion, Hart, and Moore (1992) or von Thadden, Berglöf, and Roland (2010) for fuller models
of bankruptcy and bargaining.
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In the following analysis, we will denote the contract by Γ, i.e., Γ = (B,R,X, ψ).

In addition, we assume that both contracting parties are risk-neutral. Given the realized

cash flow ω and the firm’s report ω̂, the utility functions are

uI(Γ, ω, ω̂) = −B +R(ω̂) +X(ω̂)W − ψ(ω̂)c

for the investor, and

uF (Γ, ω, ω̂) = I0 +B − I + ω −R(ω̂) + [1−X(ω̂)]V

for the firm.

We assume that the parties can commit to the ex-post execution of the contract ex-

ante. Therefore, by the revelation principle, we can without loss of generality focus on direct

mechanisms. In these mechanisms, the firm must have incentives to truthfully report its

cash flow. That leads to the incentive-compatibility constraint

uF (Γ, ω, ω) ≥ uF (Γ, ω, ω̂) for any ω, ω̂ such that R(ω̂) ≤ I0 +B − I + ω. (IC)

Note that we only require that each (ex-post) type of the firm has no incentive to choose

the repayment/liquidation combinations designed for other types among those it can afford

in state ω. Hence, the set of deviations possible for each type depends on the (endogenous)

contract. This formulation of the incentive-compatibility constraint has been overlooked in

the literature up to now5 and makes the analysis more complicated than under the standard

approach (which ignores the qualification of feasible deviations). However, the qualification

is essential in a model built on the very notion of limited liability.

Finally, the investor should at least break even if she accepts the contract, which implies

her individual rationality constraint

EωuI(Γ, ω, ω) ≥ 0. (IR)

Hence, a full statement of the contracting problem is

max
Γ

EωuF (Γ, ω, ω),

subject to (LL), (FC), (IC) and (IR).

5. See, e.g., Faure-Grimaud 2000; Povel and Raith 2004b; Hege and Hennessy 2010 and our discussion in
Section 5.
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We say that a contract Γ is optimal if it is a solution to this problem.

3 Analysis

We start with some concepts and notations. First, for any two contracts, Γ and Γ̂, we say

that Γ is weakly dominated by Γ̂ if the following two inequalities hold:

EωuI(Γ, ω, ω) ≤ EωuI(Γ̂, ω, ω), (1)

EωuF (Γ, ω, ω) ≤ EωuF (Γ̂, ω, ω). (2)

Furthermore, Γ is strictly dominated by Γ̂ if (1) and (2) hold, and at least one of them is

strict.

Then, we use Φ(ω) to represent the firm’s ex-post total payout under the contract Γ as

valued by the firm, i.e.,

Φ(ω) = R(ω) +X(ω)V.

By (IC), the firm can always understate its cash flow, so Φ(ω) must be nonincreasing.

Finally, we describe a specific form of contract that is defined piecewisely, and in each of

these pieces, the contract resembles a debt.

Definition 1. Γ is a piecewise debt-like contract (PDC) if there exists a sequence of

triples, {(rwj , r
p
j , φj)}j=0,1,...,n, such that:

(a) 0 = rwn ≤ rpn−1 ≤ rwn−1 ≤ · · · ≤ rp0 ≤ rw0 ≤ ω̄;

(b) For any j = 0, 1, . . . , n− 1,

I0 +B − I + rwj + xjV ≤ φj ≤ I0 +B − I + rwj+1 + xj+1V ; (3)

(c) For any j = 0, 1, . . . , n,

(c.1) if ω ∈ [rwj , r
p
j−1) for j ≥ 1, or ω ≥ rw0 for j = 0, then R(ω) = I0 + B − I + rwj ,

X(ω) = xj, ψ(ω) = 0;

(c.2) if ω ∈ [rpj , r
w
j ), then R(ω) = I0 +B − I + ω, X(ω) ∈ [0, 1], Φ(ω) = φj, ψ(ω) = 1.

Figure 1 gives us a graphical illustration of a PDC. In a PDC, the firm is supposed to

perform wholesale transfers of a fraction xj+1 of the assets when its realized cash flow is

higher than, and close to, rwj+1, i.e., when ω ∈ [rwj+1, r
p
j ). When the firm’s cash flow is much

higher than rwj+1, but still less than rwj , the firm will need the third party and perform partial

liquidation. In this case the firm’s total payout is determined by φj. Here the superscript

w stands for “wholesale transfers”, i.e., rwj is the left endpoint of an interval with wholesale
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0 ω

R

rpj+1 rwj+1 rpj rwj rpj−1 0

1

ω

X

rpj+1 rwj+1 rpj rwj rpj−1

Figure 1: The structure of a PDC.

transfers. Similarly, the superscript p stands for “partial liquidation”, i.e., rpj is the left

endpoint of an interval with partial liquidation.

In what follows, we will show that any contract that satisfies all the constraints of the

contracting problem is weakly dominated by a PDC; moreover, any PDC satisfies these

constraints. Hence, the optimal PDC must be an optimal contract of the firm’s problem.

Proposition 1. If Γ is a PDC, then it satisfies (LL), (FC) and (IC).

The proof of Proposition 1 is centered around verifying the incentive constraint. Since by

(b) of the definition of PDC, the firm’s payout Φ(ω) is nonincreasing, it is not profitable for

the firm to understate its cash flow. Moreover, when ω ∈ [rpj , r
w
j ) for some j, the firm cannot

exaggerate its cash flow, because a higher cash flow leads to a higher cash repayment, which

will certainly exceed its realized cash flow ω. When ω ∈ [rwj , r
p
j−1) for some j, the firm can

exaggerate its cash flow, but its payout is then the same as that with a truthful report.

Proposition 2 tells us that, if a contract satisfies (LL), (FC) and (IC), then it is weakly

dominated by a PDC. Moreover, in such a PDC the firm borrows exactly the same amount as

its actual liquidity shortage. This result echos the notion of maximum equity participation

in Gale and Hellwig (1985).

Proposition 2. If Γ satisfies (LL), (FC) and (IC), then it is weakly dominated by a PDC

Γ̂ with B̂ = I − I0.

9



The proof of Proposition 2 involves several steps. First, for any contract that satisfies

(LL), (FC) and (IC), whenever there is an ωj such that the firm liquidates xj at ωj with a

wholesale transfer, we find the smallest possible state that can afford the cash repayment

R(ω), and make it the definition of rwj . It can be shown that all the states between rwj and

ω share the same payout, i.e., Φ(ω) is constant for any ω ∈ [rwj , ωj]. Second, consider an

alternative contract that is defined as follows: When ω is sufficiently close to rwj , and ω ≥ rwj ,

the firm liquidates xj at ω with a wholesale transfer, otherwise, the firm liquidates as little

as it can with partial liquidation. At the same time, we make the firm’s expected payout

identical between the two contracts. The key point in this step is to find the cutoff that

determines whether the firm in state ω should use partial liquidation. Roughly speaking,

the benefit of using partial liquidation is that it enables the firm to minimize its liquidation

for a given ω, therefore such benefit decreases with xj − X(ω). The cost of using partial

liquidation is the constant c, which ultimately is borne by the firm. The cutoff is then pinned

down by resolving this tradeoff. Finally, we can verify that this new contract is a PDC that

weakly dominates the initial contract.

Note that while any contract that satisfies (LL), (FC) and (IC) is weakly dominated by

a PDC, it does not mean that PDCs are the only possible structure of optimal contracts. To

see this, suppose that Γ is an optimal PDC. By Definition 1, a PDC has Φ(ω) = φj for any

ω ∈ [rpj , r
w
j ), which means X(ω) has a slope of −1, as shown in Figure 1. Consider another

decreasing function X̂(ω) defined for any ω ∈ [rpj , r
w
j ). Let X̂(ω) have a slope smaller than

−1 and satisfy the following:

Eω[X(ω)|rpj ≤ ω < rwj ] = Eω[X̂(ω)|rpj ≤ ω < rwj ].

Then, suppose that

Γ̂ =







(B,R, X̂, ψ) if ω ∈ [rpj , r
w
j ),

Γ otherwise.

We can prove that Γ̂ is also an optimal contract, but clearly it is not a PDC. In other words,

Γ̂ generates the same expected payoffs for two contracting parties as Γ, but has a steeper

liquidation function on one of its intervals with partial liquidation; this feature still makes

Γ̂ an incentive-compatible contract.

Based on this result, we know that the firm’s problem can be solved by finding an optimal

PDC, a problem that can be solved using the standard Lagrangian method. Therefore, if

we denote the upper endpoint rp−1 = ω̄, the problem of finding the optimal PDC can be
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rewritten as

min
{(rw

j
,r

p

j
,φj)}j=0,1,...,n

n∑

j=0

(rwj + xjV )[F (rpj−1)− F (rwj )] +
n−1∑

j=0

φj[F (r
w
j )− F (rpj )]

subject to the constraints that are imposed by the PDC structure:

0 = rwn ≤ rpn−1 ≤ rwn−1 ≤ · · · ≤ rp0 ≤ rw0 ≤ ω̄, (4)

rw0 ≤ φ0 ≤ rw1 + x1V ≤ φ1 · · · ≤ φn−1 ≤ V, (5)

and the investor’s participation constraint:

−(I − I0) +
n∑

j=0

(rwj + xjW )[F (rpj−1)− F (rwj )] +
n−1∑

j=0

∫ rwj

r
p

j

[ω + α(φj − ω)− c]dF (ω) ≥ 0. (6)

Proposition 3 shows that the optimal PDC has a potentially rich structure that depends

on the size of the liquidation cost c and the firm’s funding need I − I0. In particular, when

I − I0 is sufficiently small, the optimal PDC only has partial liquidation; when c exceeds a

certain threshold and I − I0 is not too large, the optimal PDC has only wholesale transfers

and no partial liquidation.

Proposition 3. There exist two cutoffs, c and c, and two functions, I(c) and I(c), such

that:

(a) If I − I0 < I(c), then any optimal PDC with B = I − I0 has only partial liquidation,

moreover, when c > c, I(c) = 0;

(b) If I − I0 < I(c), then any optimal PDC with B = I − I0 has only wholesale transfers;

moreover, when c < c, I(c) = 0.

The results in Proposition 3 are depicted in Figure 2.

Proposition 3 is proved by exploiting the Lagrangian. Let L be the Lagrangian for

the firm’s problem, and λ be the multiplier for the investor’s participation constraint. We

first assume that there are wholesale transfers in the optimal PDC. By first-order necessary

conditions, we can compute a lower bound for λ. Then, we show that a larger λ is associated

with a larger I− I0, so there is an upper bound for I− I0, which in turn serves as a sufficient

condition for partial liquidation, i.e., the result stated in (a) of Proposition 3. Following the

same procedure, we assume that there is partial liquidation in the optimal PDC to get the

sufficient condition in (b) of Proposition 3.

Proposition 4 characterizes the optimal PDC without partial liquidation. It provides a

necessary condition that allows us to compute rwj based on rwj−1 and rwj+1.
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0 c

I − I0

c c

II

Wholesale transfers exist

Partial liquidation exists.

Figure 2: Wholesale transfers and partial liquidation in the optimal PDC.

Proposition 4. If Γ is an optimal PDC without partial liquidation, then there exists µ ≤ α

such that for any j = 0, 1, . . . , n− 1, if further Φ(rwj−1) < Φ(rwj ) < Φ(rwj+1), then

rwj − rwj+1 − µ(xj+1 − xj)V =
F (rwj−1)− F (rwj )

f(rwj )
. (7)

To understand the intuition behind (7), consider the problem of choosing the optimal

rwj on the interval [rwj+1, r
w
j−1]. By definition, the firm whose type is lower than rwj has to

repay rwj+1 units of cash, and liquidate a fraction xj+1 of its assets to the investor, while the

firm with a type higher than rwj has to repay rwj and liquidate xj. Note that rwj+1 < rwj , and

xj+1 > xj. Therefore, it is as if the investor is selling xj+1−xj of the assets to the firm whose

ability to pay is distributed over [rwj+1, r
w
j−1]. Standard theory of optimal pricing tells us that

the price net of the cost should be equal to the inverse of the conditional hazard rate, i.e.,

rwj − rwj+1
︸ ︷︷ ︸

Price

−µ(xj+1 − xj)V
︸ ︷︷ ︸

Shadow cost

=
F (rwj−1)− F (rwj )

f(rwj )
︸ ︷︷ ︸

Inverse of the conditional hazard rate

.

In other words, the firm whose type is higher than rwj repays extra rwj −r
w
j+1 units of cash, and

retains a fraction xj+1 − xj of its assets. Thus, by choosing rwj , the investor actually sets a

“price” that equals rwj −r
w
j+1, and her “shadow cost” is xj+1−xj multiplied by µV ≤ W , which

indexes the efficiency loss from liquidation. The investor’s marginal revenue is determined
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by the inverse of the conditional hazard rate. Hence, (7) comes from setting the price equal

to the marginal revenue. Moreover, since (7) holds for any j, the multiplier before “shadow

cost”, which is µ, should be constant for all j in an optimal contract. This means that the

marginal efficiency loss from liquidation is constant for all j at the optimum.

Figure 3 depicts the optimal PDC characterized in Proposition 4. This contract can be

implemented by a sequential repurchase agreement: For any j, the contracting parties set

a price rwj − rwj+1 for a fraction xj+1 − xj of the assets; the firm can repurchase its assets

if it can afford the corresponding price after the realization of ω. Moreover, the firm must

repurchase sequentially: It should pay for xj+1 − xj before xj − xj−1.

0 ω

R

rwj+1 rwj rwj−1 . . . rw0 0

1

ω

X

rwj+1 rwj rwj−1 . . . rw0

Figure 3: Optimal contract without partial liquidation.

The following Proposition 5 answers the following question: How frequently would whole-

sale transfers be used in an optimal PDC? In other words, what is the ex-ante probability

for the assets to be transferred without outside intervention? Note that in a PDC, wholesale

transfers are implemented only when ω ∈ [rwj , r
p
j−1). Proposition 5 tells us that the length

of such interval is bounded above by a linear function of c.

Proposition 5. If Γ is an optimal PDC, then for any j = 0, 1, . . . , n− 1,

rpj − rwj+1 ≤
c

1− α
. (8)

To prove Proposition 5, we only need to use the fact that if rpj > rwj+1, then ∂L/∂rpj must

be nonpositive, otherwise one can reduce rpj to increase the value of L.
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Corollary 1 directly comes from Proposition 5. In the optimal PDC, the intervals imple-

menting wholesale transfers shrink as c converges to zero. In the extreme case with c = 0,

the firm can always implement partial liquidation.

Corollary 1. If c = 0, then the optimal PDC has the following feature: There exists a

cutoff rw0 such that when ω ≥ rw0 , R(ω) = rw0 , X(ω) = 0; when ω < rw0 , R(ω) = ω,

X(ω) = (rw0 − ω)/V .

In this case, the optimal PDC becomes similar to the ones derived in the literature with

continuous liquidation, such as Diamond (1984) and Faure-Grimaud (2000).

4 An Illustrative Example

In this section, we assume that assets are fully indivisible, i.e., n = 1, and graphically

illustrate the structure of the optimal PDC under this simplified assumption. Moreover, we

show how this structure varies with c and I − I0. According to Proposition 2, when n = 1,

the optimal PDC is pinned down by only three parameters: rp0, r
w
0 , and φ0.

By Proposition 3, if c and I−I0 are sufficiently small, liquidation in the optimal contract

is fully continuous, which is shown in Figure 4.

0 ω

R

rw0 0

1

ω

X

rw0

ψ = 1 ψ = 0

Figure 4: Optimal PDC with indivisible assets (c is small).
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0 ω

R +XV

φ0

rw0 0 ω

R +XW

rw0

Figure 5: Valuation of contractual transfers.

It is also instructive to study the valuation of the contractual transfers from both con-

tracting parties’ perspectives. As a complement to Figure 4, the total transfers from the

firm as valued by the firm, R(ω) +X(ω)V , and as valued by the investor, R(ω) +X(ω)W ,

are depicted in Figure 5.

The contract in Figure 4 differs from the optimal contract in Faure-Grimaud (2000) in

an important aspect: The firm’s expected payout on [0, rw0 ) is determined by φ0, which may

exceed the “face value" rw0 . In other words, while the firm needs to pay rw0 to settle its debt,

it may be punished by more than this amount if it defaults.

According to Gale and Hellwig (1985), a standard debt contract is defined by the following

three properties: (1) the firm pays a fixed amount of cash when it is solvent; (2) the firm

is declared bankrupt if this fixed cash payment cannot be met; (3) the investor can recoup

as much of the debt as possible from the firm’s assets. From Figure 5, the optimal PDC

satisfies the first two properties but violates the third one. When the firm goes bankrupt,

the market value of the assets liquidated is not enough to make up for the gap between the

firm’s cash payment and the fixed repayment. However, the firm still possesses some assets

after bankruptcy. In other words, the investor suffers a loss when the firm is insolvent, while

the firm is punished more than required in bad states due to (IC). On the other hand, a

standard debt contract would lead to excessive liquidation, i.e., excessive deadweight loss,

and thus is not optimal in our framework. Therefore, we call the optimal PDC in Figure 4

a debt-like contract.

15



Turning to Figure 6, if I − I0 is relatively large, the firm may have to liquidate a large

fraction of assets through the third party when its cash flow is far below the cutoff rw0 . When

this fraction is sufficiently large, the relative benefit from implementing partial liquidation

becomes small and the borrower would rather transfer the asset fully than pay the cost of

partial liquidation. Partial liquidation and wholesale transfers thus coexist in the optimal

PDC in an interesting way: if realized cash is small, the borrower keeps the cash and walks

away from the contract, leaving the asset wholly with the creditor. If the cash is intermediate,

liquidation does not have to be that large, and the borrower prefers to repay what she has

and liquidate partially. This contract resembles actual behavior in the US housing market,

and to the best of our knowledge has not been identified in the contracting literature so far.

0 ω

R

rw0rp0 0

1

ω

X

rw0rp0

ψ = 0 ψ = 1 ψ = 0

Figure 6: Optimal PDC with indivisible assets (c is medium).

If, on the other hand, c is large, then by Proposition 3, when c ≥ (1−α)V , it is possible

that the firm will never implement partial liquidation. The optimal PDC in this case is a

pure “walk away contract", similar to the one derived in Lacker (2001) and is depicted in

Figure 7.

Hence, even in the simple case of assets composed of only one indivisible unit, the optimal

PDCs can take a number of different forms that resolve the underlying tradeoff between the

costs of defaulting in an interesting way.
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0 ω

R

rw0 0

1

ω

X

rw0

ψ = 0 ψ = 0

Figure 7: Optimal PDC with indivisible assets (c is large).

5 Discussion

Nonbinding incentive-compatibility constraint. As discussed in Section 1, our model

belongs to the literature of financial contracting with ex-post adverse selection. While this

approach has proved to be highly insightful, most of the literature has employed a shortcut

with respect to the IC constraint that is inconsistent with the very assumption underlying

the problem, namely the informed party’s limited liability. Taking Faure-Grimaud (2000) as

an example, in its benchmark model, the incentive-compatibility constraint is specified as

uF (Γ, ω, ω) ≥ uF (Γ, ω, ω̂) for any ω, ω̂. (IC’)

This means that the firm can deviate to announce any payoff realization, regardless of

whether the deviation entails feasible transfers. In other words, the constraint ignores the

limited liability constraint (LL) off equilibrium.

Clearly, the correct constraint (IC) is weaker than (IC’), because under the correct con-

straint a type-ω firm cannot mimic states ω̂ with R(ω̂) > ω. Thus, there are fewer deviations

rule out, which means that (IC) is less restrictive than (IC’).

Following Faure-Grimaud (2000), other important papers have used this restricted ap-

proach, including (but may not be restricted to) Faure-Grimaud and Mariotti (1999), Povel

and Raith (2004a), Hege and Hennessy (2010), Khanna and Schroder (2010), Arve (2014),
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and Tamayo (2015).6 Clearly this approach simplifies the analysis considerably, because

(IC’) immediately implies that

R(ω) +X(ω)V

is constant across ω and that the incentive-compatibility constraint and the investor’s par-

ticipation constraint therefore bind.

This analysis is incomplete as long as one does not show that the solution under the

restricted approach is also optimal in the larger admissible set of the full approach. Since

the case c = 0 in our model is mathematically equivalent to the case of continuous liquidation

of the previous literature, our analysis in Section 3 fills this gap. However, it also shows that

when c > 0 the incentive constraint may cease to be binding, which invalidates the restricted

approach. In fact, whether (IC) binds in the optimal PDC actually depends on the cutoffs

{(rwj , r
p
j , φj)}j=0,1,...,n resulting from the firm’s optimization problem. An extreme example

is that when c is sufficiently large, the contract in Figure 7 is optimal, but (IC) binds only

when rw0 = V .

Moreover, even if c is sufficiently small, and the optimal PDC only has partial liquida-

tion, as depicted in Figure 4, (IC) may not be binding. Proposition 6 provides a necessary

condition for a binding (IC) when the optimal PDC has the structure displayed in Figure 4.

Proposition 6. If Γ is an optimal PDC with only partial liquidation, and Γ has a binding

(IC), then
1− F (rw0 )

f(rw0 )
> c,

where rw0 is determined by a binding (IR).

The condition stated in Proposition 6 is satisfied by c = 0. When c > 0, this condition

depends on the hazard rate of the distribution of ω. The key intuition for the nonbinding

(IC) is as follows. When partial liquidation is costly, the firm’s objective function becomes

two-dimensional: It not only wants to minimize the ex-ante probability of being liquidated,

but also aims to save the cost of partial liquidation. In fact, its objective would be a linear

combination of the expectation of the two variables, X and ψ. Therefore, compared to

the model with c = 0 and a binding (IC), the firm may reduce rw0 and make the incentive

constraint slack in order to reduce the expected liquidation cost.

6. See (IC) in Faure-Grimaud and Mariotti (1999), (3) in Faure-Grimaud (2000), (A.1) in Povel and
Raith (2004a), (27) in Hege and Hennessy (2010), Section 1.1 in Khanna and Schroder (2010), (11) in Arve
(2014), and (P.3) in Tamayo (2015). All of these papers ignore the role of limited liability in specifying the
incentive-compatibility constraints, although their results may not be affected by the misspecification.
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Surreptitious liquidation. In the model discussed up to now, the firm’s limited liability

constraint referred to its cash flow and nothing more. However, the firm can possibly generate

liquidity by liquidating some of its assets privately and thus mimic types with higher cash

flow. In this subsection, we provide a simple example to discuss how the structure of the

optimal contract varies if we allow for private surreptitious liquidation.

We take all the model settings in Section 2 as given, and further allow the firm to liquidate

its assets right after the realization of ω, and before the execution of the contractual payment.

If being liquidated secretly, the assets would generate Wp units of cash for the firm, where

0 < Wp < V . Therefore, if W < Wp, then being liquidated by an outsider is more efficient

than being liquidated by the incumbent investor, and vice versa.

To simplify our analysis, we assume that assets are indivisible, i.e., n = 1. Let Y denote

the quantity of assets being liquidated secretly, then Y ∈ {0, 1}. We assume that the

incumbent investor is aware of the possibility that assets may be liquidated secretly by the

firm, but she cannot observe how much of the assets are liquidated.7 In other words, Y is

also the firm’s private information, and it is a function of ω. Moreover, we rule out partial

liquidation by assuming that c is sufficiently large. This is a relatively strong assumption,

but it suffices to make the point. The general case is similar, because the secret extension

of ex-post cash is limited and comes at a cost that the contracting parties anticipate and

therefore try to avoid in the optimal contract. Finally, we rule out the firm’s choice on initial

borrowing and take B = I − I0 as given.

Therefore, in this simplified model, the firm’s utility function is given by:

uF (Γ, ω, ω̂) = ω + Y (ω)Wp −R(ω̂) + [1−X(ω̂)− Y (ω)]V.

The limited liability constraint, the feasibility constraint, and the incentive-compatibility

constraint are given by

R(ω̂) ≤ ω + Y (ω)Wp; (LLp)

0 ≤ X(ω̂) ≤ 1− Y (ω); (FCp)

uF (Γ, ω, ω) ≥ uF (Γ, ω, ω̂) for any ω, ω̂ such that

R(ω̂) ≤ ω + Y (ω)Wp and 0 ≤ X(ω̂) ≤ 1− Y (ω).
(ICp)

Here the subscript s stands for “surreptitious liquidation”. Note that even if we allow for

surreptitious ex-post liquidation, the firm is still subject to an ex-post resource constraint,

7. If the incumbent investor is unaware of the possibility of secrete liquidation, the model becomes similar
to the costly state falsification model studied in Lacker and Weinberg (1989).
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i.e., the total amount that can be used to repay its loan is bounded. Thus, our main point

that (IC) must incorporate the firm’s affordability constraint will not be affected.

Proposition 7, with its graphical illustration in Figure 8, characterizes the optimal con-

tract.

Proposition 7. Suppose that n = 1, c is large, and surreptitious liquidation is allowed.

(a) If Wp < max{W, I − I0}, then there exist rw0 , rw1 , and an optimal contract such that

when ω < rw0 , R(ω) = rw1 ≤ 0, X(ω) = 1; when ω ≥ rw0 , R(ω) = rw0 , X(ω) = 0;

moreover, either rw1 = 0, or rw1 = rw0 −Wp, where rw0 is determined by a binding (IR).

(b) If Wp ≥ max{W, I−I0}, then there exists an optimal contract such that R(ω) = I−I0,

X(ω) = 0 for any ω.

Wp < max{W, I − I0} Wp ≥ max{W, I − I0}

ω

R

rw1 rw0

rw0

X = 1, Y = 0 X = 0, Y = 0

0

1

ω

R

I − I0

I − I0

X = 0, Y = 1 X = 0, Y = 0

Figure 8: Optimal contract with indivisible assets and surreptitious liquidation.

There are several important remarks regarding Proposition 7 and Figure 8. First, note

that when Wp < max{W, I − I0}, the optimal contract characterized in Proposition 7 has

no surreptitious liquidation, and when Wp ≥ max{W, I − I0}, it has no liquidation to the

incumbent investor. There is no need to have a mixture of the two forms of liquidation

because the firm can shift all its liquidation to either of the two investors, whichever is more

efficient.

Second, while the optimal contract does not use any surreptitious liquidation when Wp <

max{W, I − I0}, it is still different from the optimal contract depicted in Figure 7 when

secret liquidation is not possible. According to Proposition 7, the firm’s cash repayment
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rw1 may be negative, i.e., it may receive reimbursements from the incumbent investor when

there is bankruptcy. However, from Definition 1, the cash repayment in a PDC should be

nonnegative. This is purely due to the revised incentive constraint (ICp). Since the incentive

constraint only applies to deviations that are affordable to the firm, allowing for surreptitious

liquidation makes it possible for the firm to exaggerate its cash flow and deviate to another

state with a cash repayment higher than ω. Therefore, if rw0 is small, the firm at state

ω < rw0 may still be able to repay rw0 by surreptitious liquidation. This possibility entails a

reimbursement from the incumbent investor to the firm when ω < rw0 .

Third, there are still cases in which (ICp) is slack in the optimal contract. When Wp <

max{W, I − I0}, either rw1 = rw0 −Wp, or rw1 = 0 with rw0 determined by a binding (IR). In

the former case (ICp) is slack, while in the latter case whether (ICp) binds depends on I−I0.

Therefore, even if we allow for surreptitious liquidation, the firm still faces some liquidity

constraint, because it is impossible for the firm to liquidate as much as it wants without any

cost. Hence, the incentive constraint should still be specified consistently with the firm’s

limited liability, and moreover, the misspecified incentive constraint in the previous part of

this section cannot be used as a shortcut.

Our final observation is that allowing for surreptitious liquidation may sometimes reduce

the firm’s expected utility. This result is formally stated in Proposition 8.

Proposition 8. Suppose that n = 1, c is large, and surreptitious liquidation is allowed.

(a) If Wp < max{W, I − I0}, then the firm is weakly worse off compared to the model

without surreptitious liquidation; moreover, if I − I0 < W , then the firm is strictly

worse off.

(b) If Wp ≥ I − I0 ≥ W , then the firm is weakly better off compared to the model without

surreptitious liquidation; moreover, if either I − I0 > W or Wp > W , then the firm is

strictly better off.

On the one hand, allowing for surreptitious liquidation relaxes the firm’s liquidity con-

straint, so it could be beneficial to the firm when such liquidation is not too costly, i.e.,

when Wp is large. On the other hand, since the incentive constraint interacts with the firm’s

limited liability, surreptitious liquidation enables the firm to make a cash repayment higher

than its realized cash flow. That is, it enlarges the scope to which the incentive constraint

applies. Therefore, the revised incentive constraint (ICp) is stronger than (IC). As a result,

when Wp is small, the firm may receive reimbursements in the optimal contract, which im-

plies that the optimal contract in the model without surreptitious liquidation is ruled out

by (ICp). In this case, the firm is strictly worse off.
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Related literature. Our paper extends the theory of financial contracting with adverse

selection, with a special focus on the tradeoff between partial liquidation and wholesale

transfers.8 The literature starting from Townsend (1979) and then developed by Diamond

(1984), Gale and Hellwig (1985), Bolton and Scharfstein (1990), and Faure-Grimaud (2000)

proved that the optimal contract with costless partial liquidation resembles a debt. Bor-

der and Sobel (1987) and Mookherjee and Png (1989) showed that debts may be Pareto

dominated when random auditing is allowed. In Krasa and Villamil (2000), whether the

optimal contract is stochastic and partial liquidation is performed depends on the informed

party’s commitment power. However, in none of these papers costly partial liquidation and

wholesale transfers can coexist in the optimal contract. This is in sharp contrast to our

results.

The paper perhaps closest to the one presented here is by Lacker (2001). In that paper,

the author provided a necessary and sufficient condition for a debt contract to be optimal,

and also discussed indivisible assets with stochastic liquidation. That paper also assumed

that the contracting parties cannot credibly pre-commit to randomize their future actions,

while we make a stronger assumption that allows the firm to commit to introduce the third

party, but possibly at a cost. Our paper is distinct from Lacker (2001) in several aspects. The

key difference is that in our model the third party does something more than a randomization

device: he may also inspect the firm’s cash repayment, which provides the basis of state-

contingent partial liquidation. In this sense, our model builds a bridge between several

different approaches in the field of financial contracting, such as the CSV model (Townsend

1979; Gale and Hellwig 1985) and the Hart-Moore model (Hart and Moore 1998). Moreover,

the main question addressed in Lacker (2001) is “When would a debt contract be optimal”,

while in our paper the question is “What is an optimal contract”. Finally, in our model,

assets can be partially divisible, and can also be surreptitiously liquidated to a third party;

these topics are not covered in Lacker (2001). There are also other papers adopting the

assumption of indivisible collateral, but they did not focus on how the indivisibility affects

the structure of the optimal contract (e.g., Yao and Zhang 2005; Gorton and Ordonez 2014).

Our paper is further related to the literature on optimal bankruptcy design (e.g., Aghion,

Hart, and Moore 1992; Berkovitch and Israel 1999; Bris, Welch, and Zhu 2006; von Thadden,

Berglöf, and Roland 2010; Gennaioli and Rossi 2013). When facing financial distress, the

firm can either go through the bankruptcy procedure and have its assets liquidated by the

decision of the court or reach an agreement with the investor that includes a transfer of

asset ownership. Our paper provides a new perspective to study the firm’s tradeoff between

8. There is another stream of literature that studies the moral hazard problem due to the separation
between ownership and control. See, e.g., Innes (1990) and more generally Tirole (2010).
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going through the bankruptcy procedure and reaching an out-of-court settlement, and how

the firm’s choice varies with the realized states.

6 Conclusion

In this paper, we present a model of financial contracting where the firm’s realized cash flow

is its private information, and thus entails an ex-post adverse selection problem. We show

that an optimal contract may have a piecewise structure when collateral is indivisible and

partial liquidation is costly. Moreover, partial liquidation and wholesale transfers of collateral

may coexist in the optimal PDC. This feature is in contrast to the existing literature which

emphasizes the optimality of standard debt.9 It is also consistent with observed behavior

in the real estate market, where borrowers frequently walk away from mortgage contracts

without going through bankruptcy or repaying all their cash. We also discuss how the

structure of the optimal PDC varies with the liquidation cost and the firm’s actual liquidity

shortage. In addition, our model can be extended to allow for secret ex-post liquidation,

which is shown to sometimes reduce the firm’s expected payoff.

This paper can be viewed as a contribution to the theory of corporate restructuring. In

practice, the firm faces the tradeoff between going through bankruptcy procedure and reach-

ing an agreement directly with the investor. Our model provides a synthesized framework

explaining the coexistence of these two alternatives. Also, this paper is related to the litera-

ture on optimal security design. In the optimal PDC, the firm will take two different actions,

depending on the realized performance of its project. This feature is similar to the optimal

security derived in Schmidt (2003) which allows the holder to take a state-dependent action.

We believe that our approach of making the different costs of resolving ex-post asymmetric

information in contracting frameworks explicit can have a wide range of applications in other

related fields, like the theory of auditing and optimal taxation.

9. For an exception, see Stenzel (2018).
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A Appendix

A.1 Proof of Proposition 1

Let Γ be a PDC. By definition, Γ satisfies (LL) and (FC). To prove (IC), note that the mono-

tonicity of Φ(ω) ensures that the firm does not want to understate its cash flow, therefore

we only need to rule out the firm’s incentive to exaggerate.

Suppose that ω1 < ω2, and Φ(ω1) > Φ(ω2). If ω2 ∈ [rwj , r
p
j−1) for some j = 1, 2, . . . , n, or

ω2 ≥ rw0 for j = 0, then ω1 < rwj , otherwise Φ(ω1) = Φ(ω2). However, ω1 < rwj implies that

I0 +B − I + ω1 < I0 +B − I + rwj = R(ω2).

If ω2 ∈ [rpj , r
w
j ) for some j = 0, 1, . . . , n, then (LL) binds at ω2, meaning that a type-ω1 firm

cannot misreport ω2 due to its inability to repay R(ω2). Hence, Γ satisfies (IC).

A.2 Proof of Proposition 2

Let Γ be a contract that satisfies (LL), (FC), and (IC). Our goal is to find a PDC Γ̂

that satisfies the conditions listed in the proposition and weakly dominates Γ. We will first

construct {(rwj , r
p
j , φj)}j=0,1,...,n and r in three steps.

Step 1. For any j = 0, 1, ..., n, if X(ωj) = xj and ψ(ωj) = 0 for some ωj, then

rwj = R(ωj)− (I0 +B − I).

Moreover, when xj < c/(1− α)V ,

rpj−1 = min{sup{ω : Φ(ω) = Φ(ωj)}, r
w
j−1};

when xj ≥ c/(1− α)V ,

rpj−1 = min{sup{ω : Φ(ω) = Φ(ωj)}, r
w
j +

c

1− α
, rwj−1}.

If there does not exist any ωj that satisfies X(ωj) = xj and ψ(ωj) = 0, then rwj = rpj for

j ≥ 1, and rwj = ω̄ for j = 0.

It can be verified that {rwj }j=0,1,...,n is nonincreasing: Suppose that X(ωj) = xj, X(ωk) =

xk, and ψ(ωj) = ψ(ωk) = 0 for some j, k ∈ {0, 1, . . . , n} and ωj, ωk, with j < k. From (IC)

and xj < xk, we know that R(ωj) > R(ωk), so rwj > rwk . Also, for any ω, R(ω) ≤ I0+B−I+ω̄,
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which means rwj ≤ ω̄. Moreover, note that

sup{ω : Φ(ω) = Φ(ωj)} ≥ ωj ≥ R(ωj)− (I0 +B − I) = rwj .

Therefore, for any j = 1, 2, . . . , n, rwj ≤ rpj−1 ≤ rwj−1, meaning that {(rwj , r
p
j )}j=0,1,...,n satisfies

condition (a) of Definition 1 except that rwn may be negative.

Step 2. For any j = 0, 1, . . . , n− 1, if rpj < rwj , then let φj be the solution for

∫ rwj

r
p

j

φjdF (ω) =

∫ rwj

r
p

j

[Φ(ω)− (I0 +B − I)]dF (ω).

If rwj = rpj , then φj is irrelevant to the contract. Since Φ(ω) is nonincreasing, we know that

{(rwj , r
p
j , φj)}j=0,1,...,n satisfies condition (b) of Definition 1.

Now we are ready to construct Γ̂. Let B̂ = I−I0. For any j = 0, 1, . . . , n, if ω ∈ [rwj , r
p
j−1)

for j ≥ 1, or ω ≥ rw0 for j = 0, then

R̂(ω) = rwj , X̂(ω) = xj, ψ̂(ω) = 0.

If ω ∈ [rpj , r
w
j ), then

R̂(ω) = ω, X̂(ω) =
φj − ω

V
, ψ̂(ω) = 1.

Note that by the definition of φj,

Φ(rwj )− (I0 +B − I) ≤ φj ≤ ω + V

⇒ rwj + xjV ≤ φj ≤ ω + V.

Therefore when ω ∈ [rpj , r
w
j ), X̂(ω) ∈ [0, 1]. Finally, if rwn < 0, one can increase rwn and reduce

rw0 to save the firm’s liquidation, thus it is without loss to let rwn = 0. Hence, Γ̂ is a PDC by

construction. Besides, we also need the following lemma.

Lemma A.1. For any j = 0, 1, . . . , n, if ω ∈ [rwj , r
p
j−1) for j ≥ 1, or ω ≥ rw0 for j = 0, then

Φ(ω) = I0 +B − I + rwj + xjV .

Proof. Suppose that ω ∈ [rwj , r
p
j−1) for some j ≥ 1. Then, there exists some ωj such that

X(ωj) = xj and ψ(ωj) = 0. By our construction, rwj = R(ωj)− (I0 + B − I) ≤ ωj, meaning

that the firm at state rwj and state ωj can mimic each other. From (IC), Φ(rwj ) = Φ(ωj).

Since Φ(ω) is nonincreasing, it must be constant on [rwj , r
p
j−1); this again comes from our

definition of rpj−1. Therefore Φ(ω) = Φ(ωj) = I0 + B − I + rwj + xjV . Our analysis can be

extended to the case when ω ≥ rw0 , so the lemma is proved.
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Our remaining task is to prove that Γ is weakly dominated by Γ̂. By Lemma A.1,

Φ(ω) = Φ̂(ω) + (I0 +B − I) for any ψ̂(ω) = 0. Furthermore, for any j = 0, 1, . . . , n− 1, our

construction of φj implies that Eω[Φ(ω)|[r
p
j , r

w
j )] = Eω[Φ̂(ω)+ I0+B− I|[rpj , r

w
j )]. Therefore,

EωuF (Γ, ω, ω) = I0 +B − I + V + Eω[ω − Φ(ω)]

= V + Eω[ω − Φ̂(ω)]

= EωuF (Γ̂, ω, ω).

The last equality comes from the fact that B̂ = I − I0. In other words, the firm’s expected

payout is the same in the two contracts, so we only need to show that the investor is weakly

better off.

Suppose that ω ∈ [rwj , r
p
j−1) for some j = 1, 2, . . . , n, or ω ≥ rw0 for j = 0. Then according

to our construction, ψ̂(ω) = 0. If ψ(ω) = 0, then the firm must liquidate some xj′ with

j′ ≥ j + 1 in the original contract. Therefore,

R(ω) ≤ I0 +B − I + rwj = I0 +B − I + R̂(ω);

R(ω) +X(ω)W = αΦ(ω) + (1− α)R(ω)

= α[I0 +B − I + Φ̂(ω)] + (1− α)R(ω)

≤ I0 +B − I + R̂(ω) + X̂(ω)W.

If ψ(ω) = 1 and xj < c/(1− α)V , then

R(ω) +X(ω)W − c ≤ Φ(ω)− c = I0 +B − I + rwj + xjV − c

≤ I0 +B − I + rwj + xjW.

If ψ(ω) = 1 and xj ≥ c/(1− α)V , then

R(ω) ≤ I0 +B − I + ω ≤ I0 +B − I + rwj +
c

1− α
,

R(ω) +X(ω)W − c = αΦ(ω) + (1− α)R(ω)− c

≤ I0 +B − I + rwj + xjW.

From the three cases above, it can be concluded that for any ω such that ψ̂(ω) = 0,

R(ω) +X(ω)W − ψ(ω)c ≤ I0 +B − I + R̂(ω) + X̂(ω)W. (9)

Suppose that ω ∈ [rpj , r
w
j ) for some j = 0, 1, . . . , n − 1. Then ψ̂(ω) = 1. If ψ(ω) =
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0, then the firm must liquidate some xj′ with j′ ≥ j + 1 in the original contract, thus,

R(ω) = I0 + B − I + rwj′ , and X(ω) = xj′ ≥ c/(1 − α)V . However, Lemma A.1 and the

monotonicity of Φ(ω) imply that Φ(ω) ≤ I0 + B − I + rwj+1 + xj+1V . Therefore, we must

have Φ(ω) = I0 +B − I + rwj+1 + xj+1V , and ω ≥ rwj+1 + c/(1− α). Thus,

R̂(ω) = ω, X̂(ω) =
φj − ω

V
;

R(ω) +X(ω)W = αΦ(ω) + (1− α)R(ω)

≤ αΦ(ω) + (1− α)(I0 +B − I + rwj+1)

≤ αΦ(ω) + (1− α)(I0 +B − I + ω −
c

1− α
)

= αΦ(ω) + (1− α)[I0 +B − I + R̂(ω)]− c. (10)

If ψ(ω) = 1, then

R(ω) +X(ω)W − c = αΦ(ω) + (1− α)R(ω)− c

≤ αΦ(ω) + (1− α)[I0 +B − I + R̂(ω)]− c. (11)

Therefore, from (10)–(11),

Eω[R(ω) +X(ω)W − ψ(ω)c|ψ̂(ω) = 1]

≤ Eω[αΦ(ω) + (1− α)(I0 +B − I + R̂(ω))− c|ψ̂(ω) = 1]

= Eω[I0 +B − I + αΦ̂(ω) + (1− α)R̂(ω)− c|ψ̂(ω) = 1]

= Eω[I0 +B − I + R̂(ω) + X̂(ω)W − c|ψ̂(ω) = 1].

This inequality, together with (9), implies that

EωuI(Γ, ω, ω) = −B + Eω[R(ω) +X(ω)W − ψ(ω)c]

≤ −B̂ + Eω[R̂(ω) + X̂(ω)W − ψ̂(ω)c]

= EωuI(Γ̂, ω, ω).

Hence, Γ is weakly dominated by Γ̂, and our proof of the proposition is completed.

A.3 Proof of Proposition 3

By standard arguments, if {(rwj , r
p
j , φj)}j=0,1,...,n minimize the firm’s expected payout subject

to the investor’s participation constraint, then there exists a constant λ such that they also
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minimize the following Lagrangian:

L = Eω[R(ω) +X(ω)V ] + λ{I − I0 − Eω[R(ω) +X(ω)W − ψ(ω)c]} (12)

subject to all the constraints listed in the reformulated problem. Moreover, if λ ≤ 1, L

becomes a nondecreasing function of EωR(ω) and EωX(ω), meaning that L is minimized

when EωR(ω) = EωX(ω) = 0, a contradiction to (IR). Hence, we must have λ > 1 and a

binding (IR) in any optimal PDC. Moreover, we have the following Lemma.

Lemma A.2. λ is nondecreasing in I − I0.

Proof. For any j = 1, 2, suppose that Γj is the optimal PDC when I − I0 = Ij. Then for

any Γj, let Rj = EωR(ω) and Xj = EωX(ω). By optimality, we have

R1 +X1V ≤ R2 +X2V + λ1(I1 − I2);

R2 +X2V ≤ R1 +X1V + λ2(I2 − I1).

These two inequalities jointly imply that

(λ1 − λ2)(I1 − I2) ≥ 0.

Therefore, if I1 > I2, then λ1 ≥ λ2.

Proof of part (a). Suppose that Γ is an optimal PDC with wholesale transfers. Let xj

be the smallest quantity of assets transferred as a whole, then j ≥ 1, and rwj < rpj−1.

If rpj−1 < rw0 , then there is only partial liquidation when ω ∈ [rpj−1, r
w
0 ). If we denote by

L(a, b) the value of the Lagrangian conditional on the interval (a, b), then L(rwj , ω̄) is given

by

L(rwj , ω̄) = (rwj + xjV )[F (rpj−1)− F (rwj )] + φ0[F (r
w
0 )− F (rpj−1)] + rw0 [1− F (rw0 )]

− λ{(rwj + xjW )[F (rpj−1)− F (rwj )] +

∫ rw
0

r
p

j−1

[ω + α(φ0 − ω)− c]dF (ω)

+ rw0 [1− F (rw0 )]}.
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First-order conditions are given by

∂L

∂rw0
= [(1− αλ)(φ0 − rw0 ) + cλ]f(rw0 )− (λ− 1)[1− F (rw0 )];

∂L

∂rpj−1

= [(1− αλ)(rwj + xjV − φ0) + λ(1− α)(rpj−1 − rwj )− cλ]f(rpj−1);

∂L

∂φ0

= (1− αλ)[F (rw0 )− F (rpj−1)].

When 1 − αλ > 0, ∂L/∂φ0 > 0, meaning that φ0 = rw0 . Moreover, rpj−1 < rw0 implies that

∂L/∂rw0 ≤ 0, which means

λ[1− c
f(rw0 )

1− F (rw0 )
] ≥ 1.

c must be sufficiently small so that the left-hand side is positive. Actually there are two

necessary conditions:

c <
1− F (rw0 )

f(rw0 )
≤

1

f
, (13)

λ ≥
1− F (rw0 )

1− F (rw0 )− cf(rw0 )
≥

1

1− cf
= λ1. (14)

If rpj−1 = rw0 , then

L(rwj , ω̄) = (rwj + xjV )[F (rw0 )− F (rwj )] + rw0 [1− F (rw0 )]

− λ{(rwj + xjW )[F (rw0 )− F (rwj )] + rw0 [1− F (rw0 )]}.

The first-order condition is given by

∂L

∂rw0
= [(λ− 1)(rw0 − rwj ) + (1− αλ)xjV ]f(rw0 )− (λ− 1)[1− F (rw0 )].

Similarly, we have ∂L/∂rw0 ≤ 0, which means

rw0 − rwj +
1− αλ

λ− 1
xjV ≤

1− F (rw0 )

f(rw0 )
≤

1

f
.

A necessary condition is

λ ≥
1 + xjV f

1 + αxjV f
= λ2. (15)

From (13) and (15), we know that rwj < rpj−1 implies either λ ≥ λ1, or λ ≥ λ2. We also
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know that c < 1/f is necessary for rpj−1 < rw0 . Put differently, λ < min{λ1, λ2} is sufficient

for rwj = rpj−1, and c ≥ 1/f is sufficient for rpj−1 = rw0 . Hence, from Lemma A.2, there exists

a cutoff I such that I − I0 < I is sufficient for that Γ has only partial liquidation. Moreover,

when c ≥ 1/f , Γ cannot have partial liquidation, so it is without loss to make I = 0 when

c ≥ 1/f = c.

Proof of part (b). Suppose that Γ is an optimal PDC with partial liquidation, and

c ≥ (1− α)V . Let rpj be the lower bound of the states that induce partial liquidation, then

rpj < rwj .

If rpj > 0, then j ≤ n − 1 and rwj+1 ≥ 0. The Lagrangian conditional on [rwj+1, r
p
j−1) is

given by

L(rwj+1, r
p
j−1) = (rwj+1 + xj+1V )[F (rpj )− F (rwj+1)] + φj[F (r

w
j )− F (rpj )]

+ (rwj + xjV )[F (rpj−1)− F (rwj )]− λ{(rwj+1 + xj+1W )[F (rpj )− F (rwj+1)]

+

∫ rwj

r
p

j

[ω + α(φ0 − ω)− c]dF (ω) + (rwj + xjW )[F (rpj−1)− F (rwj )]}.

The first-order conditions are given by

∂L

∂rpj
= [(1− αλ)(rwj+1 + xj+1V − φj) + λ(1− α)(rpj − rwj+1)− cλ]f(rpj ); (16)

∂L

∂φj

= (1− αλ)[F (rwj )− F (rpj )]. (17)

When 1−αλ < 0, ∂L/∂φj < 0, meaning that φj = rwj+1 + xj+1V . Moreover, rpj < rwj implies

that ∂L/∂rpj ≥ 0, which means

λ(1− α)(rpj − rwj+1 −
c

1− α
)f(rpj ) ≥ 0.

A necessary condition is

c ≤ (1− α)(rpj − rwj+1) < (1− α)(rwj − rwj+1) ≤ (1− α)(xj+1 − xj)V

≤ (1− α)V. (18)

However, this contradicts our assumption that c ≥ (1− α)V .

32



If rpj = 0, then the Lagrangian conditional on [rpj , r
p
j−1) is given by

L(rpj , r
p
j−1) = φj[F (r

w
j )− F (rpj )] + (rwj + xjV )[F (rpj−1)− F (rwj )]

+

∫ rwj

r
p

j

[ω + α(φ0 − ω)− c]dF (ω) + (rwj + xjW )[F (rpj−1)− F (rwj )]}.

The first-order conditions are given by

∂L

∂rwj
= [(1− αλ)(φj − rwj − xjV ) + cλ]f(rwj )− (λ− 1)[F (rpj−1)− F (rwj )];

∂L

∂φj

= (1− αλ)F (rwj ).

Similarly, when 1− αλ > 0, φj = rwj + xjV . rpj < rwj implies that ∂L/∂rwj ≤ 0, which means

λ[1− c
f(rwj )

F (rpj−1)− F (rwj )
] ≥ 1.

Two necessary conditions are

c <
F (rpj−1)− F (rwj )

f(rwj )
≤

1

f
, (19)

λ ≥
F (rpj−1)− F (rwj )

F (rpj−1)− F (rwj )− cf(rwj )
≥

1

1− cf
= λ1. (20)

Hence, there exists a cutoff I such that I − I0 < I is sufficient for that Γ has only wholesale

transfers. Moreover, since all the analysis in this part is conducted under the assumption

that c ≥ (1− α)V , it is without loss to make I = 0 when c < (1− α)V = c.

A.4 Proof of Proposition 4

If Φ(rwj−1) < Φ(rwj ) < Φ(rwj+1), then rwj+1 < rwj < rwj−1. Following the proof of Proposition 3,

the first-order derivative of L with respect to rwj is given by

∂L

∂rwj
= [(λ− 1)(rwj − rwj+1) + (1− αλ)(xj+1 − xj)V ]f(rwj )− (λ− 1)[F (rwj−1)− F (rwj )].

Since (IC) is slack at rwj and rwj−1, we must have ∂L/∂rwj = 0. Simplifying this equality, and

letting µ = (αλ− 1)/(λ− 1) will give us (7).
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A.5 Proof of Proposition 5

If rpj ∈ (rwj+1, r
w
j ), then the first-order derivatives of L with respect to rpj and φj are given

by (16) and (17). By (17), when 1 − αλ < 0, φj = rwj+1 + xj+1V ; when 1 − αλ ≥ 0,

φj ≤ rwj+1 + xj+1V . In both cases, we have

∂L

∂rpj
≥ λ(1− α)(rpj − rwj+1 −

c

1− α
)f(rpj ).

Since ∂L
∂r

p

j

≤ 0, we immediately have (8). A similar analysis will go through if rpj = rwj > rwj+1.

A.6 Proof of Proposition 6

Γ has only partial liquidation implies that rp0 = 0. The first-order derivative of L is given by

∂L

∂rw0
= cλf(rw0 )− (λ− 1)[1− F (rw0 )].

That means
1− F (rw0 )

f(rw0 )
=

λc

λ− 1
> c.

A.7 Proof of Proposition 7

Since it is too costly to use partial liquidation, in the optimal contract the firm only has

three possible ways to deal with its assets: X = Y = 0 (no liquidation), X = 0, Y = 1

(surreptitious liquidation), or X = 1, Y = 0 (full liquidation). By incentive-compatibility,

there are at most three distinct cash repayment choices in the contract that correspond to

the three actions on the assets. Let ωxy be a state with X = x ∈ {0, 1} and Y = y ∈ {0, 1},

and rxy be the cash repayment specified for state ωxy. We proceed the proof by showing a

sequence of lemmas.

Lemma A.3. r10 < r01 = r00.

Proof. Suppose that r10 ≥ r01. The firm at state ω10 can misreport state ω01 without any

form of liquidation, which is a violation of (ICp). Thus, r10 < r01. Suppose that r01 < r00. By

a similar logic, the firm at state ω00 can misreport state ω01 without surreptitious liquidation,

which violates (ICp). Suppose that r01 > r00. The firm at state ω01 can mimic state ω00 with

surreptitious liquidation, but it would pay less cash by reporting ω00. This also contradicts

(ICp), so r01 = r00. The lemma is thereby proved.
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From Lemma A.3 and (LLp), we must have r10 ≤ 0. Since any state can deviate to repay

r10 with full liquidation, from (ICp) we also have r00 ≤ r10+V . Finally, since the firm’s payout

function should be nonincreasing in ω, we can prove that any contract that satisfies (LLp),

(FCp) and (ICp) is weakly dominated by a contract with a cutoff structure: There exists rw00

such that when ω < rw00, R(ω) = r10, X(ω) = 1; when ω ≥ rw00, R(ω) = r00, X(ω) = 0. Note

that the firm would surreptitiously liquidate its assets only when ω ∈ [rw00, r00). In what

follows, we will focus on the set of contracts with such cutoff structure.

Lemma A.4. There exists an optimal contract with either rw00 = 0 or rw00 = r00.

Proof. Let Γ be a contract that satisfies (LLp), (FCp) and (ICp). Suppose that rw00 > 0 and

rw00 < r00, i.e., Γ has both surreptitious liquidation and liquidation by the investor. By (ICp),

r00 ≤ r10+Wp, otherwise the firm at state ω ∈ [rw00, r00) would have its assets fully liquidated

by the investor. However, the firm at state ω10 can deviate to repay r00 by surreptitious

liquidation. Again by (ICp), we have r00 = r10 +Wp.

Given this equality, we can improve the investor’s payoff from Γ based on the relationship

between Wp and W . If Wp ≤ W , the firm can liquidate its assets to the investor and induce

cash repayment r10 on [rw00, r00). Similarly, if Wp > W , the firm can liquidate its assets to

the third party and repay r00 to the investor on [0, rw00). In both cases, (ICp) is satisfied by

the revised contract, the firm’s utility is unchanged, and the investor is weakly better off.

Moreover, in both cases the revised contract has either rw00 = 0 or rw00 = r00, so the lemma is

proved.

If there exists an optimal contract with rw00 = r00, then by (ICp), r10+Wp ≤ r00. However,

when r10 < 0, the firm can always increase r10 and reduce r00 to minimize its probability of

being liquidated. Therefore, if r10 < 0, then we must have r10 +Wp = r00. In this case the

contract is purely determined by r10, which is in turn determined by a binding (IR), i.e.,

(W + r10)F (r00) + r00[1− F (r00)] = I − I0.

Hence, the firm’s expected utility is given by

EωuF (Γ, ω, ω) =

∫ r00

0

(ω − r10)dF (ω) +

∫ ω̄

r00

(ω + V − r00)dF (ω)

=

∫ ω̄

0

ωdF (ω)− r10F (r00) + (V − r00)[1− F (r00)]

=

∫ ω̄

0

ωdF (ω) + V − (I − I0)− (V −W )F (r00). (21)
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If there exists an optimal contract with rw00 = 0, then it must have r00 = I − I0. That

is, the firm repays a fixed amount of cash irrespective of ω. In this case, the firm’s expected

utility is given by

EωuF (Γ, ω, ω) =

∫ I−I0

0

[ω +Wp − (I − I0)]dF (ω) +

∫ ω̄

I−I0

[ω + V − (I − I0)]dF (ω)

=

∫ ω̄

0

ωdF (ω) + V − (I − I0)− (V −Wp)F (I − I0). (22)

Comparing (21) and (22), we can conclude that there exists an optimal contract with

rw00 = r00 if Wp ≤ W , or W < Wp ≤ I − I0. Similarly, there exists an optimal contract with

rw00 = 0 if Wp ≥ W , and Wp ≥ I − I0. After changing some notations we can get the results

stated in the proposition.

A.8 Proof of Proposition 8

When surreptitious liquidation is not allowed, by Proposition 2 and Proposition 3, the op-

timal PDC has the following form: When ω < rw0 , R(ω) = 0, X(ω) = 1; when ω ≥ rw0 ,

R(ω) = rw0 , X(ω) = 0, where rw0 is determined by a binding (IR). That is,

WF (rw0 ) + rw0 [1− F (rw0 )] = I − I0. (23)

Therefore the firm’s expected utility is given by

EωuF (Γ, ω, ω) =

∫ rw
0

0

ωdF (ω) +

∫ ω̄

rw
0

(ω + V − rw0 )dF (ω)

=

∫ ω̄

0

ωdF (ω) + V − (I − I0)− (V −W )F (rw0 ). (24)

When surreptitious liquidation is allowed, and Wp < max{W, I − I0}, there is no surrep-

titious liquidation in the optimal contract, so the first statement of (a) is straightforward.

To prove the second statement of (a), note that the optimal contract characterized in Propo-

sition 7 also has a binding (IR). That is,

(W + r10)F (r00) + r00[1− F (r00)] = I − I0.

Here we use r10 to replace rw1 , and r00 to replace rw0 to avoid confusion. Therefore, r10 < 0

if and only if I − I0 < W , meaning that the firm is strictly worse off.

When surreptitious liquidation is allowed, and Wp ≥ max{W, I−I0}, the firm’s expected
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utility is given by (22). If further we have I− I0 ≥ W , then by (23), rw0 ≥ I− I0. We can see

that the firm is weakly better off by comparing (22) and (24). Similarly, the firm is strictly

better off if we have either I − I0 > W , or Wp > W .
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