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Abstract: Most of the literature that studies frictional search-and-matching models

with heterogeneous agents and random search investigates steady states. Steady state re-

quires that the flows of agents into and out of the population of unmatched agents balance.

Here, we investigate the structure of this steady-state condition. We build on the “fun-

damental matching lemma” for quadratic search technologies in Shimer and Smith (2000)

and establish the existence, uniqueness, and comparative-static properties of the solution

to the steady-state condition for any search technology that satisfies minimal regularity

conditions.

∗This paper subsumes Nöldeke and Tröger (2009). We are grateful to Daron Acemoglu and Lones Smith
for prodding us to pursue the more general results presented here and thank Alfred Galichon, Samuel Häfner,
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1 Introduction

Search-and-matching models with heterogeneous agents are the cornerstone of the literature

investigating the economic causes and consequences of sorting and mismatch in labor mar-

kets (Marimon and Zilibotti, 1999; Teulings and Gautier, 2004; Eeckhout and Kircher, 2011;

Hagedorn, Law, and Manovskii, 2017). More generally, such models, surveyed by Burdett

and Coles (1999), Smith (2011) and Chade, Eeckhout, and Smith (2017, Section 4), have

provided key insights into the functioning of decentralized markets with trading frictions.

Examples include the conditions for assortative matching with transferable utility (Shimer

and Smith, 2000), block segregation with nontransferable utility (Burdett and Coles, 1997;

Smith, 2006), the emergence of the law of one price (Gale, 1987; Lauermann, 2013), and

the convergence of equilibria to stable matches as frictions vanish in marriage markets with

nontransferable utility (Lauermann and Nöldeke, 2014). With few exceptions (e.g., Smith,

2009), the literature considers steady-state equilibria.

As emphasized in Burdett and Coles (1999), identifying a steady-state equilibrium in a

search-and-matching model involves solving two distinct problems. First, taking a steady-

state population of unmatched agents as given, determine stationary equilibrium strategies

in the induced strategic interaction between the agents. Such a “partial equilibrium” (Bur-

dett and Coles, 1997) specifies, in particular, who matches with whom. More precisely, it

specifies what we refer to as the matching affinities, i.e., the probability that a meeting

between agents of given types leads to a match. Second, taking the matching affinities as

given, determine a steady-state population of unmatched agents, where steady state re-

quires that the outflow from the population of unmatched agents (due to the formation of

matches or exit) is balanced by a corresponding inflow (due to match dissolution or entry)

for every type of agent. A steady-state equilibrium obtains if both, the partial-equilibrium

and the steady-state condition hold.1

Here, we investigate the structure of the steady-state condition for a search-and-matching

model with random search, a continuum of types, and an exogenous separation of matches

as in Shimer and Smith (2000) and Smith (2006).2 Our motivation for doing so is that,

despite its importance for the determination of a steady-state equilibrium, much less is

known about the structure of the steady-state condition than about the structure of the

partial-equilibrium condition. Indeed, almost no progress has been made in elucidating the

structure of the steady-state condition since the seminal contribution in Shimer and Smith

(2000), who consider the steady-state condition under the assumption that the search tech-

nology that generates the meetings between unmatched agents is quadratic. Shimer and

1Some papers (e.g. McNamara and Collins, 1990; Morgan, 1998; Burdett and Wright, 1998; Bloch and
Ryder, 2000; Chade, 2001; Adachi, 2003; Chen, 2005) assume that agents who leave the pool of unmatched
agents are immediately replaced by identical clones. In such cloning models, the steady-state condition is
trivially satisfied for any population of unmatched agents. Thus, the conditions for a steady-state equilibrium
reduce to the partial-equilibrium condition, and none of the issues we discuss in this paper arise.

2Our results carry over to the common alternative specification in which there is an exogenous inflow of
unmatched agents and unmatched agents abandon their attempt to find a partner at an exogenous rate; see
Section 5.
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Smith (2000) establish the existence of a unique unmatched population that satisfies the

steady-state condition and the continuity of this solution in the matching affinities. This

result has later been labeled the “fundamental matching lemma” in Smith (2006), and it

was extended to linear search technologies in Nöldeke and Tröger (2009).

Our main results (Propositions 1 and 2) show that the fundamental matching lemma

does not require the assumption that the search technology is quadratic or linear. Rather,

the fundamental matching lemma holds whenever the search technology induces an aggre-

gate meeting rate that is continuous and non-decreasing in the mass of unmatched agents

and satisfies the boundary condition that the aggregate meeting rate is zero if there are no

unmatched agents. These regularity conditions on the behavior of the aggregate meeting

rate are not only natural; we also show that they are minimal in the following sense: if any

one of these three conditions (continuity, monotonicity, boundary behavior) fails, examples

featuring either no steady state or multiple steady states can be constructed.

The proofs of our main results build on two observations. The first observation, which

is immediate from the arguments proving the fundamental matching lemma for quadratic

search technologies in Shimer and Smith (2000), is that the steady states for quadratic

search technologies are a continuous function of a parameter that scales the velocity of

the search technology. The second observation is that every steady state for any general

search technology (satisfying our regularity conditions) corresponds to a steady state for

a quadratic search technology with a suitably chosen velocity parameter. Taken together,

these observations imply that for given matching affinities the steady states of general

search technologies can be identified with the roots of a continuous real function. Proving

the fundamental matching lemma for general search technologies thus boils down to showing

that this function has a unique root which changes continuously in the matching affinities.

This is easy to do if an increase in the velocity of a quadratic search technology does

(i) not increase the associated steady-state mass of unmatched agents and (ii) increases

the aggregate steady-state meeting rate. Establishing these intuitive comparative-static

properties lies at the heart of our argument and provides an economic understanding of the

forces driving our generalization of the fundamental matching lemma.

The most immediate implication of our analysis for steady-state equilibrium—with

matching affinities satisfying the additional partial-equilibrium condition—is that the re-

sults showing existence of steady-state equilibrium in Shimer and Smith (2000) and Smith

(2006) hold for all search technologies satisfying our regularity conditions and not only for

quadratic search technologies. This is so because the only implication of the steady-state

condition exploited in the existence proofs in Shimer and Smith (2000) and Smith (2006) is

the fundamental matching lemma.3 Conditions under which our results are liable to imply

uniqueness of steady-state equilibrium are discussed at the end of the paper in Section 5,

where we also consider extensions and related literature on the uniqueness of steady states.

3For search-and-matching models with a finite number of types, Lauermann and Nöldeke (2015) and
Manea (2017) present alternative proofs of the existence of steady-state equilibria based on Kakutani’s fixed
point theorem.
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2 The Steady-State Condition

We consider a search-and-matching process akin to the one considered in Shimer and Smith

(2000) and Smith (2006). Time is continuous and there is a continuum of infinitely lived

agents. Agents are characterized by their types x ∈ [0, 1]. For any (measurable) X ⊂ [0, 1],

the mass of agents with types in this set is given by
∫

X
ℓ(x)dx, where the (exogenous)

population density ℓ : [0, 1] → (0,∞) is measurable, bounded, and bounded away from

zero. Agents are either unmatched or matched with a single partner. For any X ⊂ [0, 1],

the mass of unmatched agents with types in this set is given by
∫

X
u(x)dx, where the

(endogenous) unmatched density u : [0, 1] → (0,∞) is measurable and satisfies u ≤ ℓ. The

mass of matched agents with types in X is
∫

X
(ℓ(x)− u(x))dx.

Unmatched agents search for partners and meet other unmatched agents, drawn at

random from the population of all unmatched agents.4 The mass of unmatched agents

involved in meetings per unit of time—the aggregate meeting rate—is determined by the

search technology as a function of the mass of unmatched agents ū =
∫ 1
0 u(x)dx and a

velocity parameter σ ≥ 0. Let D denote the set of real-valued functions on [0, 1] that are

positive, measurable, and bounded.5

Assumption 1 (General Search Technology). For any unmatched density u ∈ D, the

aggregate meeting rate is given by σ·m(ū), where σ ≥ 0 is the velocity parameter of the search

technology and the contact function m : [0,∞) → [0,∞) is continuous, non-decreasing, and

satisfies m(0) = 0.

As meetings are random, every unmatched agent meets other unmatched agents with

types in X ⊂ [0, 1] at the rate σ ·r(ū)
∫

X
u(x)dx, where the rate function r : (0,∞) → [0,∞)

is given by

r(ū) =
m(ū)

ū2
. (1)

We refer to σ · r(ū) · ū, i.e., the rate at which an unmatched agent meets some other

unmatched agent, as the individual meeting rate.

Matches form whenever two unmatched agents meet and agree to match with each

other. The proportion of meetings between agents with types x and y that lead to a match

is described by a symmetric measurable function α : [0, 1]2 → [0, 1]. Let A denote the set

of all such functions. We treat this matching affinity α ∈ A as exogenous, thereby taking

the behavior of agents as given.

All matches from the pool of matched agents dissolve at an exogenous rate δ > 0. At

the moment a match is dissolved, both agents return to the pool of unmatched agents.

In a steady state, the flow creation and flow destruction of matches for every type of agent

must balance. The flow of matches that are created and involve type x is the product of the

4We consider the (non-trivial) extension of our results to the case in which there are two distinct groups
of agents (workers and firms, or women and men) and agents in one group only meet agents from the other
group in Section 5.

5We follow the convention of using terms such as positive, negative, increasing, and decreasing in the
strict sense, with a prefix “non-” indicating the opposite weak sense.
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unmatched density u(x) of type x and the individual matching rate σ ·r(ū)
∫ 1
0 α(x, y)u(y)dy

for agents of type x. The flow of matches that are destroyed and involve type x is the

product of the dissolution rate δ and the matched density ℓ(x)−u(x) of type x. Therefore,

steady state requires

δ [ℓ(x)− u(x)] = u(x) · σ · r(ū)
∫ 1

0
α(x, y)u(y)dy ∀x ∈ [0, 1]. (2)

From equation (2), it is obvious that there is no loss of generality in normalizing the disso-

lution rate δ to 1. We do so throughout the following and rewrite (2) as

ℓ(x) = u(x)

[

1 + σ · r(ū)
∫ 1

0
α(x, y)u(y)dy

]

∀x ∈ [0, 1]. (3)

We refer to (3) as the general balance condition.

Remark 1 (A Finite Number of Types). When providing intuition and constructing exam-

ples, we find it convenient to consider models with a finite number of types, say, x = 1, . . . , n.

The counterpart to (3) for such a model is

ℓ(x) = u(x)



1 + σ · r(ū)
n
∑

y=1

α(x, y)u(y)



 ∀x = 1, . . . , n, (4)

where ℓ(x) > 0 is now the mass of agents of type x in the population and u(x) is the

corresponding unmatched mass. It is easily verified that all of our subsequent analysis and

results carry over to (4), cf. footnote 16 in Appendix A.4.

3 Quadratic Search Technologies

A broad class of search technologies is compatible with Assumption 1, including the quadratic

search technology considered in Shimer and Smith (2000) and Smith (2006).

Assumption 2. [Quadratic Search Technologies] For any unmatched density u ∈ D, the

aggregate meeting rate is given by σ ·m(ū), where σ = 1 and

m(ū) = ρ · ū2 (5)

with ρ ≥ 0.

In Assumption 2 we have embedded a velocity parameter ρ ≥ 0 in the description of

the contact function m, while setting the velocity parameter premultiplying the contact

function m in Assumption 1 to σ = 1. This proves convenient in Section 4 where we relate

the steady states for a general search technology with velocity σ to the steady states for a
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quadratic search technology with a suitably chosen velocity ρ that is, in general, different

from σ.

From equations (1) and (5), the rate function associated with a quadratic search tech-

nology is simply given by its velocity (i.e., r(ū) = ρ holds for all ū > 0). Thus, under

Assumption 2 the general balance condition (3) simplifies to

ℓ(x) = u(x)

[

1 + ρ

∫ 1

0
α(x, y)u(y)dy

]

∀x ∈ [0, 1]. (6)

We refer to (6) as the quadratic balance condition.

Shimer and Smith (2000, Lemma 4) have shown the following “fundamental matching

lemma” (Smith, 2006) for quadratic search technologies:

Lemma 1 (Fundamental Matching Lemma for Quadratic Search Technologies). There

exists a unique unmatched density u ∈ D solving the quadratic balance condition (6) and

this solution is a jointly continuous function of ρ and α.

The continuity claim in the statement of Lemma 1 means that limn→∞

∫

|αn(x, y) −
α(x, y)|dxdy+|ρn−ρ| = 0 implies limn→∞

∫

|uρn,αn(x)−uρ,α(x)|dx = 0, where (ρ, α) → uρ,α
is the map from [0,∞)×A to the unmatched density implied by (6).6

In the remainder of this section, we investigate properties of the solution to the quadratic

balance condition as a function of the velocity parameter ρ. To simplify notation, we thus

write uρ for the unique solution of (6) given α.

By Lemma 1 the map ρ → uρ is continuous. The following lemma asserts that the

unmatched steady-state density is non-increasing in the velocity of the search technology.7

The proof is in Appendix A.1.

Lemma 2. The map ρ → uρ(x) is non-increasing for all x ∈ [0, 1].

From the quadratic balance condition (6), proving Lemma 2 is equivalent to showing

that the individual steady-state matching rates ρ
∫ 1
0 α(x, y)uρ(y)dy are non-decreasing in

ρ no matter what type x is considered. It is clear that it cannot be the case that all the

individual matching rates are decreasing in ρ: if this were so, then the quadratic balance

conditions would imply that uρ(x) is increasing in ρ for all x, which in turn would imply

that none of the individual matching rates decreases, yielding a contradiction. Hence, what

6 For fixed ρ, this is equivalent to the continuity claim in Shimer and Smith (2000, Lemma 4), who
assert that the map α → uρ,α is continuous with respect to the pseudometrics on A and D induced by the
L1-norms. While Shimer and Smith (2000) do not consider the (joint) continuity in ρ, this is immediate
upon noting that (i) their arguments do not require α to be bounded above by 1 and, therefore, show that
the solution to (6) is continuous in α̂ = ρ · α, and that (ii) the map (ρ, α) → α̂ is continuous, too.

7Lemma 2 is stronger than what we require for the generalization of the fundamental matching lemma to
the solution of the general balance condition (3); as advertised in the Introduction (and shown in the proofs
of Propositions 1 and 2) for that purpose the essential implication of Lemma 2 is that ūρ is non-increasing
in ρ. Of course, Lemma 2 also allows us to conclude that the mass of any subset of types must be decreasing
in ρ – a property that we require when extending the fundamental matching lemma to a model with two
groups of agents (cf. Section 5).
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is required to obtain Lemma 2 is that a change in the velocity of the search technology

cannot cause some matching rates to decrease and others to increase or, equivalently, cause

the unmatched density of some types to increase and the unmatched density of some other

types to decrease. Establishing this is straightforward if the matching behavior of the

agents is homogenous in the sense that the matching affinity α is constant: in this case the

quadratic balance conditions implies that all individual matching rates are proportional to

ρ · ūρ and therefore must all change in the same direction when ρ changes. The general

argument relies on a more subtle implication of the quadratic balance condition: for any

type x and for any change in the velocity, the absolute value of the percentage change in the

unmatched density of type x must be smaller than the percentage change in the matching

rate of type x.

To see how the relationship between the percentage changes just mentioned delivers the

comparative-static result in Lemma 2, it is instructive to consider an example with a finite

number of types (cf. Remark 1). Suppose, for instance, that the velocity ρ increases by 5

percent. As there is a finite number of types, there must be some type x′ for whom the

associated percentage change in u(x′) is maximal. Now suppose that, contrary to what is

asserted in Lemma 2, the increase in velocity leads to an increase in u(x′) by, say, 1 percent.

To maintain a steady-state, such an increase in the unmatched mass of type x′ by 1 percent

requires that its matching rate decreases by more than 1 percent. Given that the velocity

has increased by 5 percent, this, in turn, requires the unmatched mass u(y) of some other

type y to decrease by more than 6 percent. Similar reasoning to the one just given shows

that this is only possible if there is some further type x′′ whose unmatched mass u(x′′)

has increased by more than 1 percent. But the existence of such a type x′′ contradicts the

hypothesis that the percentage change in the unmatched mass is maximal for type x′. Thus,

u(x) must be non-increasing in ρ for all types x.8

As we have noted above, Lemma 2 is equivalent to the assertion that all individual

steady-state matching rates ρ
∫ 1
0 α(x, y)uρ(y)dy are non-decreasing in the velocity of the

quadratic search technology. It is natural to conjecture that this comparative statics goes

hand-in-hand with an increase in the individual steady-state meeting rates ρ · ūρ. Indeed, as
suggested by the fact that Lemma 2 holds for any specification of α ∈ A, a stronger result

holds: It not only becomes easier to meet some other unmatched agent when the velocity

goes up. Rather, for any set Y ⊂ [0, 1] of types, it becomes easier to meet agents with types

in this set. The proof of the following lemma is in Appendix A.2. It is straightforward from

the arguments proving Lemma 2.

Lemma 3. The map ρ → ρ · uρ(x) is increasing for all x ∈ [0, 1].

For a given unmatched density u, it is trivial that an increase in ρ causes an increase in

ρ · u(x). The point of Lemma 3 is that the countervailing effect of an increase in velocity ρ

8Analogous reasoning can be used to infer the uniqueness claim in the fundamental matching lemma for
the quadratic search technology. See the remark at the end of the proof of Lemma 2 in Appendix A.1.
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on the steady-state unmatched density uρ identified in Lemma 2 cannot overturn this direct

effect.

Next, we inquire whether not only the individual steady-state meeting rate ρ · ūρ but

also the aggregate steady-state meeting rate ρ · ū2ρ is increasing in ρ, i.e., whether an increase

in the velocity of the search technology implies that there are more meetings even when

taking the resulting steady-state adjustment in the mass of unmatched agents into account.

The following result provides an affirmative answer:

Lemma 4. The map ρ → ρ · ū2ρ is increasing in ρ.

The proof of Lemma 4 is in Appendix A.3. It proceeds in two steps. The first step uses

a transformation of the unmatched density to replace uρ by the unique solution wγ ∈ D of

the condition

ℓ(x) = w(x)

[

γ +

∫ 1

0
α(x, y)w(y)dy

]

∀x ∈ [0, 1] (7)

and shows that the claim in Lemma 4 is equivalent to the claim that the mass w̄γ is

decreasing in γ > 0. The second step adapts an argument that Decker, Lieb, McCann, and

Stephens (2013) have developed in a related context.9 It shows that the equalities in (7)

correspond to the first-order conditions of a convex minimization problem to infer that w̄γ

is indeed decreasing in γ.

In light of the fact that Lemmas 2 and 3 provide monotone comparative statics results

that hold pointwise (i.e., for all types), it is tempting to think that there should be a

corresponding pointwise counterpart to Lemma 4, asserting that ρ·uρ(x)·uρ(y) is increasing
in ρ for all (x, y) ∈ [0, 1]2. Appendix A.4 presents an example to demonstrate that such a

result need not hold.10 Indeed, an increase in ρ can decrease the expression

ρ · α(x, y) · uρ(x) · uρ(y) (8)

for some pairs (x, y). We find this last observation both surprising and interesting in its

own right because the expression in (8) is nothing but the steady-state density of matched

pairs featuring agents of type x and y.11 Consequently, while the monotonicity result for

the unmatched density established in Lemma 2 directly implies that the matched density

ℓ(x) − u(x) must be non-decreasing in the velocity of the search technology for all x, the

same property need not hold for the share of agents of type x who find themselves matched

with partners in some set Y .

9 Decker, Lieb, McCann, and Stephens (2013) establish the existence of a unique equilibrium in the
model of a marriage market from Choo and Siow (2006) and derive comparative-statics properties of this
equilibrium. These results are generalized in Galichon and Salanié (2015).

10Of course, integrating ρ · uρ(x) · uρ(y) over x and y yields ρ · ū2

ρ, so that Lemma 4 implies that it is
impossible for ρ · uρ(x) · uρ(y) to decrease for all pairs (x, y).

11To see this, observe that in a steady state pairs with agents of type x and y form whenever agents of
types x and y meet and agree to match, which happens at the rate given in (8). Recalling that we have
normalized the dissolution rate δ to 1, the expression in (8) thus coincides with the steady-state density of
matched pairs of agents with types x and y.
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Remark 2 (Additional Comparative Statics). To simplify the exposition, we have used the

normalization δ = 1 to obtain the quadratic balance condition (6) instead of an analogous

condition in which the scaled velocity ρ/δ appears in the place of the velocity ρ. It is clear

that Lemmas 1 to 4 remain applicable to describe the comparative statics with respect to a

change in scaled velocity and, therefore (with the obvious sign reversals), also with respect

to a change in the dissolution rate δ. Similarly, multiplying all α(x, y) by the same factor

0 < ξ < 1 is tantamount to replacing ρ by ξ · ρ in (6).

Finally, we observe that the arguments yielding Lemma 4 imply that a proportionate

increase in the population density, i.e., replacing ℓ by τ · ℓ for τ > 1, must increase the mass

of unmatched agents in the associated steady state. Appendix A.5 provides the details of

the argument.

4 General Search Technologies

In this section, we show that the results for quadratic search technologies stated in the

preceding section carry over to general search technologies. What makes this possible is

an intimate relationship between the solutions of the general balance condition (3) and the

quadratic balance condition (6). Indeed, comparing (3) and (6) it is immediate that an

unmatched density v ∈ D solves the general balance condition if and only if solves the

quadratic balance condition for a suitable choice of the velocity parameter ρ, namely

ρ = σ · r(v̄). (9)

Note that in writing (9) we have used v rather than u to denote an unmatched density

solving the general balance condition. We do so throughout this section as it helps to

distinguish the solutions to the general balance condition from solutions to the quadratic

balance condition.

Applying (1) to rewrite (9) we have the following result:

Lemma 5. An unmatched density v ∈ D solves the general balance condition (3) if and

only if v solves the quadratic balance condition (6) for ρ ≥ 0 satisfying

ρ · v̄2 − σ ·m(v̄) = 0. (10)

While Lemma 5 holds without any assumptions on the contact function m, our subse-

quent results require the properties of the contact function stated in Assumption 1.

Equipped with the results from the previous section and Lemma 5 it is straightforward

to establish the following existence and uniqueness result:

Proposition 1. Let Assumption 1 hold. Then there exists a unique unmatched density

v ∈ D solving the general balance condition (3).

8



Proof. Let uρ denote the unique solution of the quadratic balance condition (6) for given

values of the other parameters, as in the previous section. Define F : [0,∞) → (−∞,∞) by

F (ρ) = ρ · ū2ρ − σ ·m(ūρ). (11)

From Lemma 5, it suffices to show that there exists a unique ρ∗ ≥ 0 satisfying F (ρ∗) = 0,

with v = uρ∗ then being the unique solution to (3).

The function F is increasing in ρ: ρ · ū2ρ is increasing (Lemma 4), ūρ is non-increasing

(Lemma 2), m is non-decreasing (Assumption 1), and σ ≥ 0 holds. Hence, the equation

F (ρ) = 0 has at most one solution.

We have F (0) ≤ 0 because m(u0) is non-negative. In addition, the function F is

continuous in ρ because ūρ is continuous in ρ (Lemma 1) and m is continuous (Assumption

1). Hence, by the intermediate value theorem, a solution to the equation F (ρ) = 0 exists

if the increasing function F grows without bounds as ρ → ∞ or satisfies F ∗ > 0, where

F ∗ = limρ→∞ F (ρ).

As ρ · ū2ρ is increasing and non-negative, it either grows without bounds as ρ → ∞ or

satisfies a∗ > 0, where a∗ = limρ→∞ ρ · ū2ρ. In the first of these cases, we have that F

also grows without bounds as ρ → ∞ (because, by Assumption 1 and Lemma 2, m(ūρ) is

non-increasing in ρ and bounded below by zero). In the second of these cases, we must have

limρ→∞ ūρ = 0, which implies (by Assumption 1) limρ→∞m(ūρ) = 0. Therefore, we have

F ∗ = a∗ > 0 in this case.

The regularity conditions in Assumption 1 are natural. In addition, they are the minimal

conditions under which Proposition 1 can be obtained. Specifically, the condition that the

aggregate meeting rate is non-decreasing is necessary to exclude the possibility of multiple

steady-states and, given that the aggregate meeting rate is non-decreasing, the other two

conditions (continuity and boundary behavior) are necessary to exclude the possibility that

a steady state does not exist. Appendix A.6 exhibits simple examples that validate these

claims.

Having established existence and uniqueness, we next generalize the continuity claim in

Lemma 1 to general search technologies, thereby showing that the fundamental matching

lemma from Shimer and Smith (2000) holds for all search technologies satisfying Assumption

1.12

Proposition 2. Let Assumption 1 hold. The unique solution v ∈ D to the general balance

condition (3) is a jointly continuous function of σ and α.

Proof. To allow us to distinguish between the solution of the quadratic balance condition

(6) as a function of ρ and α and the solution to the general balance condition (3) as a

function of σ and α, we denote the former (as in Section 3) by uρ,α and the latter by vσ,α.

12As in Lemma 1, the continuity claim in Proposition 2 is with respect to the pseudometrics induced
by the L1 norms on A and D. Thus (cf. footnote 6), for given σ, the continuity claim in Proposition 2
generalizes the continuity result in the fundamental matching lemma as stated in Shimer and Smith (2000,
Lemma 4) from quadratic search technologies to all search technologies satisfying Assumption 1.
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Let (σn, αn)n∈N be a sequence in [0,∞) × A converging to (σ0, α0) ∈ [0,∞) × A. Let

vn = vσn,αn for all n ∈ N0. We have to show that the sequence (vn)n∈N converges to v0.

From Lemma 5, there exists a sequence (ρn)n∈N in [0,∞) such that vn = uρn,αn holds

for all n. Similarly, there exists ρ0 ≥ 0 such that v0 = uρ0,α0
. Lemma 1 has established that

uρ,α is continuous in (ρ, α). Hence, to complete the proof, it suffices to show that (ρn)n∈N
converges to ρ0.

Lemma 5 implies

ρn · v̄2n − σn ·m(v̄n) = 0, ∀n ∈ N0. (12)

Suppose that (ρn)n∈N has a converging subsequence with finite limit ρ∗. By continuity

of uρ,α, the corresponding subsequence of (vn)n∈N then converges to v∗ = uρ∗,α0
. As m is

continuous (Assumption 1) and (12) holds along the subsequence, we obtain

ρ∗ · u2ρ∗,α0
− σ0 ·m(uρ∗,α0

) = 0,

which implies ρ∗ = ρ0 (because, for given α and σ, equation (10) has a unique solution;

cf. the proof of Proposition 1). As this holds for all converging subsequences of (ρn)n∈N, it

remains to exclude the possibility that (ρn)n∈N has a subsequence diverging to infinity. We

do so in Appendix A.7.

Finally, we consider the counterparts of the comparative static results in Lemmas 2 to 4

for general search technologies. Using vσ to denote the solution to (3) as a function of the

parameter σ, the counterpart to Lemma 2 is the claim that the steady-state density vσ(x)

is non-decreasing in σ, the counterpart to Lemma 3 is that σ · r(v̄σ) · vσ(x) is increasing in

σ, and the counterpart to Lemma 4 is that the aggregate meeting rate m̂(v̄σ, σ) = σ ·m(v̄σ)

is increasing in σ. All of these statements are true if the search technology not only satisfies

Assumption 1 but the mild additional condition that the contact function m generates a

positive mass of meetings when there is a positive mass of unmatched agents:

Proposition 3. Let Assumption 1 hold, let m be positive on (0,∞), and let vσ ∈ D de-

note the unique solution to the general balance condition (3) for given values of the other

parameters. Then

1. The map σ → vσ(x) is non-increasing for all x ∈ [0, 1].

2. The map σ → σ · r(v̄σ) · vσ(x) is increasing for all x ∈ [0, 1].

3. The map σ → σ ·m(v̄σ) is increasing.

Proof. Let uρ denote the unique solution of the quadratic balance condition (6) for given

values of the other parameters. Let σ2 > σ1 ≥ 0. From Lemma 5 there exist ρ2 and ρ1
satisfying vσi

= uρi and

ρi · ū2ρi − σi ·m(ūρi) = 0 (13)
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for i = 1, 2. As uρi ∈ D implies ūρ1 > 0, we have m(ūρ1) > 0 from the assumption that m

is positive on (0,∞). Therefore, (13) implies

ρ1 · ū2ρ1 − σ2 ·m(ūρ1) < 0.

As ρ · ū2ρ − σ2 ·m(ūρ) is increasing in ρ (cf. the proof of Proposition 1), it follows from the

above inequality and (13) that ρ2 > ρ1. The first claim in the statement of the proposition is

then immediate from Lemma 2 and vσi
= uρi . The second claim follows upon observing that

equation (9) implies ρi = σi·r(v̄σi
), so that the inequality σ2·r(v̄σ2

)·vσ2
(x) > σ1·r(v̄σ1

)·vσ1
(x)

follows from Lemma 3 and vσi
= uρi . Finally, Lemma 4 implies ρ2 · ū2ρ2 > ρ1 · ū2ρ1 , so that

vσi
= uρi and (13) imply σ2 ·m(v̄σ2

) > σ1 ·m(v̄σ1
).

5 Discussion

We conclude by discussing extensions of our analysis, conditions for the uniqueness of

steady-state equilibrium, and related work identifying conditions for the uniqueness of

steady states in other fields.

5.1 Extensions

We have followed Shimer and Smith (2000) and Smith (2006) in supposing that there is

an exogenous population of infinitely lived agents who exit the unmatched pool only if

they have found a partner and return to this pool when their partnership dissolves due to

exogenous separation. Alternatively, we could have followed Burdett and Coles (1997) and

others in supposing that (i) there is a constant exogenous inflow of “newborn” agents into

the pool of unmatched agents given by a density ℓ̂, (ii) matches are permanent, so that

matched partners never return to the pool of unmatched agents, and (iii) all unmatched

agents abandon the search for a partner with an exogenous exit rate δ > 0. Balancing in-

and outflows for such a model yields the steady-state condition

ℓ̂(x) = u(x)

[

δ + σ · r(ū)
∫ 1

0
α(x, y)u(y)dy

]

, ∀x ∈ [0, 1]. (14)

Upon defining ℓ(x) = ℓ̂(x)/δ, it is immediate that (14) is equivalent to (2). Thus, all of our

results carry over to this alternative specification of the search-and-matching process.

We have also followed Shimer and Smith (2000) and Smith (2006) in assuming that

the search technology generates random meetings between all agents. This is in contrast

to much of the theoretical and applied literature on search-and-matching that considers

scenarios in which there are two distinct groups of agents (workers and firms, or men and

women); the only meetings that are accounted for in these model are those that feature a pair

of agents from distinct groups. All of our results can be extended to this case. We explain

how this can be done in Appendix A.8. In particular, the fundamental matching lemma
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holds for all continuous aggregate meeting rates that are non-decreasing in the unmatched

masses of both groups and satisfy the boundary condition that there are no meetings if

either of the two groups has no unmatched agents. With the singular exception of the

two-group version of the linear search technology (discussed in detail and dismissed as a

reasonable model in Stevens, 2007), these conditions are satisfied for all specifications of the

aggregate meeting rate considered in the extensive literature studying random search models

in labor markets (Petrongolo and Pissarides, 2001; Rogerson, Shimer, and Wright, 2005).

Combining the validity of the fundamental matching lemma for general search technologies

with the arguments for the existence of steady-state equilibrium in Smith (2006) yields the

existence of steady-state equilibrium in the two-group models in Burdett and Coles (1997)

and Eeckhout (1999).13

It is an open question whether our results carry over to other variations of the search-

and-matching-process, involving, for instance, different search intensities for different types

or different dissolution rates for different matches. We are confident, though, that the

techniques we have developed here are well-suited to study such extensions and to determine

the conditions under which uniqueness of steady-states obtains for search technologies more

general than the quadratic one.

Looking further afield, we believe that the logic underlying our comparative-statics

results in Section 3 is of broader interest. We have already observed (cf. footnote 9) that

arguments reminiscent of the ones proving Lemma 4 have been used in other contexts.

Further, it is straightforward to verify that the proof of Lemma 2 goes through when the

expression for the individual matching rate ρ
∫ 1
0 α(x, y)u(y)dy in (6) is replaced by any non-

decreasing linear homogenous function of u. Given the prevalence of linear homogenous

relationships in economic theory, this suggests that the techniques used in the proof of

Lemma 2 may be applicable in other economic problems.14

5.2 Uniqueness of Steady-State Equilibrium

Recall from the Introduction that a steady-state equilibrium requires two conditions: the

unmatched density must satisfy the steady-state condition and the matching affinities must

form a partial equilibrium given the population of agents available for meetings (Burdett and

Coles, 1999). The uniqueness of the solution to the steady-state condition eliminates one of

the potential sources of multiplicity of steady-state equilibria. The uniqueness of the solution

to the partial-equilibrium condition (which obtains, for instance, in the models considered

in Burdett and Coles (1997), Eeckhout (1999), Shimer and Smith (2000), and Smith (2006))

eliminates another one. This leaves the feedback effects between the steady-state condition

13Eeckhout (1999) considers only the partial-equilibrium condition. Burdett and Coles (1997) establish
the existence of steady-state equilibrium under restrictive assumptions, including the requirement that both
groups have identical masses and that the type distributions are log-concave.

14As an illustrative example, we note that the proof of the “uniqueness of proportions” in the balanced
growth model with constant returns to scale from Solow and Samuelson (1953, Section 6) follows a logic
quite similar to the one we have explained after the statement of Lemma 2.
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and the partial-equilibrium condition as the only possible source of a multiplicity of steady-

state equilibria. Burdett and Coles (1997, Theorem 2) demonstrate that such feedback

effects can be sufficiently strong to generate multiple steady-state equilibria when search

frictions (which are captured by the velocity of the search technology in our setting) are

intermediate. On the other hand, there is little scope for the distribution of unmatched

types to influence the partial-equilibrium matching affinities when search frictions are either

very high or very low (because, in the first case, the agents are inclined to accept all

matches that provide them with strictly positive surplus, and, in the second case, matching

affinities resemble those that arise in the frictionless limit). Thus, a natural conjecture is

that our results can be used to obtain uniqueness results for steady-state equilibria in such

circumstances. Support for this conjecture is provided by the fact that with the general

version of the fundamental matching lemma in place, the uniqueness result for steady-

state equilibria in Lauermann and Nöldeke (2014, Corollary 3) extends immediately from

quadratic search technologies to all search technologies satisfying our regularity conditions.

5.3 Related Work in other Fields

Steady-state conditions similar to the one considered here (albeit with a finite number of

types) have been investigated in disciplines other than economics, namely, in the demo-

graphic literature concerned with modeling the contact structure that leads to marriages

(and the subsequent production of offspring) and in the literature on chemical reaction net-

works.15 An example of the former is Heesterbeek and Metz (1993, Section 2), who prove

the existence and uniqueness of steady state for quadratic search technologies in a model

with match-dependent dissolution rates.

To see why there is a relationship between the kind of search-and-matching process we

study and chemical reaction networks, observe that the formation and dissolution of part-

nerships in our model is akin to the formation and dissolution of a chemical bond between

two molecules. A recent survey of the conditions yielding uniqueness of steady states in

chemical reactions networks is contained in Shinar and Feinberg (2012). These conditions

are different from our Assumption 1 (as they do not allow for the kind of “crowding ex-

ternality” captured in the dependence of the aggregate meeting rate on ū), with the only

overlap occurring for the case of a quadratic search technology (known as mass action kinet-

ics in the natural sciences), for which existence and uniqueness results were first obtained in

the late 1970s. For a recent application of a result from the literature on chemical reaction

networks to an economic problem see Häfner and Nöldeke (2017, Lemma 1), who obtain the

existence of a unique steady state in a model of iterated incumbency contests by adapting

a result from Banaji and Baigent (2008).

15There is also an extensive literature in behavioral ecology using search models to study the evolution of
sex roles, but most of this literature does not consider the possibility that agents of a given sex may differ in
their types. Notable exceptions are Johnstone, Reynolds, and Deutsch (1996), who study a model that is, in
essence, a version of the model considered in Burdett and Coles (1997) with a quadratic search technology,
and Kokko and Johnstone (2002).
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Appendix

A.1 Proof of Lemma 2

We proceed in three steps. The first step establishes that an unmatched density solving

the quadratic balance condition (6) is not only bounded above but also bounded away from

zero. This ensures that all expressions considered in the following two steps are finite. The

second step shows that for any two velocities ρ1 and ρ2 the corresponding solutions to (6),

denoted by u1 and u2 for simplicity, are ordered, that is, either u1(x) ≥ u2(x) holds for

all x ∈ [0, 1] or the reverse inequality holds for all x ∈ [0, 1]. The third step excludes the

possibility that a higher meeting rate leads to a larger unmatched steady-state density,

thereby finishing the proof that uρ(x) is non-increasing in ρ.

Throughout the proof we eschew making use of the uniqueness result from Lemma 1,

thereby clarifying that this property plays no role in our argument. Rather, as we explain in

a remark at the end of proof, uniqueness of the solution to the quadratic balance condition

(6) can be inferred from our argument.

Step 1: Consider any (ρ, α) ∈ [0,∞)×A and let u ∈ D be an unmatched density solving

(6). As the population density ℓ is bounded above and bounded away from zero, there exist

ℓ and ℓ such that 0 < ℓ ≤ ℓ(x) ≤ ℓ < ∞ holds for all x ∈ [0, 1]. As u satisfies 0 < u(x) ≤ ℓ(x)

for all x ∈ [0, 1], it is immediate that u(x) ≤ ℓ holds for all x ∈ [0, 1]. Using this upper

bound and that 0 ≤ α(x, y) ≤ 1 holds for all (x, y), we also have

∫ 1

0
α(x, y)u(y)dy ≤ ℓ (15)

for all x. Hence, (6) implies ℓ(x) ≤ u(x)
[

1 + ρℓ
]

for all x. Thus,

0 <
ℓ

1 + ρℓ
≤ u(x) ≤ ℓ < ∞ ∀x ∈ [0, 1]. (16)

Step 2: Let u1 ∈ D and u2 ∈ D be solutions to the quadratic balance conditions (6) for

velocities ρ1 ≥ 0 and ρ2 ≥ 0 respectively:

ℓ(x) = u1(x)

[

1 + ρ1

∫ 1

0
α(x, y)u1(y)dy

]

∀x ∈ [0, 1], (17)

ℓ(x) = u2(x)

[

1 + ρ2

∫ 1

0
α(x, y)u2(y)dy

]

∀x ∈ [0, 1]. (18)

From (16) in Step 1 we have that
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λ1 = sup
x∈[0,1]

u1(x)

u2(x)
(19)

λ2 = sup
x∈[0,1]

u2(x)

u1(x)
(20)

are both finite and positive. We now argue that at most one of these two numbers can be

strictly greater than 1, which implies that u1 and u2 are ordered, i.e., either u1 ≤ u2 or

u2 ≤ u1 holds.

Suppose λ2 > 1 holds. The following shows that this implies λ1ρ1 > λ2ρ2. Suppose not,

so that we have λ2ρ2 ≥ λ1ρ1. Then

u2(x)

[

1 + ρ2

∫ 1

0
α(x, y)u2(y)dy

]

= u1(x)

[

1 + ρ1

∫ 1

0
α(x, y)u1(y)dy

]

≤ u1(x)

[

1 + λ1ρ1

∫ 1

0
α(x, y)u2(y)dy

]

≤ u1(x)

[

1 + λ2ρ2

∫ 1

0
α(x, y)u2(y)dy

]

,

for all x ∈ [0, 1], where the equality in the first line is from (17) and (18), the first inequality

holds because (19) implies λ1u2(y) ≥ u1(y), and the second inequality is from the hypothesis

λ2ρ2 ≥ λ1ρ1. Consequently, we obtain

u2(x)

u1(x)
≤ 1 + λ2ρ2

∫ 1
0 α(x, y)u2(y)dy

1 + ρ2
∫ 1
0 α(x, y)u2(y)dy

for all x ∈ [0, 1] and thus

λ2 ≤ sup
x∈[0,1]

[

1 + λ2ρ2
∫ 1
0 α(x, y)u2(y)dy

1 + ρ2
∫ 1
0 α(x, y)u2(y)dy

]

. (21)

On the other hand, using the hypothesis λ2 > 1 and (15), we have

1 + λ2ρ2
∫ 1
0 α(x, y)u2(y)dy

1 + ρ2
∫ 1
0 α(x, y)u2(y)dy

≤ 1 + λ2ρ2ℓ

1 + ρ2ℓ
< λ2 ∀x ∈ [0, 1]. (22)

From (22) we obtain

λ2 > sup
x∈[0,1]

[

1 + λ2ρ2
∫ 1
0 α(x, y)u2(y)dy

1 + ρ2
∫ 1
0 α(x, y)u2(y)dy

]

.

and thereby a contradiction to (21). Consequently, λ2 > 1 implies λ1ρ1 > λ2ρ2.
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Exchanging the roles of λ1 and λ2 in the above argument yields that λ1 > 1 implies

λ2ρ2 > λ1ρ1. As at most one of the inequalities λ1ρ1 > λ2ρ2 and λ2ρ2 > λ1ρ1 can hold, it

follows that λ1 ≤ 1 or λ2 ≤ 1 (or both) must hold.

Step 3: Suppose ρ2 ≥ ρ1. If λ1 > 1 holds, then λ2 ≤ 1 is immediate from the conclusion

of Step 2. By the definition of λ2 in (20) this implies u2(x) ≤ u1(x) for all x ∈ [0, 1], which

is the desired result.

It remains to consider the case λ1 ≤ 1. From the definition of λ1 in (19) this implies

u2(y) ≥ u1(y) for all y ∈ [0, 1]. Together with the inequality ρ2 ≥ ρ1 this yields

ρ2

∫ 1

0
α(x, y)u2(y)dy ≥ ρ1

∫ 1

0
α(x, y)u1(y)dy ∀x ∈ [0, 1].

It is then immediate from (17) and (18) that u2(x) ≤ u1(x) holds for all x ∈ [0, 1], finishing

the proof.

Remark: Applying the argument from Step 3 to the case ρ1 ≥ ρ2 yields u1(x) ≤ u2(x) for

all x ∈ [0, 1]. Consequently, for ρ1 = ρ2 we have u1(x) = u2(x) for all x ∈ [0, 1], showing

that (6) cannot have more than one solution for given ρ (and α).

A.2 Proof of Lemma 3

We use the same notation as in the proof of Lemma 2.

Suppose ρ · uρ(x) is not increasing in ρ for all x ∈ [0, 1]. There then exists ρ2 > ρ1 > 0

and x′ ∈ [0, 1] such that ρ2 · u2(x′) ≤ ρ1 · u1(x′) holds. We then have u1(x
′) > u2(x

′)

and therefore λ1 > 1. From Step 2 in the proof of Lemma 2 this implies λ2 ≤ 1 and

λ2ρ2 > λ1ρ1. In particular, we have ρ2 > λ1ρ1. From the definition of λ1 in (19) this yields

ρ2 · u2(x) > ρ1 · u1(x) for all x ∈ [0, 1], contradicting the hypothesis that the inequality

ρ2 · u2(x′) ≤ ρ1 · u1(x′) holds for some x′ ∈ [0, 1].

A.3 Proof of Lemma 4

As ρ · ū2ρ is equal to zero for ρ = 0 and positive otherwise, it suffices to consider ρ > 0. We

proceed in two steps.

Step 1: For any ρ > 0 define sρ ∈ D by

sρ(x) =
√
ρ · uρ(x), ∀x ∈ [0, 1]. (23)

Using that uρ is the unique positive solution to (6), it is immediate from (23) that sρ is

the unique positive solution to (7) for γ = 1/
√
ρ > 0. From (23) we also have

s̄ρ =
√

ρ · ū2ρ.

Therefore, using wγ to denote the unique positive solution to (7) as a function of γ, it

suffices to show that the map γ → w̄γ from (0,∞) to (0,∞) is decreasing in γ to establish
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the lemma.

Step 2: Let V be the subspace of essentially bounded functions in L2[0, 1]. For all v ∈ V
and γ > 0 define

H(v, γ) = γ

∫ 1

0
ev(x)dx+

1

2

∫ 1

0

∫ 1

0
α(x, y)ev(x)+v(y)dxdy −

∫

v(x)ℓ(x)dx. (24)

The function H is convex in v. It is also continuous in v. Its derivative (with respect to v)

is the bounded linear operator Hv on L2[0, 1] defined by

Hv(v, γ)(h) = lim
t→0

H(v + th, γ)−H(v, γ)

t

= γ

∫ 1

0
ev(x)h(x)dx+

1

2

∫ 1

0

∫ 1

0
α(x, y)ev(x)+v(y) [h(x) + h(y)] dxdy

−
∫ 1

0
ℓ(x)h(x)dx.

Using the symmetry condition α(x, y) = α(y, x), we obtain

Hv(v, γ)(h) = γ

∫ 1

0
ev(x)h(x)dx+

∫ 1

0

∫ 1

0
α(x, y)ev(x)+v(y)h(x)dxdy −

∫ 1

0
ℓ(x)h(x)dx. (25)

Because H is convex, it follows from (25) that v minimizes H(v, γ) over V if and only if the

first order condition

γev(x) + ev(x)
∫ 1

0
α(x, y)ev(y)dy − ℓ(x) = 0 (26)

holds for almost all x ∈ [0, 1].

Applying the transformation w = ev to (24) and (26) and comparing the resulting first

order condition with (7) we obtain that wγ minimizes

G(w, γ) = γ

∫ 1

0
w(x)dx+

1

2

∫ 1

0

∫ 1

0
α(x, y)w(x)w(y)dxdy −

∫ 1

0
ℓ(x) ln(w(x))dx (27)

over the set of all positive, essentially bounded functions in L2[0, 1]. Further, as wγ is

uniquely determined, any other such minimizer of G(w, γ) must agree with wγ for almost

all x ∈ [0, 1].

Consider now γ2 > γ1 > 0. Because wγ1 minimizes G(w, γ1) and wγ2 minimizes G(w, γ2),

these minimizers are essentially unique, and (7) precludes the possibility that wγ1 = wγ2

holds for almost all x, we have
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[G(wγ1 , γ1)−G(wγ2 , γ1)] + [G(wγ2 , γ2)−G(wγ1 , γ2)] < 0. (28)

Substituting from (27) into (28) yields

[γ2 − γ1] [w̄γ2 − w̄γ1 ] < 0.

Hence, as was to be shown, w̄γ is decreasing in γ.

A.4 Proof that ρ ·uρ(x) ·uρ(y) may fail to to be increasing in ρ for all (x, y)

To establish our claim, we consider an example with a finite number of types (cf. Remark

1). As we can always reinterpret such a model as one with a continuum of types, this suffices

to establish our claim.16

Let n = 2, so that there are only two types, let the matching affinities be given by

α(1, 1) = α(2, 2) = 0 and α(1, 2) = α(2, 1) = 1, and impose the normalization δ = 1. Then,

with a quadratic search technology, the steady-state conditions (4) can be written as

uρ(1) + ρ · uρ(1) · uρ(2)− ℓ(1) = 0, (29)

uρ(2) + ρ · uρ(1) · uρ(2)− ℓ(2) = 0. (30)

Applying the implicit function theorem to (29) – (30) we obtain the derivatives

duρ(1)

dρ
=

duρ(2)

dρ
= −uρ(1) · uρ(2)

∆ρ
(31)

where

∆ρ = 1 + ρ · uρ(1) + ρ · uρ(2) > 0. (32)

To determine the effect of an increase in ρ on, say, ρ ·uρ(1) ·uρ(1) = ρ ·uρ(1)2, we apply
the product rule, (31), and (32) to obtain

d(ρ · uρ(1)2)
dρ

= uρ(1)
2 − 2ρ · uρ(1)2 · uρ(2)

1 + ρ · uρ(1) + ρ · uρ(2)

=
uρ(1)

2

1 + ρ · uρ(1) + ρ · uρ(2)
(1 + ρ · (uρ(1)− uρ(2))) . (33)

16 Formally, the model with a finite number of types can be embedded into our setting by supposing that
the type space [0, 1] can be partitioned into n measurable sets with the property that both ℓ(x) and α(x, ·)
are constant on each of the sets in this partition. The uniqueness result (Lemma 1) for the quadratic search
technology under consideration here implies that in steady-state u(x) is constant on each element of the
partition, so that there are only n steady-state conditions, corresponding to (4), to consider.
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The sign of (33) is identical to the sign of 1 + ρ · (uρ(1) − uρ(2)) and thus is strictly

negative whenever uρ(2) − uρ(1) > 1/ρ holds. As it is immediate from (29) and (30) that

uρ(2)−uρ(1) = ℓ(2)−ℓ(1) holds, it follows that ρ·uρ(1)2 is unimodal (rather than increasing)

in ρ whenever ℓ(2) − ℓ(1) > 0 holds (with the unique maximum of ρ · uρ(1)2 occurring at

ρ̂ = 1/(ℓ(2)− ℓ(1)).

The above establishes that with x = y = 1 the expression ρ · uρ(x) · uρ(y) is decreasing
in ρ for sufficiently large ρ. To show that, as claimed in the main body of the paper, the

expression ρ · α(x, y) · uρ(x) · uρ(y) may also be decreasing in ρ, it suffices to observe that

by the joint continuity of the steady-state density in ρ and α (Lemma 1), it is still the case

that ρ · uρ(x) · uρ(y) is decreasing in ρ for sufficiently large ρ if the assumption α(1, 1) = 0

in the above example is replaced by α(1, 1) = ǫ > 0 for sufficiently small ǫ.

A.5 Comparative Statics for the Population Density in Remark 2.

For τ > 0, consider the counterpart to the quadratic balance condition (6)

τ · ℓ(x) = u(x)

[

1 + ρ

∫ 1

0
α(x, y)u(y)dy

]

∀x ∈ [0, 1] (34)

and let uτ denote its unique solution as a function of τ .

Letting γ = 1/
√
τ and v = γ · u, (34) can be rewritten as

ℓ(x) = v(x)

[

γ + ρ

∫ 1

0
α(x, y)v(y)dy

]

∀x ∈ [0, 1],

which is analogous to (7) and therefore has a unique solution vγ satisfying that v̄γ is de-

creasing in γ (cf. Step 2 in the proof of Lemma 4). Consequently, ūτ/
√
τ is increasing in τ

(as an increase in τ corresponds to a decrease in γ), so that ūτ is increasing in τ .

A.6 Minimality of the Regularity Conditions in Assumption 1

Suppose that the population density is constant and thus equal to l > 0 for all x ∈ [0, 1].

Suppose, in addition that all meetings lead to matches, so that the matching affinities are

given by α(x, y) = 1 for all (x, y). The general balance condition (3) then simplifies to

l = u(x) [1 + σ · r(ū)ū] , ∀x ∈ [0, 1].

This condition is satisfied if and only if u(x) = ū holds for all x ∈ [0, 1] and, using (1), the

mass of unmatched agents solves

l = ū+ σ ·m(ū). (35)

In particular, a solution to (3) exists (is unique) if and only if a solution to (35) exists (is

unique). Therefore, to validate the claims in the main body of the paper, it suffices to show

that (i) for suitable choices of the parameters δ > 0 and l > 0, condition (35) has multiple
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solutions if the aggregate meeting rate fails to be non-decreasing, and, if the aggregate

meeting rate is non-decreasing, the parameters δ and l can be chosen such that no solution

to (35) exists if (ii) m fails the boundary condition or (iii) m fails to be continuous.

i) Suppose that m fails to be non-decreasing. Then, there exist û and u† satisfying û >

u† > 0 and m(u†) > m(û). Setting σ = [û− u†]/[m(u†)−m(û)] > 0 and l = û+ σ ·m(û),

it is immediate that û satisfies (35) and easily verified that u† does so, too.

ii) Suppose that m is non-decreasing and m(0) > 0 holds. Then, as the right side of (35) is

increasing in ū, equation (35) has no solution for σ > 0 and l > 0 satisfying 0 < l/σ < m(0).

iii) Suppose that m is non-decreasing but not continuous. There then exists at least one

û ≥ 0 such that m̃ jumps up at û. If û = 0, then an argument analogous to the one in the

preceding paragraph shows that (35) has no solution if m(0) < l/σ < limū↓0m(ū) holds. If

û > 0, then there exists a number M > 0 such that M 6= m(û), ū < û implies m(ū) < M

and ū > û implies m(ū) > M . Fix such M and let σ > 0 and l > 0 be such that l = û+σM .

By construction, we then have that û does not solve (35). Further, as the right side of (35)

is increasing in ū and ū > û implies m(ū) > M , also no ū > û solves (35). An analogous

argument shows that (35) also has no solution with ū < û.

A.7 Completion of the Proof of Proposition 2

Suppose, without loss of generality, that (ρn)n∈N itself diverges to infinity. Observe that

the converging sequence (σn)n∈N is bounded and that (m(v̄n))n∈N is bounded, too, because

vn ≤ ℓ holds for all n ∈ N and so Assumption 1 implies m(v̄n) ≤ m(
∫ 1
0 ℓ(x)dx)). Thus,

(σn ·m(v̄n))n∈N is bounded, and it follows from (12) that (v̄n)n∈N converges to zero. From

Assumption 1, this implies that (σn ·m(v̄n))n∈N converges to zero. Thus,

lim
n→∞

v̄n + σn ·m(v̄n) = 0.

But this is impossible: the population density ℓ is bounded away from zero and we have

∫ 1

0
ℓ(x) = v̄n + σn · r(v̄n)

∫ 1

0

∫ 1

0
αn(x, y)vn(y)vn(x)dydx

≤ v̄n + σn · r(v̄n) · v̄2n
= v̄n + σn ·m(v̄n)

for all n ∈ N, where the equality in the first line is from integrating (3) with respect to x,

the inequality in the second line uses 0 ≤ αn(x, y) ≤ 1, and the equality in the third line is

from (1).
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A.8 Random Meetings between Two Groups

We modify the search-and-matching process from Section 2 to incorporate two groups as

follows: First, we suppose that the interval [0, 1] is partitioned into two measurable sets A

and B such that
∫

A
ℓ(x)dx > 0 and

∫

B
ℓ(x)dx > 0 holds. Agents with types in A are the

members of group A and agents with types in B are the members of group B. Second, the

aggregate meeting rate only accounts for meetings featuring unmatched agents from distinct

groups and depends on the unmatched masses ūA =
∫

A
u(x)dx and ūB =

∫

B
u(x)dx rather

than just on ū. The counterpart to Assumption 1 is

Assumption 3 (General Search Technology with Two Groups). For any unmatched density

u ∈ D, the aggregate meeting rate is given by σ ·m(ūA, ūB), where σ ≥ 0 and m : [0,∞)2 →
[0,∞) is continuous, non-decreasing in both arguments, and satisfies m(ūA, 0) = m(0, ūB) =

0.

Let r : (0,∞)2 → [0,∞) be given by

r(ūA, ūB) =
m(ūA, ūB)

ūA · ūB . (36)

The assumption of random meetings between the unmatched members of the two groups

implies that each unmatched agent from group A meets some unmatched agent from group

B at the individual meeting rate σ·r(ūA, ūB)·ūB, whereas each unmatched agent from group

B meets some unmatched agent from group A at the individual meeting rate σ·r(ūA, ūB)·ūA.
With these modifications, the counterpart to the general balance condition (3) is

ℓ(x) = u(x)

[

1 + σ · r(ūA, ūB)
∫

B

α(x, y)u(y)dy

]

∀x ∈ A, (37a)

ℓ(x) = u(x)

[

1 + σ · r(ūA, ūB)
∫

A

α(x, y)u(y)dy

]

∀x ∈ B, (37b)

where 0 ≤ α(x, y) = α(y, x) ≤ 1 is probability that a meeting between a pair of agents

with types (x, y) leads to a match, for (x, y) ∈ (A×B)∪ (B×A). Extending the definition

of the matching affinities α to [0, 1]2 by setting α(x, y) = α(y, x) = 0 for all (x, y) ∈
(A×A) ∪ (B ×B), the steady-state condition (37) can also be written as

ℓ(x) = u(x)

[

1 + σ · r(ūA, ūB)
∫ 1

0
α(x, y)u(y)dy

]

∀x ∈ [0, 1], (38)

which provides us with a more natural counterpart to (3).

With a quadratic search technology, the aggregate meeting rate is equal to the contact

rate (i.e., we again set σ = 1 for quadratic search technologies) and given by

m(ūA, ūB) = ρ · ūA · ūB. (39)

Using (36) and σ = 1, this implies that σ · r(ūA, ūB) is constant and equal to ρ for such
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technologies. Hence, for quadratic search technologies (38) is identical to (6). Consequently,

all results from Section 3 hold for the model with two groups.

Using (38) in lieu of (3), the counterpart to (9) for the two-group model is

ρ = σ · r(v̄A, v̄B). (40)

Using (36), equation (40) in turn implies that condition (10) in Lemma 5 becomes

ρ · v̄A · v̄B − σ ·m(v̄A, v̄B) = 0. (41)

If the map ρ → ρ · ūAρ · ūBρ is increasing and Assumption 3 holds, then the proofs of

Propositions 1 – 3 go through with minor modifications to show that these results hold

when the general balance condition is given by (38) rather than (3).17 In addition, it is

immediate that the third statement in Proposition 3 can be modified to obtain that the

aggregate steady-state meeting rate σ ·m(v̄Aσ , v̄
B
σ ) is increasing in the velocity σ of a general

search technology.

To finish the argument it remains to show that the map ρ → ρ · ūAρ · ūBρ is increasing. To

do so, we make substantial use of the assumption that matches only occur between agents

of distinct groups, so that (cf. (37)) the quadratic balance condition can be written as

ℓ(x) = u(x)

[

1 + ρ

∫

B

α(x, y)u(y)dy

]

∀x ∈ A, (42a)

ℓ(x) = u(x)

[

1 + ρ

∫

A

α(x, y)u(y)dy

]

∀x ∈ B. (42b)

For ρ > 0 let

γA(ρ) =

√

ūAρ
√

ρ · ūBρ
> 0 and γB(ρ) =

√

ūBρ
√

ρ · ūAρ
> 0, (43)

and define sρ ∈ D by

sρ(x) =

{

uρ(x)/γ
A(ρ) if x ∈ A,

uρ(x)/γ
B(ρ) if x ∈ B.

(44)

Arguments analogous to those in Step 1 of the proof of Lemma 4 in Appendix A.3 then

17The only somewhat substantial modification required is in the part of the proof of Proposition 2 that
we have relegated to Appendix A.7. An argument analogous to the one in the first paragraph in Appendix
A.7 allows us to conclude that limn→∞ v̄An + σnm(v̄An , v̄

B
n ) = 0 or limn→∞ v̄Bn + σnm(v̄An , v̄

B
n ) = 0 must hold

when (ρn)n∈N diverges to infinity. On the other hand, integrating (37a) over the types in A and (37b) over
the types in B yields

∫
A
ℓ(x) ≤ v̄An + σnm(v̄An , v̄

B
n ) and

∫
B
ℓ(x) ≤ v̄Bn + σnm(v̄An , v̄

B
n ) respectively. Because

we have assumed
∫
A
ℓ(x) > 0 and

∫
B
ℓ(x) > 0, this yields a contradiction.
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show that sρ is the unique solution to

ℓ(x) = w(x)

[

γA(ρ) +

∫

B

α(x, y)w(y)dy

]

∀x ∈ A, (45a)

ℓ(x) = w(x)

[

γB(ρ) +

∫

A

α(x, y)w(y)dy

]

∀x ∈ B. (45b)

In addition, considering the function

H(v, γA, γB) = γA
∫

A

ev(x)dx+ γB
∫

B

ev(y))dy +

∫ 1

0

∫ 1

0
α(x, y)ev(x)+v(y)dxdy

−
∫ 1

0
v(x)ℓ(x)dx

as a starting point, arguments analogous to the ones in Step 2 of the proof of Lemma 4 in

Appendix A.3 show that, for ρ2 > ρ1 > 0, we have

[

γA(ρ2)− γA(ρ1)
] [

s̄Aρ2 − s̄Aρ1
]

+
[

γB(ρ2)− γB(ρ1)
] [

s̄Bρ2 − s̄Bρ1
]

< 0. (46)

Observing that Lemmas 2 and 3 imply that the expressions defining γA(ρ) and γB(ρ) in

(43) are decreasing in ρ and that (44) implies

s̄Aρ (x) = s̄Bρ (x) =
√

ρ · ūAρ · ūBρ , (47)

the inequality in (46) yields that ρ · ūAρ · ūBρ is increasing in ρ.
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