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Abstract

This paper analyzes strategic information transition between skewed agents. More

concretely, we study Crawford and Sobel’s (1982) setting in which agents are not biased,

but they differ on the relative importance they put on avoiding “upward” or “down-

ward” mistakes. We show that even though agents can fully communicate when the

state of the world is perfectly observed by the sender, their communication is signi-

ficantly imprecise when there is an arbitrary small noise in the observation. Hence,

contrary to what was previously thought, a small objective misalignment is not a suf-

ficient condition for the existence of equilibria with precise information transmission.

We illustrate the results through some applications.
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1 Introduction

Since the seminal work of Crawford and Sobel (1982) (henceforth CS) the cheap-talk liter-

ature has studied strategic information transmission in different economic environments.

Typically, the main focus is on analyzing how the difference in the objectives of a sender

and a receiver (i.e., the bias) affects their equilibrium communication. An important in-

sight is that the equilibrium information transmission is coarse when the bias is large,

whereas when the bias is small communication can be very precise (see, e.g., Spector,

2000).

This paper analyzes how the skewness of the preferences of the sender and the receiver,

instead of the relative bias, shapes strategic communication. In contrast to the existing

cheap-talk literature, we assume that the relative bias between the sender and the receiver

is zero, and so their ideal actions coincide for each state of the world. Nevertheless, the

sender and the receiver are assumed to be differently skewed: they differ in terms of the

relative importance they put on avoiding “upward” or “downward” deviations from the

optimal action.

Our main result establishes that even though the ideal actions of the sender and the re-

ceiver coincide for each state of the world, the communication between the sender and the

receiver in any equilibrium is significantly coarse when the state is not perfectly observed,

regardless of the precision of the observation. Our result contrasts with the conventional

finding that a small conflict of interest permits precise equilibrium communication.

The paper begins with an analysis of a simple auxiliary model (see Section 2; the general

case is studied in Section 3). As in the CS model, in the auxiliary model nature chooses

a one-dimensional state of the world from a uniform distribution, a sender observes the

state perfectly and sends a cheap talk message to a receiver, and, finally, the receiver takes

an action. To fix ideas, consider the case where the receiver (“he”) is “unskewed” (i.e., his

payoff depends only on the size of the “mistake,” that is, the difference between the state

and the action), whereas the sender (“she”) is “downward skewed” (i.e., for each given size

of the mistake, she sustains a greater payoff loss when the mistake is negative than when it

is positive).

We first characterize the set of partition equilibria of our auxiliary model, that is, equi-

libria where each message signifies an interval of the state space. In a partition equilib-

rium, there is an endogenous bias: if the state is known to be in some partition element,

the receiver prefers his action to match the middle point of the partition element, while
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the sender prefers a higher action in order to avoid downward mistakes. The size of such

endogenous bias is proportional to the size of the partition element. This is shown to im-

ply that the size of the partition elements grows exponentially—in contrast of their linear

growth in the standard case with quadratic preferences. Consequently, even though there

are partition equilibria with an arbitrarily large number of partition elements, there is a

uniform lower bound on the size of the biggest (and rightmost) partition element across all

partition equilibria. However, our main result does not apply in our auxiliary model: there

are equilibria with perfect information transmission.

Section 4 extends our auxiliary model by adding a small noise to the sender’s observa-

tion of the state of the world. The sender and the receiver still agree on the ideal action

for each realization of the state. However, since the state is observed imperfectly, there is

a small disagreement between them on the ideal action to be taken after each given sig-

nal. Standard arguments apply: in the model with noise, any equilibrium is equivalent to a

partition equilibrium. This is shown to imply that, regardless of how small the noise is, the

information transmission is significantly coarse in all equilibria. In Section 5.1 we show

that this result not only applies to the case where the state is imprecisely observed by the

sender, but also when there is an arbitrarily small (exogenous) bias between the sender

and the receiver (in addition to their different skewness). We further argue that the pres-

ence of any arbitrarily small learning costs leads to the same result; that is, it implies that

the information transmission is significantly coarse.

The paper concludes with a discussion of different applications where skewed prefer-

ences arise naturally (Section 5.2). These applications illustrate how, in some situations,

small objective misalignments may lead to significant welfare losses. The first application

considers communication between two managers of different divisions of a firm. Both aim

at maximizing the profits but, depending on their division, have different preferences with

respect to under- or over-producing. Our results establish that, in this case, their com-

munication is likely to be coarse. Hence, it may be optimal for firms not only to focus

on reducing bias between managers, but also to minimize their relative skewness. The

second application examines communication between politicians in a government. They

agree on the (state-dependent) target spending level (or some other policy), but disagree

on the political cost of missing the target (because of their different political biases or the

preferences of their electorate). We find that prime ministers may prefer, when designing

a cabinet, to include politicians with different ideal policies but similar skewness, rather

than politicians with the same ideal policies but different skewness.
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2 An Illustrative Example

We begin considering a simple auxiliary model (generalized in Section 3). Even though the

model does not lead to the main result—it has equilibria with full information transmission—

its analysis illustrates in a clear manner the drivers behind coarse information transmis-

sion. Sections 4 and 5.1 show that small variations of our auxiliary model lead to the result

that all equilibria exhibit significantly imprecise information transmission.

Our auxiliary model is a version of the CS model. There is a sender (the s-agent), and a

receiver (the r -agent). First, nature draws a state of the world t using a uniform distribution

on [0,1]. After observing the state, the sender chooses a message m from a set M ⊃ [0,1]

(we assume that the message set is big enough for full communication to be possible). The

receiver, after observing m but not t , decides on an action a ∈ [0,1]. If the realized state

is t , the message sent is m, and the action taken is a, then the payoff of the θ-agent, for

θ ∈ {s,r }, is

uθ(t , a) ≡







−(t−a) if a<t ,

−kθ (a−t ) if a≥t ,
(2.1)

where kr ,k s ∈ R++ and k s 6= kr . Note that, for each state of the world t ∈ [0,1], both the

sender’s payoff and the receiver’s payoff are maximized when a = t (i.e., their relative bias

is zero). If, however, there is a mistake (i.e., a 6= t ), their respective payoff loss depends on

its size and direction.

A strategy of the sender is a map µ : [0,1] →∆(M), and a strategy of the receiver is a map

α : M →∆([0,1]). As in CS, we are looking for Bayes–Nash equilibria in this game.

For each θ ∈ {s,r }, the skewness parameter kθ is a measure of the skewness of the θ-

agent’s payoff function. The skewness parameter measures the loss of making an upward

mistake relative to the loss of making a downward mistake of the same size. (Note that

we have normalized the downward slope to 1 without loss of generality.) For example, the

receiver is not skewed if kr = 1, since his payoff loss from making an upward mistake is the

same as it would be from making a downward mistake of the same size. Similarly, if k s =
1
2

then the sender’s payoff loss from an upward mistake is half of what it would be from a

downward mistake of the same size. We use κ ≡
k s

kr to denote the relative skewness of the

sender with respect to the receiver. Also, without loss of generality, we assume that κ < 1;

that is, the receiver is assumed to have a stronger preference than the sender for avoiding

upward mistakes relative to downward mistakes (in the opposite case one can just reverse

the state space).
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Finite equilibria. We begin our analysis by focusing on equilibria where a finite num-

ber of messages are used. It is easy to see that in our setting, similar to the CS model, each

equilibrium in which a finite number of messages are used is essentially equivalent to a

partition equilibrium, i.e., an equilibrium in pure strategies where each message used with

positive probability signifies an interval of the state space. (See Section 3 and, in particular,

footnote 1 for the formal condition for the equivalence.)

Assume that there is a partition equilibrium with exactly N partition elements, for some

fixed N ∈ N. We use {tn}N
n=0 to denote the boundaries of the partition elements, where

0= t0< t1< ...< tN =1. For each n = 1, ..., N , we denote by an the equilibrium action when

the state is between tn−1 and tn . Such an action satisfies

an ∈ argmax
a

∫tn

tn−1

ur (t , a)dt ⇒ an =
kr

1+kr tn−1 +
1

1+kr tn . (2.2)

Note that if, for example, kr > 1, the receiver takes an action lower than the middle of the

partition element to avoid an upward mistake. If kr = 1, the action coincides with the state

in the middle of the partition element.

In equilibrium, when the realized state is tn , for 0 < n < N , the sender is indifferent

between inducing actions an and an+1. This implies that

−(tn −an) =−k s (an+1 − tn) . (2.3)

If, for example, k s < 1, the sender has a stronger incentive to avoid downward mistakes

than to avoid upward mistakes, so she is indifferent between the two messages only if the

action an is closer to tn than the action an+1 is.

We can then use equations (2.2) and (2.3) to compare the size of two adjacent partition

elements:

tn+1 − tn =
tn − tn−1

κ
. (2.4)

Since κ< 1, communication is coarser for higher states. The size of the partition elements

grows exponentially: for each two consecutive partition elements, the one to the right is

κ−1 > 0 times bigger than the one to the left. Letting t0 = 0 and tN = 1, and by equation

(2.4), we get

tn =
κN−n (1−κn)

1−κN
for all n = 0, ..., N . (2.5)
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t , a

tn−1 an tn an+1 tn+1

us(tn−1, ·)

us(tn , ·)

us(tn+1, ·)

Figure 1: us(tn−1, ·), us(tn , ·) and us(tn+1, ·) for some equilibrium thresholds, in the case k s =
1
2

(sender’s is negatively skewed) and kr = 1 (receiver is not skewed), so κ =
1
2 . Notice that the

an =
1
2 (tn−1 + tn) and an+1 =

1
2 (tn + tn+1), and it is the case that us(tn , an) = us(tn , an+1).

Hence, the following claim holds:

Claim 2.1. For each N ∈N there is a partition equilibrium with N partitions.

Figure 1 illustrates the previous arguments. In the picture, the receiver is not skewed,

and so kr = 1 and an =
1
2

(tn−1+tn) for all n. The sender is downward skewed, k s =
1
2

, and so

her payoff loss from a downward mistake is twice as big as her payoff loss from an upward

mistake of the same size. Hence, the sender is indifferent between two actions an and an+1

only if tn is at half the distance from an than from an+1 (note that κ =
1
2

in this example).

As a result, the size of the higher interval is twice the size of the lower one.

Infinite equilibria. Assume now that there is a partition equilibrium with an infinite

number of partition elements, each of them of positive measure (sometimes called an “in-

finite equilibrium”; see Gordon, 2010). Equation (2.4) applies for every pair of adjacent

partition elements. In fact, it is not difficult to see that the boundaries of the partition ele-

ments of the unique infinite equilibrium, denoted with some abuse of notation {t∞−n}∞n=0,

satisfy

t∞−n = lim
N→∞

κN−(N−n) (1−κN−n)

1−κN
= κn for all n ∈Z+. (2.6)

Additionally to partition equilibria with a discrete (finite or countably infinite) partition

of the state space, referred to as “discrete equilibria,” there exist equilibria with precise

information transmission. In particular, there is a fully informative equilibrium, where

µ(t ) = t = α(t ) for all t ∈ [0,1]. In Section 5.1 we argue that non-discrete equilibria are not

robust to adding a small noise to the observation of the state by the sender, as well as to the

presence of a small bias between the sender and the receiver, and to the presence of small

direct communication costs.
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κ

t 6
6−n , t∞∞−n

10

1

Figure 2: Black lines depict the values {t6−n}6
n=0 when N = 6, where high lines indicate low values of

n (t6−0 = 1 and t6−6 = 0). Similarly, gray lines depict the values {t∞−n}6
n=0 for the infinite equilibrium,

where again high lines indicate low values of n.

2.1 Comparative Statics

We continue by providing some comparative statics results for finite equilibria. Let Uθ
N

be

the payoff of the θ-agent in the partition equilibrium with N ∈ N messages, for θ ∈ {s,r }.

Simple algebra shows that each agent’s payoff increases when the other agent’s skewness

parameter becomes closer to hers/his. Also, as N increases, the payoff of both the sender

and the receiver increases as well. Nevertheless, their payoffs are bounded above away

from 0: limN→∞Uθ
N

= Uθ
∞ < 0 for both θ ∈ {s,r }. Finally, for each κ < 1, the size of the

rightmost partition element in any discrete equilibrium is significantly large (see Figure 2),

regardless of how big N is. The following claim formalizes these results:

Claim 2.2. Uθ
N

is strictly increasing in N , for both θ ∈ {s,r }. The size of the rightmost parti-

tion element is 1−κ
1−κN ≥ 1−κ> 0; that is, communication does not become arbitrarily precise

as N increases.

Claim 2.2 establishes that the information transmission is significantly coarse in dis-

crete equilibria. Indeed, independently of the number of partition elements, the size of

the rightmost interval is larger than 1−κ. As we will see, this is going to set a limit on the

information precision in any equilibrium when the state is imperfectly observed.

Pareto outcomes: We now compare the equilibrium outcomes of our model to constrai-

ned-efficient outcomes. To do so, we fix the number of available cheap-talk messages at

some N ∈N. Then, we define a constrained-Pareto outcome (constrained to the usage of N
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messages) as a pair of maps µN : [0,1] → {1, ...N } and αN : {1, ..., N } → [0,1] that maximize

Et

[

βus(t ,αN (µN (t )))+ (1−β)ur (t ,αN (µN (t )))
]

for some β ∈ [0,1].

It is easy to see that any constrained-Pareto outcome divides the state space into N

equally sized intervals (of size 1
N

) and assigns the same action to all states of each element

of the partition. Hence, in contrast to standard cheap-talk models, the sender and the

receiver in our setting “agree” on the optimal communication strategy, but they disagree on

the action that should be taken after each message. In fact, the action that a constrained-

Pareto outcome assigns to the states of the n-th interval coincides with the action that an

agent with skewness parameter kβ

1+kβ = β k s

1+k s + (1−β) kr

1+kr prefers in this interval. This

action corresponds to the right-hand side of expression (2.2), except that kβ replaces kr

and n−1
N

and n
N

replace tn−1 and tn , respectively. This gives to the θ-agent a payoff of

−

kθ

(1+kθ)2 +
(

kβ

1+kβ −
kθ

1+kθ

)2

2 N
,

for both θ ∈ {s,r }. As one might expect, the information transmission is precise in a cons-

trained-Pareto outcome with a large number of messages N . Thus, for any sequence of

constrained-Pareto outcomes with N →∞, the sender’s and receiver’s payoffs increase to-

ward 0. This contrasts with our results that the equilibrium payoffs remain bounded away

from zero as N increases.

3 General Case

We now generalize the previous result that the information transmission in equilibria where

a discrete set of messages is used is significantly coarse when the agents are differently

skewed. This result will illustrate how a slight relaxation of the standard assumption that

payoff functions are twice-differentiable (in the CS model) changes the equilibrium pre-

dictions. To show this, we present first a general version of the auxiliary model introduced

in Section 2.

As before, there are a sender and a receiver. First, nature draws a state of the world t ,

now using a distribution with a continuous density f in [0,1] with full support. The sender

chooses a message m from a set M containing [0,1]. The receiver, after observing m but

not t , decides on an action a ∈ [0,1]. If the realized state is t , the message sent is m, and
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the action taken is a, then the payoff of the θ-agent, for each θ ∈ {s,r }, takes the form

uθ(t , a) ≡







uθ−(t , a) if a<t ,

−uθ+(t , a) if a≥t ,
(3.1)

where uθ−(t , ·) and uθ+(t , ·) are strictly increasing and continuously differentiable func-

tions for all t ∈ [0,1], and uθ(t , ·) is single-peaked at t . Assume also that, for all a1, a2, t1, t2 ∈

[0,1] with a1 < a2 and t1 < t2, we have1

us(t1, a1) ≤ us(t1, a2) ⇒ us(t2, a1) < us(t2, a2) ,

us(t2, a1) ≥ us(t2, a2) ⇒ us(t1, a1) > us(t1, a2) .

The following proposition establishes that, as long as the agents are differently skewed at

some state of the world, there is a bound on how precise the equilibrium communication

can be in any equilibrium with a finite number of used messages.

Proposition 3.1. Assume that there exists some state t̄ ∈ (0,1) such that us−
2 (t̄ , t̄−)ur+

2 (t̄ , t̄+) 6=

us+
2 (t̄ , t̄+)ur−

2 (t̄ , t̄−). Then, there exists some ∆ > 0 such that, for all discrete equilibria, the

minimum interval length is greater than ∆.

Proof. Assume that t̄ ∈ (0,1) is such that us−
2 (t̄ , t̄−)ur+

2 (t̄ , t̄+) 6= us+
2 (t̄ , t̄+)ur−

2 (t̄ , t̄−) and,

without loss of generality (due to the full-support assumption), that f (t̄ ) > 0. Assume

also, for the sake of contradiction, that there is a strictly increasing sequence (Ni )∞
i=1

and a

corresponding sequence of partition equilibria where the maximum length of a partition

element, denoted by ∆i , is such that ∆i → 0. With some abuse of notation, let [t i
ni

, t i
ni+1]

denote the partition element containing t̄ in the i -th equilibrium.2

By continuity of the derivatives of the payoff functions there is some continuous, strictly

increasing function δ(·) with δ(0) = 0 such that, for each ε> 0,

∣
∣uθx

2 (t , a)−uθx
2 (t̄ , t̄ )

∣
∣< ε and | f (t )− f (t̄ )| < ε

for all x ∈ {−,+}, θ ∈ {s,r }, and t , a ∈ [t̄ −δ(ε), t̄ +δ(ε)]. Take a sequence (εi )i strictly decreas-

ing towards 0 such that ∆i < δ(εi ) for all i . Assume, without loss of generality, that

1This condition generalizes the standard condition ∂2

∂t∂a
us (t , a) > 0 to ensure that partition elements in par-

tition equilibria are intervals.

2With some abuse of notation, we use closed intervals to denote the (interval) partition elements of the par-

tition equilibrium (notice that partition elements are defined up to sets of measure zero).
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k s
≡

us+
2 (t̄ , t̄ )

us−
2 (t̄ , t̄ )

<
ur+

2 (t̄ , t̄ )

ur−
2 (t̄ , t̄ )

≡ kr . (3.2)

This assumption is equivalent to the assumption that κ≡
k s

kr < 1 in our example in Section3

2. Hence, the incentive-compatibility condition for the receiver can be written as4

ai
ni

=
kr

1+kr t i
ni−1 +

1
1+kr t i

ni
+o

(

εi (t i
ni
− t i

ni−1)+ (t i
ni
− t i

ni−1)2
)

and

ai
ni+1 =

kr

1+kr t i
ni
+

1
1+kr t i

ni+1 +o
(

εi (t i
ni+1 − t i

ni
)+ (t i

ni+1 − t i
ni

)2
)

as i →∞. Intuitively, the small size of the partition elements implies that the distribution

of the states within them is approximately constant, and that the marginal payoff loss from

upward and downward mistakes is approximately constant. Hence, equation (2.2) approx-

imately holds. Similarly, the indifference condition of the receiver is now given by

− (t i
ni
−ai

ni
) =−k s (ai

ni+1 − t i
ni

)+o
(

εi (t i
ni+1−t i

ni
)+ (t i

ni+1−t i
ni

)2
)

as i →∞. Hence, we have that

t i
ni
− t i

ni−1 = κ
(

t i
ni+1−t i

ni
+o

(

εi (t i
ni+1−t i

ni
)+ (t i

ni+1−t i
ni

)2)
)

< κ̃ (t i
ni+1−t i

ni
) ,

where κ̃ ≡
κ+1

2
∈ (κ,1). Note that the size of the intervals decreases at least exponentially

toward the left (with coefficient κ̂); that is, lower intervals are smaller. Hence,

t i
n ≥ t i

ni
−

1

1− κ̃
(t i

ni
−t i

ni−1) ≥ t̄ −
1

1− κ̃
∆i

for all n ∈ {0, ...,ni }. Since t̄ > 0, there exists a value of i such that t̄ − 1
1−κ̃

∆i > 0. This is a

contradiction since t i
0 = 0 in any equilibrium.

Consider now the case where the sequence of partition equilibria contains discrete

equilibria (not just finite equilibria). The previous argument implies again that, if i is high

enough, the set of thresholds of the partition elements of the i -th equilibrium has a limit

point t̄ ′
i

in (t̄ − 1
1−κ̃

∆i , t̄ ) (i.e., there is a strictly decreasing sequence of thresholds conver-

ging to t̄ ′
i
). There are two possibilities. Assume first that there is some t ′

i
such that [t ′

i
, t̄ ′

i
] is

3Since us−
2 (t̄ , t̄−)ur+

2 (t̄ , t̄+) 6= us+
2 (t̄ , t̄+)ur−

2 (t̄ , t̄−) and uθ−(t̄ , ·) and uθ+(t̄ , ·) are strictly increasing, we have

that the denominators of equation (3.2) are strictly positive. The proof applies to the case us+
2 (t̄ , t̄ ) = 0 or

ur−
2 (t̄ , t̄ ) = 0 (or both), where κ= 0.

4The “error terms” appear because the derivatives us−
2 and us+

2 , as well as the density function, are not

constant in the interval. The equation is then the standard Taylor approximation, where terms of order

εi (t i
ni
− t i

ni−1), order (t i
ni
− t i

ni−1)2, and higher orders are omitted.
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a partition element. Then, when the realized state is t̄ ′
i
, the sender can induce the receiver

to take an action arbitrarily close to t̄ ′
i

(by reporting a partition interval slightly to the right

of t̄ ′
i
), while when she reports that the state is in [t ′

i
, t̄ ′

i
] the action of the receiver is bounded

away from t̄ ′
i
. Since the sender strictly prefers the closer action, the equilibrium indiffer-

ence condition of the sender is violated, a contradiction. Assume then that, instead, there

is a strictly increasing sequence of thresholds converging to t̄ ′
i

(so the size of the corres-

ponding partition elements decreases toward the right). This is a contradiction since, if i

is big enough, the inequality in equation (3.2) holds at t̄ ′
i
, and so the size of small partition

elements increases, and not decreases, toward the right.

Proposition 3.1 contrasts with the result in the standard CS model that a small bias

permits precise communication when the number of messages is large (but finite). For

instance, Ottaviani (2000), Dessein (2002), and Dilmé (2018b) consider the case where

us(t , a) = ur (t , a +εb(t )) for some fixed function b. They obtain that for each ∆ > 0 there

are equilibria with a finite number of messages where the size of the biggest partition ele-

ment is lower than ∆ if ε> 0 small enough.5 The crucial assumption that drives this result

is that, in these models, the limiting payoff functions are twice-differentiable, and so they

are locally symmetric around the ideal action (Dessein allows for kinks, but considers only

symmetric payoff functions). As a result, the growth of the size of small intervals is loc-

ally linear (globally linear in the uniform-quadratic case). Such a linear growth implies

that even though all equilibria contain partition elements which are much bigger, in relat-

ive terms, than the size of the (possibly state-dependent) bias6 εb, there are equilibria in

which the biggest partition element is smaller than any fixed ∆>0 if ε is small enough.

The same argument cannot be used when the sender and the receiver are differently

skewed. In small intervals, where the distribution of states is approximately uniform and

the payoff functions are approximately piecewise linear, equation (2.4) approximately holds.

The difference in the skewness of the sender’s and the receiver’s preferences implies that,

in relative terms, either the equilibrium action is not close to the middle of the partition

5Spector (2000) obtains the same result assuming that us (t , a) = ur (t , a)+εv(t , a), for some fixed function v .

6Ottaviani (2000), Dessein (2002) and Dilmé (2018b) have shown, with different levels of generality, that when

the bias is small (i.e., when ε is small) the typical size of a partition element in an equilibrium with a maximal

number of partition elements is much bigger than the bias in relative terms (of order O(ε1/2)). In particular,

Dilmé allows for asymmetric payoff functions, and shows that the third derivative of the payoff functions is

relevant for determining the coarseness of communication in different regions of the state space, but does

not prevent the existence of equilibria with very precise information transmission.
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element (by equation (2.2)) or the actions are not at a similar distance from the common

boundary of neighboring partition elements (by equation (2.3)). This implies that the size

of small partition elements changes approximately exponentially. The proof of Proposi-

tion 3.1 shows the thresholds of small partition elements have an accumulation point (in

the direction where the size of the partition elements decreases). The indifference condi-

tion of the sender at such an accumulation point implies that it cannot be interior. It then

follows that the size of the biggest partition element is uniformly bounded away from zero

across all finite equilibria.

4 Noisy Observation of the State

This section illustrates the effect of adding a small noise onto the sender’s observation of

the state. As we will see, the noise generates a small conflict of interest between the sender

and the receiver for each signal realization. Consequently, only equilibria that are essen-

tially equivalent to partition equilibria will exist. We will conclude the section by showing

that all equilibria feature a significantly coarse information transmission, regardless of how

precise the observation of the state is.

Consider the following extension of the auxiliary model in Section 2, referred to as the

“model with noise”. As in the auxiliary model, nature initially chooses a state of the world

t ∈ [0,1] using a uniform distribution. But now, instead of observing the state of the world

directly, the sender observes a noisy signal of it, σ ∈ R. For simplicity, we assume that the

signal is uniformly distributed in [t−ε, t+ε] for some small ε>0. Then, as in our auxiliary

model, the sender sends a message m, and the receiver takes some action a.

For a given state t ∈ [0,1], the preferences of the sender and the receiver are the same

as in our auxiliary model defined in equation (2.1). As before, we assume without loss of

generality that k s < kr , and therefore it is still the case that κ< 1. To make our arguments

clear, we will focus on the case where the receiver is not skewed, i.e., kr = 1. Now, for a

signal σ, agents evaluate their expected payoffs using their beliefs about the state of the

world. If, for example, the signal σ belongs to [ε,1−ε], the posterior belief about the state

of the world is uniform in [σ−ε,σ+ε]. In this case, the expected payoff for the θ-agent when

action a is taken, denoted by ûθ
ε (σ, a)≡Et [uθ(t , a)|σ], is

ûθ
ε (σ, a)=







−
1

4ε

(

σ+ 1−kθ

1+kθ ε−a
)2
−

kθ

(1+kθ)2 ε if a∈[σ−ε,σ+ε],

uθ(σ, a) if a∉[σ−ε,σ+ε],
(4.1)

12
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Figure 3: Payoff functions in (a) the state space and in (b) the signal space, for some t ∈ [0,1] and

σ ∈ [ε,1−ε]. As in Figure 1, k s =
1
2 (the sender is downward skewed) and kr = 1 (the receiver is not

skewed), so κ=
1
2 . While the ideal actions of the agents coincide for each state t , the ideal action of

the sender after signal σ is σ+ 1
3 ε, while the ideal action of the receiver is σ.

for each θ ∈ {s,r }. When σ ∈ (−ε,ε)∪ (1−ε,1+ε), the posterior belief distribution about the

state is not uniform, but expressions similar to (4.1) can be obtained.

For each ε > 0 and θ ∈ {s,r }, there are two important differences between the payoff

function in the state space, uθ, and the induced payoff function in the signal space, ûθ
ε .

First, the presence of noise in the observation makes ûθ
ε smooth (Figure 3). Hence, ûθ

ε

locally satisfies the smoothness conditions required in the CS model. Second, the ideal

actions of the sender and the receiver after each signal are different.7 If, for example, σ

belongs to [ε,1−ε], since the receiver is not skewed (i.e., kr = 1), his ideal action is σ+

1−kr

1+kr ε = σ. The sender’s ideal action is σ+
1−k s

1+k s ε > σ; she prefers a higher action to avoid

downward mistakes. (These expressions can also be obtained from equation (2.2) with

tn−1=σ−ε and tn=σ+ε.) Note that ûθ
ε tends point-wise to uθ as ε→ 0.

The difference between the ideal actions of the sender and the receiver for each given

signal is
(

1−k s

1+k s −
1−kr

1+kr

)

ε>0 (when the signal is in [ε,1−ε]; otherwise similar expressions can

be obtained). Therefore, for small ε, the objectives of the sender and the receiver are differ-

ent, but the difference between them is small. This implies, due to an argument analogous

to that in Crawford and Sobel (1982), that there is no equilibrium and a set [σ−,σ+], with

σ− <σ+, such that signals in [σ−,σ+] are communicated perfectly. In fact, as in the CS

model, here each equilibrium is essentially equivalent to some discrete (partition) equilib-

rium.

7Formally, for each ε>0 and σ ∈ (−ε,1+ε), the functions ûs
ε(σ, ·) and ûr

ε(σ, ·) have different maximizers.
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To establish the “proximity” between the sets of partition equilibria in the model with

noise (for small ε) and the auxiliary model (in Section 2), we first define the distance between

the equilibria of the two models. We define the distance between a discrete equilibrium of

the auxiliary model, {tn}N
n=0, and a discrete equilibrium of the model with noise, {σn̂}N̂

n̂=0
,

as

D
(

{tn}N
n=0, {σn̂}N̂

n̂=0

)

≡ sup
n

inf
n̂

∣
∣tn −σn̂

∣
∣+ sup

n̂

inf
n

∣
∣tn −σn̂

∣
∣ .

The following proposition establishes that, if ε is small enough, the set of discrete equilibria

in the auxiliary model and the set of equilibria in the model with noise are close:

Proposition 4.1. Fix any ∆>0. There exists some ε̄>0 such that, if ε∈ (0, ε̄), the following

holds:

1. For any equilibrium of the model with noise, there is a discrete equilibrium of the aux-

iliary model at a distance less than ∆ from it.

2. For any discrete equilibrium of the auxiliary model, there is an equilibrium of the

model with noise at a distance less than ∆ from it.

Proof. We prove the two parts of the statement separately:

1. In the model with noise, the induced bias (in the signal space) between the sender

and the receiver is strictly positive in (−ε,1+ε). Gordon (2010) shows that, in such

case, the set of thresholds of the partition elements in an infinite equilibrium (if it

exists) has an accumulation point only at the lower end of the signal space, i.e., at

−ε. It is then convenient, in this proof, to use {σn}0
n=−N to denote the thresholds of

partition elements in a partition equilibrium. As before, N ∈N∪ {+∞} is the number

of partition elements in the equilibrium (note that σ0 = 1 and limn→−N σn = 0).

We divide the proof of the first statement into 5 steps:

Step 1: Some preliminary results. Fix a partition equilibrium of the model with

noise, defined by the thresholds {σn}0
n=−N . Fix also two consecutive partition ele-

ments denoted by [σn−1,σn] and [σn ,σn+1]. The sender’s indifference condition can

now be written as

ûs
ε(σn ,αε(σn−1,σn)) = ûs

ε(σn ,αε(σn ,σn+1)) , (4.2)

where αε(σn ,σn+1) maximizes the expected payoff of the receiver when the signal is

in [σn ,σn+1], for a fixed value ε> 0. If, for example, σn−1,σn ∈ [ε,1−ε], the posterior
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of the receiver about the state is symmetric and has support [σn−1−ε,σn +ε], and so

αε(σn−1,σn) = 1
2

(σn−1 +σn). In general, it is easy to see that8

αε(σn−1,σn) ∈
(

1
2

(σn−1 +σn)−ε, 1
2

(σn−1 +σn)+ε
)

and9

∣
∣κ (σn+1 −σn)− (σn −σn−1)

∣
∣< 4(1+κ)ε . (4.3)

Equation (4.2) can be used to obtain the relationship between the sizes of consecut-

ive intervals. If, for example, σn−1,σn+1 ∈ [ε,1−ε], we can show that10

σn+1 −σn







≥σn −σn−1 +4 1−κ
1+κ

ε if σn−σn−1 ≤ 2ε,

= κ−1 (σn −σn−1) if σn−σn−1 > 2ε.
(4.4)

Note that when the partition element is “big,” i.e., σn−σn−1 > 2ε, then equation (4.4)

coincides with equation (2.4). If, however, the partition element is “small,” i.e., of size

less than 2ε, the size of the interval grows at least linearly in n.

Step 2: Some definitions. In this step we define n−, n+, and nb . Let n− ∈ {−N −

1, ...,0} be such that ε ∈ (σn−−1,σn−]; that is, [σn−−1,σn−] is the rightmost partition

element containing signals below ε. Similarly, let n+∈{−N , ...,−1} be such that 1−ε ∈

[σn+ ,σn++1), that is, [σn+ ,σn++1] is the leftmost partition element containing signals

8The density of the posterior at state t conditional on the signal being in [σn−1 −ε,σn +ε] is proportional to

the measure of [t−ε, t−ε]∩[σn−1,σn]. Hence, it is increasing from max{0,σn−1−ε} to min{σn−1+ε,σn+1−ε},

then constant until max{σn−1 +ε,σn+1 −ε}, and finally decreasing until min{1,σn +ε}. Such a distribution

is first-order dominated by one uniform on [σn−1+ε,σn +ε]∩ [0,1], and so αε(σn−1,σn) < 1
2 (σn−1+σn)+ε.

9When the sender observes σn , she knows that the state is in [σn −ε,σn ,+ε]∩ [0,1]. It can then be seen that

the terms on each of the sides of the sender’s indifference condition (4.2) can be bounded using the extreme

states. For example,

σn−ε−

<
1
2 (σn−1+σn )+ε

︷ ︸︸ ︷

αε(σn−1,σn) < ûs
ε(σn ,αε(σn−1,σn)) = ûs

ε(σn ,αε(σn ,σn+1)) < κ (

<
1
2 (σn+σn+1)+ε

︷ ︸︸ ︷

αε(σn ,σn+1)−σn+ε) .

10If the middle points of the intervals [σn−1,σn] and [σn ,σn+1] lie in the quadratic part of ûs (σn , ·), then the

inequality becomes an equality. To see this, recall that in the uniform-quadratic case of the CS model with

bias b, we have σn+1−σn = σn−σn−1 +4b. If both middle points lie in the linear part, then σn+1 −σn =

κ−1 (σn −σn−1). It is easy to prove that if one middle point lies in the linear part and the other in the

quadratic one, the inequality holds.
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above 1−ε. When n− ≤ n+, we define nb ∈ {n−, ...,n+} as the unique index such that

all partition elements contained in [σnb ,σn+] are big (i.e., greater than 2ε) and all

contained in [σn− ,σnb ] are small. When n− > n+ (which happens when N = 1 only),

we let nb be equal to 0. The existence and uniqueness of nb follows from the fact that,

by equation (4.4), the size of the partition elements contained in [σn− ,σn+] increases

rightwards.

Step 3. Proof that σn+ is not close to 0 when ε is small. Take a sequence (εi )∞
i=1

strictly decreasing toward 0 and, for each i , a partition equilibrium {σi
n}0

n=−Ni
of the

model with noise with parameter εi . Let n−
i

, n+
i

and nb
i

be, respectively, the values

of n−, n+, and nb corresponding to the i -th equilibrium. We assume, for the sake of

contradiction, that σi
n+

i

= 1−xi , where (xi )i is a sequence converging to 0. Hence, if i

is high enough, n+
i
> n−

i
. Fix some i . Since σi

n+
i
+1

> 1−εi , we have that σi
n+

i
+1

−σi
n+

i

<

xi+εi . Using equation (4.3) we obtain

σi
n+

i

−σi
n+

i
−1

≤ κ (σi
n+

i
+1

−σi
n+

i

)+4(1+κ)εi < κxi − (4+6κ)εi .

It is therefore clear that, as i increases, σn+
i
−2 converges to 1, and so n+

i
−2 ≥ n−

i
if i

is high enough. Since all partition elements in [σi

nb
i

,σi
n+

i

] are big, their size increases

exponentially in this set (by equation (4.4)). We then have

σi

nb
i

>σi
n+

i

− (1−κ)−1 (σi
n+

i

−σi
n+

i
−1

) > 1−xi −
xi κ+(4+6κ)εi

1−κ

= 1−
xi

1−κ
−

4+6κ
1−κ

εi .

There are two cases. Assume first that for all ī ∈N there is some i > ī such that nb
i
=

n−
i

; that is, all intervals contained in [σn−
i

,σn+
i

] are big. Using equation (4.3) and the

fact that σi
n−

i
−1 < εi (by the definition of n−

i
), this implies that there are arbitrarily

large values i such that11

→0
︷ ︸︸ ︷

4(1+κ)εi >
∣
∣σi

n−
i
−σi

n−
i
−1 −κ (σi

n−
i
+1−σ

i
n−

i
)
∣
∣

>
∣
∣1−

xi

1−κ
−

4+6κ
1−κ

εi −2εi −κ
(

1+εi − (1−
xi

1−κ
−

4+6κ
1−κ

εi )
)∣
∣

︸ ︷︷ ︸

→1

.

This is a contradiction. Assume then, alternatively, that nb
i
> n−

i
for all i > ī , for

some ī ∈N. Since all partition elements contained in [σi
n−

i
,σi

nb
i

] are small, we can use

11To simplify notation, “→” means that the left hand-side tends to the right-hand side as i →∞.
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equation (4.4) to obtain

σi
n−

i
+1 −σi

n−
i
≤σi

nb
i

−σi

nb
i
−1

− (nb
i −n−

i −1)4 1−κ
1+κ

εi

≤
(

2− (nb
i −n−

i −1)4 1−κ
1+κ

)

εi . (4.5)

Thus, nb
i
−n−

i
≤ 1+ 1

2
1+κ
1−κ

. Furthermore, since the size of the partition elements con-

tained in [σi
n−

i
,σi

n+
i

] decreases leftwards we have that

σi
n−

i
>σi

nb
i

−

→0
︷ ︸︸ ︷

(nb
i −n−

i )2εi . (4.6)

Again, this is a contradiction by equation (4.3) and the fact that σi
n−

i
−1 < εi (by the

definition of n−
i

), since we have that σi
n−

i
−σi

n−
i
−1 → 1 while σi

n−
i
+1 −σi

n−
i
→ 0.

Step 4. Proof that σnb
i
−1 → 0. Take a sequence (εi )∞

i=1
and a corresponding sequence

of equilibria as in Step 3. Assume, for the sake of contradiction, that liminfi→∞σi

nb
i
−1

>

0. Again, we consider two cases. Assume first, taking a subsequence if necessary,

that nb
i
= n−

i
for all i . In this case, since σi

n−
i
−1 < εi , we have limi→∞σi

n−
i
−1 = 0, a

contradiction. Hence, there is no subsequence where nb
i
= n−

i
for all i . There is

then some ī such that nb
i
> n−

i
for all i > ī . In this case, for all i > ī , all partition

elements contained in [σi
n−

i
,σi

nb
i

] are small. Since equations (4.5) and (4.6) hold, we

have (σi

nb
i

−σi
n−

i
) → 0 and so (σi

n−
i
+1 −σi

n−
i

) → 0. This implies, due to equation (4.3),

that (σi
n−

i
−σi

n−
i−1

) → 0. Finally, since σi
n−

i
−1 → 0 (by the definition of n−

i
), we have

σi

nb
i
−1

→ 0, a contradiction.

Step 5. Proof of closeness. Fix ∆ > 0. Take a sequence (εi )∞
i=1

and a corresponding

sequence of equilibria as in Step 3. Assume, for the sake of contradiction, that for

all i , all equilibria in the auxiliary model are at a distance greater than ∆ from the

equilibrium {σi
n}0

n=−Ni
. Assume, taking a subsequence if necessary, that (σi

−1)i and

(Ni )i converge, respectively, to some σ̄ and N ∈ N∪ {+∞}. Note that, by Step 3, we

have σ̄< 1 . By equation (4.3) we have that, for all n ≥−N ,

σi
n → σ̄n ≡ 1− (1− σ̄)

1−κ−n

1−κ
.

Since, necessarily, limn→−N σ̄n → 0 (since, by Step 4, σi

nb
i
−1

→ 0), we have that σ̄n =

tN+n as defined in equation (2.5) (in the finite case) and as defined in equation (2.6)

(for the infinite case). This implies that, if i is big enough, the distance between the
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i -th equilibrium and the discrete equilibrium with N signals in our auxiliary model

is less than ∆, a contradiction.

2. Fix some N ∈ N. We want to show that the partition equilibrium with N intervals

in the model of Section 2 (with partition thresholds {tn}N
n=0 given in equation (2.5)),

can be approximated by a sequence of equilibria as the noise becomes small (a sim-

ilar argument applies for the infinite equilibrium). To do so, we construct a putative

partition equilibrium of the model with noise as follows. Fix some small ξ ∈ R, and

define σ
ξ
0,ε ≡ −ε and σ

ξ
1,ε ≡ t1 +ξ. Then, we iteratively use the sender’s indifference

condition (4.2) to find σ
ξ
n+1,ε for n = 1, ..., N−2. When ε is small, equation (4.2) ap-

proximates (2.4), and so each σ
ξ
n,ε is strictly increasing and continuous in ξ for all

n = 1, ..., N−1. Still, for each value of ξ, equation (4.2) does not necessarily hold for

n=N−1 when σ
ξ
N ,ε

is set to be the upper bound of the signal space, 1+ε. In fact, for

each ξ > 0, the right-hand side of equation (4.2) for n =N−1 is higher than its left-

hand side if ε is small enough, and the reverse is true if ξ< 0. By continuity, there is

some ξ(ε) such that the equation holds. Thus, for any sequence (εi )i converging to 0

and for all n = 1, ..., N −1, we get

ûs
εi

(

σ
ξ(εi )
n,εi

,αεi

(

σ
ξ(εi )
n−1,εi

,σ
ξ(εi )
n,εi

))

= ûs
εi

(

σ
ξ(εi )
n,εi

,αεi

(

σ
ξ(εi )
n,εi

,σ
ξ(εi )
n+1,εi

))

.

For each i , {σ
ξ(εi )
n,εi

}N
n=0 are the thresholds of a partition equilibrium with N partition

elements of our model with noise with ε= εi . Furthermore, for each n, limi→∞σ
ξ(εi )
n,εi

=

tn .

The previous result can be generalized to a wider set of noise structures with the prop-

erty that the distance between the state and the signal is, with an increasing probabil-

ity, O(ε) as ε → 0. The crucial property that drives the result is that, as ε → 0, the ratio

between size of the partition elements and difference of ideal actions explodes (see foot-

note 6). Hence, for each θ ∈ {s,r }, the induced payoff function in the signal space, ûθ
ε , can

be approximated by the underlying payoff function uθ, and the partition elements can be

approximated by those described in Section 2 as a result. The induced payoff functions in

the signal space are smooth for each given ε>0, and also the difference between the ideal

actions shrinks as ε→ 0. Hoverver, for each signal σ, ûθ
ε (σ, ·) becomes increasingly more

“kinky” as ε → 0 (notice that the second derivative at their maximum is −
1
2
ε−1) and the

range where it is (approximately) symmetric becomes small. The simultaneous effect of

reducing the noise on the endogenous bias and the shape of the payoff functions prevents
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the arguments used in the existing literature from holding. Thus, in contrast to the stand-

ard CS model, a small state-by-state objective misalignment is not sufficient to guarantee

the existence of equilibria with precise communication in our setting.

Remark 4.1. Our result establishes that the usual (and natural) finding that a small object-

ive misalignment is a necessary and sufficient condition for the existence of equilibria with

precise information transmission does not hold in general. An alternative interpretation

that reestablishes the above finding is the following. Our model illustrates that the bias may

not be an adequate measure of objective misalignment in some settings. That is, the dis-

tance between the ideal actions of the sender and the receiver after each piece of informa-

tion obtained by the sender is not enough to capture the relevant differences between their

objectives. Our model illustrates that the relative skewness between the sender and the re-

ceiver plays an important role in determining the equilibrium communication even when

the bias between the sender and the receiver is small.12

5 Discussion, Applications and Conclusions

5.1 Discussion

The models studied in Sections 2 and 3 contain equilibria other than discrete (partition)

equilibria, e.g, equilibria with full information transmission. In Section 4 we showed that

the existence of non-discrete equilibria crucially relies on the perfect observation of the

state by the sender. In this section, we show than when a small bias or cognitive costs of

using or learning a language are introduced to our auxiliary model, equilibrium commu-

nication becomes significantly coarse.

Bias

Partition equilibria appear naturally in settings where there is an “exogenous” bias between

the sender and the receiver, that is, when they disagree on the ideal action to be taken after

the realization of each state of the world. This section shows how the existence of a small

bias may make communication significantly coarse when agents are differently skewed.

We illustrate the effect of a small bias on communication using a tractable example.

Consider a setting analogous to the one presented in Section 2, the only difference being

12The author thanks Daniel Krähmer for suggesting this interpretation.
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that, while the receiver still has the same payoff function (given by equation (2.1) with θ =

r ), the sender’s payoff is given by







−((1+ε) t−a) if a<(1+ε) t ,

−k s (a−(1+ε) t ) if a≥(1+ε) t ,
(5.1)

with13 ε > 0. Note that now the ideal action of the sender when the state is t ∈ (0,1] is

(1+ε) t > t . It is not difficult to see that, for each ε> 0, only equilibria essentially equivalent

to discrete equilibria exist. In fact, there is a unique infinite equilibrium, in which the

thresholds of the partition elements are {κ̂n}∞n=0 (similar to equation (2.6)), where κ̂∈(0,1)

solves

κ̂= κ−ε
κ̂

1− κ̂

(1+kr ) (1+k s)

kr
.

The value κ̂ is increasing in κ and decreasing in ε; that is, a lower relative skewness and a

lower relative bias lead to better communication. As the bias disappears (i.e., as ε→ 0), the

limit of the thresholds of the partition elements of the (unique) infinite equilibrium satisfy

equation (2.6). It is then not difficult to show that only (and all) the discrete equilibria

described in Section 2 can be approximated by equilibria in the model with bias as the bias

becomes small.14

Costly talk

The assumption that talk is “cheap,” i.e., all messages have the same cost (normalized to 0),

seems plausible when the number of messages used in equilibrium is not too large. This is

typically the case in partition equilibria of the CS model when the bias is not small. When

the number of used messages is large, however, it seems more plausible that communic-

ation is costly per se. This may be due to the cognitive costs of learning or using complex

13This specification simplifies the analysis. Indeed, Melumad and Shibano (1991) show that, in the CS model

with uniform distribution and payoff functions ûr (t , a) =−(t−a)2 and ûs (t , a) =−((1+ε) t−a)2, with ε>0,

there is an infinite equilibrium with thresholds satisfying an equation analogous to (2.6).

14Our example illustrates that, under some specifications, communication is significantly coarse regardless

how small the bias is. Under some other specifications, communication may be precise in the presence of

a small bias. Consider for example the case where the sender is both skewed and has a constant bias, so her

payoff function is given by equation (5.1) except that (1+ε) t is replaced by t+ε. In this case, communication

is significantly coarse in any equilibrium if ε>0, while there may be equilibria with precise communication

if ε< 0. If, for example, ε=−
1−k

2(1+k) N
< 0 for some N ∈ N, there is an equilibrium with N equally-sized

intervals.

20



language structures (see Hertel and Smith, 2013). Direct communication costs are (im-

plicitly or explicitly) assumed, for example, in communication models with no conflict of

interest (e.g., Cŕemer et al., 2007, Jäger et al., 2011, Sobel, 2015 and Dilmé, 2018a), where

the number of messages that can be used for communication is exogenously or endogen-

ously limited. Our result highlights that the presence of small cognitive costs may have a

significant impact on the existence of equilibria with precise communication.

5.2 Applications

There are many economic situations where agents have a common target, but they dis-

agree on the relative cost of missing the target upwards or downwards. In what follows, we

discuss two such situations. They exemplify how skewed preferences naturally arise in set-

tings where communication between strategic agents takes place, and illustrate how seem-

ingly small departures from standard assumptions can significantly affect predictions.

Intra-firm communication. In this example, the sender and the receiver jointly own (or

are division managers in) a firm producing some good. Assume, for simplicity, that they

equally share the profits, and that the price of the good is 1. The sender is an expert on

estimating the demand t , distributed uniformly in [0,1]. She communicates her estimation

to the receiver. The receiver decides the production a ∈ [0,1]. The marginal cost of the

production materials is c ∈ (0,1), and the receiver incurs an extra cost c ′ ∈ (0, 1−c
2

) per unit

produced for the time and effort spent on production. Thus, the payoffs of the sender and

the receiver when the realized demand is t and the production choice is a are given by

us(t , a) = 1
2

(

min{a, t }− c a
)

and ur (t , a) = 1
2

(

min{a, t }− c a
)

−c ′ a .

It is not difficult to see that both the sender and the receiver prefer a = t above any other

production level when the realized demand is equal to15 t . Simple algebra shows that

k s

1+k s
= c and

kr

1+kr
= c +2c ′ .

As in Section 2, κ < 1. As a result, if the demand is not observed perfectly, there will be

a significant amount of imprecision in the information transmission in any equilibrium.

While low demand realizations are precisely communicated, the communication of high

15In contrast to our example in Section 2, here the payoff functions of the sender and the receiver have a

“level” that depends on the realized state. Since their incentives and the equilibrium construction do not

depend on the levels, our analysis also applies in this case.
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demand realizations is significantly coarse, even when the estimation of the demand is

very accurate. Firms should therefore design contracts to reduce not only the difference

between the objectives of their employees, but also the relative weight their employees put

on avoiding mistakes of different types.

Politicians with different electorates. This example illustrates how communication be-

tween politicians may be affected by the fact they are chosen by different constituencies.

The sender is a (finance or public works) minister with some private knowledge about the

suitability of a policy (such as the optimal amount of taxes to be collected or the geograph-

ical suitability of a new public facility). The receiver is the prime minister in charge of

making the final decision about the policy choice. They belong to the same party but are

chosen by different constituencies. If the state of the world is t and the policy a is chosen,

the payoff of the θ-agent is equal to

uθ(t , a) = |t −a|+βθ
|aθ

−a| ,

where aθ ∈ [0,1] and βθ ∈ [0,1), for all θ ∈ {s,r }, and where either as 6= ar or βs 6= βr (or

both). The first term of the payoff function is interpreted as the preference for choosing the

ideal policy for the country (or their party), normalized to be equal to the state. One can

then interpret aθ as the preferred action of the median voter of each of the politician’s con-

stituencies, or reflecting his or her own political bias, and βθ as the relative weight of this

term on each politician’s preferences. The fact that βθ < 1 captures that both politicians

care more about the country (or the party) than their own constituencies, and implies that

if the state of the world t were known, they would agree on their preferred policy, a = t . It

is easy to see that this setting generates differently skewed preferences (in some part of the

state space), and therefore the equilibrium communication is significantly coarse regard-

less of the precision of the observation of the state of the world, or the amount of resources

invested on making the observation more precise.

5.3 Conclusions

This paper shows that when agents are differently skewed, equilibrium communication

between them tends to be coarse. Even though a sender and a receiver may agree on the

ideal action for each state of the world, a slight noise in the observation of the state will

prevent the transmission of precise information. This implies that a small conflict of in-

terest between a sender and a receiver is not always sufficient to ensure the existence of

equilibria with precise information transmission.
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