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Abstract

In this paper, I develop a tractable framework with sequential consumer search
to address the effect of tracking on market outcomes. Tracking search histories
is informative about consumers’ valuations because different consumer types have
different stopping probabilities. With tracking, the unique equilibrium price path
is increasing whereas without tracking, an average uniform price prevails. Welfare
effects largely depend on how tracking affects consumers’ search persistence. For
intermediate search costs, tracking based price discrimination exacerbates the hold-
up problem and leads to inefficiently low search persistence. For high search costs
instead, tracking prevents a market breakdown as low prices conditional on short
search histories secure consumers a positive surplus from search. Tracking prevails
endogenously when consumers can dynamically opt out from tracking. This holds
since disclosing their search history is always individually rational for consumers,
irrespective of the overall effect on consumer surplus.
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1 Introduction

In many markets, consumers learn about products and their prices only by searching
different sellers sequentially. Often, the expected number of searches varies greatly
across consumers as tastes and preferences are rarely homogeneous. Hence, observing
a consumer’s search history might convey relevant information to sellers. For instance,
think of two consumers A and B (Alice and Bob), and suppose that both are looking for
a suit for the job market. Since it is the first suit they buy for a long time, neither of
them has a particular preference before they search and they visit the stores of different
brands in a random order. While searching, Alice realizes that she is fine with almost
any cut and color and thus does not need to search long. Instead, Bob finds that most
cuts and colors do not suit him well, requiring him to search longer. When finally
encountering his ideal suit, Bob’s willingness to pay for it is, most likely, higher than
Alice’. This is because Bob not only obtains utility from getting a new suit, but from
having the right cut and color as well. In contrast, none of those features matter to
Alice, implying that she is willing to pay less. In this environment with niche consumers
like Bob and mass consumers like Alice, observing search histories may inform sellers
about consumers’ preferences and is thus going to provoke sellers’ attention. Evidently,
tracking a consumer’s search process has become a widely used practice both for online
and brick and mortar businesses and it will most likely be even more prevalent in the
future due to exponentially improving technologies.1 However, progress in understanding
even the most general implications of tracking has been hindered by the lack of tractable
models.

The questions I address in this paper are the following: What is the effect of tracking on
market outcomes such as search behavior and prices? Does tracking always raise profits
or can it - perhaps contrary to common wisdom - also benefit consumers while making
sellers worse off? Do the welfare effects depend on the level of search costs? Finally, can
tracking prevail in equilibrium if consumers possess measures to prevent it?

To address these questions, I propose a tractable framework of consumer search with
tracking. Moreover, I account for consumer heterogeneity with respect to the nicheness
of their taste as laid out in the introductory example. Since search with tracking com-
pares with ordered search, the framework provides the first model of ordered search with
heterogeneous consumers. Tracking search histories enables sellers to receive imperfect
signals about a consumer’s type and thus to learn about their preferences because stop-
ping probabilities are type-dependent. In the baseline version of the model, there always
exists a unique equilibrium with a price path that is strictly increasing in the order of

1For example, Google places cookies on a user’s computer if the retailer’s website visited uses Google-
Analytics for customer management, or if the retailer has joined one of the Google owned ad-networks
Doubleclick or Adwords. Indeed, Mikians et al. (2012) find that both Google-Analytics and Doubleclick

but also other online services providers and advertising networks such as those powered by Facebook or
Yahoo are prevalent on the majority of the 200 most popular shopping websites. Mikians et al. (2012)
also used automated bots to mimic different consumer types. Evidently, the bots’ browsing histories had
been tracked as searches for the same keyword yielded different search results and prices.
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search.

I evaluate the welfare consequences of tracking by comparing the tracking equilibrium
with the equilibrium when tracking is not available. In general, niche types like Bob are
made worse off from tracking while mass types like Alice are made better off because
they are more likely to benefit from low prices at early sellers. The welfare consequences
of tracking largely depend on its effect on consumers’ search persistence, which is the
number of sellers they are at most willing to sample if they do not encounter a sufficient
match at earlier sellers. In general, tracking raises welfare if it leads to weakly higher
search persistence and reduces it otherwise. For a wide range of intermediate search costs,
search persistence decreases due to tracking since higher prices conditional on long search
histories reduce the incentive for consumers to continue searching. However, search
persistence can be lower without tracking if search costs are high. This happens when
the market breaks down without tracking because the no-tracking price is inevitably too
high.

Overall, it seems without any doubt that tracking fundamentally changes market out-
comes, irrespectively of the model used. Consequently, one of the most essential ques-
tions appears to be whether we should expect to encounter tracking in markets if it is
not imposed exogeneously. In fact, online tracking often requires a consumer’s (silent)
consent. For example, a consumer must not delete her cookies to enable online retail-
ers to observe her search history.2 I therefore apply the novel framework of sequential
consumer search to investigate whether tracking can arise endogenously. In addition to
choosing a stopping strategy, consumers are able to opt out from tracking and thereby
prevent sellers from observing their search history at any stage during the search process
in this extension of the model. Surprisingly, the unique equilibrium outcome always ex-
hibits full disclosure. The intuition behind this result goes back to Milgrom and Roberts
(1986) and their striking unraveling argument. For any alternative equilibrium candi-
date in which a subset of possible search histories is not disclosed, there always exists
a consumer whose search history belongs to the depicted subset and who is better off
from allowing tracking.

The full disclosure prediction provides a rational explanation for why only few people
delete their cookies or select the ‘do not track”-request option provided by their web
browsers.3 Moreover, the analysis provides a useful benchmark for thinking about the
regulation of personal data processing. Although both sellers and consumers individually

2In the aftermath of several bills being introduced in the US to regulate tracking, all major web
browsers integrated the option to send a “do not track”-request into their software. In addition, the
European general data protection regulation law (GDPR) mandates to inform consumers when personal
information is being processed. As browsing data qualifies as personal information, it requires websites
to explicitly ask consumers to agree to the use of cookies. For more information about the interpretation
and application of the law, also refer to the “Article 29 Data Protection Working Party” by the European
Commission or the paper by Borgesius and Poort (2017).

3A study of German internet users from 2013 (”Maßnahmen der Internetnutzer: Digitaler Selbstschutz
und Verzicht, conducted by the GfK) shows that while 70% are worried about their privacy, only 29%
regularly delete their cookies.
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prefer tracking, it may make particularly sellers worse off when it leads to a lower
search persistence, which is typically the case for intermediate search costs. As even
welfare might decrease due to the forgone matching surplus, there is potential for welfare-
increasing regulation when the level of search costs lies in the depicted range.

The model builds on the following assumptions. Consumers must sample sellers sequen-
tially at a cost s > 0 to learn about prices set by sellers and match values, which are
independently distributed random variables. Consumers are ex ante heterogeneous as
they draw match values from different distributions. To keep the model tractable, those
distributions are simplified to two-point distributions. While one of the values is nor-
malized to zero for all types, consumers differ with respect to their positive match value.
Besides, the probability of drawing a positive match value is assumed to be a function of
the match value itself. In the main part of this paper, I assume that the matching proba-
bility is decreasing in the “conditional” (positive) match value. That is, high conditional
match values coincide with low matching probabilities and vice versa. The assumption
seems reasonable in markets consisting of mass and niche consumers as illustrated in
the introductory example. Niche consumers have a particular taste hampering their
willingness to consider most products suitable. However, once they encounter a product
meeting their individual requirements, their utility from the product is relatively high.
In contrast, mass consumers find most products satisfactory but only have an average
willingness to pay for them.

When sellers learn about their position in a consumer’s search process through track-
ing, search becomes perfectly ordered from their perspective. The analysis shows that
consumers must then expect increasing prices in any equilibrium, leading to a simple
stopping rule which lets only those consumers without previous matches continue search.
Due to the interplay of consumer heterogeneity and the optimal stopping rule, expected
demand from consumers with longer search histories is less elastic and, thus, prices indeed
increase in the order of search. Consumer heterogeneity also leads to novel predictions
regarding the effect of search costs on prices. As intuition suggests, consumers’ search
persistence is weakly decreasing in the level of search costs. However, the fact that con-
sumers sample fewer sellers does not imply reduced competition and higher prices. From
a seller’s perspective, the probability of facing a consumer with a longer search history
decreases while the probability of facing a consumer with a short search history increases
when consumers sample fewer sellers. As demand from the latter group is more elastic,
the equilibrium price is decreasing in search costs. This counterintuitive result provides
a theoretical explanation for the empirical finding that low search cost environments like
the internet sometimes lead to higher prices (Ellison and Ellison, 2014).

The dynamics described above help to understand the welfare implications of tracking.
Generally, reduced asymmetric information due to tracking has diametrically opposed
effects on consumer surplus. On the one hand, lower prices for short search histories have
a positive market expansion effect. On the other hand, improved price discrimination
reduces surplus from niche consumers who search longer. Importantly, tracking is not
detrimental to every niche consumer per se due to the order effect. In other words, both
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a mass type like Alice and a niche type like Bob can benefit from lower prices at the
beginning of search under tracking. Hence, the detrimental effect of price discrimina-
tion on consumer surplus is mitigated because learning about a consumer’s types does
not take place instantaneously but sequentially. If search costs are negligible such that
consumers without a match never stop their search before they have sampled all sellers,
tracking can be favorable both for consumers and sellers. Otherwise, tracking affects
consumers’ search persistence and changes consumers’ and sellers’ surplus in diamet-
rically opposed ways. The longer a consumer’s search history, the larger the share of
the matching surplus sellers can extract with tracking. Therefore, the expected surplus
from sampling an additional seller necessarily falls below search costs beyond some fixed
search history. Because the hold-up problem prevents an equilibrium with lower prices,
search persistence decreases due to tracking. This effect is most pronounced for an in-
termediate level of search costs and implies less matches from consumers like Bob with a
high willingness-to-pay, leaving sellers with less profits and reducing total welfare while
the average consumer is still better off from tracking due to lower initial prices.

In contrast, tracking may also raise everyone’s surplus for high search costs. Unless
consumers sample only a single seller under search without tracking, the no-tracking price
always exceeds the price set by the first seller under search with tracking. Yet, sampling
only a single seller in equilibrium may not be consistent with the stopping rule for any
level of search costs. Then, there is a range of high search costs where the market with
tracking is still active whereas it breaks down without tracking, thus implying significant
welfare losses from unrealized matches. The reason why a no-tracking equilibrium with
a search persistence of one or few sellers may not exist is because of the adverse effects
of search persistence on prices. When the expected surplus from search is negative
given the level of search costs and the no-tracking price, a lower search persistence could
reduce the price and make sampling the first seller worthwhile again. However, stopping
search as early as implied by a low search persistence is not sequentially rational given
the reduced price. Moreover, randomizing over sampling the first seller cannot change
sellers’ belief about the average search history in the market, and, thus, cannot restore
the equilibrium with active search if this inconsistency problem prevails at the beginning
of the search process.

In an extension, I study the complementary case of a matching probability function
which is weakly increasing in the conditional match value. Such a positive relationship
is likely to prevail in markets where consumer heterogeneity is mainly determined by
heterogeneous budget sets rather than differences in taste. Hence, the two distinct cases
of an in- and decreasing matching probability function refer to markets that are likely to
be inherently different from one another. Also, market outcomes stand in stark contrast
to the baseline version of the model since the price is now weakly decreasing in the
order of search. The comparative statics of tracking compare with those for a decreasing
matching probability, except for the market breakdown result, which cannot obtain in
this specification. Besides, the result that tracking arises endogenously is robust to this
extension of the model.
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2 Literature

The paper relates to two broad strands in the literature. On the one hand, the search
framework developed contributes to the literature on consumer search by embedding ex
ante consumer heterogeneity into a model of ordered search, two areas, which so far have
been studied only in separation. On the other hand, this paper studies a consumer’s
privacy data disclosure problem in a sequential search framework and thus relates to
the literature on the economics of privacy. More precisely, it complements existing
research on the consumer’s data protection problem which has mostly been addressed
using static models with exogenous data as opposed to a dynamic search environment
with endogenous data contained in search histories. I first review the literature on
consumer search before providing an overview about the paper’s relation to the economics
of privacy literature.

In the seminal paper by Diamond (1971), consumers search for prices in a random order.
Despite multiple sellers producing a homogeneous good, sellers charge the monopoly
price because demand is completely inelastic for any price below the monopoly price due
to the hold-up problem. As a consequence, consumers, rationally expecting monopoly
prices, are better off from not searching at all. Wolinsky (1986) shows that this counter-
intuitive result, often referred to as the Diamond Paradox, disappears when products
are differentiated and consumers thus search not only for prices but product fit as well.
Anderson and Renault (1999) complement Wolinsky (1986) by showing how both the
Diamond Paradox and the Bertrand outcome arise in the limit as either the degree of
product differentiation or the level of search costs vanishes. The model by Wolinsky
(1986) with the extension of Anderson and Renault (1999) (henceforth WAR) has since
then become the workhorse model of consumer search for many researchers. As in
their model, I assume that consumers’ preferences are heterogeneous by modeling match
values as independently and identically distributed shocks. As opposed to WAR however,
I assume that these shocks are identically distributed only for a particular consumer type
but differently distributed across types. That is, consumer heterogeneity is revealed not
only ex post after sampling sellers, but already prevails ex ante even before search begins,
thus leading to type-dependent search behavior.

Even though consumers sample sellers in no particular order in my model, tracking en-
ables sellers to learn about their position in a consumer’s search proces, which is the
defining assumption in the research on ordered search and thus perhaps the closest liter-
ature this paper relates to. Arbatskaya (2007) shows that search cost heterogeneity can
explain why prices might increase in the order of search even when consumers search
for a homogeneous product. Zhou (2011) considers ordered search in the WAR model
with differentiated products. He also finds that prices increase in the order of search
in equilibrium for the reason that later sellers possess a larger monopoly power over
remaining consumers. As prices depend on a seller’s position, which in turn, can be
inferred perfectly from a consumer’s search history, Zhou (2011), in fact, also studies
search history-based price discrimination. In a related work, Armstrong and Zhou (2015)
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analyze a seller’s optimal strategy to discriminate between “fresh” and returning con-
sumers. In contrast to this paper, which allows for search histories of arbitrary length,
they restrict attention to a duopoly version of the WAR model and mainly focus on a
seller’s incentive to deter consumer search by offering buy-now discounts.

Besides, even though Zhou (2011) provides a solution to the WAR model with ordered
search for a specific distribution of match values, the model is not tractable enough to
account for additional consumer heterogeneity that might create potentially counter-
vailing effects regarding price discrimination and search behavior. Indeed, I find that
tracking often leads to more efficient search by raising consumers’ search persistence,
which stands in stark contrast to Zhou’s finding that ordered search leads to inefficiently
low search. Moreover, his very intuitive price dispersion result disappears if the number
of sellers grows and the difference in monopoly power becomes arbitrarily small due to
the infinite number of remaining sellers. That is, ordered search or tracking plays no role
when the number of sellers is large, suggesting that the WAR model might not capture
all important aspects of search markets.

Several papers building on the WAR model and focusing on particular applications
of ordered search share this property with the work by Zhou (2011). Among others,
Armstrong et al. (2009), Haan and Moraga-González (2011) and Moraga-González and
Petrikaitė (2013) have studied how higher quality, more advertising, or merging with
a competitor can make a subset of sellers more salient and thereby lead to partially
ordered search. Importantly, search in these models is ordered only with respect to the
first, salient seller as it would otherwise become intractable.

Though quite different from this paper, some authors have also explored in detail appli-
cations of ordered search that are more closely related to internet search and tracking.
In Chen and He (2011), a monopoly platform uses an auction to determine the order in
which sellers are shown to consumers. As they assume that some sellers’ products are
more relevant to consumers than others, the mechanism places those sellers at the top
consumers have the highest valuations for. De Cornière (2016) studies a platform using
a keyword matching mechanism to determine a consumer’s search order. If sellers choose
to be associated with a keyword the consumer entered and pay an advertsising fee, they
obtain a prominent position in the search list. In both papers, the authors start from
the fact that sellers vary in terms of their relevance to particular consumers. While it is
modeled explicitly only in De Cornière (2016), they thus presuppose that consumers are
somewhat ex ante heterogeneous. However, tracking occurs at a single instant prior to
actual search in their papers whereas it is modeled as a dynamic process enabling sellers
to learn gradually about consumers from search histories in my framework.

Other papers study ex ante consumer heterogeneity within the the WAR model more
explicitly but (have to) restrict attention to random search. Moraga-González et al.
(2017) study price formation when consumers have different search costs. As changes
in the distribution of search costs affect both the extensive and intensive search margin,
they find that lower search costs can increase the price charged from actively searching
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consumers.4 To understand the effect of targetability or in other words, the quality
of search, Yang (2013) studies a seller’s choice whether to serve a mass product many
consumers like or a niche product appealing only to few. By assuming that consumers
draw positive match values only from sellers serving their preferred category and that
the probability of encountering a respective seller depends both on the quality of search
and the category’s coverage in the market, he shows how the long-tail effect is driven by
the quality of search. Bar-Isaac et al. (2012) also study the long-tail effect, but do not
model ex ante heterogeneity on the side of consumers. Though conceptually similar, the
approach taken by Yang (2013) to model mass versus niche consumers is different from
mine. Instead of introducing different product categories for mass and niche consumers,
I assume that mass consumers are more likely to find any product suitable due to their
less restrictive taste compared to niche consumers.

While search history based pricing has received relatively little attention in the literature,
purchase history based price discrimination has been studied extensively. In the absence
of online shopping and related privacy concerns, this literature with early works by
Hart and Tirole (1988), Fudenberg and Tirole (2000) and Villas-Boas (1999) deals with
consumers making purchase decisions in multiple periods. As a consumer’s revealed
choice for a particular seller is a signal of her willingness to pay, it affects prices she
obtains in future periods. A common prediction in this literature is consumer poaching : a
seller’s strategy to offer low prices to those consumers who have revealed their preference
for the competitor’s product in the previous period. As a consequence of low prices
in later periods, prices also become competitive in the initial period. However, when
accounting for the possibilty of strategic waiting, Chen and Zhang (2009) identify a
novel and opposing incentive to price high in the initial period as it allows to better
learn about the willingness to pay of those consumers who still make a purchase.

More closely related to the economics privacy, Taylor (2004) considers purchase history-
based customer lists as valuable information one firm would want to sell to another
firm if a consumer’s valuations for different products are correlated. He finds that
privacy protection policies are necessary if consumers are naive, but not so otherwise
as the willingness to pay of sophisticated consumers in the first period decreases when
anticipating exploitation in future periods. Acquisti and Varian (2005) reaches similar
conclusions in a monopoly model where they also model the consumer’s decision to
remain anonymous as in my model. Conitzer et al. (2012) also study the consumer’s
privacy choice in a model similar to Acquisti and Varian (2005) but introduce a cost to
maintain anonymity.

Motivated by the rising concern for internet privacy, a number of authors have revisited
the consumer’s data protection problem and extended the analysis of Conitzer et al.
(2012). Taylor and Wagman (2014) compare the welfare implications of maintaining
privacy across different oligopoly models and find ambiguous effects. In Montes et al.
(2017), competing firms can buy data containing consumers’ private information from an

4I discuss the effect of search cost heterogeity in my framework in section 7.
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intermediary unless consumers pay a “privacy cost” to remain anonymous. Since paying
the cost also reveals some private information, a higher “privacy cost” may in fact
raise consumer surplus. Belleflamme and Vergote (2016) study an environment where a
monopolist is able to detect private information with some probability unless consumers
use a costly technology to maintain privacy. Similarly to the previous authors, they
find that the availability of such a technology makes consumers worse off. The results
I obtain are quite different. Although more privacy protection would yield a higher
surplus in some cases, consumers never use the technology despite its availability at
no cost. Besides, the papers mentioned above apply a static model where information
about consumers exists from an exogenous source. If sellers can rely on the availability
of informative big data, that approach may be quite accurate. However, if informative
data is rare, sellers might pay more attention to a consumer’s search history for the
product they sell, as studied in this paper.

3 Search Model

There is a continuum of consumers i ∈ [0, 1] and a finite number of firms N . Firms are
selling a horizontally differentiated product. The goods can be produced at constant
marginal cost, which is normalized to zero. Sellers set their prices and can condition
them on different search histories, if these are observed.

Consumers. Consumers sample sellers sequentially in no particular order and with free
recall. They search for both prices and product fitness and pay a sampling cost s > 0 for
each seller. Consumer i obtains utility uik = vik − pk if she purchases from seller k ∈ N,
where pk is the price and vik captures her seller specific match utility. Match utilities
for sellers’ products (vi1, vi2, ..., viN ) are random draws from the set vik ∈ {0, xi} and
independently and identically distributed across sellers. The conditional match value
xi defines consumer i’s type. A type is randomly drawn ex ante from the compact set
X with v = inf(X) and v̄ = sup(X) from the log-concave distribution F (x). To avoid
corner solutions, assume that v > 0 is sufficiently small. Denote by g(x) = Prob(v = x)
the matching probability, which is type xi’s probability of drawing a positive match value
vik = xi > 0 at a random seller k. The matching probability function g(x) is asumed to
be log-concave and monotone decreasing, implying that high conditional match values
correspond to low matching probabilities and vice versa. This assumptions seems to fit
well many markets where the main difference between consumers is the extent to which
they care about all features of a product. In the introductory example, Bob cares both
about the cut and the color of his new suit while Alice does not. Consequently, Bob has
a lower matching probability than Alice. However, his conditional match value is higher
because he obtains utility from all features of the suit. A decreasing matching probability
function extends this heterogeneity between picky niche consumers and accepting mass
consumers to a continuous type space. Section 5 contains an extension of the baseline
model to the case of a weakly increasing matching probability function.
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Additionally, both consumers and sellers know only the distribution of types F (·) and a
particular consumer’s type xi must be learned during search. Notice that this assumption
holds in the example concerning Alice and Bob looking for a new suit. Neither of them
knows about their preferences over suits ex ante. Instead, they find out about how picky
they are while searching. While this simplifying assumption may seem stark, it actually
renders the purpose of search more realistic. In other words, because consumers do not
know their conditional match value, they truly search for both price and product fit as
in the WAR model. Technically, consumers must not have perfect information about
their type xi ex ante to prevent a market breakdown result as in the Diamond Paradox.
5 If all consumers knew their types, sellers would always have an incentive to deviate
from any price leaving a strictly positive surplus to actively searching consumers. This
is because sellers know that any actively searching consumer’s conditional match value
must exceed the expected price as the consumer would not have incurred the search
costs otherwise. Hence, in the only equilibrium with perfectly informed consumers, no
consumer would search.

While the random match value framework I use is more stylized than in WAR, it allows
me to handle the complexity arising from incorporating consumer heterogeneity into a
model of search with tracking. Recently, several authors have passed on the continuous
match value distribution (for individual consumers) as well in order to gain tractability,
see for example Chen and He (2011), Anderson and Renault (2015) or Armstrong and
Zhou (2011).

Search history. The search history h is what other sellers observe from an arriving
consumer under search with tracking. I assume that other sellers cannot observe the
price of previously sampled products. Further, nothing can be learned from knowing
a particular sellers’ identity since match values are uncorrelated across sellers. Conse-
quently, the total number of past sellers a consumer has sampled is a sufficient statistic
to update the posterior beliefs about her type. Hence, h ∈ N.

Timing. Players move in the following order. First, sellers set prices conditional on
any feasible search history. Under search without tracking, they set an unconditional
price. Prior to searching, nature draws each consumer’s type. Next, consumers search
by sampling sellers sequentially at a cost s per seller. Under search with tracking,
sellers observe the consumer’s search history when being sampled. Consumers observe
the respective price and match value and decide whether to purchase, to return to a
previous seller, or to stop search.

Equilibrium concept. The equilibrium notion I consider is perfect Bayesian Nash
Equilibrium (PBE). Sellers choose pricing strategies to maximize expected profits given
other sellers’ prices and consumers’ stopping rule. Consumers maximize surplus by
choosing an optimal (possibly non-stationary) stopping rule. Both sellers’ beliefs about
a consumer’s type and consumers’ expectations regarding prices need to be consistent

5If information is sufficiently imperfect, the hold-up problem has no bite and consumers will find
search worthwhile. Thus, no information about xi is a simplifying but not strictly necessary assumption.
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with the equilibrium stopping rule and equilibrium pricing. Since equilibrium pricing
strategies will be deterministic, I assume that consumers have passive beliefs if they
observe a non-equilibrium price.6 I restrict attention to symmetric equilibria.

3.1 Search With Tracking

I begin by analyzing the equilibrium under search with tracking and search history based
price discrimination and then turn to the analysis of search without tracking.

When consumers sample sellers sequentially, their decision about when to stop searching
not only depends on the available match values and prices, but also on prices they expect
at forthcoming sellers. The main result of this section is that that there is a unique PBE
in which prices satisfy p1 < p2 < ... < pN . Therefore, I seek to construct such an
equilibrium first and assume that consumers expect pe1 ≤ pe2 ≤ ...peN . Second, I show
that these beliefs are the only beliefs permissible under rational expectations.

In the following analysis, it facilitates notation to write “seller k” when referring to the
k’s seller a consumer has sampled. The index k thus does not denote a specific seller for
all consumers. Moreover, note that prior to sampling seller k, the consumer’s history h
equals k− 1 while it is h = k thereafter. Besides, I omit the subscript i for brevity when
it does not lead to ambiguous statements.

Optimal stopping. If vik = xi at some seller k, a consumer has no incentive to
continue to search as she expects at most to obtain xi again but to pay a higher price
at any forthcoming seller. Therefore, consumers encountering a match vik = xi buy if
xi ≥ pk and stop searching without making a purchase otherwise. Whether consumers
prefer continuing to search after a history of h unsuccessful matches depends on the
continuation value from sampling seller h+1, denoted by Vh+1. Then, a consumer with
history h samples seller h+ 1 if both vh = 0 and Vh+1 > 0.7

Lemma 1. After inspecting seller k, the following non-stationary stopping rule, denoted

by R∗, is optimal: Buy if vk = x ≥ pk and continue to search if vk = 0 and Vk+1 > 0.
Otherwise, end search.

Learning. A consumer perfectly learns her type only upon encountering a match but
can learn from the length of her search history otherwise. The optimal stopping rule R∗

implies that a consumer who has a history h and who is about to sample seller h+1 must
have received only vik = 0 at any seller k, k ≤ h. As the probability of not encountering

6This restriction seems reasonable as an individual consumer is of mass zero here. Hence, an off-
equilibrium discriminatory price for a single consumer followed by an out of equilibrium action by this
very consumer does not change expected demand at any other seller and thus gives no rise to expect
subsequent prices to be different from the equilibrium prices.

7Since Vh+1 has no effect on equilibrium prices, its derivation is postponed to the end of this section.
For now, it is sufficient to note that Vh+1 depends on h but not on an individual’s type xi because
consumers do not know their type perfectly but must learn about it from searching.
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a match at h previous sellers varies with x, the search history h is informative about
one’s type. The expected probability of no match at a single seller is given by:

∫ v̄

v

(
1− g(t)

)
fk(t)dt,

where fk is seller k’s posterior belief about a consumer’s type conditional on h = k − 1.
Since consumers observe their own history by construction, fk represents their belief
prior to sampling seller k as well. Note that in the following analysis, the initial prior
f(x) without subscript refers to the distribution of types expected by the first seller a
consumer samples. By repeated use of Bayes’ rule, I obtain the posterior belief fk() for
any seller k:

fk(x) =

(
1− g(x)

)k−1
f(x)

∫ v̄

v

(
1− g(t)

)k−1
f(t)dt

. (1)

Consumer demand. The consumer’s optimal stopping rule implies that conditional
on a match, a consumer always buys the product from seller k immediately if xi ≥ pk
and pk ≤ pej ∀ j > k. If the latter constraint is not binding in equilibrium, expected
demand from a consumer who is known to be visiting her first firm writes:

D1(p) = P (v ≥ p) =

∫ v̄

p

g(x)f(x)dx,

Based on the posterior fk(), a general expression of seller k’s demand, denoted by Dk(p),
obtains:

Dk(p) =

∫ v̄

p

(
1− g(x)

)k−1
g(x)

∫ v̄

v

(
1− g(t)

)k−1
f(t)dt

f(x)dx (2)

Pricing. Seller k’s demand at price p is given by (2) if p ≤ pej ∀ j > k since consumers
might follow an alternative stopping rule otherwise. The following analysis will show
that the constraint is not binding at the equilibrium price and that deviating to a price
pk > pej cannot be profitable neither. That is, the profit-maximizing price is independent
of all competitors’ prices and seller k’s problem is equivalent to a monopolist’s pricing
decision:

pk ∈ argmax
p

Dk(p)p (3)

The reason why monopoly prices prevail in the presence of competing sellers is similar to
Diamond (1971), even though he considers consumer search for homogeneous products.
Despite product differentiation however, expectations about future prices suppress any
form of price competition between sellers. This holds for any strictly positive search
friction. The solution to (3) yields:
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Lemma 2. The profit-maximizing price is uniquely defined for every seller k. The

sequence of profit-maximizing prices {p+k }k=1,...,N satisfies p+1 < p+2 < .... < p+N .

All omitted proofs are presented in appendix 9. Intuitively, prices increase because
consumers with a higher conditional match values need to sample more sellers on average
than consumers with a low conditional match value until they encounter the first match.
Therefore, the relative share of consumers with a high conditional match value is larger
for longer search histories. Consequently, expected demand becomes more inelastic and
profit-maximizing prices increase in a consumer’s search history. The uniqueness of
prices is due to the fact that the RHS of the FOC p = − D(p)

D′(p) is decreasing in p, which

follows from the log-concavity assumption about fk(x) and g(x).8

The sequence of increasing prices {p+k }k=1,...,N obtained in lemma 2 is optimal conditional
on consumers expecting an increasing price path. Consequently, consumers follow the
stopping rule R∗ by lemma 1. Since lemma 2 shows that {p+k }k=1,...,N is the profit-
maximizing sequence of prices given R∗, an equilibrium with prices {p+k }k=1,...,N and
consumer stopping characterized by R∗ indeed exists. Nevertheless, there might be
other equilibria. Instead of expecting an increasing price path, consumers might initially
expect a decreasing or non-monotonic price path, leading to a different stopping rule
and thus to different prices. However, even when allowing for arbitrary consumer beliefs
about prices along their search path, the only beliefs consistent with equilibrium pricing
of sellers are those of an increasing price sequence given by {p+k }k=1,...,N .9 This can be
shown by means of contradiction. Suppose that consumer expectations {pek}k=1,2,...,N

are not increasing in k. First, note that:

Lemma 3. In any PBE, consumer expectations satisfy pek ≥ p+k ∀ k ≤ K∗.

To see intuitively why lemma 3 holds, consider seller j∗ where j∗ denotes the seller closest
to the end of the search process whose expected price pej∗ lies below p+j∗ . The fact that
all remaining sellers are expected to charge higher prices by construction has important
implications for seller j∗ when deviating to a price in the neighborhood of pej∗ . Seller
j∗’s expected demand does not depend on whether arriving consumers have available
matches from previous sellers since sampling j∗ is only worthwhile if they are in fact
willing to buy at pej∗ . That is, seller j∗ can sell to all consumers whose match value
exceeds the price and thus has full monopoly power over its demand, implying that his
problem can be characterized by (3). Nevertheless, the profit maximizing price need not
be equal to p+j∗ due to changes in the distribution of arriving consumers. This is because
consumers may have applied a stopping rule different from R∗at previous sellers.

Changes in the distribution of arriving consumers must be of the following kind: If a

8Bagnoli and Bergstrom (2005) discuss properties of log-concave functions and show that the FOC
for demand functions of the type D(p) =

∫ v̄

p
h(x)dx is decreasing in p if h(x) is log-concave. Hence,

decreasingness follows from log-concavity of both g(x) and fk(x) ∀ k.
9As in other models of consumer search, there always exists an uninteresting equilibrium where

consumers expect prices to be larger than their expected surplus from search. In such an equilibrium,
no consumer searches and setting such high prices indeed constitutes an equilibrium strategy for sellers.
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consumer samples j∗ despite an available match, her conditional match value must satisfy
xi > pej∗ as she already knows her conditional match value and would otherwise be better
off from not sampling j∗. Hence, if due to any alternative stopping rule demand at seller
j∗ changes, it is due to an increase in demand from types xi > pej∗ . Notably, demand of
these additional consumers attracted by the lower expected price is completely inelastic
in the neighborhood of pej∗ . Moreover, note that lemma 2 implies that any (local) upward
deviation to p′j∗ > pej∗ is profitable for seller j∗ even in the absence of those additional
consumers. Hence, setting a price above pej∗ is for sure profitable in the presence of this

additional, perfectly inelastic demand. Since this is true for any pej∗ < p+j∗ , the argument
can be applied repeatedly from the last to the first seller, yielding lemma 3.

In addition, notice that consumers apply R∗ at the first seller if he sets a price p1
in the neighborhood of p+1 since pek > p+1 by lemma 3 ∀ k > 1. By lemma 2, p+1
maximizes the first seller’s profits under the stopping rule R∗. Hence, any alternative
price p′1 > p+1 + δ (δ > 0) inducing an alternative stopping rule for some types must
yield strictly lower profits. This is because under any alternative stopping rule, there
are some types who continue searching despite a match vi1 > p1 and return only with
some probability less than one. Consequently, demand and thus profits must be strictly
lower than when consumers apply R∗. It follows that consumers must expect p1 = p+1 in
any PBE. Further, the same argument applies to the second seller a consumer visits and
so forth. Thus, no equilibrium exists, in which consumers do not expect an increasing
price path.

Proposition 1. With tracking, in the unique equilibrium, prices increase in the order

of search and consumers follow the stopping-rule R∗. The equilibrium always exists.

Search persistence. While search costs have no effect on equilibrium prices under
search with tracking, they matter for consumers’ search persistence: how long to continue
search if no match occurs. Consumers’ search persistence is captured by K∗ ∈ N. First,
note that K∗ depends on a consumer’s continuation value Vh+1 at any history h. Its
recursive formulation writes:

Vh+1 = E
[
max

{
[vh+1 − ph+1], 0, Vh+2

}]
− s.

To derive an explicit expression for Vh+1, one needs to account for K∗ since the contin-
uation value from sampling seller k must contain the option value from continuing to
search at least seller k + 1, which is feasible only if seller k is sampled first. For any K∗

and history h < K∗, the continuation value writes:

Vh+1(K
∗, s, p1, p2, ..., pK∗) =

1
∫ v̄

v

(
1− g(x)

)h
f(x)dx

·

{

...

K∗
∑

j=h+1

(∫ v̄

pj

g(x)(x− pj)
(
1− g(x)

)j−1
f(x)dx

︸ ︷︷ ︸

weighted matching surplus

−s

∫ v̄

v

(
1− g(x)

)j−1
f(x)dx

︸ ︷︷ ︸

expected search attmepts

)}

. (4)
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Even though Vh+1(K
∗, s, p1, ..) always depends on all sellers’ prices, equilibrium search

persistence K∗ and search costs s, I omit those arguments for brevity when it does
not affect comprehensibility. The term before the curly brackets is part of the belief
updating regarding the consumer’s type and for h = 0, the term disappears. It equals
the inverse of the total probability of not finding a match after sampling h sellers and
thus normalizes the probability of encountering a match at sellers h + 1, h + 2, and
so forth. The term within the brackets sums over the surpluses from additional search
attempts weighted by the updated consumer’s type after history h+ j. Notice that the
sum of additional search attempts goes from any history h to K∗.

For the optimal search persistence K∗, it must hold that Vk(K
∗) ≥ 0 ∀ k ≤ K∗ and

VK∗+1(K
∗ + 1) < 0. In words, sampling any seller prior to K∗ must be rational. More-

over, there cannot be another K ′ > K∗ satisfying the first the first condition and render-
ing VK∗+1(K

′) ≥ 0. Since continuation values are affected by search costs, K∗ depends
on search costs as well. Formally, define K̂(s) := {K : Vk(K, s) ≥ 0 ∀ k ≤ K ∈ N}.
Then, equilibrium search persistence satisfies K∗ ∈ K(s), where

K(s) :=
{
K : VK+1(K

′, s) < 0 ∀ K ′ ∈
(
K̂(s) ∩ {k : K ′ > K}

)}
. (5)

By construction of K(s), there always exists exactly one K∗ for any given s. Besides,
equation (4) shows that for a fixed K∗, Vh+1(K

∗, s) is decreasing in s for any history
h. Hence, K̂(s′) ⊆ K̂(s) for any s′ > s. Consequently, K∗(s) as defined in equation (5)
must be weakly decreasing in s. This result is, of course, very intuitive. As prices are
independent of search costs, an increase in search costs reduces the continuation value
for any history h. That is, an increase in search costs can only make consumers switch
from continuing to search given a particular history h to stopping to search given the
same history, but will never induce a change in the other direction. As a consequence,
search persistence cannot be increasing in search costs.

3.2 Search Without Tracking

Without tracking search histories, sellers cannot price discriminate. Therefore, sellers
expect the same demand (elasticity) from any newly arriving consumer. Since given
those expectations, only one price maximizes profits, search without tracking implies
a uniform equilibrium price set by all sellers. As a consequence, consumers have no
incentive to defer the purchase decision after encountering a match and thus their optimal
stopping rule equals R∗. That is, i either buys if xi > pij or leaves the market without a
purchase which is identical to the uniquely optimal stopping rule when g(x) is decreasing.
Consequently, sellers set prices monopolistically. Due to the simple optimal stopping
rule, the distribution of consumer types fk(x) at any seller k is correctly specified by the
posterior belief derived in (1). Further, demand functions - if sellers could discriminate
- are given by (2), i.e. they are identical to those under search with tracking. However,
only consumers but not sellers can update the beliefs conditional on different search
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histories. Hence, the sellers’ expected demand is composed of the expected demand
for each possible search history, weighted by the respective probabilities. Based on the
common prior F (x) and the matching probability function g(x), sellers can compute the
probability that a consumer has a history of h = 0, 1, 2, ...,K∗ − 1 previous sellers. Note
that consumers’ search persistence K∗ depends only on equilibrium prices but does not
change in response to any deviating price. I analyze the equilibrium level of K∗ after
discussing the equilibrium pricing. The probability φk of being in position k = h+ 1 in
a consumer’s search process writes:

φk = (6)

1

N
·
k−1∏

j=1

∫ v̄

v

(
1− g(t)

)
fj(t)dt

︸ ︷︷ ︸

no match up to k−1

=
1

N
·
k−1∏

j=1

∫ 1

v

(
1− g(t)

)j
f(t)

∫ v̄

v

(
1− g(t)

)j−1
f(t)dt

dt

=
1

N

∫ 1

v

(
1− g(t)

)k−1
f(t)dt ∀ k ≤ K∗.

and φk = 0 ∀ k > K∗.

Notice that φk is the unconditional probability for being in a particular position. While
this is the actual probability of being sampled by a consumer with history h = k − 1,
sellers can condition the probability on the fact that the consumer is still searching.
However, normalizing by 1/

∑K∗

k φk has no effect on a seller’s first order condition.
Expected demand is composed of the expected demand functions for each possible search
history, weighted by the respective probabilities. Denote by D(p) the expected demand
weighing the individual demand functions from D1(p) to DK∗(p) at the seller’s non-
discriminatory unit price p, i.e. D(p) =

∑K∗

k=1 φkDk(p). Sellers maximize:

Π(p) = p
K∗
∑

i=1

φiDi(p) =
K∗
∑

i=1

φiDi(p)p =
K∗
∑

i=1

φiπk(p) (7)

where πk(p) equals the profit function of a seller at the k’s position if discrimination
was feasible and where φi is given by (6) (see the appendix) and Dk(p) by (2). As
log-concavity of the individual demand functions is preserved in this weighted demand
function, I obtain the following:

Proposition 2. Without tracking, the unique equilibrium has a uniform price.

Since sellers cannot observe consumers’ strategies before consumers make a purchase,
they must have symmetric beliefs in equilibrium. Given these beliefs, there exists a
unique optimal price, set by all sellers. Thus, consumers must believe that prices are
constant in any PBE. Consequently, the equilibrium with the price maximizing (7) is
unique even when allowing for arbitrary expectations ex ante.
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Without tracking, there is no price discrimination. Yet, consumer heterogeneity has
another effect on the comparative statics of equilibrium price, which depends on con-
sumers’ search persistence. Intuitively, the more sellers consumers are at most willing
to sample, the smaller the share of consumers with short search histories each seller can
expect because probability mass shifts to longer search histories. Since demand from
consumers with longer search histories is less price elastic, the equilibrium price increases.
Let p(K∗) be the uniform random search price if a consumer’s search persistence equals
K∗, then:

Lemma 4. For K∗
2 > K∗

1 , it holds that p(K∗
2 ) > p(K∗

1 ).

By lemma 4, more persistent search behavior by consumers leads to higher prices. Thus,
consumer heterogeneity implies a novel, and perhaps surprising, effect of search persis-
tence on the equilibrium price, which is not present in the WAR model.

3.3 Search Persistence under Search Without Tracking

An increase in K∗ as discussed in lemma 4 can be the result either of an increase in the
number of sellers in the market or of a reduction in search costs. The former is true if
search costs are sufficiently low such that K∗ = N . Intuitively, the latter might be true
if 0 < K∗ < N and K∗ increases due to a decrease in search costs. While this turns out
to be correct, it does not follow immediately from the construction of K∗(s) given in
equation (5) due to the reverse effect of K∗ on prices.

The full characterization of equilibrium search persistence as a function of search costs
is provided by the lemmata 13, 14 and 15 in appendix 9. To summarize, there exist two
disjoint sets of search cost intervals that give rise to a different characterization of search
persistence. By lemma 13, consumers’ search persistence K∗ equals a fixed number of
sellers for a set of relatively large intervals. Lemma 14 and 15 characterize intervals
where consumers continue sampling seller k only with some probability less than one.
That is, only a fraction of consumers without a match samples seller k while all remaining
consumers stop search.10 Between k and K∗, no further radomized stopping occurs since
all continuation values are strictly positive.

To see intuitively why random stopping occurs, consider the following argument. By
lemma 4, the optimal price without tracking is a function of K∗, which, in turn, depends
on the continuation value and thus on the level of search costs. As can be seen from
equation (4) by substituting pj = p ∀ j, the continuation value Vh+1 also depends on the
no tracking price p

(
K∗(s)

)
, which in turn, depends on K∗(s). That is, the continuation

value under no tracking for any history h is given by Vh+1

(
K∗, p

(
K∗(s)

)
, s
)
.

Ceteris paribus, a rise in search costs thus reduces the continuation value from search
and leads to a lower search persistence K∗. However, if consumers sample fewer sellers

10Recall that k identifies a seller’s position in any consumer’s search process and not a unique seller.
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in total, lemma 4 implies that the profit-maximizing price decreases, thus increasing
consumer surplus. When search costs are such that a consumer is just indifferent between
sampling seller k and stopping search, a marginal increase in s has only a marginal direct
effect on the continuation value from search while the indirect effect through a lower k
is large. Without random stopping, the discontinuity in K∗ results in an inconsistency
that rules out an equilibrium in pure strategies. Instead, consumers shift sellers’ beliefs
towards expecting more consumers with shorter search histories by sampling later sellers
only with some probability less than one. This prevents price jumps and restores the
equilibrium.

It remains to analyze the effect of search costs on prices in the absence of tracking.
Considering only the intervals where consumers do not use mixed strategies, higher
search costs imply a lower K∗ by lemma 13 and thus a decrease in prices by lemma
4. When search costs are in a region where consumers follow a mixed stopping rule,
prices must decrease as well. Consider an increase in search cost from s = ŝ∗K(K∗) to
some s > ŝ∗K(K∗) requiring consumers to sample seller K∗ only with some probability.11

If search costs increase, the equilibrium probability of continuing to search decreases.
This is because it reduces the mass of actively searching consumers with any history
h = K∗ − 1 such that sellers expect fewer consumers with long search histories and set
lower prices. Hence, search persistence decreases smoothly in search costs.

Proposition 3. Without tracking, the uniquely defined uniform price is weakly decreas-

ing in search costs.

The intuition behind this result follows immediately from lemma 4. Lower search costs
increase consumers’ search persistence, which reduces every seller’s share of elastic de-
mand and, thus, leads to higher prices. Proposition 3 provides a micro-founded theoret-
ical explanation for some empirical papers suggesting that the internet does not always
lead to lower prices despite reducing search costs. For example, Ellison and Ellison
(2014) find that prices for used books are higher online than offline. In line with my
model’s predictions, the authors argue that higher prices obtain because sellers expect
to sell mostly to consumers with high match values when consumers are willing to search
longer due to lower search costs.

It is important to note that a mixed stopping rule that can continuously decrease a seller’s
belief about the average search history need not exist always. That is, consumers’ search
persistence may not decrease gradually but may immediately fall from K∗ > 1 to zero.
Then, the no search equilibrium, which always exists, is the only equilibrium. Formally,
define by ŝk(K

∗) ∈ {s : Vk

(
K∗, p

(
K∗(s)

)
, s
)
= 0} the threshold level of search costs such

that sampling seller k conditional on p(K∗) and K∗ is worthwhile if and only if s ≤ ŝk.
Then,

Proposition 4. If there exists an equilibrium with K∗ = K∗ ≤ N for some level of

11The notation is explained in the appendix. For the argument however, it is sufficient to treat ŝ∗K(K∗)
as some fixed threshold.
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search costs such that ŝ1(K
∗) < ŝk(K

∗) ∀ 1 < k ≤ K∗, no consumer searches and the

market breaks down if s > ŝ1(K
∗) .

Notably, the no search equilibrium prevails even though the surplus from search would
be positive for consumers if they were able to commit to sampling less than a certain
number of sellers. However, for any price making the first search worthwhile, the search
persistence, resulting from consumer’s sequentially optimal stopping decision, exceeds
the search persistence for which the assumed price is maximizing profit. Instead, sellers
anticipate consumers’ search persistence conditional on initiating search and want to
set a higher price, making sampling even the first seller not worthwhile for consumers.
Further, the conditions from proposition 4 rule out any mixed stopping rule as shifting
sellers beliefs to a lower average search persistence is not feasible when the problem
occurs at the first seller.

Proposition 4 applies if threshold search cost levels are not decreasing in the order of
search. Importantly, this always happens for some level of search costs if the continuation
value is not only decreasing with longer search histories. Technically, this depends on
g′(x) as well as x ·g(x). In reality, a situation where the continuation value increases may
in fact be quite common. Without knowing well what he is looking for, Bob might not
be too enthusiastic about getting a new suit prior to searching. While sampling the first
sellers however, Bob might learn that he likes particular kind of buttons and becomes
excited about finding a suitable shirt. As a consequence, his interim continuation value
from search might well exceed his expected surplus prior to search.

4 Comparative Statics of Tracking

As the subsequent analysis will show, the implications of tracking for overall welfare
depend on the level of search costs and thus on consumers’ search persistence as well.
Because obtaining predictions that depend on the model’s fundamentals requires addi-
tional structure, I first discuss how the effects of tracking vary with the search persistence
parameter K∗.

4.1 General Analysis

The first result concerns equilibrium prices and immediately follows from the sellers’
first order conditions.

Proposition 5. For any K∗ > 1, prices with and without tracking satisfy:

p1 < p(K∗) < pK∗ .

By proposition 5, the uniform no-tracking price exceeds the price consumers face at
their first seller when searching with tracking but is strictly below the last seller’s price.
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Moreover, a general result regarding profits is available when K∗ under search with
tracking is at least as high as under search without tracking:

Lemma 5. If K∗ is weakly larger under search with tracking, sellers’ profits are strictly

larger under search with than under search without tracking.

The reason is fairly intuitive. If consumers sample the same number of sellers under both
regimes, the aggregated distribution of types from all consumers is identical. Then, the
only difference between tracking and no tracking is that in the former case, sellers can
condition the optimal price on private information about consumers. By proposition
1, prices are increasing in the order of search under tracking and thus different from a
uniform price. Hence, the uniform price is not profit-maximizing if better information is
available, implying that tracking yields higher profits. Importantly, K∗ is indeed weakly
larger under search with tracking in many cases. If search costs are sufficiently low and
the number of sellers not too large, K∗ = N irrespective of tracking. Consequently, it
follows generally that sellers always benefit from tracking if there are not too many of
them or search costs are sufficiently low.

Moreover, the market breakdown result stated in proposition 4 implies that if the contin-
uation value from search is not decreasing in the consumer’s search history, there exists
a threshold search cost level ŝ1(K

∗) such that K∗ = 0 for any s > ŝ1(K
∗) under search

without tracking. Thus,

Proposition 6. If there exists a K∗ ≤ N such that ŝ1(K
∗) < ŝk(K

∗) ∀ 1 < k ≤ K∗,

tracking leads to strictly higher consumer surplus and profits for ŝ1 > s > ŝ1(K
∗).

Proposition 6 holds irrespective of how much surplus sellers would extract from con-
sumers via search history-based price discrimination. For s ∈ [ŝ1(K

∗), ŝ1), it holds
that V1(p

+
1 , s) ≥ 0 under search with tracking. That is, the market under search with

tracking is active at a level of search costs where the market without tracking is not.
Consequently, tracking raises everyone’s surplus. The reason is that tracking reduces
the information asymmetry between consumers and sellers and thereby leads to suffi-
ciently low prices, making initiating search worthwhile for consumers. In contrast, an
equilibrium with low search persistence and low prices does not exist without tracking
under the conditions of proposition 6. Proposition 6 also stands in contrast to the re-
sults derived by Zhou (2011). Without ex ante consumer heterogeneity, he finds that
consumer search is inefficiently low when search is ordered and leads to a lower overall
surplus.

As opposed to standard monopolistic group pricing, the following analysis suggests that
tracking may raise overall consumer surplus even when there is no market breakdown
in the absence of tracking. Similarly to group price discrimination, it has a market
expansion effect since prices are lower for consumers with a lower expected willingness
to pay.12 However, discrimination based on search histories is likely to benefit consumers

12In fact, Belleflamme and Peitz (2015) demonstrate how partitioning the demand into smaller intervals
(“groups”) has a non monotonic effect on consumer surplus due to two opposing factors. Due to better
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even more than standard group price discrimination. Rather than being part of mutually
exclusive groups, consumers arriving at some seller k have already had the opportunity
to buy at any seller j < k, implying that the different “groups” of consumers facing
different prices are in fact subsets of one another. Moreover, the market price without
tracking is above the first and below the last seller’s price with tracking by proposition
5. Hence, there must exist a threshold history h̄ such that only consumers with a history
h > h̄ pay discriminatory prices exceeding p(K∗). Note that consumers with a niche taste
search longer on average than consumers with a mass taste do. Hence, in expectation,
some types are made better off from tracking while others are made worth off.

Corollary 1. There exists a cut-off type x̃ ∈ X such that a consumer’s expected surplus

is reduced due to tracking if x > x̃.

4.2 Linear Matching Probability

In this section, I impose further structure on the model to derive additional analytic
results. In particular, I am interested in observing when the reduction of asymmetric in-
formation via tracking can lead to welfare and consumer surplus improvements, whether
tracking always raises industry profit and, how these effects depend on search costs.
Consider a linear matching probability function g(x) = 1− x and let the type x be uni-
formly distributed on [0, 1]. The total number of sellers is held constant at N = 10 but
consumers may sample only K∗ ≤ N . Proposition 7 summarizes the findings from this
section. Importantly, additional computations show that qualitatively identical results
obtain from any linear matching probability function.

Proposition 7. There exist two thresholds sp1 < sp2 such that profits are strictly larger

under search without tracking if s ∈ (sp1, s
p
2). Besides, there exist two thresholds sw1 < sw2

such that welfare is strictly larger without tracking if s ∈ (sw1 , s
w
2 ). Consumers surplus is

always higher under tracking. The market breaks down without tracking for s > sw2 .

The prices under search with tracking can be obtained from solving the maximization
problem as specified in (3). Under search without tracking, I observe that prices increase
in K∗.

The continuation value for every history and feasible K∗ is given by equation (4). Under
search with tracking where continuation values and threshold search cost levels are de-
creasing due to increasing prices, K∗ can be derived from the set K as defined in equation
(5). For search without tracking, the dependence of the continuation value on K∗ via its
effect on prices imposes an additional constraint on the optimal K∗ as explained in sec-
tion 3.3. Beyond Vk(K

∗, p(K∗)) ≥ 0 ∀ k < K∗, it requires that VK∗(K∗, p(K∗)) ≥ 0 for
the price that is optimal conditional on Kj. Lemma 13 specifies the search cost intervals

information about the willingness to pay sellers charge lower prices from groups with a lower willingness
to pay - eventually leading to an expansion of the market as consumers are served that would not have
bought under the uniform price. However, as this information becomes more precise, the surplus left to
each group is decreasing and approaches zero for infinitesimally small intervals.
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Figure a) shows the search persistence K∗ as a function of search costs. Figure b) shows consumer surplus
as a function of search costs. Orange represents search without tracking, blue search with tracking.

Figure 1: Search costs, search persistence and consumer surplus

for every K∗ ≤ N . Pure stopping strategies sometimes lead to dynamic inconsistencies
due to the adverse effect of K∗ on the price p. By lemma 14, consumers with the max-
imum possible search history in the market randomize over sampling the “last” seller
for some levels of search costs. However, the range of the intervals where consumers
would choose mixed strategies is relatively small compared to those where they choose
pure strategies under the model’s specifications. Therefore, I omit the calculation of the
mixed strategies.13

The sharp drop of K∗ under search without tracking at around s = 0.038 as displayed
in figure (1a) illustrates the market breakdown result from proposition 4. If s = 0.038,
the continuation value from sampling the first seller (expected surplus from search)
falls below zero while to any other interim continuation value would still be positive.
Thus, the threshold search cost is lowest prior to sampling search and the dynamic
search inconsistency problem cannot be prevented by a randomized strategy. Hence, the
market shuts down entirely and K∗ equals zero. As a consequence, consumer surplus
is significantly lower under search without tracking when search costs hit the market-
breakdown threshold as shown in figure (1b).

Moreover, it can be seen that tracking leads to higher consumer surplus even in the
absence of the market breakdown. For search cost in the neighborhood of the cut-off level
s = 0.038, this is not too surprising. Both consumer surplus with and without tracking
are continuous functions of search costs. Since it is strictly higher with tracking at s =
0.038, it has to be higher for lower search costs as well. For the given linear specification
of the model, tracking always raises consumer surplus. This holds irrespective of the fact

13The length of the intervals where consumers would mix can be inferred from figure (1b). The
discontinuities between s = 0.03 and s = 0.04 would disappear if mixed strategies were accounted
for. Importantly, neglecting the mixed stopping behavior does not affect the computation of consumer
surplus, as Vj = 0 if consumers randomize over sampling j.
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Figure a) shows total profits as a function of search costs. Figure b) shows welfare as a function of search
costs. Orange represents search without tracking, blue search with tracking.

Figure 2: Search costs, profits and welfare

that for some levels of search costs, consumers sample fewer sellers with tracking. The
foregone consumer surplus from sampling the last sellers is, however, relatively small due
to higher prices conditional on longer search histories. Thus, consumers always benefit
on average.

Note that, surprisingly, tracking does not always maximize industry profit as can be
seen in figure (2a) for intermediate search costs. In particular, this happens if con-
sumers’ search persistence is significantly lower under search with tracking than without
tracking. More precisely, the benefit of tracking for sellers comes from exploiting de-
tailed information about consumers with long search histories. If search costs are too
high however, consumers with long search histories (and high expected match values)
anticipate that they will be left with almost no surplus and do not continue sampling
additional sellers. While sellers would in general benefit from promising to leave a sur-
plus to consumers compensating them for search costs, they cannot due to the hold-up
problem.

Thus, the situation when facing a consumer with a long search history is comparable to
Diamond (1971), where sellers have perfect information about a consumer’s willingness
to pay. In other words, the Diamond Paradox applies and consumers forego search, which
mostly harms sellers who would have extracted most of the surplus. Figure (2a) shows
that tracking raises sellers’ profits otherwise and especially when the market would shut
down without tracking for high search costs. Figure (2b) shows the effect of tracking on
overall welfare, which depends on the level of search costs as well. There is a wide range
of search costs for which foregone profits due to reduced search persistence cannot be
offset by the increase in consumer surplus. For intermediate search costs, tracking thus
reduces welfare. In fact, this is intuitive as the hold-up problem prevents the realization
of matches especially from high value consumers.
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5 Extension: Increasing Matching Probability

In markets where products are sufficiently complex and have a variety if differentiated
features, the distinction between mass and niche consumers implying g′(x) < 0 seems a
reasonable assumption. However, if products are more standardized, the major source
of different match values may not lie in the nicheness of a consumer’s taste. Rather, a
consumer’s match value will depend on her budget set. For instance, think of consumer
electronics like flat screens. While not every brand’s flat screen constitutes a match due
to different preferences for diameter or energy consumption, the majority of consumers
derive utility from all of its technical features. Consequently, their willingness to pay
depends on mostly on the available income although they (still) buy the product only
if the investigated features meet their individual preferences. Aguiar and Hurst (2007)
find that low income consumers do less comparison shopping but still spend more time
on shopping in total, suggesting that they spend more time than high income consumers
on studying the products they buy. Given high income consumers inspect a product’s
features less carefully than low income consumers, they might be more likely to find a
product suitable. In this section, I therefore analyze the case of a weakly increasing
matching probability function g(x) with g′(x) ≥ 0.

Many of the arguments and results are either identical or simply a reversed version of
those made in the previous section. In those cases, explanations and proofs are presented
in an abbreviated form with complete references to the previous section. I first show
under which conditions there exists an equilibrium that exhibits a decreasing price path.
Second, I show that under those conditions, the equilibrium is unique. Moreover, I derive
the equilibrium without tracking and compare market outcomes.

5.1 Search With Tracking

For g′(x) ≥ 0, consumers with a high conditional match value are more likely to encounter
a match early. Hence, intuition suggests that lower prices are charged from consumers
with longer search histories in equilibrium. To construct such an equilibrium, suppose
that consumers’ expectations satisfy pe1 ≥ pe2 ≥ ... ≥ peN .

If consumers expect a decreasing price path, they might prefer to continue searching
despite available matches at previous sellers. As the analysis of alternative expectations
in the case of g′(x) < 0 has shown, this potentially leads to a new category of demand
from consumers who might return to a match after sampling additional sellers. However,
if potential gains from lower prices at forthcoming sellers are sufficiently smaller than
search costs, continuing to search despite a match is not worthwhile. Then, consumers
follow R∗ and expected history-dependent demand can be characterized by equation (2)
derived in section 3. In contrast to g′(x) < 0, demand from consumers with long search
histories is more elastic if consumers follow R∗ and types with a low conditional match
value search longer on average. I thus obtain the opposite result of lemma 2.
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Lemma 6. Suppose that consumers always use the stopping rule R∗. Then, the sequence

of profit-maximizing prices is weakly decreasing and unique.

As in the proof of lemma 2, uniqueness is due to log-concavity of the demand function,
which is preserved under R∗ for any seller along a consumer’s search path. Lemma 6
does not yet complement proposition 1 for g′(x) ≥ 0. The question remains under what
conditions the continuation value from search after a successful match is always negative,
thus rendering R∗ indeed the optimal stopping rule?

Potential gains from lower prices depend on the changes in the elasticity of expected de-
mand. Denote the decreasing sequence of optimal prices if consumers follow R∗ by

{p∗k}k=1,..,N , p∗k ≥ p∗k+1 ∀ k < N.

Note that in any PBE where R∗ is the optimal stopping rule, consumers’ expectations
must be correct and thus satisfy pek = p∗k. The stopping rule R∗ is optimal always only if
the continuation value from search conditional on an available match is weakly negative
for all types and for all possible search histories. Extending previous notation, denote the
continuation value conditional from sampling seller k conditional on an existing match
and known type xi by Vk(xi). Formally, Vk(xi) ≤ 0 ∀xi ∈ X, k ≤ N iff

g(x)
(
p∗k − pek+1

)
< s ∀x ∈ X, k ≤ N. (8)

Given any level of search costs s > 0, an upper bound ∆̂ > 0 for the slope of g(x) exists
such that condition (8) holds for all matching probability functions with g′(x) < ∆̂.
Consequently, pek = p+k ∀k if g′(x) < ∆̂. Lemma 7 summarizes these findings.

Lemma 7. There always exists a ∆̂ > 0 such that under expectations satisfying pek =
p∗k ∀ k ≤ N , the stopping rule R∗ is optimal and {p∗k}k=1,..,N constitute unique equilib-

rium prices for any matching probability function with 0 ≤ g′(x) < ∆̂ ∀ x ∈ X.

The stopping rule R∗ thus leads to the price sequence {p∗k}k=1,..,N , which implies that

pek = p∗k, rendering R∗ indeed optimal for g′(x) < ∆̂. However, other equilibria could
exist for alternative consumer expectations, making some types adopt a stopping rule
different from R∗. However, it is possible to show that any expectations which are
different from {p∗k}k=1,..,N cannot constitute a PBE.14 The steps towards this result are
similar to those made in the previous section. First, observe that

Lemma 8. In any PBE, expectations satisfy pek ≥ p∗k ∀ k ≤ N if ∆̂ > g′(x).

Intuitively, the statement holds for the following reason. Begin with the last sellers
whose price is expected to be below p∗k, i.e. p

e
k < p∗k. If despite alternative expectations,

consumers’ stopping behavior at previous sellers remains unchanged, seller k would max-
imize profits by deviating to pk = p∗k > pek as this price is profit-maximizing conditional
on R∗.

14As it is the case in most search models, there always exists an equilibrium in which consumers expect
arbitrarily high prices and no consumer searches.
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If instead, consumers’ stopping behavior changes due to alternative expectations, it can
affect only expected demand types with x > x̄ for seller k, where x̄ > pek. The threshold
x̄ characterizes the type whose matching probability g(x̄) is too low to make sampling
seller k despite available matches worthwhile. Consequently, expected demand from
types xi > x̄ can at most in- but not decrease compared to demand that arises under
R∗. Since raising the price to p∗k > pek leads to higher profits even in the absence of this
extra demand by lemma 6, setting a price higher than pek must constitute a profitable
deviation when demand from types xi > x̄ > pek as well. The same argument can be
applied to any seller k′ whose expected price is supposed to satisfy pek′ < p∗k′ , leading
to the above lemma. As in the analysis in section 3, the lower bound on consumers’
expectations leads to equilibrium uniqueness.

Proposition 8. In any PBE, expectations must satisfy pek = p∗k ∀ k ≤ K∗. Hence, the

equilibrium with the increasing price path characterized by {p∗k}k=1,..,N is unique.

The proof proceeds along the same lines used in proposition 1. As the first seller knows
that prices from all forthcoming sellers are expected to be higher than his own price if he
charges a price in the neighborhood of p∗1, he has local monopoly power over its demand
because consumers would follow R∗. Since p∗1 is the profit-maximizing price under R∗,
the first seller will always find it optimal to set a price equal to p+1 . Given that the
first seller sets p1 = p∗1, seller 2 can makes consumers follow R∗ (and thus obtain local
monopoly power) by setting p2 = p∗2 for the same reasoning. By repeatedly applying
this argument for all forthcoming sellers, one obtains the above result.

Search persistence. As in the previous analysis, consumers sample up to K∗ sellers
if VK∗

(
s
)
≥ 0 and Vk

(
s
)
≥ 0 ∀ k < K∗ given equilibrium prices. In fact, the fact that

prices are decreasing instead of increasing does not change the computation of K∗. That
is, K∗ ∈ K, where K is given by (5). Since K̂(s′) ⊆ K̂(s) for s′ > s holds as well, K∗ is
decreasing in s, resulting in a set of disjoint search costs intervals for different K∗.

If continuation values are not always decreasing for higher search histories, there might be
jumps inK∗ such that search persistence decreases by more than one seller at some search
cost threshold. Using previous notation, let ŝk(K) ∈ {s : Vk(K, s) = 0} define the search
cost threshold above which sampling k is not worthwhile for a given search persistence
K. For non-decreasing continuation values, there exists a K such that ŝk(K) 6= ŝ(K) ∈
min{ŝk(K)}k=1,..,K . Then, K∗ = K only if s ≤ ŝ(K) and K∗ = j for ŝj′(j) ≥ s > ŝj(K)
where seller j’s threshold equals ŝj(K) = ŝ(K). The next threshold ŝj′(j) is obtained
from ŝj′(j) ∈ min{ŝk(j)}k=1,..,Kj and specifies that K∗ = j′ for s > ŝj′(j) and so
forth.

5.2 Search Without Tracking

Deriving uniform price equilibrium and its uniqueness under search without tracking is
identical to the case of g′(x) < 0. The reason is that due to the uniform price, consumers
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follow the same stopping rule R∗. Hence, the seller’s problem is completely characterized
by (7) with expected demand given by equation (2). Thus:

Lemma 9. A unique uniform price equilibrium exists under random search.

The only difference compared g′(x) < 0 is that demand is now more elastic for higher
degrees of search persistence. That is:

Proposition 9. Let p(K∗) be the unit random search price if consumers maximum

willingness to search is K∗. Then,

p(K∗
2 ) < p(K∗

1 ) if g
′(x) > 0 and K∗

2 > K∗
1

Notice that the intuition for the result is a simple reversion of the statement before. A
higher search persistence by consumers increases the probability that a consumer has
a long history. Since probabilities for all feasible search histories must add up to one,
sellers put less weight consumers with short histories and more weight on consumers with
long search histories if K∗ increases. Since demand from consumers with longer search
histories is more price elastic for g′(x) ≥ 0, the profit maximizing price decreases.

Search persistence. For a constant price, the continuation value from search decreases
for longer search histories. This is because a consumer’s expected type Eh[x] decreases
in h and so does the instantaneous expected surplus from the next seller, g(x)(x− p), if
g′(x) ≥ 0. Since consumers become increasingly pessimistic for higher search histories,
continuation values are decreasing in h, implying that K∗ decreases gradually. That is,
consumers sample K∗ = K sellers if s > ŝ(K)K where sK(K) ∈ {s : VK(p(K), s) = 0}.
Since p(K) is decreasing in K, dynamic search inconsistencies as in the case of g′(x) < 0
cannot emerge. Hence, the market remains active for all s < s1(1). Moreover, consumers
never have to choose mixed stopping rules.

5.3 Comparative Statics of Tracking

Since search persistence decreases gradually with search costs and V1(p(1), s) = V1(p1, s),
it follows that consumers search both under tracking and no tracking iff s < ŝ1(1).
Contrary to the case of g′(x) < 0, there thus exists no level of search costs for which
tracking must lead to higher profits and consumer surplus due to a market breakdown
without tracking. The comparison of prices is immediate after switching the sign of g′(x)
in the proof of proposition 5:

Corollary 2. For any search persistence K∗ > 1,

p1 ≥ p(K∗) ≥ pK∗ .

with strict inequality if g′(x) > 0.
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Figure a) shows consumer surplus as a function of search costs. Figure b) shows total profits as a function
of search costs. Orange represents search without tracking, blue search with tracking.

Figure 3: Search costs, consumer surplus and profits

By corollary 2, sellers maximize profits by charging search history dependent prices,
which differ from the uniform price without tracking. That is, reduced asymmetric
information due to tracking enables sellers to extract more expected surplus from a
consumer with a particular history h. Unless g′(x) = 0, I obtain:

Lemma 10. If K∗ is weakly higher under tracking than under no tracking, sellers’ profits

are strictly larger under search with than under search without tracking.

To obtain specific results on the effect of search costs, I again impose additional structure.
Consider a linear matching probability functiong(x) = 0.1x, which is increasing in x. As
before, let the type x be uniformly distributed on [0, 1].15 The total number of sellers is
held constant at N = 10 but consumers may sample only K∗ ≤ N .

The computation proceeds as follows. First, I compute prices under search with tracking
for any history h and under search without tracking for any search persistence K∗.
Second, by calculating continuation values for every possible history, I obtain the optimal
search persistence K∗ as described in section 5.1 and 5.2 for every level of search costs.
Recall that the decreasing price path under search with tracking may not constitute an
equilibrium if search costs are too low or potential gains from price savings too high.
While not displayed here, the maximum price difference a consumer can expect amounts
to roughly ∆p = 0.005. Since the highest matching probability a consumer might have
equals 0.1, condition 8, which ensures that a unique equilibrium exists, is satisfied for
s > 0.0005. Figure (3a) shows that tracking hardly affects consumer surplus. That
is, gains for longer searching consumers from lower prices are offset by higher starting
prices for all consumers. In contrast, profits can be much larger due to tracking as shown
in figure (3b). In fact, this is because K∗ decreases faster if search is without tracking.

15The slope is chosen to be small to ensure equilibrium existence.

28



While under tracking, consumers with long search histories may find continuing to search
worthwhile such that match values are realized, the price without tracking may prevent
them from search. As the surplus left to consumers even if they continue searching is
small, there is only a marginal effect on consumer surplus.

6 Application: Endogenous Tracking

In this section, I apply the consumer search framework to study whether tracking arises
endogenously. For this purpose, I consider a consumer’s dynamic choice about preventing
tracking. Since the processing of personal data seems to be the default on the internet
for its use goes far beyond price discrimination only, a seller’s choice about tracking is
only about deciding on whether to use the available data for price discrimination. Note
that this implies a seller decides about using tracking at the price setting stage. Hence,
the problem is simply part of his profit maximization. More precisely, if anything but
a search history-independent price is optimal, it must hold that using tracking is the
dominant strategy.

To model a consumer’s tracking choice, I assume that every time before she samples a
seller, she can either disclose her entire search history, i.e. allow tracking (T) or not
disclose her search history and thus not allow tracking (NT). Search histories contain
the number of all sellers previously visited, independently of whether the consumer
had chosen NT or T when sampling previous sellers.16 In reality, consumers usually
also have the option to erase their histories, for example by deleting cookies. In the
discussion section, I show that the predictions I obtain are robust to this extension if
sellers can distinguish between a consumer who deletes her cookies and a consumer who
just started searching for a particular product. Briefly, this assumption is motivated
by the observation that by deleting cookies, consumers erase their entire search profile.
However, a consumer who has not deleted cookies but just started searching for a product
should still have an “unrelated” search history. The signal sent to sellers when deleting
cookies is then identical to choosing NT and, thus, is redundant. Denote a consumer’s
tracking decision by d ∈ {T,NT}.

Timing. At first, sellers set prices for every possible search history and choice of d and
nature draws each consumer’s type. Consumers search by sampling sellers sequentially at
a cost s per seller. Prior to each search attempt, consumers choose d. Sellers observes a
consumer’s search history h if d = T and nothing but d = NT otherwise. The consumer
observe the price conditional on her disclosure strategy and search history as well as
her match utility. Lastly, she decides whether to buy, to return to a previous seller, to

16Web-browsing with the “do not track” request option, where cookies are still stored on the consumer’s
device but simply not processed, fits this assumption fairly well. However, results are robust to the
modified assumption that search histories contain only the number of sellers for which tracking had been
enabled. This is because the search history a consumer can disclose would still be weakly increasing in
the number of sellers and thus not affect the price path with tracking.
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continue or to stop search.

Equilibrium concept. As before, the equilibrium concept is Perfect Bayesian Nash
equilibrium. Extending the strategy space by the choice of d implies additional PBE
conditions which are not present in the baseline mode. First, consumers choose d in order
to maximize their expected surplus. Second, sellers’ beliefs about a consumer’s search
history must be consistent with the consumers’ disclosure strategy. Third, consumer’s
beliefs about prices must be consistent with sellers’ equilibrium pricing strategies, and,
thus, with their own disclosure strategy.

I analyze the cases of g′(x) < 0 and g′(x) ≥ 0 separately and begin with g′(x) < 0.
Denote by p(NT ) the uniform price set by sellers upon observing the choice NT. For
prices under tracking, use the previous notation pk with the index indicating the seller’s
position in the consumer’s search process. Note that the choice about d ∈ {T,NT} is
without commitment and only affects the information revealed to the next seller while
the prices from additional sellers remain unaffected. Hence, the consumer’s decision to
disclose her history is purely myopic as it only depends on the difference between the next
price she can expect under tracking peh+1 and no tracking pe(NT ). If pek = pe(NT ) for
some consumer with history h = k− 1, I impose that a consumer stays with the default
option, which is search with tracking. This tie-breaking rule is without loss of generality
as the alternative rule would imply the same equilibrium outcome. Since consumers
choose d = T prior to sampling seller k if only if pe(NT ) ≥ pk, it is sufficient to restrict
attention to single cut-off strategies, where such a strategy is defined as follows:

Choose NT ∀ h ≥ ĥ ∈ N (9)

For brevity, denote the above defined single cut-off strategy by ĥ ≤ K∗. To see why this
restriction does not constrain equilibrium strategies, suppose that pe(NT ) < pek such that
a consumer chooses d = NT at seller k. Since her search history at any forthcoming
seller will be h > k, forthcoming sellers’ prices always satisfy pe(NT ) < pej ∀ j > k.
Consequently, d = NT must be optimal for all h ≥ k if it is optimal at k.

In any PBE, sellers anticipate the equilibrium strategy ĥ and can thus condition p(NT )
on h ≥ ĥ when observing d = NT . Denote the profit-maximizing price conditional on
the cut-off strategy ĥ by p(ĥ). Then, p(NT ) = p(ĥ) in equilibrium. Recall that by
previous notation, p

ĥ+1 denotes the price set by a seller who observes a browsing history

ĥ and thus knows that his position in the consumer’s search process is ĥ + 1. Without
imposing equilibrium strategies yet, the following lemma compares prices with tracking
and without tracking for arbitrary single cut-off strategies ĥ.

Lemma 11. Given ĥ, there always exists a unique optimal price p(ĥ) with

p(ĥ) > p
ĥ+1 ∀ ĥ < K∗ − 1,

and p(ĥ) = p
ĥ+1 for ĥ = K∗.
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The intuition behind lemma 11 is the following. When hiding the search history for all
histories h ≥ ĥ, sellers observing d = NT attach positive probabilities on all histories
h ≥ ĥ and zero probability on h < ĥ. Most importantly, P

(
h > ĥ

)
> 0 ∀ ĥ < K∗ − 1,

and hence the optimal price conditional on observing d = NT is chosen with respect
to a weighted demand function that is always less elastic than expected demand from a
consumer disclosing h = ĥ (implying P(h = ĥ) = 1).

By lemma 11, a consumer whose search history equals the cut-off history is charged a
lower price if she allows tracking (d = T ) than if she does not (d = NT ). However,
by construction, a consumer with a history of h = ĥ chooses d = NT , implying that
profitable deviations exist at least for some consumers. The uniqueness result in the
following proposition is an immediate consequence of this contradiction.

Proposition 10. There always exists a unique PBE with the disclosure strategy ĥ = K∗

and a conditional no tracking-price p(NT ) = pK∗ .

Proposition 10 states that the search history is always disclosed in the unique equilibrium,
leading to unrestricted tracking and price discrimination. Existence can be shown by
means of an example. Simply consider an equilibrium with search history-based prices
p1 < p2 < ... < pK∗ , a disclosure strategy ĥ = K∗ and a no tracking-price p(NT ) = pK∗ .
Since K∗ is the maximum number of sellers a consumer is willing to sample, ĥ = K∗

means that no actively searching consumer chooses d = NT and sellers should never
observe NT . Denote by µ(h) ∈ [0, 1] a seller’s out-of-equilibrium belief that the search
history of a consumer having chosen NT equals h. Suppose it satisfies µ(h) = 0 ∀h < ĥ
such that µ(K∗) = 1. Since pK∗ maximizes profits conditional on µ(K∗) = 1, sellers
have no incentive to deviate from p(NT ) = pK∗ . Besides, consumers have no incentive
to deviate to another disclosure strategy ĥ′ < ĥ since p(NT ) ≥ pk ∀ k ≤ K∗.

The uniqueness result is based on an unravveling mechanism similar to Milgrom and
Roberts (1986). For any alternative cut-off strategy ĥ < K∗, sellers’ beliefs must satisfy
µ(h) = 0 ∀ h < ĥ. Hence, the optimal price conditional on observing NT satisfies
p(NT ) = p(ĥ) > p

ĥ+1 by lemma 11. Since consumers with a search history h = ĥ can

obtain the price p
ĥ+1 by allowing tracking prior to sampling seller k = ĥ+1, they always

have an incentive to deviate from any cut-off strategy ĥ < K∗.

6.1 Increasing Matching Probability

If g′(x) ≥ 0 but not too large, prices are monotone decreasing in search histories as
shown in section 5. Thus, it follows that the optimal disclosure strategy belongs to the
set of single cut-off strategies as well. However, the reverse pricing pattern requires to
slightly adjust the notion of single-cut-off strategies, abbreviated by ȟ:

Choose NT ∀ h ≤ ȟ (10)
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Denote by p(ȟ) the seller’s optimal price conditional NT and the consumer cut-off strat-
egy ȟ. Analogously to lemma 11, one can show that:

Lemma 12. Given ȟ, there always exists a unique optimal price p(ȟ) which satisfies

p(ȟ) > pȟ+1 ∀ ȟ > 0,

and p(ȟ) = pȟ+1 for ȟ = 0.

The distinction between a a search history h and the corresponding position h+1 in the
search process of a seller observing h is again crucial to understand the implications of
lemma 12. For illustration, suppose that ȟ = 1 implying that consumers choose d = NT
if h ∈ {0, 1}. In any PBE, sellers would know that h ∈ {0, 1} if d = NT and h 6≥ 1.
By lemma 12, the resulting optimal price p(NT ) then exceeds p1, the price sellers would
set if they knew that h = 1 with certainty. However, any consumer with a history of
h = 1 can choose d = T and convey their history to sellers, thereby obtaining a lower
price than p(NT ). The example shows that ȟ = 1 cannot be an equilibrium strategy for
consumers. In fact, the unraveling argument applies again for any cut-off strategy ȟ > 0
such that complete tracking remains as the unique equilibrium:

Proposition 11. There always exists a unique PBE with the disclosure strategy ȟ = 0
and a conditional no tracking-price p(NT ) = p1.

While the unraveling mechanism illustrated in the above example is reversed compared
to proposition 10, the proof of proposition 11 is otherwise identical. For any cut-off
strategy ȟ > 0 where NT is chosen from consumers with strictly positive search histories,
there always exists consumers who are better off from tracking even though their history
belongs to h ≤ ȟ. Hence, only ȟ = 0 constitutes an equilibrium strategy.

The major implication of propositions 10 and 11 is that there is no privacy in the market
because consumers rationally approve tracking at all stages during the search process.
Since the consumers’ best-response to price discrimination is a myopic decision based
merely on the very next seller’s price, the equilibrium outcome need not be consumer
surplus maximizing.

7 Discussion

In this section, I discuss the robustness of my findings via several extensions to the
model. Some extensions constitute an entirely new model for future research which
cannot be discussed in every detail here. In this case, I only provide a brief discussion of
what changes to expect. Lastly, I explain how the model contributes to the discussion
of whether random search can be stable (Armstrong, 2017).
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No commitment

Since consumers search with free recall, sellers might not only be interested in discrim-
inating between consumers, but also to discriminate a consumer based on whether she
arrives for the first time or whether she is returning. Indeed, Armstrong and Zhou (2010)
focus on this issue. In my baseline model, the timing does not allow for within consumer
price discrimination. Instead, I implicitely assume that sellers can commit to a price
they will charge from returning consumers under the constraint that this price is equal
to the price charged at the first encounter. Indeed, this is not without loss of general-
ity. Due to free recall, a multiplicity of equlibria might arise without commitment since
consumers could form any beliefs about the return-price. However, the commitment
assumption could be relaxed by introducing a small but positive cost ǫ for returning to
a previous seller. This is because when a consumer with history h decides to return to
some seller k < h, she does so only if she expects vik > pRk + ǫ, where pRk is the expected
return-price. Hence, sellers have an incentive to raise their price at least by ǫ, making
returning not worthwhile for some consumers. This argument holds for any pRk < v̄ such
that the arising hold-up problem prevents any consumer from returning if sellers have
no commitment power. The reason why the Diamond Paradox arises in the market for
returning consumers but not in the market for “fresh” consumers is because only in the
former, consumers already know their willingness to pay, rendering their return decision
informative for sellers.17

Heterogeneous search costs

Another dimension in which consumers naturally differ from one another might be the
individual search cost. Should we expect countervailing effects from introducing search
cost heterogeneity into the current framework, mitigating the search dynamics and wel-
fare implications derived? Heterogeneous search costs imply that consumers differ with
respect to their search persistence K∗. Under search with tracking, prices do not depend
on K∗. Thus, there are no new qualitative effects of search cost heterogeneity, despite
leading to heterogeneous stopping by consumers.

Under search without tracking, heterogeneous search costs mitigate the dynamic search
inconsistency problem. Since for any marginal increase in search costs, there is only a
marginal consumer reducing her search persistence, there are no jumps in K∗ and prices
react smoothly to changes in search costs. That is, there is again no effect of search
cost heterogeneity except for making mixed stopping rules disappear. The inefficiency
problem due to market inactivity as stated in proposition 6 also persists under search
cost heterogeneity. While indeed some consumer will always search for reasonable levels
of search costs, those with low search costs search particularly long, thereby driving
up the price without tracking. Hence, consumers with high search costs abstain from

17This point is also made in Armstrong and Zhou (2010)
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search entirely, driving up prices even more and exlcuding additional consumers from
participating in search.

Deleting cookies

By deleting cookies consumers might be able to reset their search history to h = 0 and
thereby trick sellers. However, it is possible to show that deleting cookies and not allow-
ing tracking are equivalent with respect to their signal under some mild assumptions.
These are: (1) cookies saved on a device cannot be manipulated but only erased com-
pletely or not at all. While a minority of internet users might be capable of deleting
only particular cookies from their computer, the majority of users is restricted to the
standard software which typically enforces this all or nothing property. And (2), sellers
can distinguish between a consumer who deleted all her cookies and a consumer who
only began searching for a product.

Note also that this second assumption can be derived from more fundamental assump-
tions about online browsing. A consumer who only begins searching for a particular
product still has a non-empty browsing history including search for other product cate-
gories and various online services. Denote this “extended” browsing history by H. The
browsing historyH is empty only if a consumer deletes her cookies and otherwise satisfies
H 6∈ ∅. In addition, note that h = 0 6⇒ H ∈ ∅.

Denote the choice of deleting cookies by t ∈ {KC,DC}, where DC denotes the choice
to delete cookies while K refers to keeping them. Focusing on sellers’ belief about
a consumer’s (history-) type induced by the signal t = DC, it turns out there is no
difference to the signal d = NT . Under NT , sellers cannot observe h. Under t = DC,
sellers observe h = 0 but know that the consumer has deleted cookies since H ∈ ∅.
Hence, they know that they do not know the true h, which is equivalent to not knowing
h at all.

Denote by {d, t} the consumer’s action tuple regarding the decision to allow tracking
and keep her cookies. Due to identical signaling effects, it holds that sellers’ beliefs
satisfy:

µ(h|T ∧DH) = µ
(
h|NT ∧DH) = µ(h|NT ∧KH) ∀ h.

Since the sellers’ beliefs determine prices, these actions are thus payoff-equivalent from
the perspective of consumers as well.

Now suppose that a fraction of consumers indeed searches with a new device and that
her browsing history cannot be distinguished from a consumer who deletes her cook-
ies. Equivalently, there might be a fraction of consumers who always disable tracking
by default because they have a strong preference for privacy. If the fraction of those
consumers is sufficiently large, the equilibrium from proposition 10 cannot be sustained
since sellers must attach positive probability on shorter search histories conditional on
observing NT (or equivalently, DC).
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Notably, the first order condition of a seller observing NT shows that the optimal no
tracking price p(NT ) is weakly decreasing in the cut-off strategy ĥ.18 Besides, p

ĥ+1,

the price a consumer with a history h = ĥ would obtain if she chose T, is increasing
as shown by lemma 2. Denote by α the fraction of consumers who disable tracking by
default/ begin search with new devices. It follows that:

Corollary 3. For α > 0 but not too large, there exists a unique PBE with the disclosure

strategy 0 < ĥ ≤ K∗ and the no tracking price p(NT ) solves

p(NT ) = argmax
p

(
(1− α)

K∗
∑

k=ĥ+1

φkDk(p) + α

K∗
∑

k=1

φkDk(p)
)
p.

Stable random search

According to Armstrong (2017) random search in the WAR model is unstable. He
argues that random search from the part of consumers depends crucially on consumers’
expectations about other consumers’ perfectly random search behavior. If instead, one
seller S becomes more salient than its competitors such that both consumers and sellers
should expect that an arbitrarily small but positive mass of consumers is more likely
to sample S first, S will optimally set a lower price than its competitors, as shown by
Armstrong and Zhou (2011) or Zhou (2011). If consumers are free to choose at what
seller to begin searching while all sellers’ products are ex ante identical, this creates
an incentive for all consumers to begin searching at seller S. Consequently, the seller
sampled first is not a random choice and search becomes partially ordered. Similarly,
consumer beliefs about which seller to sample afterwards can tip easily and so can beliefs
about all sellers’ position in the search process. Then, random search becomes perfectly
ordered as the same argument applies to the second seller etc.

The market tipping property of random search prevails because sellers who are visited
first have an incentive to price lower than sellers who are sampled later in the search
process. In the current framework instead, this is not true if g(x) is weakly increasing,
suggesting that random search would be stable. Suppose that a positive mass of con-
sumers would not search randomly but begin with a particular seller M such that M has
a larger share of consumers with shorter search histories. As g(x) is increasing and high
types are less likely to be among consumers with longer search histories, seller M has
an incentive to raise its price above the uniform price charged by others.19 Hence, the
more salient seller M sets the highest price if g′(x) > 0. This prevents the search market
from tipping as due to its higher price, consumers would avoid searching for seller M
first, including those that were expected to sample it first on purpose. Consequently,
consumers prefer to search randomly over coordinating on more salient sellers.

18See the proof of lemma 11
19By not raising the price by too much, consumer’s stopping rule would remain unaffected so that the

stopping rule remains unaffected at least for small price deviations.
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8 Conclusion

Most of users’ activities across the internet are tracked by third parties. Accessing these
browsing data is particularly attractive to sellers if the average search behavior varies
across different consumer types. Then, tracking a consumer’s search path enables sellers
to learn about a consumer’s willingness to pay and gives rise to search path-dependent
price discrimination. This paper presents a rich and tractable framework integrating
consumer heterogeneity and tracking into a model of sequential consumers search to
address the major implications of tracking for market outcomes.

First, I show that, in the unique equilibrium, tracking implies search history-dependent
pricing. Specifically, prices increase in the order of search if the difference between
consumer types is the peculiarity and nicheness of their taste. Since niche consumers
are more likely to search longer, demand from consumers with long search histories is
less elastic. Consequently, sellers set higher prices conditional on observing longer search
histories.

Second, I compare the market outcome under search with tracking with the unique equi-
librium under search without tracking to evaluate its welfare consequences. Because
initial prices are lower while later prices are higher than the price under search without
tracking, the surplus of niche consumers decreases while the surplus of mass consumers
increases due to tracking. Besides, overall welfare effects depend how tracking affects
consumers’ search persistence, which, in turn, depends on the level of search costs. For
a wide range of intermediate search costs, consumers sample more sellers in the absence
of tracking because the average no-tracking price makes continuing search with a long
search history more attractive. This may cause welfare losses due to forgone matches,
particularly at the cost of sellers who would have extracted most of the matching sur-
plus. However, tracking increases welfare if search costs are very low such that search
persistence remains unaffected and if search costs are very high. In the latter case, this
is because low prices conditional on short search histories ensure that consumers have an
incentive to begin searching, thus keeping the market active. In the absence of tracking
instead, the no-tracking price is often too high, thus leading to a market breakdown for
the same level of search costs. Perhaps surprisingly, consumers may always be better off
from tracking whereas sellers make less profits at least for some search costs.

Third, I investigate whether tracking prevails endogenously when consumers can dynam-
ically opt out from tracking. I find that, in the unique equilibrium, consumers always
prefer to disclose their search history as the price conditional on hiding it always exceeds
the price at least some consumers could obtain after disclosing it. Therefore, the entire
search history is disclosed in equilibrium. Even though the equilibrium is unique, the
full tracking prediction is not cast in stone. As discussed in the previous section, partial
tracking, where consumers disclose their search history only up to some threshold, ob-
tains if a positive mass of consumers always disables tracking by default. Besides, the
endogenous tracking result is interesting not only because it explains why many internet
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users do not prevent tracking, but also because it has important implications for policy
makers. That is, if tracking is surplus-increasing, no intervention is necessary because
tracking prevails even though it entails increasing prices.

Often, sellers refrain from personalized pricing because of consumers’ prejudices against
price discrimination or legal uncertainty. Then, improved targeting constitutes an al-
ternative practice to capitalize on traceable search histories. That is, a seller possess-
ing multiple products of the same category might be able to use information conveyed
through search histories to offer more suitable products to individual consumers. Fol-
lowing Johnson and Myatt (2006), a seller’s product choice could be integrated in this
paper’s framework by allowing sellers to rotate the matching probability function. Again,
it would be interesting to examine whether the profit-maximizing design induces ineffi-
ciently low search persistence or whether it can be welfare increasing as well.

Finally, Turow et al. (2009) find that the majority of consumers oppose personalized
pricing, thus confirming the anecdotal evidence that significant prejudices against track-
ing still prevail. In the light of the fact that tracking often has desirable consequences
for consumer surplus and welfare, the question of where this negative view comes from
deserves more attention. If consumers obtain additional utility from anonymity, avoid-
ance of tracking and personalized pricing may, of course, be welfare maximizing despite
the foregone matching surplus. If, however, the preference for anonymity is based on
false beliefs about the consequences of tracking, consumers may be harmed from being
misinformed.
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9 Appendix

9.1 Proofs of Section 2.3

Proof of Lemma 2

Proof. In Part I, I show that if consumers follow the stopping rule as specified in
lemma 1, there is a unique sequence of increasing prices that maximize profits, denoted
by {p+k }k=1,...,N . Under the equilibrium stopping rule R∗, consumers always buy if
vik > pk. Taking all other forthcoming sellers’ expected prices as given, a price by seller
k can induce a different stopping rule for at least some types x ∈ X if pk > pek+1+δ, δ > 0
such that those types find continuing to search worthwhile despite vik > pk. In Part II,
I show that any price pk > p+k inducing an alternative stopping rule cannot be profitable
if it is not profitable under R∗.

Part I

Existence. Define qk(p) := −Dk(p)
D′

k
(p)

such that the FOC writes: p = qk(p) ∀ k = 1, ..., N .

Next, write

qk(p) =

∫ 1
p
g(x)fk(x)dx

g(p)fk(p)

and observe that qk(p) is continuous ∀p > 0 and satisifes: limp→v qk(p) > 0 and
limp→1 qk(p) = 0. Hence, there always exists a p ∈ R that solves p = qk(p).

Uniqueness. Define θk(x) := g(x)fk(x) ∀ k ≥ 1. Then, expected demand at seller k
conditional on observing a history h = k − 1 writes:

Dk(p) =

∫ 1

p

θk(x)dx = Θk(1)−Θk(p),

where Θk(·) is the antiderivative of θk(·). Thus, I can rewrite qk(p) as:

qk(p) =
Θk(1)−Θk(p)

−θk(p)
.

Notice that that θk(p) is log-concave for all k since first, θ1(x) = f1(x)g(x) = f(x)g(x) is
log-concave as multiplication preserves log-concavity and because second, log-concavity
of θk(p) implies log-concavity of θt(p) ∀ t ≥ k. The second statement follows from:

θk+1 = g(x)fk+1(x) =
g(x)

(
1− g(x)

)
fk(x)

∫ 1
v

(
1− g(t)

)
fk(t)dt

=
1− g(x)

Ck

θk(x),

where Ck is a constant. The argument in footnote 1 shows that log-concavity of g(x)
implies log-concavity of 1 − g(x) ∀x ∈ {x : g(x) ≤ 1}. Again, multiplication of two
positive and log-concave functions preserves log-concavity. Hence, log-concavity of θk(x)
implies log-concavity of θk+1(x). Consequently, θk(p) is log-concave ∀ k ≤ K∗.
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Further, log-concavity of θk(p) implies log-concavity of the anti-derivative Θk(p). Define
∆k(p) =

(
Θk(1) − Θk(p)

)/
Ok where Ok :=

∫ 1
v
g(x)fk(x)dx is a normalization to make

∆k(p) a probability measure. Then, ∆k(p) is log-concave over its positive domain20.
Rewriting qk(p) yields:

qk(p) =
∆(p)

−∆′(p)

Ok

Ok

As ∆k(p) is a log-concave probability distribution, qk(p) is decreasing (see Bagnoli and
Bergstrom (2005) and, thus, has a unique fix point.

The unique sequence of prices is increasing in k. Consider again qk(p) for arbitrary
k:

qk(p) ≤ qk+1(p) iff

∫ 1
p
g(x)fk(x)dx

g(p)fk(p)
≤

∫ 1
p

g(x)
(
1−g(x)

)
fk(x)

∫
1

v

(
1−g(t)

)
fk(t)dt

dx

1−g(p)
∫
1

v

(
1−g(t)

)
fk(t)dt

g(p)f(p)
(11)

⇔

∫ 1

p

g(x)
(
1− g(p)

)
fk(x)dx ≤

∫ 1

p

g(x)
(
1− g(x)

)
fk(x)dx (12)

⇔

∫ 1

p

g(x)
(
g(p)− g(x)

)
fk(x)dx ≥0 iff g′(x) < 0 (13)

Because inequality (13) always holds for g′(x) < 0, qk(p) ≤ qk+1(p) holds as well. The
following proof goes by contradiction. Hence, assume that p∗k+1 < p∗k for at least some
k. Then, 13 implies that:

p∗k+1 = qk+1(p
∗
k+1) > qk(p

∗
k+1)

As qk() is decreasing, it follows from the assumption of p∗k+1 < p∗k that:

qk(p
∗
k+1) > qk(p

∗
k)

But then uniqueness of p = qk(p) implies p∗k+1 = qk+1(p
∗
k+1) > qk(p

∗
k) = p∗k, contradict-

ing the assumption.

Part II

Now consider seller k setting a price p′k > p+k such that continuing to search is worthwhile
for at least some consumers, i.e. ∃x ∈ X s.th. Vk+1(xi) > 0 even if vik > p′k. If for some

type x, Vk+1(xi) > 0 even if vik > p′k , then x ∈ X̂k, with

X̂k := {x ∈ X : g(x)
(
p′k − pk+1

)
> s}. (14)

20Subtracting Θk(1) preserves log-concavity. Further, multiplication with a log-concave function (i.e.
(−1) ) preserves log-concavity over the composed function’s positive domain and Ok is just a constant.
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This is because pek+2 > pek+1, and hence the surplus from sampling any seller beyond the
next seller cannot be positive if the surplus from sampling only the next seller is not
positive. By construction, ∃! x̄ ∈ X̂k (with x̄ > p′k) s.th. x ∈ X̂ ⇒ x > x̄. If xi > x̄,
consumer i might return with some probability and buy from k. Denote that probability
by ρ. It is sufficient to note that ρ ≤ 1 ∀xi > x̄ with strict inequality for a positive mass
of consumers(If ρ = 1 always, there would be no reason to continue search in the first
place. Hence, it would not correspond to prices that lead to an alternative stopping rule
for at least some consumers.) Due to p′k > pek+1 + δ, seller k’s demand D̂k(p) under any
alternative stopping rule writes

D̂k(p) =

∫ x̄

p

ρ · g(x)fk(x)dx+

∫ v̄

x̄

g(x)fk(x)dx (15)

<

∫ x̄

p

g(x)fk(x)dx+

∫ v̄

x̄

g(x)fk(x)dx = Dk(p). (16)

where Dk(p) denotes the demand if consumers always followed R∗. As shown in Part I,
the problem maxpDk(p)p has a unique solution at p = p+k and thus:

p+k ·Dk(p
+
k ) > p′k ·Dk(p

′
k) ∀ p′k 6= p+k

Therefore, it follows from inequality (16) that:

p+k ·Dk(p
+
k ) > p′k · D̂k(p

′
k)

Proof of Lemma 3

Proof. Define j∗ = sup{k : pek < p+k , k ≤ N}. By construction, it holds that pej∗ <
pek ∀ k ≥ j∗, implying that for pj∗ = pej∗ , a consumer buys from j∗ if vij∗ ≥ pej∗ . Notice
also that it does not matter whether a consumer with history h = j∗−1 has encountered
other matches previously. Since pej∗ < pek ∀ k > j∗, the fact that sampling j∗ must have
been worthwhile to a consumer implies that pej∗ < pk ∀ k ∈ {j < j∗ : vij > 0}. Thus,
all consumers arriving at seller j∗ will buy if vij∗ > pj∗ and pj∗ ≤ pej∗ + δ, where
δ > 0 is determined such that for prices pj∗ > pej∗ + δ, some consumers are induced
to continue searching or return to a previous seller despite vij∗ > pj∗ . Hence, for any
price pj∗ ≤ pej∗ + δ, seller j∗ has full monopoly power. Thus, if the price belongs to this
interval, it solves

max
p

(

pDj∗
(
p
)
)

Consequently, there always exists a profitable deviation from pj∗ = pej∗ < pej∗ + δ if

∂ppDj∗(p)|p=pe
j∗

> 0. Let p̃ = mink<j∗{pk : vik > pk} and denote by X̂ :=
{
x ∈ X :

40



g(x)
(
min{x, p̃}−pej∗

)
> s

}
the set of consumers whose expected surplus from sampling j∗

despite available matches is positive due to potential price savings. If potential savings
in the price are sufficiently low, X̂ ⊆ ∅. Then, consumers follow R∗ and seller j∗’s
demand is fully captured by the expression given for Dj∗(p). From lemma 2, we know
that

pej∗ < p+j∗ =
Dj∗(p

+
j∗)

−D′
j∗(p

+
j∗)

<
Dj∗(p

e
j∗)

−D′
j∗(p

e
j∗)

(17)

where the second inequality holds as Dj∗(p) is log-concave under R∗ such that the RHS
of the FOC is decreasing in p. Hence, ∂ppDj∗(p)|p=pe

j∗
> 0, rendering p′j∗ > pej∗ a

profitable deviation.

Next, consider the case where some types’ stopping behavior does change such that
X̂ 6⊆ ∅ and denote by D̂j∗(p) the resulting expected demand at seller j∗. As before,
denote by fk(x) the PDF of arriving consumers if they follow R∗ such that X̂ ⊆ ∅ and
but by f̂k(x) the PDF of types if X̂ 6⊆ ∅. By construction, ∃ x ∈ R s.th. x ∈ X̂ ⇒ x ≥ x.
For f(x) and f̂(x), this implies

fj∗
(
x,R′

)
≥ fj∗

(
x,R∗

)
∀ x ≥ x,

with strict inequality for all x ∈ X̂. By continuity of g(x),
∫

x∈X̂
dx > 0 and since f̂j∗(x)

is a PDF, it follows that f̂j∗(x) = z · fj∗(x) ∀ x < x where z < 1 is a normalization. I
can thus conclude about the RHS of (17) that:

Dj∗(p)

−D′
j∗(p)

=

∫ x

p
g(x)fj∗(x)dx+

∫ v̄

x
g(x)fj∗(x)dx

−g(p)fj∗(x)

<

∫ x

p
g(x)fj∗(x)dx+

∫ v̄

x
(1/z)g(x)f̂j∗(x)dx

−g(p)fj∗(x)

=
z
∫ x

p
g(x)fj∗(x)dx+

∫ v̄

x
g(x)f̂j∗(x)dx

−z · g(p)fj∗(x)

=
D̂j∗(p)

−D̂′
j∗(p)

∀ p < pej∗ + δ

Combining the above inequality with (17) yields:

pej∗ <
D̂j∗(p

e
j∗)

−D̂′
j∗(p

e
j∗)

and thus ∂ppD̂j∗(p)|p=pe
j∗

> 0. Consequently, seller j∗ would always deviate to a higher

price p > pej∗ if pej∗ < p+j∗ and hence, pej∗ ≥ p+j∗ .

As pej∗ < p+j∗ is eliminated, another seller j∗ = sup{k : pek < p+k , k ≤ N} might exist.

However, by going backwards and using the same argument as above, any pek < p+k can
be ruled out until j∗ = 1.
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Proof of Proposition 1

Proof. Begin with the first seller a consumer samples, i.e. k = 1. By Lemma 3, pek ≥

p+k ∀ k and thus p+1 < pek ∀ k > 1. Define X̂1 as in (14). Then ∃!δ > 0 s.th. X̂1 ⊆ ∅

iff p1 ≤ p+1 + δ. Note that X̂1 ⊆ ∅ induces consumers to adopt the search behavior R∗

and by Part I of lemma 2, p+1 = argmax D1(p)p where D1(p) is a hypothetical demand
function for p1 > p+1 + δ that would prevail if continuing to search despite a match were
ruled out by assumption (and consumers followed R∗).

It remains to show that p1 = p+1 yields larger profits than any price p1 > p+1 + δ,
inducing a stopping rule different from R∗ for at least some types. I use the notation of
the previous proof and denote the demand that arises under an alternative stopping rule
by D̂(p). By Part II of lemma 2, X̂1 6⊂ ∅ implies that p′1D1(p) > p′1D̂1(p

′
1) ∀ p′1 > p+1 + δ

and thus

p+1 ·D1(p
+
1 ) > p+1 + δ (18)

Hence, profits are maximized globally at p+1 = argmax D1(p) · p, irrespective of whether
other prices could induce an alternative stopping rule.

Next, consider seller k = 2. Since p1 = p+1 < pek ∀ k > 1, any consumer sampling k = 2
satisfies vi1 = 0. Hence, the distribution of arriving consumers f2(x) is equal to (1) as
derived under the consumers’ stopping rule R∗. Also, vi1 = 0 implies that consumers
never return to the previous seller and thus always buy if both vi2 > p2 and X̂2 ⊆ ∅.
Since p2 ≤ p+2 + δ ⇒ X̂2 ⊆ ∅, the previous argument for seller k = 1 now applies to
k = 2. By induction, this implies pk = p+k ∀k ≤ N .

Proof of Proposition 2

Proof. The FOC from the maximization problem (7) in the main text writes:

0 =
N∑

i=1

φi

(
pD′

i(p) +Di(p)
)
= p

N∑

i=1

φiD
′
i(p) +

N∑

i=1

φiDi(p)

Define q̃(K∗, p) =
∑K∗

i=1
φiDi(p)

−
∑K∗

i=1
φiD

′
i(p)

. Then price p maximizing (7) must solve q̃(K∗, p) = p,

where φk is defined by (6). Rewriting q̃ yields:

q̃(p) =

∑K∗

i=1 φiΘi(1)−
∑K∗

i=1 φiΘi(p)

−
∑K∗

i=1 φiθi(p)

As Θi(p) is log-concave ∀ i,
∑K∗

i=1 φiΘi(p) is log-concave. By the same argument made

in proving proposition 1, this implies that ∆̄(p) =
∑K∗

i=1 φiΘi(1) −
∑K∗

i=1 φiΘi(p) is log-

concave. This permits to write q̃(p) = ∆̄(p)
−∆̄′(p)

. By Bagnoli and Bergstrom (2005),
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log-concavity of ∆̄(p) is sufficient that q̃(p) is decreasing in p. Further, it holds that
limp→v q̃(p) > 0 and limp→1 q̃(p) = 0. Hence, the price p solving the FOC p = q̃(p) exists
and is unique.21

Proof of Lemma 4

Proof. The proof is based on the following algebraic property:

x1
y1

<
x2
y2

⇒
x1
y1

<
φ1x1 + φ2x2
φ1y1 + φ2y2

<
x2
y2

for x, y, φ > 0 (19)

Suppose φ1, φ2 > 0. The LHS follows from the following algebra:

x1
y1

<
x2
y2

⇔ φ1x1y2 < φ1x2y1

⇔φ1x1y2 + φ2x1y1 < φ1x2y1 + φ2x1y1

⇔x1(φ1y1 + φ2y2) < y1(φ1x1 + φ2x2)

⇔
x1
y1

<
φ1x1 + φ2x2
φ1y1 + φ2y2

.

The proof of the RHS of inequality (19) is a tautology. Iterating over inequality (19) im-

plies that
∑K∗

i=1
φiDi(p)

−
∑K∗

i=1
φiD

′
i(p)

< DK∗ (p)
−D′

K∗ (p)
. Besides, the proof of lemma 2 tells us that DK∗ (p)

−D′
K∗ (p)

<

DK∗+1(p)
−D′

K∗+1
(p)

. Writing x1 =
∑K∗

i=1 φiDi(p), y1 = −
∑K∗

i=1 φiD
′
i(p), x2 = DK∗+1(p). and

y2 = −D′
K∗+1(p), it follows from inequality (19) that:

∑K∗

i=1 φiDi(p)

−
∑K∗

i=1 φiD′
i(p)

<

∑K∗

i=1 φiDi(p) + φK∗+1DK∗+1(p)

−
∑K∗

i=1 φiD′
i(p) + φK∗+1D′

K∗+1(p)
.

Hence, q̃(p,K∗) < q̃(p,K∗ + 1) and more generally, q̃(p,K∗) < q̃(p,K∗
2 ) if K∗

2 > K∗
1 .

Since profit maximization implies q̃(p,K∗
1 , ĥ) = p(K∗

1 ) and q̃(p,K∗
2 , ĥ) = p(K∗

2 ), it follows
that p(K∗

2 ) > p(K∗
1 ).

Proof of Proposition 3

The statement follows immediately from the fact that p(K∗) is increasing in K∗ (lemma
4) if K∗ is weakly decreasing in s. while p(K∗) is increasing in K∗. The argument below,
including the subsequent lemmata 13, 14 and 15, shows that K∗ is weakly decreasing in
s.

21The existence and unique proofs are basically identical to those used in proving lemma 2.
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For the simplest case, suppose that Vk

(
K∗, p

(
K∗(s)

)
, s
)
> 0 ∀ k ≤ N .22 Then, K∗ = N

is the unique equilibrium. Otherwise however, whether an equilibrium with active search
exists, depends crucially on the ordering of the elements of {ŝk(K

∗)}k=1,..,N for every
K∗, where

ŝk(K
∗) ∈ {s : Vk

(
K∗, p

(
K∗(s)

)
, s
)
= 0}

is the threshold level of search costs specifying that for a given price p(K∗) and search
persistence K∗, sampling seller k is worthwhile if and only if s ≤ ŝk.

It is instructive to begin with the case where consumers become more pessimistic while
searching, meaning that Vk

(
K∗, p

(
K∗(s)

)
, s
)
< Vk+1

(
K∗, p

(
K∗(s)

)
, s
)
∀ k < K∗ and for

all K∗. This implies that ŝk(K
∗) > ŝk+1(K

∗) ∀ k < K∗ such that search persistence
decreases smoothly as there are no “jumps” in K greater than one.

Lemma 13. There is a sequence of intervals {(ŝK+1(K), ŝK(K)]}K=1,..,N separated by

closed neighborhoods such that consumers follow a stopping rule in pure strategies and

sample up to

K∗ = K sellers for s ∈ (ŝK+1(K), ŝK(K)]

Lemma 14. There is a sequence of intervals {(ŝK(K), ŝK(K−1)}K=1,..,N disjoint from

the intervals characterized in lemma 13 and separated by closed neighborhoods such that

consumers follow a stopping rule in pure strategies up to seller K∗ = K−1 and randomize

over sampling and not sampling seller K with some probability m(K) ∈ (0, 1).

Proof. Since ŝk(K
∗) > ŝk+1(K

∗) ∀ k < K∗, K∗ < N only ifs > ŝN (N). Further, because
continuation values are decreasing, ŝK∗(K∗) > ŝK∗+1(K

∗+1) ∀ K∗ < N . Consequently,
K∗ = N − 1 if ŝN−1 < s < ŝN − ǫ, ǫ > 0.

At s = ŝN (N), the the direct effect of a decrease in K∗ from N to N−1 is zero, since the
benefit of sampling seller N is exactly offset by s. However, the indirect effort through
the price is strictly larger than zero. By proposition 4, it reduces the price and thus
raises the continuation value such that VN (N − 1, p(N − 1), ŝN (N)) > 0, implying that
consumers would actually sample N sellers.

This inconsistency arises for all search costs in the range of ŝN (N) ≤ s < ŝN (N − 1) <
ŝN−1(N − 1), where ŝN (N − 1) is determined by the general rule ŝK(K − 1) ∈ {s :
VK(K, p(K − 1), s) = 0}.

For s ∈
[
ŝN (N), ŝN (N − 1)

)
, consumers thus choose a mixed stopping rule, sampling

seller N only with some probability m(N) ∈ (0, 1). From substituting φ′
N = φN ·

m(N) for φN into equation (7) and looking at the resulting FOC, it follows that the
uniform optimal price p(m(N)) is decreasing inm(N) and always satisfies p(m) ∈

(
p(N−

1), p(N)
)
∀ m ∈ (0, 1).

22I switched back to the notion of “seller k” here since I believe it makes the analysis more tractable.
Notice that this is equivalent to referring to the continuation value of a consumer with h = k − 1.
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Since VN

(
N, p

(
N
)
, s
)
< 0 < VN

(
N, p

(
N − 1

)
, s
)
for s ∈

[
ŝN (N), ŝN (N − 1)

)
, there

thus always exists an m(N) ∈ (0, 1) such that VN

(
N, p(m), s

)
= 0 and Vk

(
N, p(m), s

)
>

0 ∀ k < N .

Applying a randomized stopping rule prior to any seller k < N cannot be an equilibrium
strategy. Since Vk

(
N, p(N), s

)
> 0 ∀ k < N , it follows that Vk

(
K∗, p(m(k)), s

)
> 0 for

any K∗ < N and m(k) < 1 for some seller k by proposition 4. However, randomization
at k requires Vk = 0, thus leading to a contradiction.

By the same argument, consumers use a only pure stopping strategies if s ∈ (ŝN (N −
1), ŝN−1(N − 1)] and (conditional on vik = 0 ∀ k < N − 1) randomize over sampling an
not sampling seller N − 1 for s ∈ (ŝN−1(N − 1), ŝN−1(N − 2)]. If the threshold levels are
ordered, this patterns repeats until K∗ = 1.

In general, the sequence of threshold levels {ŝk(K
∗)}k=1,..,N need not be decreasing for

everyK∗. For every possible search persistenceK ′, define ŝ(K ′) ∈ mink
{
ŝk(K

′)
}

k=1,..,K′ .

If ŝK′(K ′) = ŝ(K ′), the stopping rule is given by lemma 4 and 5 for all s such that
K∗(s) ≥ K ′ with K∗(s) ∈ K as defined in (5). However, if there exists a j < K ′

with ŝj(K
′) = ŝ(K∗), consumers do not begin to randomize over sampling seller K ′

if s > ŝK′(K ′) as specified in lemma 5. Instead, already for ŝK′(K ′)s > sj(K
′), they

randomize over sampling seller j and then continue sampling sellers up to K ′. Formally,
denote the upper bound on search persistence in the latter case by K∗(s) ∈ maxK

{
K :

ŝK(K) > ŝ(K)
}

and denote by j ∈ {k : ŝk(K
∗) = ŝ(K∗} the seller with the lowest

threshold given K∗. Lemma 15 summarizes the general randomized stopping rule:

Lemma 15. Consumers follow a stopping rule in pure strategies up to seller j − 1
and randomize over continuing to sample seller j with some probability m(j) ∈ (0, 1) for
s ∈ (ŝj(K

∗), ŝj(j−1)]. Consumers who sample j continue sampling sellers up to k = K∗

if vik = 0 ∀ k < K∗.

Proof. Consumers with history h = K∗ would find sampling seller K∗ worthwhile if
s ≤ ŝK∗(K∗). However, consumers do not “reach” seller K∗ when the price is p(K∗)
since ŝj(K

∗) < ŝK∗(K∗) by construction. That is, they would stop sampling at seller
j < K∗.

For j > 1, the issue is resolved with a unique mixed strategy. Randomizing over the
decision to sample seller j also affects demand at all seller k′ > j. While by construction
Vk

(
K∗, p

(
m(j),K∗

)
, s
)
> 0 ∀ j < k ≤ K∗ is unfeasible since consumers are not indif-

ferent, the mass of consumers is reduced by the same fraction 1 − m(j) for all sellers
k > j.

As in lemma 14, there exists a m(j) ∈ (0, 1) such that Vj

(
K∗, p(m(j)), s

)
= 0 for s >

ŝj(K
∗ and where p(m) maximizes sellers profits. Notice that for m(j) → 0, K∗ = j − 1

effectively. Hence, the threshold search level for which no mixed strategy m(j) ∈ (0, 1)
can yield Vj

(
K∗, p(m(j)), s

)
= 0 is given by ŝj(j−1) sinceVj

(
j−1, p(j−1), ŝj(j−1)

)
= 0
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by construction. For s < ŝj(j−1), consumers follow again a pure stopping strategy with
K∗ = j − 1 by lemma 13.

The mixed strategy equilibrium is unique. To see why, note that generally, Vj′ 6= Vj

for j 6= j′ and that randomizing over the decision to sample any seller j′ requires that
Vj′ = 0 in equilibrium. (Note that I drop some arguments of V here).

Suppose that randomizing over sampling j′ > j was an equilibrium and that m(j′) < 1.
Then, a price ensuring Vj′

(
p(m(j′))

)
= 0 implies Vj(p(m(j′)) < 0 since by construction

of j, Vj(p) < Vk(p) ∀ k ≤ K∗ for any price p.23 Hence, consumers would neither sample
seller j nor any j′ > j, which is a contradiction to m(k) ∈ (0, 1). Next, suppose that
consumers randomize at some k′ < j. Then, Vk′

(
p(m(k′))

)
= 0 implies Vj

(
p(m(k′))

)
< 0.

However, then consumers sample at most k′ < j sellers, and it follows from proposition 4
that p(m(k′)) < p(m(j)) ∀ m(j) ∈ [0, 1]. But Vj

(
p(m(k′))

)
> 0, which is a contradiction.

To conclude, consumers’ search persistence is always weakly decreasing in the level of
search costs s, though it may involve mixing over sampling additional sellers or dis-
continuous jumps if search costs are above a certain threshold. Hence, proposition 3
obtains.

Proof of Proposition 4

Proof. Note that p(m(j)) is increasing in m(j) only if j > 1. Too see why, consider the
FOC for a randomized stopping rule m(j):

p =

∑j−1
i=1 φiDi(p) +m(j)

∑K∗

i=j φiDi(p)

−

(
∑j−1

i=1 φiD′
i(p) +m(j)

∑K∗

i=j φiD′
i(p)

) (20)

If j = 1, m(j) cancels out from the RHS of (20). Thus, randomizing with m(j) < 1 has
no effect on on the equilibrium price. Consequently, no mixed strategy m(j) for j = 1
exists that renders V1 = 0. Moreover, as shown in the proof of lemma 13 and 14, there
also exists no mixed strategy for m(k) ∈ (0, 1) for k > j = 1.

23Seller j is defined in the main text.
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9.2 Proofs of Section 2.4

Proof of Proposition 5

Proof. Using inequality (19), it follows immediately that:

D1∗(p)

−D′
1∗(p)

<

∑K∗

i=1 φiDi(p)

−
∑K∗

i=1 φiD′
i(p)

<
DK∗(p)

−D′
K∗(p)

Since by lemma 2, prices with and without tracking are unique, the stated result obtains.

Proof of Lemma 5

Proof. The proof is provided in the main text. Suppose that consumers followed the
stopping rule R∗, irrespective of the sellers price, thereby eliminating price competition
entirely as in the unique equilibrium with tracking. In principle, sellers can choose
any price, including the price they would choose if tracking were not available. However,
even when assuming that consumers followR∗, sellers choose different prices to maximize
profits by proposition 5. Hence, they cannot obtain less profits if K∗ under search with
tracking is at least as high as K∗ under search without tracking.

Proof of Proposition 6

Proof. The result is an immediate consequence of lemma 4. If given the same level of
search costs, the market is active under tracking while it is inactive under no tracking,
strictly more matches are realized under tracking, thus leading to both higher consumer
surplus and higher profits.

Formulas used in Surplus Computations

Consumer surplus is captured by the continuation value prior to sampling the first sellers:
Substituting k = 1 in equation (4) und using the specification for f() and g() as provided
in the main text, I obtain

V1 =

K∗
∑

k=0

(∫ 1

pk

(1− x)(x− pk)
(
x
)k
dx− s

∫ 1

0

(
x
)k
dx

)

.

Under search with tracking, a seller in position k (observing h = k − 1) maximizes the
following profit function:
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πk = pk ·

(∫ 1

pk

(1− x)(x)k−1 1
∫ 1
0 (x)

k−1dt
dx

)

. (21)

To derive the uniform price without tracking conditional on search persistence K∗, the
above profit functions from equation must be weighted by φk. I do not normalize con-
ditional on K∗ because the sellers FOC would remain unchanged and because I look for
industry profit, not for seller profit per consumer.

Π(K∗, p) = p ·

( K∗
∑

k=1

φk ·

∫ 1

p

(1− x)(x)k−1 1
∫ 1
0 (x)

k−1dt
dx

)

(22)

where the probability φk is given in its general form in (6) and now writes φk =
∫ 1
0 (x)

k−1dx. Hence, overall profits without tracking take a very simple form:

Π(K∗, p) = p ·

( K∗
∑

k=1

·

∫ 1

p

(1− x)(x)k−1dx

)

(23)

The formulas above are implemented in a Mathematica code to derive optimal prices for
every possible K∗. Using expressions for Vk, the equilibrium K∗ is computed for every
level of search costs. The code can be obtained from the corresponding author upon
request.

9.3 Proofs of Section 2.5

Proof of Lemma 6

Proof. (a) Existence and uniqueness If consumers follow R∗, seller k’s demand
writes:

Dk(p) =

∫ v̄

p

g(x)

(
1− g(x)

)k−1
f(x)

∫ 1
v

(
1− g(t)

)k−1
f(t)dt

dx

Profit maximization with respect to the above demand function yields first-order condi-
tions which are equivalent to those shown in the proof of the existence of an increasing
price sequence in proposition 1. Hence, a solution to

max
p

Dk(p)p

exists. Further, since the FOC Dk(p)
−D′

k
(p)

is decreasing, it is also unique. Moreover, the

same reasoning as in Part II regarding the possibility of setting to a price that changes
the stopping rule applies. Consequently, uniqueness is preserved when accounting for

48



deviations from R∗.

(b) Decreasing price sequence

If g′(x) > 0, the inequality in (13) is reversed. Hence,

qj(p) > qj+1(p) ∀ p ∈ [v, v̄].

Since the solution to qk(p) = p is unique ∀ j, it follows that pk < pk−1 ∀ k ≤ N in
equilibrium.

Proof of Lemma 7

Proof. By lemma 6, {p∗k}k=1,...,N is optimal if consumers follow R∗ always. As in any
PBE, expectations are correct, it suffices to show that given sellers’ optimal prices if
∆̂ > g′(x) ∀ x ∈ X, applying R∗ is optimal for consumers.

Using previous notation X̂k = {x ∈ X : g(x)
(
p′k − pk+1

)
> s}, recall that

X̂ ⊆ ∅ ⇔ R∗ is optimal.

Hence, all types apply R∗ if

g(x)
(
pek − pek+1

)
≤ s ∀ k < N, x ∈ X

As g′(x) > 0, the type xi = v̄ has the highest probability of encountering a match.
Hence, X̂ ⊆ ∅ if g(v̄)

(
pek − pek+1

)
≤ s ∀ k. Equation (13) shows that the difference in

prices is a function of the slope of g(x). In particular, |pek − pek+1 | → 0 if g′(x) → 0 ∀ x.

Hence, it is possible to find a g(x) sufficiently flat such that X̂ ⊆ ∅ for every s > 0.

Proof of Lemma 8

Proof. Replace p+k by p∗k in the proof of lemma 3. The result follows immediately. The
reason why the same argument as in the proof of lemma 3 applies is given in the main
text.

Proof of Proposition 6

Proof. Replace p+k by p∗k in the proof of Proposition 2. The result follows immediately.
The reason why the same argument as in the proof of Proposition 2 applies is given in
the main text.
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9.4 Proofs of Section 2.6

Proof of Lemma 11

Proof. (a) Existence and Uniqueness: Random consumer search from the perspec-
tive of sellers for all histories h ≥ ĥ implies that a seller at position k > ĥ computes the
probability that his position is k conditional on K∗ ≥ k > ĥ. This probability is denoted
by φk(ĥ) with:

φk(ĥ) = φk

/
K∗
∑

i=ĥ+1

φi ∀ k > ĥ (24)

where φi is defined as in (6). Notice that as φk < φk+1 by construction, it also holds
that φk(ĥ) < φk+1(ĥ). Conditional on not observing the search history h, the optimal
price solves the following FOC:

∑K∗

i=ĥ+1
φi(ĥ)Θi(1)−

∑K∗

i=ĥ+1
φi(ĥ)Θi(p)

−
∑K∗

i=ĥ+1
φi(ĥ)θi(p)

= p.

Analogously to the previous arguments, it follows that the optimal price exists and is
unique for every ĥ.

(b) Comparison between p(ĥ) and p
ĥ+1: p(ĥ) is uniquely defined by:

p(ĥ) =

∑K∗

i=ĥ+1
φiDi

(
p(ĥ)

)

−
∑K∗

i=ĥ+1
φiD′

i

(
p(ĥ)

) .

Using D
ĥ+1(p)/−D′

ĥ+1
(p) < ... < DK∗(p)/−D′

K∗(p) and applying inequality (19) again

implies:
∑K∗

i=ĥ+1
φiDi(p)

−
∑K∗

i=ĥ+1
φiD′

i(p)
>

D
ĥ+1(p)

−D′

ĥ+1
(p)

∀ p ∈ X

As p
ĥ+1 =

D
ĥ+1

(p
ĥ+1

)

−D′

ĥ+1
(p

ĥ+1
)
, it follows by the same argument as in proposition 1 that p(ĥ) >

p
ĥ+1 ∀ 1 ≤ ĥ < K∗−1. If ĥ = K∗−1, the FOC determining p(ĥ) reduces to p = DK∗ (p)

−D′
K∗ (p)

and is thus identical to the FOC for seller K∗ if the history ĥ is disclosed. Hence,
p(ĥ) = pK∗ for ĥ = K∗ − 1.

Proof of Proposition 10

Proof. Suppose that ĥ < K∗. In equilibrium, the strategy ĥ must be optimal, i.e.
pe(NT ) < pe

ĥ+1
. In any symmetric equilibrium, sellers’ beliefs must satisfy µ(h) =

50



0 ∀ h < ĥ and µ(h) = φh+1 ∀h ≥ ĥ, where φh+1 equals a seller’s probability of being
in position h + 1 in a consumer’s search process as defined in (6). Then by Lemma
7, the seller’s optimal price conditional on ĥ satisfies p(NT ) = p(ĥ) ≥ p

ĥ+1 ∀ ĥ. If

ĥ = K∗, p(ĥ) ≥ p
ĥ+1 does not affect a consumer’s choice because she does not sample

seller ĥ + 1. However if ĥ < K∗, the optimal no tracking price p(NT ) contradicts the
expectation of pe(NT ) < pe

ĥ+1
, which is necessary to sustain the equilibrium strategy

ĥ < K∗. Besides, a price p(NT ) > pK∗ , despite being an action that is never chosen
in equilibrium, cannot be part of the seller’s equilibrium strategy. If a seller observes
the off-equilibrium choice NT , the maximum possible history can be h = K∗ − 1 as
otherwise the consumer would have ended search. Consequently, setting p′(NT ) =
pK∗ < p(NT ) constitutes a profitable deviation. Notice also that unique full disclosure
outcome is robust to assuming the opposite tie-breaking rule in favor of no disclosure if
pe(NT ) = p

ĥ+1. Changing the tie-breaking rule in that way allows for an equilibrium

with ĥ = K∗ − 1. However, consumers with a history h = ĥ are the only consumers
choosing no disclosure. Hence, the choice of d = NT perfectly reveals the type, sellers
set p(NT ) = p

ĥ+1 = pK∗ and the outcome is equivalent to the unique equilibrium under
the alternative tie-breaking rule.

Proof of Lemma 12 and Proposition 11

Reversing the inequality h ≥ ĥ in the proofs of Lemma 11 and Proposition 10 (to h ≤ ȟ)
yields the results.
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Haan, M. A. and Moraga-González, J. L. (2011). Advertising for attention in a consumer
search model. The Economic Journal, 121(552):552–579.

Hart, O. D. and Tirole, J. (1988). Contract renegotiation and coasian dynamics. The

Review of Economic Studies, 55(4):509–540.

Johnson, J. P. and Myatt, D. P. (2006). On the simple economics of advertising, mar-
keting, and product design. The American Economic Review, 96(3):756–784.

Mikians, J., Gyarmati, L., Erramilli, V., and Laoutaris, N. (2012). Detecting price and
search discrimination on the internet. In Proceedings of the 11th ACM Workshop on

Hot Topics in Networks, pages 79–84. ACM.

Milgrom, P. and Roberts, J. (1986). Relying on the information of interested parties.
The RAND Journal of Economics, pages 18–32.

Montes, R., Wilfried, S.-Z., and Valletti, T. (2017). The value of personal information
in markets with endogenous privacy.
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