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Abstract

We study a class of games where stores source unobservable inventories in advance,

and then simultaneously set prices. Our framework allows for firm asymmetries, hete-

rogeneous consumer tastes, endogenous consumer information through advertising, and

salvage values for unsold units. The payoff structure relates to a complete-information

all-pay contest with outside options, non-monotonic winning and losing functions, and

conditional investments. In the generically unique equilibrium, stores randomize their

price choice and, conditional on that choice, serve all their targeted demand—thus,

some inventories may remain unsold. As inventory costs become fully recoverable, the

equilibrium price distribution converges to an equilibrium of the associated Bertrand

game (where firms first choose prices and then produce to order). This suggests that

with production in advance, the choice between a Cournot analysis and a Bertrand-type

analysis, as properly generalized in this paper, should depend on whether or not stores

observe rivals’ inventories before setting prices.

Keywords: Oligopoly, inventories, production in advance, all-pay contests, Bertrand

convergence.

1 Introduction

In retail markets, each independent store typically chooses not only a sale price but also an

inventory level—a quantity sourced from suppliers to be made readily available to consumers.

∗We thank Simon Anderson, Pierre Boyer, Bruno Jullien, Sébastien Mitraille, Hans-Theo Normann, Mar-
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Well-informed consumers visit the store with the lowest price and only if unable to purchase

there (due to a stock-out) may they visit another store. However, it is hard to observe rivals’

inventories, and historical data is unlikely to provide a reliable estimate—as inventories are

transient by nature. Stores are therefore likely to make price and inventory choices without

knowledge of rivals’ choices.

It is natural to model such situations as a game where stores simultaneously choose a

price-inventory pair, as such a model is formally equivalent to the arguably more realistic

sequential game in which stores first make an inventory choice and then, without observing

rivals’ inventories, choose prices.

We introduce and study a class of such games, which we call all-pay oligopolies. This class

can account for firm asymmetries, heterogeneity in consumer tastes, and the coexistence of

informed and uninformed consumers. As unsold inventories often have some (partial) salvage

value, we also allow a fraction of the unit cost to remain variable and be incurred only once

a unit is sold (while the remainder is sunk). This variable fraction may also account for the

cost of sales and post-sales services.

Beyond retail markets where our assumptions seem to apply best, it will become clear that

a considerable variety of market situations can be usefully viewed through the conceptual lens

of our model. It is for example possible to interpret it as describing a situation in which firms

first secretly invest in capacity (for which the cost is sunk), and subsequent costly production

takes places (for which the cost is variable) once prices have been set and consumers have

made their purchase decisions.

We start by solving a constrained version of the model in which each store must source

enough inventory to serve all its targeted demand at the price it chooses. This constrained

game has the structure of an all-pay contest with outside options, non-monotonic winning and

losing functions, and conditional investments. Based on this insight, we develop a method

to obtain the closed-form characterization of the equilibrium set of such constrained games,

and show that generically, there is a unique equilibrium.

Next, we show that this equilibrium is also the generically unique equilibrium of the

unconstrained game (where firms freely choose inventory levels). In equilibrium, each store

randomizes its price, ordering a low inventory when it sets a high price, and a high inventory

when it holds a sale. Because each store holds enough inventory to serve all its targeted

demand, the aggregate inventory level often exceeds demand, resulting in unsold inventories.

Large unsold inventories are observed in several industries, including grocery and apparel.1

A common explanation is market demand uncertainty. In our model, market demand is deter-

ministic, but store-level demand is stochastic due to the uncertain behavior of rivals. Stores’

inability to anticipate the timing and depth of rivals’ promotions makes it hard to adjust

inventory purchases accordingly. Such strategic uncertainty provides another explanation for

the persistence of unsold inventories.

This mechanism also offers an explanation as to why some products with a low variance

1For example, U.S. supermarkets and grocery stores threw out $46 billion worth of food in 2010 according
to the USDA, and fashion retailer H&M has accumulated more than $4 billion in unsold clothes in 2018.
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in consumer demand exhibit a large variance in production, a well-documented fact known

in the operations literature as the bullwhip effect. This term was coined by Procter and

Gamble when it noticed that the volatility of diaper orders it received from retailers was

quite high, even though it was (for obvious reasons) confident that end-consumer demand

was reasonably stable (see, e.g., Lee, Padmanabhan, and Whang, 1997b). A similar effect

has been found, for example, in orders for Barilla pasta (Hammond, 1994) and Hewlett-

Packard printer cartridges (Lee, Padmanabhan, and Whang, 1997a). Our model suggests

the bullwhip effect could, in part, be explained by retailers frequently offering discounts to

attract price-conscious consumers to their stores.2

This model also provides a clear avenue to explore how oligopoly behavior under pro-

duction in advance is affected by the extent to which inventory costs are sunk or recoverable.

In particular, we find that as the fraction of the inventory cost that can be recovered tends to

one, the equilibrium distribution of prices converges to an equilibrium of the associated Ber-

trand game, in which stores only choose prices and produce to order (i.e., source inventories

to meet demand only after consumers made purchase decisions).

The equilibrium is thus said to be Bertrand convergent. Several oligopoly theory ben-

chmarks (where production to order is typically assumed) can then be seen as the limiting

outcome of similar situations with production in advance. Examples include standard Ber-

trand models with heterogeneous marginal or fixed costs (e.g., Blume, 2003; Anderson, Baik,

and Larson, 2015), and Bertrand models where informed and uninformed consumers coexist,

with or without advertising (e.g., Varian, 1980; Baye and Morgan, 2001).

This insight stands in contrast to Kreps and Scheinkman (1983)’s well-known result. Assu-

ming that inventory choices become observable before the pricing stage, firms are symmetric,

and rationing is efficient, they find that the Cournot outcome always arises in equilibrium,

regardless of the salvage value of inventories. They conclude that situations where almost all

the unit cost “is incurred subsequent to the realization of demand (situations that will look

very Bertrand-like) will still give the Cournot outcome” (Kreps and Scheinkman, 1983, p.

337). The conventional interpretation of this result is that a Cournot analysis is appropriate

if inventories (or capacities) must be chosen before prices, whereas a Bertrand analysis should

be preferred when inventories can be sourced after prices have been set and consumers have

decided where to purchase (see, e.g., Belleflamme and Peitz, 2010, pp. 66–67).

Our analysis suggests a more nuanced model selection, which explicitly takes into account

whether inventory or capacity choices are observed by rivals or not. If inventory choices

are observable, then the Cournot outcome is a reasonable benchmark. If instead inventory

information is private, the Kreps-Scheinkman mechanism fails as a low inventory choice

can no longer provide a commitment to soften price competition. In that case, our results

suggest that a Bertrand approach is better justified (by continuity) if most of the unit cost

2Other explanations include adjustment to cost shocks (Blinder, 1986), increasing returns to scale up-
stream (Ramey, 1991), and stochastically-evolving demand (Kahn, 1987; Lee, Padmanabhan, and Whang,
1997b; Chen, Drezner, Ryan, and Simchi-Levi, 2000). At the macro level, the variance of production is also
typically greater than that of demand (e.g., Blanchard, 1983).
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can be salvaged. Yet, in many industries, the value of unsold inventories falls short of their

acquisition value—for instance, when goods are perishable, or due to inventory holding costs

(see also the dynamic extension in the conclusion).3 Above all, our closed-form equilibrium

characterization generalizes the Bertrand-type analysis to those situations.

The fact that inventories may be unobservable also has implications for public policy.

When inventories are observable, it follows for the model of Kreps and Scheinkman (1983)

that an output subsidy alleviates the market power distortion and raises social welfare. Ho-

wever, when inventories are unobservable in that same symmetric model, a similar policy

actually decreases social welfare. Indeed, despite the classic deadweight loss and the unsold

inventories distortion, we show that the equilibrium outcome cannot be improved by standard

taxation—such as combinations of linear and symmetric taxes or subsidies on sales, output,

or unsold units. Laissez-faire is thus second-best efficient.

As the equilibrium involves mixed strategies, one may ask whether store managers should

be expected to play dice. To address this concern, we add to a symmetric version of the

model an idiosyncratic and privately-observed shock to firms’ per-unit costs. The resulting

incomplete-information game has a unique equilibrium. As in the complete-information case,

each store acts as a monopolist facing a stochastic residual demand. The novelty is that, for

any cost realization, there is a unique price-inventory pair that solves a given store’s profit

maximization problem, thus resulting in a strict pure-strategy equilibrium.

The incomplete-information and complete-information equilibria are qualitatively simi-

lar: Firms source enough inventory to serve their targeted demand, there is price dispersion

(since higher cost-types set higher prices), and the equilibrium is Bertrand convergent. Mo-

reover, the equilibrium price distribution of the incomplete-information game converges to

the complete-information one as the cost distribution converges to a mass point—thereby

providing a purification argument in the spirit of Harsanyi (1973).

The remainder of the paper is organized as follows. Section 1.1 relates our work to the

existing literature. Section 2 builds intuition by solving a simple but non-generic example.

Section 3 introduces and studies the rich class of all-pay oligopolies. Section 4 provides

applications and relates them to classical Bertrand analysis. Section 5 analyzes an all-pay

oligopoly with incomplete information. Section 6 studies efficiency and taxation. Section 7

discusses the N -firm case (studied formally in Online Appendix IV) and concludes.

1.1 Related Literature

Our analysis of the constrained game in Section 3.1, where firms must source enough inven-

tories to supply their targeted demand, contributes to the literature on all-pay contests. In

an all-pay contest with complete information, as thoroughly studied by Siegel (2009, 2010),

there is a fixed number of prizes, each player submits a score, and prize winners are the

players with the highest score. In much of the literature, including Baye, Kovenock, and

3Inventory holding costs include, among others, the cost of storage space, labor, insurance, and the
opportunity cost of capital.
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de Vries (1993), Che and Gale (1998, 2006), and Kaplan and Wettstein (2006), a player’s pa-

yoff conditional on winning or losing decreases continuously with his score, and the difference

between the winning and losing payoffs is a constant—the value of the prize.

In our oligopoly setting, non-monotonic winning and losing payoffs arise as a direct con-

sequence of market revenue concavity, and the difference between the winning and the losing

payoff is not constant. All-pay contests with related properties have been studied in Kaplan,

Luski, and Wettstein (2003), Siegel (2014a, b), and Chowdhury (2017). There are however

differences. For instance, our losing functions are typically discontinuous in participation,

due to fixed costs and to firms having the option to focus on their captive consumers only.

Also, the weak and strong firms’ winning functions may cross in our model, as a firm may

be advantaged in one dimension (e.g., have a lower unit cost), but disadvantaged in others

(e.g., have a higher fixed cost)—the same holds for losing functions. These features, which

arise naturally in oligopolies, affect the equilibrium structure. For example, the support of

equilibrium prices may contain gaps, and a player may use multiple mass points.

Our Bertrand convergence result in Section 3.4 relates to Siegel (2010)’s finding that,

in a complete-information all-pay auction, as payments become entirely conditional on win-

ning, equilibrium play converges to the equilibrium of the limiting first-price auction—the

Bertrand outcome of that model. In our model, as inventory costs become fully variable,

the equilibrium converges to the equilibrium of the associated Bertrand game, where firms

set prices and produce to order. Special cases of such games include asymmetric Bertrand

models with affine costs (e.g., Marquez, 1997; Blume, 2003; Kartik, 2011; Anderson, Baik,

and Larson, 2015) and clearinghouse models (e.g., Varian, 1980; Narasimhan, 1988; Baye,

Kovenock, and de Vries, 1992; Baye and Morgan, 2001; Shelegia and Wilson, 2016). It has

long been recognized that some such production-to-order games share characteristics with

all-pay contests. Our work contributes to a better understanding of this connection.

Under incomplete information, in Section 5.1, we establish equilibrium existence and uni-

queness in an all-pay contest with non-monotonic winning functions—a class of models that

has received little attention in the literature.4 The limiting Bertrand game under incomplete

information was studied by Spulber (1995), as an oligopoly game, and Hansen (1988), as a

procurement auction with variable demand—which can also be viewed through the concep-

tual lens of our model. We show in Section 5.2 that the equilibrium of our model converges

to Hansen and Spulber’s Bertrand equilibrium as inventory costs become fully recoverable.

Our equilibrium characterization thus provides a simple way to extend the analysis of

production-to-order models (i.e., Bertrand models) to environments where inventories must

be chosen in advance and costs are partially sunk, and does so under both complete and

incomplete information.

An important difference relative to the literatures discussed above is that our main focus is

not on the constrained game, but rather on the unconstrained one, where firms freely choose

4Kaplan, Luski, Sela, and Wettstein (2002) and Cohen, Kaplan, and Sela (2008) study related games, but
do not prove existence and uniqueness. Incomplete-information contests with monotonic winning functions
have been studied by, e.g., Weber (1985), Amann and Leininger (1996), and Moldovanu and Sela (2001, 2006).
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inventories. Our results in Sections 3.2 and 5.1 that the equilibrium of the constrained game

is the generically unique equilibrium of the unconstrained price-inventory game is novel, and

involves considerations that are naturally absent in the all-pay contests literature and in the

industrial organization literature on production to order.

A small number of papers has analyzed price-inventory models similar to ours. Maskin

(1986) proves equilibrium existence in a class of price-inventory games with two firms. The

non-generic example we present in Section 2 was previously studied by Levitan and Shubik

(1978) with linear demand and Gertner (1986) under the assumption that inventory costs are

completely sunk. Unfortunately, the proofs of equilibrium uniqueness they provide omit im-

portant non-trivial steps and/or contain several inaccuracies.5 For completeness, we provide

a proof that addresses those shortcomings in Online Appendix I.

More importantly, the example of Section 2 is non-generic. Perturbing a game that is not

generic leads to a generic game. Moreover, it is known that the equilibrium behavior in non-

generic contests can be very different from that in generic ones (see, e.g., Section 3.2 in Siegel,

2009). These observations, and the fact that numerous applications in industrial organization

do not become interesting unless firm asymmetries and heterogeneous consumer preferences

for stores are allowed, also motivate our study of the rich class of all-pay oligopolies.

In a one-shot game, capacity and inventory choices are formally equivalent. A strand

of literature studies oligopoly settings where firms first choose observable capacities, and

then compete in prices. The leading reference is Kreps and Scheinkman (1983), discussed

in detail above. A large literature (e.g., Davidson and Deneckere, 1986; Deneckere and Ko-

venock, 1996) explores the robustness of the Kreps-Scheinkman result. The general message

conveyed in those papers is that production in advance provides a commitment to soften

price competition. Yet, a counterfactual with unobservable inventories had so far not been

properly investigated. Our work shows that, to soften price competition, production in ad-

vance must be combined with inventory observability. Indeed, a Bertrand-like, intense form

of competition arises under production in advance if inventories remain unobservable.

Finally, Deneckere and Peck (1995) study a symmetric model with simultaneous price-

inventory choices but stochastic demand. In the single pure-strategy equilibrium candidate,

all stores choose the same price (i.e., there is no price dispersion), consumers are rationed

when demand is high, and stores are unable to sell all their inventories when demand is

low. In a pure-strategy equilibrium candidate, unsold inventories must however disappear as

demand becomes certain (whereas in our model, some units remain unsold despite the absence

of market demand uncertainty). More fundamentally, pure-strategy equilibria cease to exist

when, close to our setting, demand uncertainty or the number of stores is low. Variations

of this problem were subsequently studied by operations scholars as a branch of the large

5Levitan and Shubik (1978) confine attention to equilibria without mass points (except potentially at the
choke price of demand). Gertner (1986)’s approach is generally correct. However, his proof, which was never
peer-reviewed, contains a number of measure-theoretical inconsistencies, which our proof addresses. Tasnadi
(2004, Section 4) assumes throughout that “any price above monopoly price is dominated,” which, as we and
the authors above show, is incorrect.
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newsvendor literature (e.g., Bernstein and Federgruen, 2004, 2007; Zhao and Atkins, 2008).

2 A Non-Generic Example

Two symmetric firms, 1 and 2, sell a homogeneous product. The demand function D is non-

increasing, strictly positive and continuous on [0, p0), and zero on [p0,∞), with p0 ∈ (0,∞).

Each firm incurs a cost c ∈ (0, p0) for each unit it sells. For each unit that remains unsold, a

fraction α ∈ [0, 1) of the unit cost c is recovered. Thus, 1 − α captures the extent to which

the inventory cost is sunk. If firm i chooses a price-inventory pair (pi, qi) and sells si ≤ qi
units, its profit is

(pi − αc)si − (1− α)cqi.

The number of units sold, si, is determined by the vector of prices and inventories, the

demand function, and the rationing rule. If firm i sets a price below its rival’s (pi < pj), then

it faces the entire market demand D(pi), and sells si = min(qi, D(pi)). If instead pi > pj, then

firm i only receives demand from those consumers who were unable to buy from firm j when

qj < D(pj). That residual demand is pinned down by the rationing rule, which we assume

to be either efficient or random. Finally, if pi = pj, demand is allocated on a same-price

fair-share basis.6

Firms compete by simultaneously choosing a price-inventory pair (pi, qi) ∈ R
2
+ (i = 1, 2).

This is formally equivalent to firms first choosing inventories, which remain unobservable,

and then simultaneously setting prices. We refer to this game as the unconstrained game.

We look for the set of Nash equilibria.

The Bertrand outcome (p1 = p2 = c, q1 = q2 = D(c)/2) is not an equilibrium: Firm i

could profitably raise its price to c + ε and supply the (strictly positive) residual demand

at that price. The Cournot outcome is not an equilibrium either: Firm i could profitably

undercut the Cournot price and supply the entire market demand. The same line of reasoning

shows that any Nash equilibrium must involve non-degenerate mixing.

To introduce the approach later used to study more general all-pay oligopoly games, we

first solve a constrained version of the model. In that constrained game, each firm i can only

choose pairs (pi, qi) such that qi = D(pi). We look for a Nash equilibrium in which both firms

make zero profit—the Bertrand profits. Suppose firm j draws its price from a continuous

(up to p0) cumulative distribution function (CDF) Fj. If firm i sets a price pi, it sells all its

inventory with probability 1−Fj(pi), and nothing otherwise. From the zero profit condition,

(

(pi − αc) (1− Fj(pi))− (1− α)c
)

D(pi) = 0,

6Same-price fair-share (si = min(qi,max(D(pi)/2, D(pi)− qj))) is a standard assumption. The rationing
and sharing rules are defined formally in Appendix B.1. See also Davidson and Deneckere (1986) for a
discussion of rationing rules in pricing games.
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we obtain

F ∗(p) =

{
p−c

p−αc
if p ∈ [c, p0),

1 if p ≥ p0.

We thus obtain a Nash equilibrium where each firm i draws its price from the CDF F ∗.

Intuitively, firm i earns a higher margin on each unit it sells when it raises its price, but the

probability that it ends up with costly unsold units increases as well. F ∗ exactly offsets these

two effects. Note that F ∗ has a mass point at p0, i.e., on being inactive.

The above strategy profile is also a Nash equilibrium of the unconstrained game. Suppose

firm j randomizes according to the proposed equilibrium strategy. If firm i chooses a price

pi and any inventory qi ∈ [0, D(pi)], then it receives either the entire market demand, D(pi),

or no residual demand at all. Hence, by the definition of F ∗, firm i still makes zero profit.

The following proposition shows that there are no other equilibria:7

Proposition 1. The constrained game and the unconstrained game have a unique Nash

equilibrium, characterized above.

Proof. See Online Appendix I.8

The equilibrium of Proposition 1 has the following properties: (i) it is unique; (ii) there

is price dispersion; (iii) each firm always sources enough inventory to supply all demand at

its chosen price; (iv) the equilibrium is non-strict in a very strong sense, as both firms are

indifferent between all the price-inventory pairs that lie below the graph of D; (v) some inven-

tories remain unsold with positive probability; (vi) the distribution of prices is independent

of the shape of D; (vii) the market is not served with positive probability; (viii) firms earn

Bertrand profits; and (ix) as inventory costs become fully recoverable, the equilibrium CDF

of prices converges weakly to an atom at p = c, i.e., to the Bertrand outcome.

Note, however, that the model studied in this section is non-generic. Perturbations of

this non-generic game will typically result in one or both of the firms making strictly positive

profits, which breaks the equilibrium construction presented above. This is the case, e.g., if

firms’ costs are asymmetric, or firms’ products are perceived to be differentiated by a subset of

consumers. As such elements are natural and important features of oligopolistic competition,

this raises several important questions. What is the equilibrium set of generic oligopoly

games where firms choose prices and inventories simultaneously? What are the equilibrium

properties of such games and, more specifically, which of the properties mentioned above are

7Uniqueness should be understood as being up to payoff-equivalent strategies, as all strategies with zero
inventory give rise to the same payoffs.

8As we later prove a more general result (Theorem 1), the reader may wonder why the proof of Proposi-
tion 1 requires such a long development. Because the model studied in this section is non-generic, Proposi-
tion 4 does not apply, and so we need to use completely different techniques. Our approach for Proposition 1
essentially follows the one in Gertner (1986), which crucially builds on both firms making zero profit. The
case of efficient rationing (Online Appendix I.6), which Gertner (1986) does not study, is significantly more
involved than the random rationing one (Online Appendix I.5). Interestingly, the rationing rule plays no role
in the proof of Theorem 1, so those complications become irrelevant in the generic case.
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indeed generic? In this paper, we answer these and related questions by introducing a rich

class of (generic) games, which we call all-pay oligopolies.

3 All-Pay Oligopolies

We now present a general model of all-pay oligopolies. There are two firms, 1 and 2.9 Firm i

has constant unit cost ci > 0, and can recover a fraction αi ∈ [0, 1) of this cost on all unsold

units. Total market demand is still given by the function D, assumed to be strictly positive,

continuous, non-increasing, and log-concave on [0, p0), left-continuous at p0 ∈ (0,∞), and

identically equal to zero on (p0,∞).10

In addition to cost asymmetries, consumers may also perceive the two firms as being

differentiated, so that not all consumers necessarily wish to purchase from the firm setting

the lowest price. We assume that a fraction of consumers µi ∈ [0, 1) only wish to buy from

firm i, as in Varian (1980). Those consumers are referred to as firm i’s captive segment. The

remaining fraction 1−µ1 −µ2 ∈ (0, 1] of consumers, the shoppers, wish to buy from the firm

with the lowest price. As a whole, we call those consumers the contested segment. Firm i

can pay a fixed advertising cost of Ai ≥ 0, as in, e.g., Baye and Morgan (2001), to make the

shoppers aware of its product and price. This cost is akin to a fixed cost of production if

there are no captive consumers, i.e., if µ1 = µ2 = 0.

Firms 1 and 2 simultaneously decide whether to pay the advertising cost, which price

to set, and how many units to source. As in Section 2, we assume that rationing within a

consumer segment is either random or efficient, and that demand is allocated in a same-price

fair-share way in case of a tie.11 We also need to specify how rationing works across segments:

To fix ideas, we assume that each firm serves its captive consumers first. This last assumption

does not affect the equilibrium characterization in generic cases.

We first study a constrained version of the model, where firms must source enough in-

ventory to supply their targeted demand, in Section 3.1. We then study the unconstrained

game, where firms can freely choose their inventories, in Section 3.2. In Section 3.3, we

discuss the generic properties of the equilibrium. In Section 3.4, we show that equilibrium

behavior converges to an equilibrium of the associated Bertrand model as production costs

become fully recoverable.

3.1 The Constrained Game

As in Section 2, we first solve a constrained version of the model in which both firms must

source enough inventories to supply their targeted demand. In that constrained game, firm

i decides whether to target only its captive segment, or both its captive and the contested

segment. In the former case, it does not to pay its advertising cost Ai and, conditional on

9We discuss the N -firm case in Section 7 and study it formally in Online Appendix IV.
10The potential discontinuity at p0 allows, for example, to nest perfectly inelastic demand as a special case.
11Ties play a limited role in the analysis. Rationing and sharing rules are defined formally in Appendix B.1.
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choosing price pi, it must source an inventory µiD(pi). It thus finds it optimal to set its

monopoly price pmi and receives its outside option payoff:12

oi = µi(p
m
i − ci)D(pmi ).

If instead firm i targets both its captive and the contested segment at price pi, then it

pays its advertising cost and sources an inventory (1 − µj)D(pi). If firm j is not targeting

the contested segment or pi < pj, firm i’s payoff is:

wi(pi) = (1− µj)(pi − ci)D(pi)− Ai.

We call wi(·) firm i’s winning function. If firm j is targeting the contested segment at a price

pj < pi, then firm i receives its losing payoff :

li(pi) =
(

µi(pi − ci)− (1− µi − µj)(1− αi)ci

)

D(pi)− Ai.

Note that for every pi ∈ [ci, p
0), winning is better than losing, i.e., wi(pi) > li(pi), and losing

is worse than taking the outside option, i.e., li(pi) < oi. Payoffs in case of a tie play a limited

role in the analysis and are therefore omitted here. The tuple (wi, li, oi)i=1,2 defines an all-pay

contest with outside options and, due to revenue log-concavity, potentially non-monotonic

winning and losing functions.

We now proceed with the equilibrium characterization. If, for some firm i, oi strictly

exceeds wi(p
m
i ), the highest profit firm i can receive if it targets its captive and the contested

segment, then there is no scope for competition in the contested segment. In that case, the

game is dominance solvable: Firm i focuses on its captive consumers with probability 1, and

firm j plays a best response to that action.

Suppose that wi(p
m
i ) > oi. We can then define firm i’s reach as

ri = min{p ∈ [ci, p
0] : wi(pi) = oi}.

By uni-modality of wi, any price below ri is a strictly dominated strategy for firm i. Let

r = max{r1, r2} be the highest reach. We say that firm i is strong if ri < r and weak if ri = r.

As the weak firm will never price below r, this is the highest price at which the strong firm

can be sure to capture the contested segment—the limit price. Naturally, the strong firm can

price more aggressively than the weak one while still earning more than its outside option.

If pmi < r, the game is also dominance solvable: Firm i targets its captive and the contested

segment at its monopoly price, whereas firm j always focuses on its captive consumers and

sets its own monopoly price.

12In the special case where µi = 0, firm i can set any price when it takes its outside option since it produces
nothing. It is of course without loss of generality to assume that firm i sets pmi .
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In the remainder of the paper, we assume that wi(p
m
i ) > oi and pmi > r for every i.

We call games satisfying those conditions non-trivial. Standard arguments (see Section 2)

imply that these games do not have a pure-strategy Nash equilibrium. We therefore look for

mixed-strategy equilibria. An equilibrium is fully characterized by a pair of CDF’s (F1, F2)

over [r, p0]. Fi(p) is the probability that firm i targets its captive and the contested segment

at a price less than or equal to p. The probability that firm i takes its outside option is

therefore given by 1− Fi(p
0).13

We look for an equilibrium in which firms mix continuously over some interval [r, p̄) and

distribute the remaining mass on higher prices and/or their outside option. Since r is the

infimum of the support of both firms’ strategies, the expected payoff of firm i in this putative

equilibrium is given by wi(r). For firm i to be indifferent between all the prices in [r, p̄), it

has to be the case that for every p ∈ [r, p̄),

(1− Fj(p))wi(p) + Fj(p)li(p) = wi(r),

i.e., Fj(p) = kj(p), where

kj(p) ≡
wi(p)− wi(r)

wi(p)− li(p)
, ∀p ∈ [r, p0).

The log-concavity of D implies that kj is either single-peaked and achieves a global maxi-

mum at some p̄j ∈ (r, p0), or strictly increasing, in which case we set p̄j = p0 (see Lemma C–(i)

in the Appendix). If p̄j were strictly less than p̄, then firm j’s CDF of prices would be strictly

decreasing on (p̄j, p̄), which it cannot be. We therefore set p̄ = min{p̄1, p̄2}. Then, kj is con-

tinuous and strictly increasing on [r, p̄). Moreover, the fact that wi(r) ≥ oi > li(p) for every

p ∈ (r, p̄) implies that kj(p) ∈ (0, 1). Hence, kj has the properties of a CDF on the interval

[r, p̄). However, limp↑p̄ kj(p̄) < 1 (see Lemma C–(ii) in the Appendix), meaning that we have

some mass left to distribute. How that mass is distributed depends crucially on whether p̄1
is higher or lower than p̄2, as discussed next.

We focus on the generic case in which ri 6= rj. (We will later study the non-generic case

ri = rj.) To fix ideas, suppose that r1 < r2(= r).

Suppose first that p̄1 ≥ p̄2, so that p̄ = p̄2. The fact that k2 is strictly decreasing on

(p̄, p0) means that, given that firm 2 is already putting a total mass of k2(p̄) on the interval

[r, p̄2], firm 1 does not want to price anywhere in the interval (p̄, p0]. Moreover, since firm 1

is strong (w1(r) > o1), it does not want to take its outside option either. The only possibility

is therefore that firm 1 puts the rest of its mass on p̄. Firm 2 responds by putting the rest of

its mass on its outside option. To summarize, each firm has a single mass point (the strong

13With this formulation, in the special case where µi = Ai = D(p0) = 0, firm i has two equivalent ways
of being inactive: It can either pay the advertising cost (which, here, is equal to zero) and set pi = p0 and
qi = (1−µj)D(p0) = 0, or not pay the advertising cost and set pi = pmi and qi = µiD(pmi ) = 0. In that case,
we assume without loss of generality that firm i chooses the latter way of being inactive, which ensures that
1− Fi(p

0) is indeed the probability that firm i takes its outside option.
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firm at p̄, the weak firm on its outside option) and the CDF’s are:

F1(p) =

{

k1(p) if p ∈ [r, p̄2),

1 if p ∈ [p̄2, p
0],

and F2(p) =

{

k2(p) if p ∈ [r, p̄2),

k2(p̄2) if p ∈ [p̄2, p
0].

(1)

It is readily verified that this pair of CDF’s is a Nash equilibrium of the constrained game.

Next, suppose p̄1 < p̄2. Then, it is the weak firm that does not want to price anywhere in

the interval (p̄, p0]. Hence, F2 is constant on that interval. If F2(p̄) < k2(p̄2), then firm 1 can

obtain strictly more than w1(r) by pricing at p̄2 (which cannot be). If instead F2(p̄) > k2(p̄2),

then firm 1 does not want to price anywhere in [p̄, p0] and must then take its outside option

o1 < w1(r) with positive probability (which also cannot be). It follows that F2(p̄) = k2(p̄2)

and firm 2 puts its remaining mass on its outside option. Firm 1 responds by putting the

rest of its mass on p̄2. To summarize, firm 1 has a single mass point (at p̄2), firm 2 has two

mass points (one at p̄ < p̄2 and the other one on its outside option), and CDF’s are:

F1(p) =







k1(p) if p ∈ [r, p̄1),

k1(p̄1) if p ∈ [p̄1, p̄2),

1 if p ∈ [p̄2, p
0],

and F2(p) =

{

k2(p) if p ∈ [r, p̄1),

k2(p̄2) if p ∈ [p̄1, p
0].

(2)

It is readily verified that (F1, F2) is a Nash equilibrium.

In words, in both cases, firm 1 always targets both segments. With a strictly positive

probability, it sources a low inventory and charges its reference price p̄2. With complemen-

tary probability, it sources a high inventory and offers a discount, drawing its price from a

continuous distribution over [r, p̄2]. Firm 2, with strictly positive probability, focuses exclu-

sively on its captive segment at its monopoly price pm2 . With complementary probability, it

sources a high inventory to target both its captive and the contested segment. In that case,

it draws its price from the segment [r, p̄], continuously if p̄1 ≥ p̄2, and with a mass point at

p̄1 if p̄1 < p̄2. Thus, in one case, firm 2 has a unique reference price (pm2 ), whereas it has

two reference prices (pm2 and p̄1) in the other case. (See Figure 1 in Section 4 for a graphical

illustration of equilibrium behavior.)

In both cases, equilibrium uniqueness can be established using standard techniques:

Proposition 2. Consider a non-trivial and generic (r1 6= r2) all-pay oligopoly model, where

firm 1 is the strong firm. The constrained game has a unique equilibrium. The equilibrium

profile of CDF’s of prices in the contested segment is described by equation (1) if p̄2 ≤ p̄1, and

by equation (2) otherwise. The strong firm targets the contested segment for sure, whereas

the weak firm focuses exclusively on its captive consumers with probability 1 − F2(p
0) > 0.

Equilibrium payoffs are wi(r) for i = 1, 2.

Proof. See Appendix A.

In contrast, the constrained game of a non-generic (r1 = r2) all-pay oligopoly model

usually has a continuum of equilibria. The intuition for the equilibrium multiplicity is that in
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the non-generic case, we have more leeway to allocate the mass that firms do not put on [r, p̄).

Proposition A, stated and proven in the Appendix, provides a complete characterization of

the set of equilibria, which we now describe informally. In any equilibrium, each firm earns

an expected profit equal to its outside option; firms mix continuously on the interval [r, p̄)

according to the CDF’s k1 and k2, and put the rest of their mass on p̄1, p̄2, and/or their

outside option; at least one firm puts mass on its outside option.

3.2 The Unconstrained Game

We now study the unconstrained game, where firms can freely choose their inventories. We

show that any equilibrium of the constrained game is also an equilibrium of the unconstrained

game. Moreover, generically, the unique equilibrium of the constrained game is also the

unique equilibrium of the unconstrained game. Finally, we briefly discuss the equilibrium

characterization in non-generic cases.

Let (F1, F2) be an equilibrium of the constrained game. Suppose firm i pays the adver-

tising cost and deviates to a price-inventory pair (p, q) such that it does not source enough

inventory to supply its targeted demand, i.e., q ∈ [µiD(p), (1− µj)D(p)). If firm j does not

have a mass point at p, then firm i earns a profit of

π̃i(p, q) = µi(p− ci)D(p)− Ai +
(

(p− αici)(1− Fj(p))− (1− αi)ci

)

(q − µiD(p)).14

As π̃i(p, q) is linear in q, the optimal deviation given p is a corner solution, i.e., q = µiD(p)

or q = (1−µj)D(p). Since both corner solutions are permitted in the constrained game, and

since (F1, F2) is an equilibrium of that game, the deviation is not profitable. We obtain:

Proposition 3. In an all-pay oligopoly model, any equilibrium of the constrained game is

also an equilibrium of the unconstrained game.

In fact, provided that Ai > 0, a condition that holds generically, we have that for every

price p, µi(p − ci)D(p) − Ai < oi. The argument used to prove Proposition 3 then implies

that (p− αici)(1− Fj(p)) > (1− αi)ci for every price p in the support of Fi. Therefore, firm

i strictly prefers sourcing enough inventory to supply the demand it targets. The key here is

that firm i’s deviation profit π̃i is linear in q, with a strictly positive slope whenever Ai > 0.

Further exploiting this argument, we obtain the following proposition:15

Proposition 4. In a generic (A1, A2 > 0) all-pay oligopoly model, a strategy profile is an

equilibrium of the constrained game if and only if it is an equilibrium of the unconstrained

game.

Proof. See Appendix B.

14If firm j has a mass point at p, then either q is sufficiently low and the expression for π̃i is valid, or q is
not sufficiently low and firm i would be strictly better off pricing just below p and avoiding the mass point.

15The proposition applies to both trivial and non-trivial games.
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An immediate implication of Propositions 2 and 4 is that a generic (A1, A2 > 0, r1 6= r2)

all-pay oligopoly game has a unique equilibrium.16

Proposition 4 is proven as follows. We assume for a contradiction that the unconstrained

game has an equilibrium in which one (or both) of the firms does not always source enough

inventory to supply its targeted demand. We define p̂ as the supremum of the set of prices

below which both firms source enough inventory to supply their targeted demand, and show

that this supremum is a maximum. Suppose firm i chooses a price-inventory pair (p, q) in

the support of its equilibrium price-inventory distribution, with p > p̂ and µiD(p) ≤ q <

(1 − µj)D(p), and let Fj(p) denote the probability that firm j chooses a pair (pj, qj) such

that pj < p and qj > µjD(pj). Then, firm i makes an expected profit of

π̃i(p, q) = µi(p− ci)D(p)− Ai +
(

(p− αici)(1− Fj(p))− (1− αi)ci

)

(q − µiD(p)) + ε(p, q),

where we have ignored the possibility that firm j has a mass point at p to ease the exposition.

The term ε(p, q), which is non-negative and non-decreasing in q, captures the fact that firm i

may still end up selling to some of the shoppers if firm j prices between the cutoff price p̂ and

firm i’s price p. As p decreases to p̂, the probability that firm j sets a price in (p̂, p) converges

to zero, and ε(p, q) therefore tends to zero. Since π̃i(p, q) ≥ oi > maxp′ µi(p
′ − ci)D(p′)−Ai,

this implies that (p−αici)(1−Fj(p)) > (1−αi)ci for p sufficiently close to p̂. It follows that

π̃i(p, q) is strictly increasing in q for p sufficiently close to p̂, a contradiction.

Combining Propositions 2–4 and Proposition A in the Appendix gives:

Theorem 1. A non-trivial and generic (A1, A2 > 0, r1 6= r2) all-pay oligopoly game has a

unique equilibrium. In that equilibrium, both firms source enough inventories to supply their

targeted demand, and the equilibrium CDF’s of prices are as characterized in Proposition 2.

A non-trivial and non-generic all-pay oligopoly game may have multiple equilibria. Constrai-

ned equilibria, which are also unconstrained equilibria, are as characterized in Proposition A.

We close this subsection by discussing the equilibrium multiplicity that can arise in non-

generic cases. We do so in the context of a simple example with inelastic unit demand up to

p0, symmetric firms, captive consumers, and no advertising cost. This model boils down to

a production-in-advance version of Varian (1980)’s model of sales.

We first discuss constrained equilibria. By Proposition A in the Appendix, in any such

equilibrium, both firms mix continuously between r and p̄ = p0 according to the CDF F .

Given that firm j puts mass F (p0) on [r, p0], firm i is indifferent between targeting both its

captive and the contested segment at p0, and taking its outside option. This indifference

gives rise to a continuum of equilibria in which firm i splits its remaining mass between its

outside option and p0, whereas firm j puts all of its remaining mass on its outside option.

The unconstrained game also has equilibria that are not constrained equilibria. The proof

of Proposition 4 can be adapted to show that in any equilibrium, conditional on pricing at

16Note that the genericity condition in Proposition 2 differs from that in Proposition 4. The intersection
of those conditions (r1 6= r2 and A1, A2 > 0) holds generically as well.
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p < p0 in the contested segment, firm i sources enough inventory so supply its targeted

demand, i.e., 1 − µ units. This implies that both firms still mix continuously over prices in

[r, p0) with an inventory level of 1− µ. Given that firm j puts mass F (p0) on [r, p0], firm i is

therefore still indifferent between setting p0 in the contested segment and taking its outside

option. The fact that at p = p0, firm i’s expected profit is linear in q ∈ [µ, 1 − µ] implies

that firm i is in fact indifferent between all the inventory levels in [µ, 1 − µ]. We therefore

obtain a continuum of equilibria in which conditional on pricing at p0, each firm i draws its

inventory from some probability measure λi over [µ, q̄i], with q̄i ≤ 1− µ and q̄1 + q̄2 ≤ 1.

Recall however that the equilibrium multiplicity characterized above is non-generic: By

Theorem 1, that multiplicity disappears when the game is slightly perturbed.

3.3 Generic Equilibrium Properties

We now discuss the qualitative features of the equilibrium of a generic all-pay oligopoly model,

and compare them to what we found for the non-generic example of Section 2. Our analysis

in Sections 3.1 and 3.2 reveals that in generic games, (I) the equilibrium is unique; (II) there

is price dispersion; (III) firms source enough inventory to supply their targeted demand; (IV)

firms strictly prefer sourcing enough inventory to supply their targeted demand; (V) some

inventories remain unsold with positive probability; (VI) the distribution of prices depends

on the shape of D; (VII) all segments are served with probability 1 (as the strong firm always

targets both its captive and the contested segment, and the weak firm always targets at least

its captive consumers).

Properties (I), (II), (III), and (V) were also satisfied in the non-generic example of

Section 2. Properties (IV), (VI), and (VII), however, were not: In that model, firms are

indifferent between all the pure strategies that are not strictly dominated; the distribution of

prices does not depend on the shape of D; the market is not supplied with strictly positive

probability. Our analysis thus reveals that those latter properties are non-generic: They

disappear if the non-generic example of Section 2 is slightly perturbed.

Nevertheless, for small perturbations, the equilibrium of such perturbed games is typically

quantitatively similar to that of the unperturbed game:17

Proposition 5. Suppose D is continuous at p0, and let (γn)n≥0 be a sequence of parame-

ter vectors that converges to the non-generic parameter vector of Section 2. For every n,

let (F n
1 , F

n
2 ) be a (constrained) equilibrium of the game with parameter vector γn. Then,

(F n
1 , F

n
2 )n≥0 converges weakly to the mixed-strategy equilibrium of Proposition 1.

Proof. See Appendix C.3.

17Fn
i was defined as the CDF of a measure over [0, p0]. Since Fn

i (p
0) may be strictly less than 1, Fn

i is not
necessarily a probability measure, so the weak convergence of the sequence (Fn

i )n≥0 may not be a well-defined
concept. We circumvent this issue by studying an equivalent auxiliary game in which any mixed-strategy
equilibrium can be described by a pair of probability measures over [0, p0]. We then establish the weak
convergence of the associated sequence of pairs of probability measures. See Appendix C.1 for details.
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This result may seem surprising since in a generic all-pay oligopoly game, the strong firm

always targets the contested segment, whereas, in the equilibrium of Section 2, both firms

stay out of the market with strictly positive probability. The intuition is the following. In

a generic game, the strong firm, firm 1, has a mass point at p̄2. When parameters are close

to those in Section 2, p̄2 is close to the choke price p0 and, since D is continuous at p0, the

strong firm is thus close to being inactive (i.e., it chooses an inventory close to zero).

We have not yet discussed the Bertrand-related properties—properties (viii) and (ix) of

Section 2. This is a more involved exercise, which we undertake in the next subsection.

3.4 Bertrand Convergence

Under Bertrand competition, it is assumed that firms first choose prices, and must then

satisfy all the demand directed to them. The constrained game studied in Section 3.1 is

formally equivalent to a Bertrand game when costs are fully recoverable (α1 = α2 = 1), as

there is then no downside to being left with unsold inventories.

We find that as α1 and α2 tend to 1, the equilibrium distribution of prices converges to

an equilibrium of that Bertrand game. This verifies that property (ix) of Section 2 is generic:

Proposition 6. Suppose D is continuous at p0, and let (γn)n≥0 be a sequence of parameter

vectors that converges to a parameter vector such that α1 = α2 = 1. For every n, let (F n
1 , F

n
2 )

be a (constrained) equilibrium of the game with parameter vector γn. Generically, (F n
1 , F

n
2 )n≥0

converges weakly to an equilibrium of the resulting Bertrand game.

Proof. See Appendix C.4.

The property that, regardless of the recoverability parameters, both firms earn their

Bertrand profits (property (viii) of Section 2) is also generic, as we explain next. In a given

all-pay oligopoly game, neither the winning payoff wi nor the outside option oi depends on the

recoverability parameters. Hence, the reach of firm i, ri, and the equilibrium profit of firm i,

wi(r), remain the same regardless of (α1, α2). By Proposition 6, as recoverability parameters

tend to 1, equilibrium play tends to an equilibrium of the limiting Bertrand game. Hence, in

the limit, the equilibrium profit of firm i is wi(r)—its Bertrand profit.

The following properties are therefore generic as well: (VIII) firms earn Bertrand profits;

(IX) the equilibrium is Bertrand convergent.

As mentioned in the introduction, Proposition 6 is in contrast to what is known from the

literature that studies the Kreps and Scheinkman (1983) framework (in which µi = Ai = 0).

Assuming observable inventory choices, that literature finds that if the sunk part of the unit

cost is sufficiently high, then the equilibrium outcome is (close to) Cournot. Only when

inventory costs are sufficiently recoverable can other outcomes arise.18 Those outcomes may

18Although closed-form solutions are unavailable for such cases, it is known that under efficient rationing,
linear demand and costs, and unit cost asymmetry, the equilibrium may involve non-degenerate mixing, and

16



be more competitive than Cournot, yet they remain far from the intense competition arising

in the Bertrand model.

One main takeaway from that literature is that observable inventory choices act as a

commitment to soften price competition and protect margins (e.g., Tirole, 1987, p. 218). So

far, a counterfactual with unobservable inventory choices had not been properly investigated.

This subsection verifies that a Bertrand-like form of competition arises in the absence of the

commitments provided by such observability: In terms of profits, this holds regardless of unit

cost recoverability; in terms of prices, this holds if unit costs are sufficiently recoverable.

The Kreps-Scheinkman literature also suggests that mixed strategies, which result in un-

sold inventories and price dispersion, are not an unusual feature of oligopolies with production

in advance—a feature that, as discussed in the introduction, seems to have a real-world coun-

terpart. Due to the lack of explicit equilibrium characterizations, an in-depth exploration

of the implications of this feature has understandably been all but inexistent. Our simple

characterization provides an avenue for such exploration.

4 Applications

We now study specific all-pay oligopoly games and relate them to well-known Bertrand games.

Bertrand with fixed costs. In the Bertrand models (α1 = α2 = 1) studied by Sharkey and

Sibley (1993), Marquez (1997), and Thomas (2002), firms have identical unit costs (ci = c)

and there are no captive consumers (µi = 0). In the generic (A1 < A2) equilibrium, firms

mix continuously over [r, pm), the strong firm (firm 1) puts the rest of its mass on pm, and

firm 2 puts the rest of its mass on inactivity (i.e., on staying out of the market).

Under production in advance (α1, α2 < 1), firm i mixes over [r, p̄) according to

ki(p) =
(p− c)D(p)− A2

(p− αjc)D(p)
.

Note that p̄ > pm, a property we will return to later on.19 How firm i distributes the rest of

its mass depends on whether α1 is larger or smaller than α2.

If α1 ≥ α2, firm 1 is stronger in both dimensions, in the sense of having lower and more

recoverable costs. This results in firm 1 being less willing to set high prices than firm 2

(p̄1 ≥ p̄2). The equilibrium, represented graphically in the top panel of Figure 1, is thus

described by equation (1), with the strong firm putting the rest of its mass on p̄ and the

that a similar result obtains under symmetric costs and random rationing—see, respectively, Deneckere and
Kovenock (1996) and Davidson and Deneckere (1986). Yet, if the sunk part of the unit cost of both firms
exceeds just 7.5% of the choke price, then the outcome is Cournot in the former case, and Cournot or close
to it in the latter one.

19Here, we implicitly assume that pm < p0, which holds for instance if D is continuous at p0. To see why
p̄ > pm, note that starting from p = pm, a small increase in p has no first-order impact on the numerator of
ki, but reduces the denominator. Hence, ki is strictly increasing at pm.
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weak firm putting the rest of its mass on inactivity. The firms’ mass points are therefore

qualitatively similar to those under production to order, with the exception that p̄ > pm.

If instead α1 < α2, firm 1 has a fixed cost advantage but a recoverability disadvantage.

This results in firm 1 still being the strong firm (r1 < r2 = r), but being more willing to set

high prices than firm 2 (p̄1 < p̄2). The equilibrium, represented graphically in the bottom

panel of Figure 1, is thus described by equation (2), with the strong firm putting the rest of

its mass on p̄2 and the weak firm having two mass points: one on p̄ < p̄2 and the other one

on inactivity. This equilibrium differs significantly from the production-to-order one.

Thus, the extent to which inventories are recoverable affects equilibrium behavior in two

ways. First, an increase in the α’s gives rise to a first-order stochastic dominance shift towards

lower prices, i.e., firms price more aggressively. Second, as seen above, the firms’ ranking in

terms of unit cost recoverability determines the qualitative properties of the equilibrium.

Interestingly, in the special case where α1 = α2, which includes the limiting Bertrand

case (αi = 1), we have that k1 = k2. Thus, despite having different fixed costs, firms 1 and 2

use the same pricing strategy up to p̄—a feature that seems to have been overlooked in the

production-to-order literature.

Regardless of how α1 compares to α2, as p̄ > pm, firms price above their monopoly price

with positive probability. Proposition 6 shows that as costs become fully recoverable, the

difference between our equilibrium and the production-to-order one becomes quantitatively

small. Thus, in the limit, prices no longer exceed the monopoly level.

The intuition for why firms that produce in advance set prices above the monopoly level is

the following. Consider a hypothetical monopolist facing a demand of D(p) with probability

λ and 0 otherwise. It maximizes

(

(p− αc)λ− (1− α)c
)

D(p) = λ

(

p−
(

α +
1− α

λ

)

︸ ︷︷ ︸

>1

c

)

D(p),

and thus behaves as a monopolist with a unit cost that exceeds c. Hence, it prices above pm.

In our production-in-advance setting, given the strategy of its rival, a firm faces a demand

of D(p) with probability 1− F (p), and 0 otherwise. A similar mechanism thereby raises the

firm’s perceived cost of production, which again rationalizes prices above the monopoly level.

Bertrand with heterogeneous unit costs. Suppose that c1 < c2, and there are neither

captive consumers nor fixed costs (µi = Ai = 0). When α1 = α2 = 1, the model boils

down to the asymmetric Bertrand competition model. In any (undominated) equilibrium,

the efficient firm serves the market at the unit cost of the inefficient firm, and firms earn

π̄1 = (c2 − c1)D(c2) and π̄2 = 0 (Blume, 2003; Kartik, 2011; De Nijs, 2012).

Under production in advance (α1, α2 < 1), r1 = c1 and r2 = c2, so firm 1 is the strong

firm. In equilibrium, firms earn their Bertrand profits as defined above, and mix continuously
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Figure 1: Equilibrium CDF’s for r1 < r2. Top panel: p̄2 ≤ p̄1. Bottom panel: p̄2 > p̄1.

r p̄2 p̄1 p0
0

k2(p̄2)

1 F1(·)

F2(·)

p

r p̄1 p̄2 p0
0

k1(p̄1)

k2(p̄2)

1 F1(·)

F2(·)

p

In both panels, D(p) = 1 − p, c1 = c2 = 0.3, A1 = 0.01, A2 = 0.03, and
µ1 = µ2 = 0; in the top panel, α1 = 0.9 and α2 = 0.1; in the bottom panel,
α1 = 0.1 and α2 = 0.9.
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over [r, p̄) according to

ki(p) =
(p− cj)D(p)− π̄j
(p− αjcj)D(p)

.

As π̄2 = 0, the function k1(p) = (p− c2)/(p−α2c2) is strictly increasing, and so p̄1 = p0. The

equilibrium is thus always described by equation (1), with the strong firm putting the rest

of its mass on p̄ and the weak firm putting the rest of its mass on inactivity.

In contrast to the Bertrand outcome, under production in advance: (i) It is not necessarily

the strong firm that ends up serving the market; (ii) the strong firm’s inventory may remain

unsold; (iii) there is non-trivial price dispersion; (iv) the strong firm prices above its monopoly

price with positive probability (because, as in the case with fixed costs, the perceived unit

cost exceeds the real one).

Despite these differences, the equilibrium converges to a Bertrand equilibrium as the α’s

tend to 1. The Bertrand game has a continuum of equilibria (Blume, 2003). In Appendix C.5,

we show that the limiting equilibrium corresponds to the Bertrand equilibrium in which firm

2 is the least aggressive in its randomization.

If, in addition to heterogeneous unit costs, firms have identical fixed costs and recovera-

bility parameters (A1 = A2 and α1 = α2), then r1 < r2 and p̄1 > p̄2. This holds since firm

1 is advantaged in all dimensions (strictly so in one and weakly so in the other two). The

production-in-advance equilibrium is therefore qualitatively unchanged as it is still given by

equation (1). As the common recoverability parameter tends to 1, the game and equilibrium

converge to the Bertrand game and equilibrium studied by Lang and Rosenthal (1991) and

Anderson, Baik, and Larson (2015). (The latter reinterpret the Bertrand-with-fixed-costs

model as a model of personalized pricing and advertising.)

If firm 1 is advantaged in some dimensions but disadvantaged in others, then the equi-

librium may be described by equation (2) and thus be qualitatively different. If demand is

continuous, such an equilibrium, where the weak firm has two mass points, emerges in the

Bertrand limit if and only if the strong firm has a strictly higher unit cost than the weak

firm.20 By continuity (Proposition 6), when recoverability parameters are sufficiently high,

the weak firm must also have two mass points under production in advance.

To obtain this type of equilibrium under production to order, it is necessary to have,

in addition to interior monopoly prices, heterogeneous fixed and unit costs. Such equilibria

have eluded the existing Bertrand literature, which has confined attention to either perfectly

inelastic demand or heterogeneity in a single dimension.

Clearinghouse models. In Varian (1980)’s production-to-order model, firms are symme-

tric, demand is perfectly inelastic up to a choke price, and there are no advertising costs

(A = 0). In equilibrium, firms randomize over prices according to a continuous probability

measure. The fact that the CDF is continuous means that there is no reference price—as

Narasimhan (1988) first pointed out, firms are always holding a sale.

20To understand this condition, note that in the production-to-order limit, p̄i = pmj .
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In our production-in-advance model, with the same parameters, firms mix over [r, p0)

according to

k(p) =
1− µ

1− 2µ

p− r

p− αc
.

As discussed at the end of Section 3.2, in a generic equilibrium, one of the firms puts the rest

of its mass on targeting both its captive and the contested segment at p0, whereas the other

firm puts the rest of its mass on targeting only its captive segment at p0. Hence, both firms

have a reference price, and so the frequency of promotions is no longer 1.

As inventory costs become fully recoverable, this equilibrium converges to an equilibrium

of the resulting Bertrand game.21 Note that in the limit, both firms continue to have a

mass point at the choke price—whereas there are no mass points in Varian’s equilibrium.

The following seemingly innocuous difference explains the discrepancy: In our setting, firms

choose not only their prices but also which segments to target, whereas in Varian’s model,

both firms always target both their captive and the contested segment by assumption.

It is natural to expect that there are costs, fixed or variable, associated with targeting any

given market segment—our model allows for both types of costs, whereas Varian’s accounts

for neither. In the presence of either costs, firms need to actively decide not only what price

to set but also which segments to target. In light of this, it seems fair to say that our model

and equilibrium provide a more plausible description of sales.

Baye and Morgan (2001) consider a version of Varian’s symmetric model with advertising

costs (A > 0) and downward-sloping demand. Due to those costs, the equilibrium of their

Bertrand game features mass points at the monopoly price. However, each firm chooses not

to advertise with strictly positive probability. Thus, the equilibrium of their game differs from

the (generic) equilibrium of our limiting game, where one of the firms always advertises.22

The following difference explains the discrepancy: In Baye and Morgan (2001), a firm that

does not advertise, i.e., that does not list its price with the online gatekeeper, still receives

demand from the contested segment provided its rival does not advertise either. Thus, just

like in the Varian model, not only is each firm always targeting both its captive and the

contested segment, but also the contested segment may be captured for free. In our setting,

a consumer does not know that a product is available unless it is targeted, as in, e.g., Butters

(1977), and Grossman and Shapiro (1984). Moreover, there is a cost associated with targeting

the contested segment, and so the firms must again actively decide not only what price to

set, but also which segments to target.

We believe that our setting provides a more accurate description of some industries,

compared to Baye and Morgan (2001) and the literature that follows (e.g., Arnold, Li, Saliba,

and Zhang, 2011; Shelegia and Wilson, 2016).23 One example would be an industry where

21Because the game is non-generic, Proposition 6 cannot be applied to obtain Bertrand convergence. It is
straightforward to adapt the proof to establish convergence manually.

22Away from the limit, there are additional differences. For instance, firms price above the monopoly level.
23The fundamental difference between these two approaches is whether the demand of a store that chooses

not to advertise online is significantly affected by whether the rival advertises or not.
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brick-and-mortar stores have some local captive demand, and there is a segment of remote

online consumers who will never consider buying from a store that does not list its price on

the gatekeeper’s platform. In contrast to Baye and Morgan (2001), our model predicts that

in such an industry, at least one store must have an online presence.

As seen in the examples discussed above, the general analysis under production in advance

in Sections 3.1 and 3.2 permits considerably more flexibility than existing similar models with

production to order, allowing simultaneously for downward-sloping demand and firms that are

heterogeneous in advertising costs, unit costs, share of captive consumers, and recoverability

parameters. The convergence result in Proposition 6 also allows us to accommodate as

limiting cases the Bertrand versions of such settings.

5 An All-Pay Oligopoly with Incomplete Information

We have shown that, in the generically unique equilibrium of an all-pay oligopoly model, both

firms randomize over their price and inventory choices. As usual, firms must be indifferent

between all the pure strategies in the support of their randomization. The model therefore

predicts that managers play dice, despite them having no strict incentives to do so. To

address this concern, we provide a purification argument in the spirit of Harsanyi (1973) in

our framework with bi-dimensional continuous actions.

We study a model similar to the one in Section 2, in which firms have private informa-

tion about their unit costs (Section 5.1). The model is therefore more restrictive in terms

of asymmetries than the general class of all-pay oligopolies studied in Section 3, but it is

richer in its information structure. We provide two convergence results in Section 5.2: (i)

convergence to complete information as costs shocks become small (the purification result),

and (ii) convergence to Bertrand as inventory costs become fully recoverable.

5.1 Framework and Equilibrium Analysis

Consider again the model of Section 2, but suppose that unit costs are drawn i.i.d. from a

probability distribution G, which has strictly positive and continuous density over its support

[c, c], with 0 < c < c < p0. If the realizations of c1 and c2 were public information, then

the analysis in Section 3 would apply to this game (with Ai = µi = 0).24 In this section, we

study the case where those realizations remain private information. We assume that D is C2,

strictly decreasing and log-concave on [0, p0).

A pure strategy for firm i is a mapping (pi(·), qi(·)) : [c, c] −→ [0, p0] × R+. A pure-

strategy Bayesian equilibrium is a profile of strategies (p1(·), q1(·), p2(·), q2(·)) such that for

every c ∈ [c, c], the price-inventory pair (pi(c), qi(c)) chosen by type c of firm i maximizes

that type’s expected profit, taking firm j’s pure strategy as given.

24Techniques similar to those applied in the present section could also be used to handle a setting closer
to Section 3, with asymmetries, advertising costs, and captive consumers.
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In line with what we did in the previous sections, we first focus on a constrained version

of the model in which the firms must source enough inventories to supply their targeted

demand, i.e., qi(·) = D(pi(·)). The analysis of this constrained game involves solving an

all-pay contest with asymmetric information and non-monotonic winning functions.

For the time being, we restrict attention to symmetric Bayesian equilibria (pi(·) = pj(·) =

p∗(·)) with monotone and differentiable strategies. More precisely, we focus on symmetric

equilibria with a cutoff type c0 ∈ (c, c) such that p∗ is continuous on [c, c], differentiable

with strictly positive derivative on [c, c0), and equal to p0 on [c0, c]. The pricing function p∗

induces a CDF of prices F ∗(·) ≡ G((p∗)−1(·)) that is differentiable on [p, p0) ≡ [p(c), p0).

The cutoff type c0 is pinned down by the zero-profit condition

(p0 − αc0)(1−G(c0)) = (1− α)c0.

The expected profit of type c < c0 when setting price p and facing the CDF of prices F ∗ is:

π(p, c) =
(

(p− αc)(1− F ∗(p))− (1− α)c
)

D(p).

The first-order condition of profit maximization for that type c can be written as:

∂ log π

∂p
=
D′(p)

D(p)
+

1− F ∗(p)− (p− αc)F ∗′(p)

(p− αc)(1− F ∗(p))− (1− α)c
= 0.

By definition of the putative equilibrium CDF F ∗, pricing at p is optimal for type c =

G−1(F ∗(p)). Combining this with the above optimality condition and rearranging terms, we

obtain the ordinary differential equation F ∗′(p) = Ψ(p, F ∗(p)), where

Ψ(p, F ) ≡
1

p− αG−1(F )

(

1− F +
D′(p)

D(p)

( (
p− αG−1(F )

)
(1− F )− (1− α)G−1(F )

))

.

F ∗ must also satisfy the boundary conditions F ∗(p) = 0 and limp↑p0 F
∗(p) = G(c0) ≡ F 0,

and F ∗ must be increasing and satisfy the positive profit condition

(p− αG−1(F ∗(p)))(1− F ∗(p)) > (1− α)G−1(F ∗(p)), ∀p ∈ [p, p0).

Conversely, it is easy to show that, if F ∗ solves the above boundary-value problem and

satisfies the monotonicity and positive profit conditions, then the induced pricing function

p∗(·) = (F ∗)−1 ◦ G(·) is a Bayesian equilibrium of the constrained game. In fact, for every

c ∈ [c, c], p∗(c) is the unique global maximizer of π(·, c), i.e., the Bayesian equilibrium is

strict. Much like in the analysis in Section 3.2 (see the discussion after Proposition 3), the

fact that each type c ∈ [c, c0) makes strictly positive profits implies that this equilibrium is

also a strict Bayesian equilibrium of the unconstrained game, where firms can freely choose

their inventory levels.

This analysis leaves a number of questions open. Does the boundary value problem have a
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solution and if so, is the solution unique? Do equilibria of the unconstrained game necessarily

satisfy the properties imposed above? The following theorem addresses these questions:

Theorem 2. Consider an all-pay oligopoly model with incomplete information:

(a) In any equilibrium, firms source enough inventories to supply the demand they target.

(b) The boundary-value problem F ′ = Ψ(p, F ) with boundary conditions F (p) = 0 for some

p ∈ (0, p0) and limp↑p0 F (p) = F 0 has a unique solution F ∗ that satisfies the positive

profit and monotonicity conditions.

(c) If G is C2 and convex, D is C3 on [c, p0), and DD′′/(D′)2 is non-decreasing, then the

model has a unique equilibrium. That equilibrium is strict and the equilibrium CDF of

prices is F ∗.

(d) There exists a unique equilibrium with continuous (resp. symmetric) pricing strategies.

That equilibrium is strict and the equilibrium CDF of prices is F ∗.

Proof. See Online Appendix II.

The equilibrium under incomplete information therefore also satisfies the generic pro-

perties (I)–(VI) of Section 3.3. Property (VII), however, is not satisfied as both firms are

inactive with strictly positive probability. The Bertrand-related properties (properties (VIII)

and (IX)) will be discussed in Section 5.2.

We close this subsection with an overview of the key steps of the proof. Part (a) shows

that it is indeed without loss of generality to focus on equilibria of the constrained game.

The proof follows a similar development as the proof of Proposition 4. Assuming for a

contradiction that the property stated in part (a) does not hold and defining p̂ as the lowest

price below which both firms source enough inventories to supply their targeted demand, we

show that the expected profits of the types that price in the neighborhood of p̂ are bounded

away from zero. A type that prices at, or just above, p̂ therefore makes a strictly positive

margin on the last unit it sources, which implies that such a type must be sourcing enough

inventories to supply its targeted demand, contradicting the definition of p̂.

The proof of parts (b), (c), and (d) uses tools that were developed to study first-price

auctions (e.g., Riley and Samuelson, 1981; Plum, 1992; Maskin and Riley, 2000, 2003; Lebrun,

1999, 2006) with some major additional difficulties, which all relate to the fact that a firm’s

winning function is non-monotonic in the price it sets.

The main technical difficulty in proving part (b) is that the differential equation F ′ =

Ψ(p, F ) is singular at (p0, F 0), which prevents us from applying the Picard-Lindelöf theorem

to establish the existence and uniqueness of a solution trajectory that goes through (p0, F 0).

We circumvent this issue with a geometric argument similar in spirit to the one in Lebrun

(2006). We show that the function F : p 7→ p−c0

p−αc0
is a super solution of F ′ = Ψ(p, F ),

whereas the zero-profit CDF of prices F (·), implicitly defined as the unique solution of
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(p− αG−1(F )) (1 − F ) = (1 − α)G−1(F ), is a sub solution.25 Any solution trajectory that

crosses F (resp. F ) must remain above F (resp. below F ) thereafter, implying that no such

trajectory can solve the boundary value problem. Applying standard results for differential

equations, we show that for some p∗, the solution trajectory that starts at (p∗, 0) remains

between F and F . The associated solution trajectory solves the boundary value problem.

Finally, a similar argument is used to prove that the solution F ∗ is unique.

Parts (c) and (d) of Theorem 2 rule out equilibria with non-differentiable pricing functi-

ons. Supermodularity arguments imply that any equilibrium must involve strictly increasing

pricing functions (possibly up to a cutoff type) and therefore continuous induced CDF’s of

prices (except at p0). The main difficulty involves ruling out discontinuities in a firm’s pri-

cing function. Assume that pi(c
−) ≡ limc′↑c pi(c) < limc′↓c pi(c) ≡ pi(c

+) for some type c.

Standard arguments (see, e.g., Plum, 1992) imply that pi(c
−) and pi(c

+) are both optimal for

that type. Moreover, by monotonicity of pi(·), no type of firm i prices in (pi(c
−), pi(c

+)). If

the winning function were monotonic in price, as in the auctions literature, then firm j would

not be willing to price in that interval either. This would immediately imply that pi(c
−) and

pi(c
+) cannot both be optimal for firm i, a contradiction.

In our oligopoly framework, however, a firm’s winning function is hump-shaped in its

price, and the above argument therefore does not apply. Some types of firm j may respond

by setting a (modified) monopoly price in (pi(c
−), pi(c

+)): We show that if firm i’s pricing

function is discontinuous at c, then there exists an interval of types [cj, cj] such that

pj(cj) = pm
((

α +
1− α

1− Fi(pi(c−))

)

cj

)

, ∀cj ∈ [cj, cj],

where pm(c̃) is the monopoly price given unit cost c̃, pj(cj) = pi(c
−), and pj(cj) = pi(c

+).

Firm j’s induced CDF of prices over [pi(c
−), pi(c

+)] is therefore:

Fj(·) = G

(

(pm)−1(·)/

(

α +
1− α

1− Fi(pi(c−))

))

.

The assumptions made in part (c) of Theorem 2 imply that the monopoly pass-through of

a cost increase is non-increasing in cost, i.e., pm′′ ≤ 0 (see, e.g., Fabinger and Weyl, 2012),

and that Fj is convex on [pi(c
−), pi(c

+)]. In turn, the convexity of Fj implies that firm i’s

expected payoff is single-peaked on [pi(c
−), pi(c

+)], and that pi(c
−) and pi(c

+) cannot be

simultaneously optimal for firm i, a contradiction. Once continuity has been established, the

incentive compatibility constraints of nearby types can be used to show that CDF’s of prices

are symmetric and differentiable, and solve the boundary value problem.

The above complications and the assumption made in part (c) of the theorem can be

avoided if one is willing to confine attention to Bayesian equilibria that satisfy certain pro-

perties, such as continuity or symmetry. Part (d) of the theorem shows that there is a unique

25The function φ is a sub solution (resp., super solution) of F ′ = Ψ(p, F ) if φ′(p) < Ψ(p, φ(p)) (resp.,
φ′(p) > Ψ(p, φ(p))) for every p. See Teschl (2012) for a treatment of ordinary differential equations.
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equilibrium satisfying such properties.

5.2 Purification and Bertrand Convergence

Purification. We now show that the equilibrium of Section 2 can be approximated by the

equilibrium of a nearby game perturbed by incomplete information. As shown in Section 5.1,

the equilibrium of the perturbed game is strict and in pure strategies, implying that managers

need not play dice.

Proposition 7. Let (Gn)n≥0 be a sequence of probability measures over R+. Assume that D

and Gn (n ≥ 0) satisfy the assumptions of Section 5.1, and let F n be the equilibrium CDF of

prices given Gn, as characterized in Theorem 2. Suppose that (Gn)n≥0 converges weakly to

the probability measure that puts full weight on c ∈ (0, p0). Then, (F n)n≥0 converges weakly

to the equilibrium CDF of prices of Proposition 1.

Proof. See Online Appendix III.1.26

Non-degenerate mixed-strategy equilibria have a seemingly undesirable feature: Such

equilibria are not regret-free, in the sense that, once firm i has observed the realization of

firm j’s price, firm i no longer wants to mix in the way prescribed by its equilibrium strategy.

The purification result does not address this concern.

In a retailing context, this concern may however be of limited relevance since it may be

impossible (or too costly) for a firm to change and re-advertise its price in a reasonable time-

frame. The fact that retailers do often end up with unsold inventories, without changing

prices, seems to provide anecdotal support for this claim.

As discussed in Section 1.1, the model can also be seen as describing a procurement

setting—the application that motivated Hansen (1988)’s analysis. In that case, the procure-

ment agency is committed to its auction format and all submitted bids are final.

Bertrand convergence. We now show that the equilibrium of the production-in-advance

game converges to a Bertrand equilibrium as costs become fully recoverable—the counterpart

of generic property (IX) of Section 3.3.

The Bertrand version of our incomplete-information game was studied by Hansen (1988)

and Spulber (1995). The Bertrand game has a unique equilibrium in which all but the highest

types make strictly positive profits and all types price strictly below their monopoly price.

The equilibrium CDF of prices solves the boundary value problem

F ′(p) =
1− F

p−G−1(F )

(

1 +
D′(p)

D(p)

(
p−G−1(F )

)
)

, F (p) = 0, F (c) = 1.

26The proposition is proven by using the fact that for every n, Fn is bounded below by the super solution

Fn : p 7→ p−c0,n

p−αc0,n
, where c0,n is the equilibrium cutoff type given Gn, and bounded above by the sub solution

F
n
, the zero profit CDF of prices given Gn. Since (Fn)n≥0 and (F

n
)n≥0 both converge pointwise to the

equilibrium CDF of prices of Proposition 1, the result follows by the sandwich theorem.
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Note that this differential equation coincides with the one studied in Section 5.1 for α = 1, i.e.,

when inventory costs are fully recoverable. Showing that the equilibrium under production

in advance converges to the Hansen-Spulber one as α tends to one does however require a

few additional steps, which we undertake next:

Proposition 8. Suppose that D and G satisfy the assumptions of Section 5.1, and let (αn)n≥0

be a sequence over [0, 1) such that αn −→
n→∞

1. For every n, let F ∗(·, αn) be the equilibrium

CDF of prices characterized in Theorem 2. Then, (F ∗(·, αn))n≥0 converges weakly to F ∗(·, 1),

the Hansen-Spulber equilibrium CDF of prices.

Proof. See Online Appendix III.2.

Property (VIII), i.e., the fact that firms earn their Bertrand profits in equilibrium, can

be interpreted in two ways under incomplete information. The interim interpretation is that

each type earns its Bertrand profit: This property is clearly not satisfied, as high types make

zero profit when α is small, and positive profits when α is high. In fact, in an example with

linear demand and uniformly-distributed costs, each type’s equilibrium profit is increasing in

α (see Online Appendix II.7). The ex-ante interpretation is that each firm earns its Bertrand

profit in expectation: That same example shows that this property does not hold either.

There are other qualitative differences between the equilibrium under production in ad-

vance and the Bertrand equilibrium: Under production in advance, some inventories remain

unsold with positive probability; a positive mass of types sets prices above the monopoly

level (for the same reason as in Section 4); a positive mass of types stays out of the market.

We close this subsection with an overview of the proof of Proposition 8. We first show that

as n goes to infinity, the sequence of cutoff types (c0,n)n≥0 tends to c. Hence, the sequence of

super solutions (F n)n≥0 converges pointwise to 1 on (c, p0]. Since F ∗(·, αn) is bounded below

by F n for every n, this implies that (F ∗(·, αn))n≥0 converges pointwise to 1 on that interval.

Next, we apply Helly’s selection theorem to extract a subsequence (F ∗(·, α′n))n≥0 that

converges weakly to some probability measure F̂ (e.g., Theorem 23.9 in Billingsley, 2012).

Using the fact that F ∗(·, α′n) solves a differential equation, we argue that (F ∗(·, α′n))n≥0

and (F ∗′(·, α′n))n≥0 are equicontinuous on [0, p] for all p < c. The Arzelà-Ascoli theorem

(e.g., Theorem 7.25 in Rudin, 1976) implies that (F ∗(·, α′n))n≥0 and (F ∗′(·, α′n))n≥0 converge

uniformly on [0, p], so F̂ is C1 on that interval. We can then take limits in the differential

equation to show that F̂ is a solution of the Hansen-Spulber differential equation. Finally,

we show that F̂ satisfies the boundary conditions and conclude that F̂ = F ∗(·, 1).

6 Efficiency and Taxation

The equilibrium outcome in an all-pay oligopoly game of complete information features three

types of distortions: First, firms price above marginal cost with probability one (the classical

deadweight loss); second, some inventories remain unsold with positive probability; third, it is
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not necessarily the most efficient firm that ends up serving the contested segment. This raises

the question of whether taxes or subsidies can alleviate those distortions, as they usually do

in oligopoly models.

We find a surprisingly simple answer to this question in the context of the symmetric

model seen in Section 2: Symmetric and linear taxation schemes can never improve efficiency.

Consider the oligopoly model of Section 2. Suppose that a firm faces a tax rate of t for

each unsold unit, where t is common to both firms and can be positive or negative. The

indifference condition for the mixed-strategy equilibrium becomes

p(1− F (p))− c+ (αc− t)F (p) = 0,

which gives rise to the CDF F (p) = p−c

p−αc+t
for p ∈ [c, p0). Similarly, if firms face a tax rate

of t per unit of output, then the indifference condition becomes

p(1− F (p))− (c+ t) + αcF (p) = 0,

which pins down the equilibrium CDF of prices F (p) = p−(c+t)
p−αc

. We could likewise envision

combinations of symmetric per-unit and/or ad-valorem taxes on sales, output and unsold

units. All those policies would give rise to a symmetric mixed-strategy equilibrium in which

each firm i draws its price pi from a common CDF, and sources qi = D(pi).

Instead of separately examining the impact of each of those policies (or combinations

thereof), we prove a stronger result. In a nutshell, suppose the social planner can choose any

symmetric distribution of prices. Then, the planner would choose the equilibrium distribution

of prices of Proposition 1. In this sense, the equilibrium is second-best efficient.

We now formalize this argument. Let F be the set of CDF’s over R+. Suppose each firm

i draws its price pi according to F ∈ F , and sources D(pi). Social welfare is then given by:

W (F ) =

∫

[0,p0]

(
∫ p0

p

D(t)dt+ pD(p)

)

dG(p)

︸ ︷︷ ︸

expected gross utility

− 2c

∫

[0,p0]

D(p)dF (p)

︸ ︷︷ ︸

expected production costs

+αc

∫

[0,p0]

D(p)dH(p)

︸ ︷︷ ︸

expected salvaged costs

,

where G = 1 − (1 − F )2 and H = F 2 are the CDF’s of the minimum and maximum price,

respectively. We prove the following result:

Proposition 9. The equilibrium policy F ∗ maximizes social welfare W . Moreover, if D is

strictly decreasing, then F ∗ is the unique social welfare-maximizing policy.

Proof. See Appendix D.

Thus, it is not possible to raise social welfare by using a taxation scheme that gives rise

to a Nash equilibrium in which each firm i draw its price pi from a symmetric F ∈ F , and

sources D(pi). In particular, if D is strictly decreasing, any symmetric and linear taxation

scheme must lower social welfare.

28



This result is best illustrated by the case of unit inelastic demand up to the choke price.

In this case, social welfare only depends on the probability that a firm sets a price below p0

and produces one unit. Call this probability β. With probability 1 − β, the firm produces

nothing. Expected social welfare is therefore given by:

W (β) =
(
1− (1− β)2

)
p0 − 2βc+ αβ2c.

The first-order condition is (1 − β)p0 − c + βαc = 0, which coincides with the zero-profit

condition at p0. Solving out for β, we obtain

β =
p0 − c

p0 − αc
,

which is also the probability that a firm is active (i.e., prices below p0) in equilibrium.

The proof with an arbitrary demand function relies on an integration by parts argument

for monotone but potentially discontinuous functions (see Border, 1996). We show that

W (F ) can be rewritten as

W (F ) = Φ

(

p0, lim
p↑p0

F (p)

)

lim
p↑p0

D(p)−

∫

[0,p0)

Φ(p, F (p))dD(p),

where Φ(p, F ) ≡ p(1− (1−F )2)− 2cF +αcF 2. We then show that F ∗(p) is the unique max-

imizer of Φ(p, ·). This allows us to maximize W (F ) term by term and obtain Proposition 9.

Determining the optimal tax policy in the context of the general model studied in Section 3

would require completely different techniques, as we would no longer be able to choose directly

the CDF’s of prices. In the simple case where demand is inelastic up to p0, c1 < c2, and there

are neither captive consumer nor fixed costs, it is easy to see that the optimal policy is to

tax firm 2 out of the market by making its reach exceed p0. This can for example be done

by imposing a tax rate of t ∈ (p0 − c2, p
0 − c1) per unit of output. This argument does not

extend to the case of elastic demand, as such a policy would typically affect the deadweight

loss as well. A thorough analysis of these issues is left for future research.

7 Concluding Remarks

We introduced and studied a class of games where stores source costly, unobservable in-

ventories before simultaneously setting prices. Our framework allows for firm asymmetries,

heterogeneous consumer tastes, endogenous consumer information through advertising, and

salvage values for unsold units.

We first studied a constrained version of the model in which stores must source enough

inventories to supply all their targeted demand. That constrained game is an all-pay contest

with outside options, non-monotonic winning and losing functions, and conditional invest-
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ments. The equilibrium is generically unique and in mixed strategies—thus, there is price

dispersion and some inventories may remain unsold. Turning our attention to the uncon-

strained game, where firms freely choose inventories, we showed that the sets of constrained

and unconstrained equilibria coincide generically. Thus, the equilibrium of the unconstrained

game is generically unique and can be found by solving the constrained game.

We studied the limiting case where the per-unit inventory cost becomes fully recoverable.

An important result is that equilibrium behavior converges to an equilibrium of the associated

Bertrand game, in which stores only choose prices and produce to order. Several benchmark

outcomes of oligopoly theory, where production to order is assumed, can thus also be seen as

the limiting outcome of similar situations with production in advance. Away from that limit,

our closed-form characterization generalizes the Bertrand-type analysis to those situations

where the value of unsold inventories falls short of their acquisition value.

These results are robust to the introduction of incomplete information. Our analysis

under incomplete information also purifies the mixed-strategy equilibria of all-pay oligopoly

games of complete information.

Finally, we investigated whether taxes or subsidies alleviate the distortions that arise in

all-pay oligopoly games, as is usually the case in oligopoly models. In a symmetric version

of the model, we proved that the equilibrium cannot be improved by linear and symmetric

taxation, i.e., in that sense, laissez-faire is second-best efficient.

To introduce product differentiation, we assumed that some consumers only wish to pur-

chase the product of one store, and therefore only a fraction of consumers (the contested

segment of shoppers) wishes to purchase from the store setting the lowest price. This speci-

fication of product differentiation ensures that the constrained game has the structure of an

all-pay contest. That property would disappear if we were to use other more widely-used spe-

cifications of product differentiation that result in a smoother residual demand. The analysis

of such models would therefore require completely different techniques.

In the main text, we focused on the two-store case. The general case with N ≥ 2 stores is

studied formally in Online Appendix IV. There, we use techniques similar to those in the main

text to prove that the sets of constrained and unconstrained equilibria coincide generically

(Propositions I and II). We establish equilibrium existence (Proposition IV), and provide a

generic characterization of equilibrium payoffs (Proposition III) and a partial characterization

of equilibrium behavior (Proposition V). If stores can be unambiguously ranked in terms of

advantages (in a way that is made precise in the statements of Propositions VI and VII),

we show that only the two most advantaged stores compete in the contested segment with

the same strategies as in the duopoly case, while all the other stores target exclusively their

captive segments.27 Finally, in Online Appendix IV.6, we provide a preliminary analysis of

the impact of entry on consumer surplus.

Throughout the paper, we confined attention to a static, one-shot setting. The equilibrium

27More than two stores may target the contested segment with positive probability if the ranking assump-
tion is not satisfied. See Proposition VIII for a worked-out example.
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behavior in the one-shot game does however coincide with the per-period equilibrium behavior

in a properly-specified dynamic game, as explained next. Suppose that time is discrete and

runs for an infinite number of periods, goods never perish, and stores discount future profits

with the same discount factor δ < 1. Suppose also that, at the beginning of each period,

each store can freely buy and sell inventories on a perfectly competitive wholesale market

at an exogenously-given price of c.28 We continue to assume that the stores do not observe

each others’ inventory holdings and set their prices simultaneously. The difference relative

to the static model studied in the paper is that each unsold unit is now carried over to the

next period.

Because stores can freely buy and sell in the wholesale market at the inventory-choice

stage, a firm’s opportunity cost of selling one unit of inventory to consumers is equal to a

fraction δ of the unit cost c—regardless of how many units that firm has at the beginning of

that period. For this reason, the dynamic game has a Markov-perfect equilibrium in which, in

every period, stores play the Nash equilibrium of the one-shot game with cost c and recover-

ability parameter α = δ. Such dynamic versions of the model also provide micro-foundations

for salvage values reflecting the time value of money, the time between periods, and the extent

to which unsold inventories are perishable—the argument also holds for heterogeneous unit

costs and discount factors.29 Connecting with the Bertrand convergence results, this model

predicts that if inventories remain unobservable and perish slowly, then an outcome close to

Bertrand emerges when the time between periods is short.

Our Bertrand convergence results stand in contrast to Kreps and Scheinkman (1983)’s

well-known result that under production in advance, if stores observe inventories before

setting their prices, then the Cournot outcome should be expected. This suggests that the

information stores have about rivals’ inventories at the pricing stage affects the nature of

competition significantly.

It is then natural to ask how inventory observability affects consumer surplus and social

welfare. If demand is perfectly inelastic up to a choke price, any Cournot equilibrium results in

both stores jointly serving all demand at the choke price. Thus, under inventory observability,

consumers face high prices but the outcome is efficient. Under inventory unobservability,

stores also serve all demand, but the mixed-strategy equilibrium results in lower prices and

in some inventories being unsold. Thus, in the particular case of perfectly inelastic demand,

inventory observability unambiguously reduces consumer surplus but raises social welfare.

However, this analysis becomes significantly more complex in the case of elastic demand.

In general, it is no longer the case that inventory observability results in higher prices and

social welfare. Moreover, in a dynamic setting, one may also worry that sharing inventory

information could facilitate collusion. A more thorough analysis of the static and dynamic

effects of inventory observability on market outcomes is left for future research.

28In the one-shot setting studied in the paper, capacity and inventory choices are formally equivalent. This
equivalence may break down in a dynamic setting, as it no longer seems reasonable to assume that firms can
adjust their capacities at the beginning of each period.

29Perishability can be captured by a fraction of the inventory being lost per unit of time.
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Appendix

A Equilibrium Analysis in the Constrained Game

In this section, we state and prove a series of technical lemmas that jointly imply Propo-

sition 2. We then provide a complete characterization of equilibria in the non-generic case

(Proposition A below). Fix an all-pay oligopoly game satisfying the assumptions made at

the beginning of Section 3.1. To fix ideas, assume r1 ≤ r2 = r.

Lemma A. In any equilibrium (F1, F2) of the constrained game, if Fi is discontinuous at

p̂ ∈ [0, p0], then firm j 6= i earns strictly less than its equilibrium payoff when it prices at p̂.

Proof. Put F−
i (p̂) = limp↑p̂ Fi(p) < Fi(p̂), and let π̄ι denote firm ι’s equilibrium payoff (ι =

1, 2). Using the same-price fair-share rule, firm ι’s payoff in case of a tie is:

tι(p) = µι(p− cι)D(p) + (1− µ1 − µ2)

(
1

2
(p− αιcι)− (1− αι)cι

)

D(p)− Aι.

Firm j’s expected payoff when it prices at p̂ is given by:

π̃j = (1− Fi(p̂))wj(p̂) + (Fi(p̂)− F−
i (p̂))tj(p̂) + F−

i (p̂)lj(p̂).

Assume first that tj(p̂) ≥ wj(p̂). Then, (p̂ − αjcj)D(p̂) ≤ 0. Assume for a contradiction

that p̂ = p0. Since p0 > cj, this implies that D(p0) = 0. Therefore, since firm i has a mass

point at p̂, 0 ≤ oi ≤ π̄i = −Ai, and Ai = µi = 0. The convention we adopted in footnote 13

implies that Fi puts no mass on p0 = p̂, which is a contradiction. Hence, p̂ < p0. It follows

that p̂− αjcj ≤ 0, and that π̃j < 0 ≤ oj ≤ π̄j, as in the statement of the lemma.

Assume instead that tj(p̂) < wj(p̂). Let (pn)n≥1 be a strictly increasing sequence such

that pn −→
n→∞

p̂ and Fi puts no mass on {pn} for every n. Then, for every n,

π̄j ≥ (1− Fi(p
n))wj(p

n) + Fi(p
n)lj(p

n),

−→
n→∞

(1− F−
i (p̂))wj(p̂) + F−

i (p̂)lj(p̂),

> (1− Fi(p̂))wj(p̂) + (Fi(p̂)− F−
i (p̂))tj(p̂) + F−

i (p̂)lj(p̂),

= π̃j.

Lemma B. In any equilibrium (F1, F2) of the constrained game, firm i’s expected profit is

equal to wi(r), the infimum of the support of Fi is r, and Fi(r) = 0 (i = 1, 2), i.e., no firm

has a mass point on r.

Proof. Fix an equilibrium, and let π̄i (resp. pi) denote firm i’s payoff (resp. the infimum of

the support of Fi) in this equilibrium. Clearly, π̄i ≥ oi for every firm i. Moreover, since every

price p < r is strictly dominated for firm 2, that firm puts not weight on [0, r). Therefore,
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π̄1 ≥ w1(p) for every p < r, and π̄1 ≥ w1(r). Hence, firm 1 puts no weight on [0, r). To sum

up, we have that, for every firm i, π̄i ≥ wi(r) and pi ≥ r.

Assume for a contradiction that π̄i > wi(r) for some firm i. Then, p
i
> r. Hence, if firm

j 6= i prices in the interval (r, p
i
), then it wins the contest for sure. Since wj is locally strictly

increasing at r, this implies that π̄j > wj(r). Hence, π̄i > oi for i = 1, 2, and both firms

participate in the contest for sure. Let p̌i be the supremum of the support of Fi (i = 1, 2).

If p̌i > p̌j, then there exists p > p̌j such that π̄i = li(p) ≤ oi < π̄i, which is a contradiction.

Hence, p̌i = p̌j ≡ p̌. If firm i has a mass point at p̌ but firm j does not, then π̄i = li(p̌),

a contradiction. Therefore, by Lemma A, no firm has a mass point at p̌. There exists a

strictly increasing sequence (pn)n≥1 such that pn −→
n→∞

p̌ and, for every n, π̄i is equal to firm

i’s expected profit when it prices at pn. Lemma A implies that firm j puts no mass on {pn}

for every n. Combining this with the continuity of Fj at p̌ delivers a contradiction:

π̄i = (1− Fj(p
n))wi(p

n) + Fj(p
n)li(p

n) −→
n→∞

li(p̌) ≤ oi < π̄i.

Hence, π̄i = wi(r) for i = 1, 2, which immediately implies that p
1
= p

2
= r.

Assume for a contradiction that firm i has a mass point at r. Then, by Lemma A, firm

j cannot have a mass point at r. There exists a strictly decreasing sequence (pn)≥0 such

that pn −→
n→∞

p̌ and, for every n, π̄j is equal to firm j’s expected profit when it prices at pn.

Lemma A implies that firm i puts no mass on {pn} for every n. Combining this with the

right continuity of Fi delivers a contradiction:

π̄j = (1− Fi(p
n))wj(p

n) + Fi(p
n)lj(p

n) −→
n→∞

(1− Fi(r))wj(r) + Fi(r)lj(r) < wj(r).

Recall from the analysis in the main text that kj(p) = (wi(p)− wi(r))/(wi(p)− li(p)) for

every p ∈ [r, p0). We now establish some useful facts about kj:

Lemma C. The following holds:

(i) kj is strictly concave on [r, p0). Either kj achieves a global maximum at some p̄j ∈

(r, p0), or it is strictly increasing on [r, p0). In the latter case, set p̄j = p0.

(ii) kj(p̄) (= limp↑p̄ kj(p)) < 1, where p̄ = min(p̄1, p̄2).

Proof. To prove the first part of the lemma, note that

1− µi − µj

1− µj

kj(p) =
(p− ci)D(p)− (r − ci)D(r)

(p− αici)D(p)
,

=
p− ci
p− αici

+ (r − ci)D(r)Φ (log ((p− αici)D(p))) ,

where Φ(x) = − e−x. Since Φ is concave and increasing and p 7→ (p − αici)D(p) is log-

concave, it follows that p 7→ Φ (log ((p− αici)D(p))) is concave. Hence, kj is the sum of a

strictly concave function and a concave function. It follows that kj is strictly concave.
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We now turn to the second part of the lemma. If p̄ < p0, the result follows immediately

from the fact that li(p̄) < oi ≤ wi(r) and wi(p̄) > li(p̄). Suppose instead that p̄ = p0. If

D(p0) > 0, then limp↑p0 wi(p) ≥ oi > limp↑p0 li(p), and therefore, limp↑p0 kj(p) < 1. If instead

D(p0) = 0, then wi(r) = Ai = µi = 0 (for otherwise, kj would start decreasing before p0).

Hence, kj(p) =
p−ci

p−αici
, which is indeed bounded away from 1.

We now argue that the equilibrium F1 and F2 are uniquely pinned down on [r, p̄):

Lemma D. In any equilibrium (F1, F2) of the constrained game, Fi(p) = ki(p) for every

p ∈ [r, p̄) and i ∈ {1, 2}. Moreover, if p̄i = p̄, then Fj is constant on [p̄, p0] (j 6= i).

Proof. Fix an equilibrium (F1, F2). Let πi(p) denote firm i’s expected profit when it prices

at p. Let i ∈ {1, 2} and p ∈ [r, p0). If Fi(p) < ki(p), then firm j can price at (or just below) p

and earn a profit strictly greater than wj(r), contradicting Lemma B. Hence, Fi(p) ≥ ki(p)

for every p ∈ [r, p0). Note also that πj(p) < wj(r) whenever Fi(p) > ki(p). Moreover, if

D(p0) > 0, then ki(p
0) is well defined. Therefore, it is also the case that πj(p

0) < wj(r) if

Fi(p
0) > ki(p

0).

Suppose that p̄i = p̄ < p0, and let p ∈ (p̄, p0). Then,

Fi(p) ≥ Fi(p̄) ≥ lim
p′↑p̄

Fi(p
′) ≥ lim

p′↑p̄
ki(p

′) = ki(p̄) = ki(p̄i) > ki(p).

Therefore, πj(p) < wj(r) for every p ∈ (p̄, p0), and Fj is constant on [p̄, p0). We now show

that Fj puts no mass on p0 either. Since p̄i < p0, we have that wj(r) > 0. Hence, ifD(p0) = 0,

then firm j clearly does not want to price at p0. If instead D(p0) > 0, then ki(p
0) is well

defined, and the above reasoning implies that πj(p
0) < wj(r).

Assume for a contradiction that firm i puts strictly positive mass on some p̂ ∈ (r, p̄).

Since Fi(p) ≥ ki(p) for every p < p̂, Fi(p̂) > limp↑p̂− Fi(p) ≥ ki(p̂). By continuity of ki and

monotonicity of Fi, this implies that, for some ε > 0, Fi(p) > ki(p) for every p ∈ [p̂, p̂ + ε].

Hence, πj(p) < wj(r) for every p ∈ [p̂, p̂ + ε], and Fj is therefore constant on that interval.

Hence, Fj(p̂) = Fj(p̂+ ε) ≥ kj(p̂+ ε) > kj(p̂), and πi(p̂) < wi(r), contradicting the fact that

firm i has a mass point at p̂. We conclude that firm i has no mass points on [r, p̄), i.e., Fi

is continuous on that interval (i = 1, 2). This implies in particular that πi is continuous on

[r, p̄). Hence, if πi(p) < wi(r) at p ∈ [r, p̄), then Fi is constant on a neighborhood of p.

Assume for a contradiction that Fj(p̃) > kj(p̃) for some p̃ ∈ (r, p̄). Then, Fi is constant

on a neighborhood of p̃. Define p̂ = min{p ∈ [r, p̄] : Fi(p) = Fi(p̃)}. (By continuity of

Fi on [r, p̄), the minimum is well defined.) Then, Fi(p) = Fi(p̃) ≥ ki(p̃) > ki(p) for every

p ∈ [p̂, p̃). It follows that Fj is also constant on [p̂, p̃). By continuity of Fj, this implies that

Fj(p̂) = Fj(p̃) ≥ kj(p̃) > kj(p̂). Hence, πi(p̂) < wi(r). Therefore, there exists η > 0 such

that Fi is constant on (p̂ − η, p̂ + η). This, however, contradicts the definition of p̂. Hence,

Fj(p) = kj(p) for every j ∈ {1, 2} and p ∈ [r, p̄).

Combining Lemmas B and D and the analysis in the main text, we obtain Proposition 2.

We now provide a complete characterization of the set of equilibria in the non-generic case:
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Proposition A. Consider the constrained game of a non-generic (r1 = r2) all-pay oligopoly

model. If p̄1 = p̄2, then:

• If p̄ < p0 or D(p0) > 0, then (F1, F2) is an equilibrium profile of CDF’s if and only if

there exists (F̄1, F̄2) ∈ [k1(p̄), 1] × {k2(p̄)} ∪ {k1(p̄)} × [k2(p̄), 1] such that, for i = 1, 2,

Fi(p) = ki(p) if p ∈ [r, p̄) and Fi(p) = F̄i if p ∈ [p̄, p0].

• If instead p̄ = p0 and D(p0) = 0, then the equilibrium is unique and given by Fi(p) =

ki(p) for all p ∈ [r, p0] (i = 1, 2), where ki(p
0) ≡ limp↑p0 ki(p).

If instead p̄1 < p̄2, then:

• If p̄2 < p0 or D(p0) > 0, then (F1, F2) is an equilibrium profile of CDF’s if and only if

there exists (F̄1, F̄2) ∈ [k1(p̄1), 1]× {k2(p̄2)} ∪ {k1(p̄1)} × [k2(p̄2), 1] such that

F1(p) =







k1(p) if p ∈ [r, p̄1),

k1(p̄1) if p ∈ [p̄1, p̄2),

F̄1 if p ∈ [p̄2, p
0],

and F2(p) =

{

k2(p) if p ∈ [r, p̄1),

F̄2 if p ∈ [p̄1, p
0].

• If instead p̄2 = p0 and D(p0) = 0, then (F1, F2) is an equilibrium profile of CDF’s if

and only if there exists F̄2 ∈ [limp↑p0 k2(p), 1] such that

F1(p) =

{

k1(p) if p ∈ [r, p̄1),

k1(p̄1) if p ∈ [p̄1, p
0],

and F2(p) =

{

k2(p) if p ∈ [r, p̄1),

F̄2 if p ∈ [p̄1, p
0].

Proof. The proof follows the same development as the proof of Proposition 2. Lemma D pins

down the equilibrium CDF’s on [r, p̄). The mass that remains can then be distributed over

p̄1, p̄2, and/or the firms’ outside options as described in the main text.

B Equilibrium Inventory Choice in the Unconstrained

Game

The goal of this section is to prove Proposition 4. We introduce notation and state preliminary

lemmas in Section B.1. We then prove the proposition in Section B.2. In the following, we fix

an all-pay oligopoly game satisfying the assumptions made at the beginning of Section 3.1.

B.1 Technical preliminaries

Let i 6= j in {1, 2}. Let Zi(pi, pj, q̃i, q̃j) denote the demand for firm i’s product in the

contested segment when prices are (p1, p2) ∈ [0, p0]2 and inventory levels are (q̃1, q̃2) ∈ R
2
+
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(net of what firms i and j are selling in their captive segments). If pi < pj, then Zi =

min{q̃i, (1− µi − µj)D(pi)}. If instead pi > pj, then

Zi =







min (q̃i,max ((1− µi − µj)D(pi)− q̃j, 0)) under efficient rationing,

min
(

q̃i,max
(

D(pi)
D(pj)

((1− µi − µj)D(pj)− q̃j), 0
))

under random rationing.

Finally, if pi = pj, then, using the same-price fair-share rule,

Zi = min

(

q̃i,max

(
1

2
(1− µi − µj)D(pi), (1− µi − µj)D(pi)− q̃j

))

.

Note that, no matter whether rationing is random or efficient, Zi is non-decreasing in qi.

Next, we simplify the action sets by removing redundant and/or strictly dominated pure

strategies. Note that, if firm i does not pay the advertising cost, then it is optimal for that

firm to set pi = pmi and qi = µiD(pmi ).
30 Denote this strategy by (pmi , µiD(pmi )). Next, we

remove all the pure strategies in which firm i pays the advertising cost and chooses (pi, qi) such

that qi ≤ µiD(pi), because those strategies are either strictly dominated by (pmi , µiD(pmi )),

or outcome-equivalent to (pmi , µiD(pmi )). Finally, we remove all the pure strategies in which

firm i is pricing below cost or choosing (pi, qi) such that qi > (1−µj)D(pi), as those strategies

are strictly dominated.

This leaves us with the following set of pure strategies for firm i:

Ai =
{
(pi, qi) ∈ [ci, p

0]× R+ : µiD(pi) < qi ≤ (1− µj)D(pi)
}

︸ ︷︷ ︸

≡A′

i

∪{(pmi , µiD(pmi ))}.

A mixed strategy for player i is a probability measure σi over Ai (Ai is endowed with the

σ-algebra of Borel sets). We decompose σi into σ
′
i, a finite measure over A′

i, and τi, a mass

point on (pmi , µiD(pmi )). We introduce the following notation: ϕi is the marginal on prices

of σ′
i; If ϕi({pi}) > 0, then we let χi(qi|pi) be the conditional probability distribution (over

(µiD(pi), (1− µj)D(pi)]) of qi given pi.

Let πi(pi, qi, σj) be the expected profit received by firm i when it chooses a price-inventory

pair (pi, qi) ∈ A′
i and firm j mixes according to σj. Let ∆i(pi, qi, σj) denote the expected

demand received by firm i in the contested segment given (pi, qi) ∈ A′
i and σj. In general,

we have that

∆i(pi, qi, σj) =

∫

Aj

Zi(pi, pj, qi − µiD(pi), qj − µjD(pj))dσj(pj, qj).

Note that, if ϕj({pi}) = 0, then

30If µi = 0, then it does not matter what price firm i sets, as long as qi = 0. We assume without loss of
generality that firm i sets pi = pmi in that case.
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∆i(pi, qi, σj) =
(
ϕj

(
[pi, p

0]
)
+ τj

)
qi

+

∫

cj≤pj<pi
µjD(pj)<qj≤(1−µi)D(pj)

Zi(pi, pj, qi − µiD(pi), qj − µjD(pj))dσj(pj, qj).

Moreover, πi(pi, qi, σj) = (pi − αici) (∆i(pi, qi, σj) + µiD(pi))− (1− αi)ciqi − Ai.

Next, we define firm i’s expected demand when it sets a price “just below” pi and an

inventory of qi (with (pi, qi) ∈ A′
i):

∆−
i (pi, qi, σj) =

(
ϕj

(
[pi, p

0]
)
+ τj

)
qi

+

∫

cj≤pj<pi
µjD(pj)<qj≤(1−µi)D(pj)

Zi(pi, pj, qi − µiD(pi), qj − µjD(pj))dσj(pj, qj).

We now show that ∆−
i is indeed firm i’s expected demand when it prices just below pi:

Lemma E. For every (p̂i, q̂i) ∈ A′
i, for every mixed strategy σj for firm j, ∆i(pi, q̂i, σj) −→

pi↑p̂i

∆−
i (p̂i, q̂i, σj).

Proof. Let (pn)n≥1 be a strictly increasing sequence such that pn −→
n→∞

p̂i. For every n,

∆i (p
n, q̂i, σj) =

(
ϕj

(
(pn, p0]

)
+ τj

)
(q̂i−µiD(pi))+

∫

cj≤pj<p̂i
µjD(pj)<qj≤(1−µi)D(pj)

Zn(pj, qj)dσ
′
j(pj, qj),

(3)

where

Zn(pj, qj) = 1pj≤pnZi(p
n, pj, q̂i − µiD(pn), qj − µjD(pj))

for all (pj, qj) ∈
{
(p′j, q

′
j) : 0 ≤ p′j < p̂i and µjD(p′j) < q′j ≤ (1− µi)D(p′j)

}
.

Note that, since the sequence of events ((pn, p0])n≥1 is non-increasing, we have that

limn→∞ ϕj ((p
n, p0]) = ϕj

(⋂

n≥1(p
n, p0]

)
= ϕj ([p̂i, p

0]) .

Next, we turn our attention to the term in equation (3). The sequence of σj-integrable

functions (Zn)n≥1 is non-negative and bounded above by the constant function D(ci), which

is also σj-integrable. Moreover, (Zn)n≥1 converges pointwise to the function

Ẑi(pj, qj) = Zi(p̂i, pj, q̂i − µiD(p̂i), qj − µjD(pj)).

By Lebesgue’s dominated convergence theorem, it follows that

lim
n→∞

∫

cj≤pj<p̂i
µjD(pj)<qj≤(1−µi)D(pj)

Zn(pj, qj)dσj(pj, qj) =

∫

cj≤pj<p̂i
µjD(pj)<qj≤(1−µi)D(pj)

Ẑi(pj, qj)dσj(pj, qj),

which proves the lemma.

Lemma E says that, no matter whether firm j has a mass point at p̂i, firm i can always

secure a demand level arbitrarily close to ∆−
i (p̂i, q̂i, σj) with a price arbitrarily close to p̂i.
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For every (pi, qi) ∈ A′
i, for every mixed strategy σj for firm j, define

π−
i (pi, qi, σj) = (pi − αici)

(
∆−

i (pi, qi, σj) + µiD(pi)
)
− (1− αi)ciqi − Ai.

The following result is an immediate implication of Lemma E:

Lemma F. Suppose that (σ1, σ2) is a mixed-strategy Nash equilibrium, and let π̄i be firm i’s

expected profit in that equilibrium. Then, for every (p̂i, q̂i) ∈ A′
i, π̄i ≥ π−

i (p̂i, q̂i, σj).

Moreover, if (p̂i, q̂i) ∈ A′
i and π̄i = πi (p̂i, q̂i, σj), then πi (p̂i, q̂i, σj) = π−

i (p̂i, q̂i, σj).

B.2 Proof of Proposition 4

Proof. Suppose A1, A2 > 0. Let (σ1, σ2) be a Nash equilibrium of the all-pay oligopoly model.

Let π̄i denote firm i’s expected profit in that equilibrium. Clearly, for every firm i, π̄i ≥ oi.

For every p ∈ [0, p0] and i ∈ {1, 2}, define

Si(p) = {(p′, q′) ∈ [0, p]× R+ : µiD(p′) < q′ < (1− µj)D(p′)} ,

and φi(p) = σi(Si(p)). Clearly, φi is non-decreasing, and φi(p) = 0 for p sufficiently low.

Assume for a contradiction that φi(p) > 0 for some firm i and some price p ∈ [0, p0].

Define

p̂ = inf
{
p ∈ [0, p0] : ∃i ∈ {1, 2}, φi(p) > 0

}
.

We first argue that, for every i ∈ {1, 2}, φi(p̂) = 0. Assume for a contradiction that

φi(p̂) > 0 for some firm i. We claim that ϕi({p̂}) > 0. To see this, let (pn)n≥1 be a strictly

increasing sequence of prices that converges to p̂. Note that

{p̂} × (µiD(p̂), (1− µj)D(p̂)) = Si(p̂) \
⋃

n≥1

Si(p
n).

Since, by definition of p̂, σi(Si(p
n)) = 0 for every n, it follows that

ϕi({p̂}) ≥ σi({p̂} × (µiD(p̂), (1− µj)D(p̂))) = σi(Si(p̂)) = φi(p̂) > 0.

Therefore, ϕi({p̂}) > 0, and χi(·|p̂) is well defined, and does not put full weight on q =

(1−µj)D(p̂). In particular, there exists µiD(p̂) < q̂ < (1−µj)D(p̂) such that π̄i = πi (p̂, q̂, σj).

By Lemma F, it follows that πi (p̂, q̂, σj) = π−
i (p̂, q̂, σj) = π̄i. Therefore,

π̄i =
(

(p̂− αici)(ϕj([p̂, p
0]) + τj)− (1− αi)ci

)

(q̂ − µiD(p̂)) + µi(p̂− ci)D(p̂)− Ai,

where we have used the fact that firm i receives no residual demand in the contested segment

when firm j prices strictly below p̂. Since π̄i ≥ oi = µi(p
m
i − ci)D(pmi ), we have that
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(

(p̂− αici)(ϕj([p̂, p
0]) + τj)− (1− αi)ci

)

(q̂ − µiD(p̂))

≥ µi

(

(pmi − ci)D(pmi )− (p̂− ci)D(p̂)
)

+ Ai > 0,

implying that (p̂− αici)(ϕj([p̂, p
0]) + τj)− (1− αi)ci > 0. Therefore, by Lemma F,

π̄i ≥ π−
i (p̂, (1− µj)D(p̂), σj),

=
(

(p̂− αici)(ϕj([p̂, p
0]) + τj)− (1− αi)ci

)

(1− µj − µi)D(p̂) + µi(p̂− ci)D(p̂)− Ai,

>
(

(p̂− αici)(ϕj([p̂, p
0]) + τj)− (1− αi)ci

)

(q̂ − µiD(p̂)) + µi(p̂− ci)D(p̂)− Ai,

= πi(p̂, q̂, σj) = π̄i,

which is a contradiction. Hence, φi(p̂) = 0 for i = 1, 2.

By definition of p̂, there exist a firm i ∈ {1, 2} and a strictly decreasing sequence of prices

(p′n)n≥1 such that, p′n −→
n→∞

p̂, and, φi(p
′n) > 0 for every n. Since φi(p̂) = 0, this implies the

existence of a sequence of price-inventory pairs (pn, qn)n≥1 such that pn −→
n→∞

p̂, and for every

n, pn > p̂, µiD(pn) < qn < (1 − µj)D(pn), and π̄i = πi (p
n, qn, σj). Moreover, by Lemma F,

for every n,

π̄i = π−
i (pn, qn, σj) ,

= µi(p
n − ci)D(pn)− Ai +

(

(pn − αici)
(
ϕj

(
[pn, p0]

)
+ τj

)
− (1− αi)ci

)

(qn − µiD(pn))

+ (pn − αici)

∫

p̂<pj<pn

µjD(pj)<qj≤(1−µi)D(pj)

Zi (p
n, pj, q

n − µiD(pn), qj − µjD(pj)) dσj(pj, qj).
31

Lemma F also guarantees that, for every n and q ∈ (µiD(pn), (1− µj)D(pn)],

π̄i ≥ π−
i (pn, q, σj) ,

= µi(p
n − ci)D(pn)− Ai +

(

(pn − αici)
(
ϕj

(
[pn, p0]

)
+ τj

)
− (1− αi)ci

)

(q − µiD(pn))

+ (pn − αci)

∫

p̂<pj<pn

µjD(pj)<qj≤(1−µi)D(pj)

Zi (p
n, pj, q − µiD(pn), qj − µjD(pj)) dσj(pj, qj).

Note that the integral term in the above expression is non-decreasing in q. If (pn − αici)

(ϕj ([p
n, p0]) + τj) − (1 − αi)ci were strictly positive, then π−

i (p
n, q, σj) would be strictly

increasing in q on the interval (µiD(pn), (1− µj)D(pn)]. We would then obtain the following

31The reason why we can integrate over (p̂, pn) instead of [p̂, pn) is the following. Either ϕj({p̂}) =
σj ({p̂} × (µjD(p̂), (1− µi)D(p̂)]) = 0, and that set can be removed from the domain of integration. Or
ϕj({p̂}) > 0, and the above analysis guarantees that χj(·|p̂) puts full weight on qj = (1− µi)D(p̂).
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contradiction:

π̄i = π−
i (pn, qn, σj) < π−

i (pn, (1− µj)D(pn), σj) ≤ π̄i.

Therefore, (pn − αici) (ϕj ([p
n, p0]) + τj)− (1− αi)ci ≤ 0 for every n. Note, however, that

∫

p̂<pj<pn

µjD(pj)<qj≤(1−µi)D(pj)

Zi (p
n, pj, q

n − µiD(pn), qj − µjD(pj)) dσj(pj, qj)

≤

∫

p̂<pj<pn

µjD(pj)<qj≤(1−µi)D(pj)

D(p̂)dσj(pj, qj) = ϕj((p̂, p
n))D(p̂) −→

n→∞
0.

We obtain the following contradiction:

π̄i ≤ µi(p
n − ci)D(pn)− Ai

+ (pn − αici)

∫

p̂<pj<pn

µjD(pj)<qj≤(1−µi)D(pj)

Zi (p
n, pj, q

n − µiD(pn), qj − µjD(pj)) dσj(pj, qj),

−→
n→∞

µi(p̂− ci)D(p̂)− Ai < oi ≤ π̄i.

C Convergence Results Under Complete Information

Throughout this section, we assume that D is continuous at p0. In Section C.1, we provide an

alternative formulation of the constrained game, which will be useful to derive our convergence

results. Section C.2 establishes the continuity of pmi , ri, p̄i, and ki in the parameters of the

model. Propositions 5 and 6 are proved in Sections C.3 and C.4, respectively. The Bertrand-

without-fudge model is discussed in Section C.5.

C.1 An Alternative Formulation

Fix a vector of parameters (c1, c2, α1, α2, µ1, µ2, A1, A2) ∈ (0, p0)2 × [0, 1]2 × [0, 1)2 ×R
2
+ such

that µ1+µ2 < 1. Note that we allow recoverability parameters to be equal to 1, which will be

useful to prove Proposition 6. For every i ∈ {1, 2}, put Ai = {0, 1} ×R
2
+. A typical element

of Ai is (ai, pi, qi), where ai is equal to 1 if firm i pays the advertising cost and to 0 otherwise,

and (pi, qi) is the price-inventory pair chosen by firm i. Let πi(ai, pi, qi, aj, pj, qj) denote firm

i’s payoff in the all-pay oligopoly model with parameters (c1, c2, α1, α2, µ1, µ2, A1, A2), when

firm ι chooses (aι, pι, qι) ∈ Aι (ι ∈ {1, 2}). The normal-form game associated with this all-pay

oligopoly model is G = ({1, 2}, (A1,A2) , (π1, π2)).

The constrained game studied in Section 3.1 can be formally defined as follows. For

i = 1, 2, let Âi = [0, p0] ∪ {out} and

ψ̂i : p̂ ∈ Âi 7→

{

(1, p̂, (1− µj)D(p̂)) if p̂ ∈ [0, p0],

(0, pmi , µiD(pmi )) if p̂ = out.
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Define

π̂i(p̂i, p̂j) = πi

(

ψ̂i(p̂i), ψ̂j(p̂j)
)

, i, j = 1, 2, i 6= j, (p̂i, p̂j) ∈ Âi × Âj.

The constrained game is the normal-form game Ĝ =
(

{1, 2},
(

Â1, Â2

)

, (π̂1, π̂2)
)

.

As discussed in footnote 17, our convergence results turn out to be easier to prove in an

alternative formulation of the constrained game, which we now define formally. For i = 1, 2,

let Ãi = [0, p0], and

ψ̃i : p̃ ∈ Ãi 7→

{

(1, p̃, (1− µj)D(p̃)) if p̃ < p0,

(0, pmi , µiD(pmi )) if p̃ = p0.

Define

π̃i(p̃i, p̃j) = πi

(

ψ̃i(p̃i), ψ̃j(p̃j)
)

, i, j = 1, 2, i 6= j, (p̃i, p̃j) ∈ [0, p0]2.

The auxiliary game is G̃ =
(

{1, 2},
(

Ã1, Ã2

)

, (π̃1, π̃2)
)

.

The constrained game and the auxiliary game differ in only two ways: A firm’s action

set in the constrained game contains the additional element ’out’; In the constrained game,

choosing p̂i = p0 means “paying the advertising cost, setting a price of p0, and sourcing no

inventory,” whereas in the auxiliary game, such a strategy means “not paying the advertising

cost, setting one’s monopoly price, and sourcing enough inventory to supply one’s captive

consumers.” Note, however, that in the constrained game, the pure strategy p̂i = p0 is either

payoff-equivalent to p̂i = out (if Ai = µi = 0), or strictly dominated by p̂i = out. Hence,

firms put no mass on p0 in equilibrium (recall the convention we adopted in footnote 13). For

all intents and purposes, the auxiliary game is therefore equivalent to the constrained game.

Recall that a mixed-strategy equilibrium of the constrained game was defined as a pair

of CDF’s of finite measures (F̂1, F̂2) over [0, p0], with the understanding that 1 − F̂i(p
0) is

the probability that firm i sets p̂i = out. Clearly, there is a one-to-one mapping between the

equilibria of the constrained game and those of the auxiliary game. For a given equilibrium

(F̂1, F̂2) of the constrained game, the associated pair of equilibrium CDF’s (F̃1, F̃2) in the

auxiliary game is:

F̃i(p) =

{

F̂i(p) if p < p0,

1 if p = p0.

In the following, we prove our convergence results in the auxiliary game, and remove the

tildes to ease notation.

C.2 Preliminaries

In this section, we show that pmi , ri, p̄i, and ki continue to be well-defined when α1 and/or

α2 is equal to 1, and we study how these equilibrium objects are affected by small changes

in the parameter vector.
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The set of admissible parameter vectors is

Γ′′ =
{

(c1, c2, α1, α2, µ1, µ2, A1, A2) ∈ (0, p0)2 × [0, 1]2 × [0, 1)2 × R
2
+ : µ1 + µ2 < 1

}

.

In the following, we denote a typical parameter vector by γ ∈ Γ, with the understanding that

c1 is the first component of γ, c2 is the second component, etc.

We now make explicit the dependence of a firm’s winning and losing functions on the

parameters of the model by writing

Wi(p; γ) = (1− µj)(p− ci)D(p)− Ai,

Li(p; γ) = µi(p− ci)D(p)− (1− µi − µj)(1− αi)ciD(p)− Ai,

for every i, j ∈ {1, 2} such that i 6= j, p ∈ [0, p0], and γ ∈ Γ′′. Note that Wi and Li are both

continuous.

Monopoly prices and outside options. For every γ ∈ Γ′′, let Pm
i (γ) be the unique

solution of the maximization problem maxp∈[0,p0](p− ci)D(p). The theorem of the maximum

guarantees that Pm
i is continuous. Firm i’s outside option is:

Oi(γ) = µi(P
m
i (γ)− ci)D(Pm

i (γ)),

which is also a continuous function.

As in Section 3.1, we restrict attention to parameter vectors that belong to the set

Γ′ =
{

γ ∈ Γ′′ : Wi(P
m
i (γ); γ) > Oi(γ), ∀i ∈ {1, 2}

}

.

By continuity of Wi, P
m
i , and Oi, Γ

′ is open relative to Γ.

Reaches. For every γ ∈ Γ′ and i ∈ {1, 2}, define Ri(γ) as the unique p ∈ [0, Pm
i (γ)]

such that Wi(p; γ) = Oi(γ). The continuity of Wi and Oi implies that Ri is continuous.32

Therefore, R = max{R1, R2} is continuous as well.

As in Section 3.1, we further restrict attention to parameter vectors that belong to the

set

Γ =
{

γ ∈ Γ′ : Ri(γ) < Pm
j (γ), ∀i, j ∈ {1, 2} s.t. i 6= j

}

.

Again, the continuity of Ri and P
m
j implies that Γ is open, relative to Γ′′.

32Assume for a contradiction that Ri is not continuous. There exist an ε > 0 and a sequence (γn)n≥1 over Γ
′

such that γn −→
n→∞

γ ∈ Γ′, but |Ri(γ
n)−Ri(γ)| > ε for every n. Since (Ri(γ

n))n≥1 is bounded, we can extract

a subsequence (Ri(γ
′n))n≥1 that converges to some r ∈ [0, p0]. Clearly, r 6= Ri(γ). Since Ri(γ

′n) ≤ Pm
i (γ′n)

for every n, the continuity of Pm
i implies that r ≤ Pm

i (γ). Moreover, since Wi(Ri(γ
′n); γ′n) = Oi(γ

n), the
continuity of Wi, Ri and Oi implies that Wi(r; γ) = Oi(γ). By uniqueness of Ri(γ), it follows that r = Ri(γ),
a contradiction.
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The k functions and the p̄ cutoffs. For every γ ∈ Γ such that αj < 1, define

Ki(p; γ) =

{

0 if p ∈ [0, R(γ)],
Wj(p;γ)−Wj(R(γ);γ)

Wj(p;γ)−Lj(p;γ)
if p ∈ (R(γ), p0).

Note that, for every p ∈ (R(γ), p0),

Ki(p; γ) =
1− µi

1− µi − µj

(
p− cj
p− αjcj

−
(R(γ)− cj)D(R(γ))

(p− αjcj)D(p)

)

. (4)

If R(γ) > cj, then Ki(·, γ) is single-peaked and achieves its global maximum at some

P̄i(γ) ∈ (R(γ), p0), as shown in Lemma C. If instead R(γ) = cj, then µj = 0 and Ki(p; γ) =
p−cj

p−αjcj
for all p ∈ (R(γ), 1). Hence, either αj < 1 and Ki(·; γ) is strictly increasing on

(R(γ), p0), or αj = 1 and Ki(·; γ) is constant and equal to 1 on (R(γ), p0). In the former

case, we set P̄i(γ) = p0. In the latter case, we do not define P̄i(γ). The domain of P̄i is

therefore

Γi =
{

γ ∈ Γ : αj < 1 or R(γ) > cj

}

,

which is an open set. Note that Ki(·; γ) is continuous on [0, p0) whenever γ ∈ Γ̄i.

Convergence properties of Ki. Let (γn)n≥1 be a sequence over Γ that converges to some

γ ∈ Γ. We now argue that (Ki(·; γ
n))n≥1 converges pointwise to Ki(·; γ) on [0, p0) \ {R(γ)}.

To see this, let p ∈ [0, p0). Suppose first that p < R(γ). Since R is continuous, we have that

p < R(γn) for n high enough. Hence,Ki(p; γ
n) = 0 for p high enough, and limn→∞Ki(p; γ

n) =

0 = Ki(p; γ). Next, suppose that p > R(γ). Then, by continuity of R, p > R(γn) for n high

enough. Taking limits in equation (4), we obtain that limn→∞Ki(p; γ
n) = Ki(p; γ).

Continuity of P̄i. We now show that P̄i is continuous on its domain Γi. Let (γn)n≥1 be

a sequence over Γ̄i that converges to some γ ∈ Γ̄i. Let R(γ) < p̂ < P̄i(γ). We show that

P̄i(γ
n) > p̂ for n sufficiently high. Let p̌ ∈ (p̂, P̄i(γ)). Then, Ki(p̌; γ) > Ki(p̂; γ). Since

limn→∞Ki(p̌; γ
n) = Ki(p̌; γ) and limn→∞Ki(p̂; γ

n) = Ki(p̂; γ), it follows that Ki(p̌; γ
n) >

Ki(p̂; γ
n) for n high enough. The uni-modality of Ki(·; γ

n) implies that p̂ < P̄i(γ
n) for n high

enough. The same line of reasoning implies that, for every p > P̄i(γ), there exists N ≥ 1

such that p > P̄i(γ
n) for every n ≥ N . It follows that P̄i(γ

n) −→
n→∞

P̄i(γ), and that P̄i is

continuous.

More on the convergence properties of Ki. Let (γn)n≥1 be a sequence over Γ that

converges to some γ ∈ Γ. We now show that, if γ ∈ Γ̄i, then limn→∞Ki(R(γ); γ
n) =

Ki(R(γ); γ) = 0. Let ε ∈
(
0, Ki(P̄i(γ); γ)

)
. The continuity and monotonicity properties

of Ki(·; γ) imply the existence of a price p ∈ (R(γ), P̄i(γ)) such that Ki(p; γ) = ε
2
. Since

limn→∞Ki(p; γ
n) = Ki(p; γ), we have that Ki(p; γ

n) ∈ (0, ε) for n high enough. Moreover,
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since limn→∞ P̄i(γ
n) = P̄i(γ), we also have that P̄i(γ

n) > p for n high enough. Therefore,

by uni-modality of Ki(·; γ
n), 0 ≤ Ki(R(γ); γ

n) < ε for n high enough. This proves that

limn→∞Ki(R(γ); γ
n) = Ki(R(γ); γ) = 0.

We summarize our findings in the following lemma:

Lemma G. The following holds:

• R, Pm
i , and Ri (i ∈ {1, 2}) are continuous on Γ. Moreover, P̄i (i ∈ {1, 2}) is continuous

on Γ̄i.

• If the sequence (γn)n≥1 converges to γ ∈ Γ, then, for i = 1, 2, (Ki(·; γ
n))n≥1 converges

pointwise to Ki(·; γ) on [0, p0) \ {Ri(γ)}. If, in addition, γ ∈ Γ̄i, then (Ki(·; γ
n))n≥1

converges pointwise to Ki(·; γ) on [0, p0).

C.3 Proof of Proposition 5

The proposition is proven using the auxiliary game of Section C.1 and the notation and

results of Section C.2.

Proof. Let (γn)n≥1 be a sequence that converges to γ = (c, c, α, α, 0, 0, 0, 0), with c ∈ (0, p0)

and α ∈ [0, 1). Let (F ∗
1 , F

∗
2 ) be the equilibrium of the limiting game. Recall from Proposi-

tion 1 that F ∗
i (p) = Ki(p; γ) for every p < p0. For every n, let (F n

1 , F
n
2 )n≥0 be a constrained

equilibrium of the all-pay oligopoly game with parameter vector γn. By Propositions 2 and A,

for i ∈ {1, 2}, F n
i (p) = Ki(p; γ

n) for every p ∈ [0, P̄i(γ
n)).

Let p ∈ [0, p0). Since γ ∈ Γ̄i, Lemma G implies that P̄i(γ
n) −→

n→∞
P̄i(γ) = p0. Therefore,

p < P̄i(γ
n) and F n

i (p) = Ki(p; γ
n) for n high enough. By Lemma G,

F n
i (p) = Ki(p; γ

n) −→
n→∞

Ki(p; γ) = F ∗
i (p).

We have just shown that (F n
i )n≥0 converges pointwise to F ∗

i at every point of continuity of

F ∗
i . It follows that (F

n
i )n≥0 converges weakly to F ∗

i .

C.4 Proof of Proposition 6

The proof relies on the auxiliary game of Section C.1, and uses the notation and results of

Section C.2. Before proving the proposition, we first define genericity in this context: We

say that a vector of parameters γ ∈ Γ is generic if c1 6= c2, R1(γ) 6= R2(γ), and R(γ) > ci for

i = 1, 2. (Note that this definition does not depend on (α1, α2), as Ri does not depend on

the value of the recoverability parameters.)

Proof. Let (γn)n≥1 be a sequence that converges to a generic vector of parameters γ =

(c1, c2, 1, 1, µ1, µ2, A1, A2) ∈ Γ. Suppose R1(γ) < R2(γ) and α
n
1 , α

n
2 < 1 for every n. For every
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n, let (F n
1 , F

n
2 )n≥0 be a constrained equilibrium of the all-pay oligopoly game with parameter

vector γn.

Note that, for every p ∈ (R(γ), p0),

Ki(p; γ) =
1− µi

1− µi − µj

(

1−
(R(γ)− cj)D(R(γ))

(p− cj)D(p)

)

.

MaximizingKi(·; γ) is therefore equivalent to maximizing (p−cj)D(p). It follows that P̄i(γ) =

Pm
j (γ).

Assume first that c1 < c2, so that P̄1(γ) = Pm
2 (γ) > Pm

1 (γ) = P̄2(γ). By Lemma G,

limn→∞Ri(γ
n) = Ri(γ) and limn→∞ P̄i(γ

n) = P̄i(γ) for i = 1, 2. Hence, for n high enough,

we have that R1(γ
n) < R2(γ

n) and P̄2(γ
n) < P̄1(γ

n). By Proposition 2, for every p < p0,

F n
1 (p) =

{

K1(p; γ
n) if p < P̄2(γ

n),

1 otherwise,
and F n

2 (p) =

{

K2(p; γ
n) if p < P̄2(γ

n),

K2(P̄2(γ
n); γn) otherwise.

Let p < P̄2(Γ). Then, p < P̄2(γ
n) for n high enough. Hence, using Lemma G, F n

1 (p) =

K1(p; γ
n) −→

n→∞
K1(p; γ). The same line of reasoning implies that F n

1 (p) −→
n→∞

1 if p > P̄2(γ).

Hence, (F n
1 )n≥1 converges pointwise to

F1(p) =

{

K1(p; γ) if p < P̄2(γ),

1 otherwise,

at every point of continuity of F1. It follows that (F
n
1 )n≥1 converges weakly to F1.

Next, we turn our attention to the sequence (F n
2 )n≥1. We first argue that K2 is continuous

on a neighborhood of (P̄2(γ), γ). To see this, let ε > 0. By continuity of R, there exists a neig-

hborhood V of γ such that R(γ̃) < P̄2(γ)− ε for every γ̃ ∈ V . Put V ′ =
(
P̄2(γ)− ε, p0

)
× V .

Then, for every (p, γ̃) ∈ V ′, K2(p; γ̃) is given by equation (4), which is clearly continuous

in (p, γ̃). Hence, K2 is continuous on V ′. Since (P̄2(γ
n), γn) −→

n→∞
(P̄2(γ), γ), it follows that

(P̄2(γ
n), γn) ∈ V ′ for n high enough. By continuity, it follows that K2(P̄2(γ

n); γn) −→
n→∞

K2(P̄2(γ), γ). Combining this with the argument used in the previous paragraph, we imme-

diately obtain that (F n
2 )n≥1 converges pointwise to

F2(p) =

{

K2(p; γ) if p < P̄2(γ),

K2(P̄2(γ), γ) otherwise

on [0, p0) \ {P̄2(γ)}.

All that is left to do now is show that F n
2 (P̄2(γ)) −→

n→∞
F2(P̄2(γ)). Partition the set of

positive integers into N = {n ≥ 1 : P̄2(γ
n) ≤ P̄2(γ)} and N ′ = {n ≥ 1 : P̄2(γ

n) > P̄2(γ)}.

If N is infinite, then let φ be the strictly increasing bijection from {1, 2, . . .} to N . (If N is
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finite, there is nothing to prove.) For every n ≥ 1,

F
φ(n)
2 (P̄2(γ)) = K2(P̄2(γ

φ(n)), γφ(n)) −→
n→∞

K2(P̄2(γ), γ) = F2(P̄2(γ)).

Similarly, if N ′ is infinite, let ζ be the strictly increasing bijection from {1, 2, . . .} to N ′. For

every n ≥ 1,

F
ζ(n)
2 (P̄2(γ)) = K2(P̄2(γ), γ

ζ(n)) −→
n→∞

K2(P̄2(γ), γ) = F2(P̄2(γ)).

Therefore, F n
2 (P̄2(γ)) −→

n→∞
F2(P̄2(γ)), and (F n

2 )n≥1 converges weakly to F2.

It is then straightforward to check that (F1, F2) is an equilibrium of the game with para-

meter vector γ.

Next, assume that c1 > c2, so that P̄1(γ) = Pm
2 (γ) < Pm

1 (γ) = P̄2(γ). By Lemma G,

limn→∞Ri(γ
n) = Ri(γ) and limn→∞ P̄i(γ

n) = P̄i(γ) for i = 1, 2. Hence, for n high enough,

we have that R1(γ
n) < R2(γ

n) and P̄2(γ
n) > P̄1(γ

n). By Proposition 2, for every p < p0,

F n
1 (p) =







K1(p; γ
n) if p < P̄1(γ

n),

K1(P̄1(γ
n); γn) if p ∈ [P̄1(γ

n), P̄2(γ
n)),

1 otherwise,

and

F n
2 (p) =

{

K2(p; γ
n) if p < P̄1(γ

n),

K2(P̄2(γ
n); γn) if p ≥ P̄1(γ

n).

Define, for every p < p0,

F1(p) =







K1(p; γ) if p < P̄1(γ),

K1(P̄1(γ); γ) if p ∈ [P̄1(γ), P̄2(γ)),

1 otherwise,

and

F2(p) =

{

K2(p; γ) if p < P̄1(γ),

K2(P̄2(γ); γ) if p ≥ P̄1(γ).

The techniques employed in the first part of the proof can be used to show that: Ki is

continuous in a neighborhood of (P̄i(γ), γ) (i = 1, 2); Ki(P̄i(γ
n); γn) −→

n→∞
Ki(P̄i(γ), γ) (i =

1, 2); (F n
1 )n≥1 converges pointwise to F1 on [0, p0) \ {P̄2(γ)}; (F

n
2 )n≥1 converges pointwise to

F2 on [0, p0) \ {P̄1(γ)}. It follows that (F
n
i )n≥1 converges weakly to Fi for i = 1, 2.

It is then straightforward to check that (F1, F2) is an equilibrium of the game with para-

meter vector γ.
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C.5 Bertrand Without Fudge

Since the standard model of Bertrand competition with heterogeneous marginal costs dis-

cussed in Section 3.3 is non-generic, we cannot apply Proposition 6 to study Bertrand con-

vergence. It is, however, straightforward to adapt the argument in Section C.4 to establish

convergence manually. This section relies on the alternative formulation of Section C.1, and

use the notation and results of Section C.2.

Consider the following sequence of parameters: For every n ≥ 1, γn = (c1, c2, α
n
1 , α

n
2 , 0, 0,

0, 0) with 0 < c1 < c2 < p0 and αn
1 , α

n
2 < 1. Suppose that αn

i −→
n→∞

1 for i = 1, 2, and

let γ = (c1, c2, 1, 1, 0, 0, 0, 0). Then, Ri(γ
n) = Ri(γ) = ci for every n ≥ 1 and i ∈ {1, 2}.

Moreover, for every n ≥ 1, i ∈ {1, 2}, and p ∈ (c2, p
0),

K1(p; γ
n) =

p− c2
p− αn

2c2
, and K2(p; γ

n) =
p− c1
p− αn

1c1
−

(c2 − c1)D(c2)

(p− αn
1c1)D(p)

.

It follows that P̄1(γ
n) = p0 and P̄2(γ

n) ∈ (c2, p
0) for every n. Since γ ∈ Γ̄2, Lemma G implies

that P̄2(γ
n) −→

n→∞
P̄2(γ) = Pm

1 (γ).

By Proposition 2, the equilibrium profile of CDF’s given the vector of parameters γn is

given by:

F n
1 (p) =







0 if p < c2,
p−c2

p−αn
2
c2

if p ∈ [c2, P̄2(γ
n)),

1 if p ∈ [P̄2(γ
n), p0),

and

F n
2 (p) =







0 if p < c2,
p−c1

p−αn
1
c1
− (c2−c1)D(c2)

(p−αn
1
c1)D(p)

if p ∈ [c2, P̄2(γ
n)),

P̄2(γn)−c1
P̄2(γn)−αn

1
c1
− (c2−c1)D(c2)

(P̄2(γn)−αn
1
c1)D(P̄2(γn))

if p ∈ [P̄2(γ
n), p0).

It is straightforward to adapt the techniques used in the previous subsections to show that,

for i = 1, 2, (F n
i )n≥0 converges weakly to Fi, where

F1(p) =

{

0 if p < c2,

1 if p ∈ [c2, p
0),

and

F2(p) =







0 if p ≤ c2,

1− (c2−c1)D(c2)
(p−c1)D(p)

if p ∈ [c2, p
m
1 ),

pm
1
−c1

pm
1
−αn

1
c1
− (c2−c1)D(c2)

(pm
1
−c1)D(pm

1
)

if p ∈ [pm1 , p
0).

Moreover, (F1, F2) is a Nash equilibrium of the game with parameter vector γ.

Note that firm 1 is indifferent between all the prices in [c2, p
m
1 ). If firm 2 were to price less

aggressively somewhere in that interval, then firm 1 would have a strictly profitable deviation.
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Among the mixed-strategy equilibria identified by Blume (2003) and Kartik (2011), (F1, F2)

is therefore the equilibrium in which firm 2 is the least aggressive in its randomization.

D Proof of Proposition 9

Proof. Let F ∈ F . We first define a number of cumulative distribution functions, which will

be useful to reexpress social welfare. Define

F− : p ∈ [0, p0] 7→ F−(p) =

{

F (p) if p < p0,

limp′↑p0 F (p
′) if p = p0,

and

D− : p ∈ [0, p0] 7→ D−(p) =

{

D(p) if p < p0,

limp′↑p0 D(p′) if p = p0.

(The limits exist, as F and D are monotone.) Note that D− is continuous on [0, p0]. Let

G(p) = 1−(1−F (p))2 and G−(p) = 1−(1−F−(p))2 be the cumulative distributions functions

of the minimum price, based on the cumulative distribution functions F and F−, respectively.

Similarly, let H(p) = F (p)2 and H−(p) = F−(p)2 be the cumulative distributions functions of

the maximum price, based on the cumulative distribution functions F and F−, respectively.

Finally, define

Ψ : p ∈ [0, p0] 7→ D(0)−D−(p).

Ψ is continuous, bounded, non-decreasing and non-negative. Therefore, Ψ is the cumulative

distribution function of some finite measure on [0, p0].

Expected social welfare is equal to expected consumer gross utility (U) plus expected total

costs (C) minus expected recoverable costs (R). We first use Fubini’s theorem to obtain a

useful expression for expected total costs:

C = 2c

∫

[0,p0)

D(p)dF (p),

= 2c

∫ p0

0

D−(p)dF−(p),

= 2c

(
∫ p0

0

(D(0)−Ψ(p))dF−(p)

)

,

= 2c

(

F−(p0)D(0)−

∫ p0

0

(∫ p

0

dΨ(t)

)

dF−(p)

)

,

= 2c

(

F−(p0)D(0)−

∫ p0

0

(
∫ p0

t

dF−(p)

)

dΨ(t)

)

, by Fubini’s theorem,
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= 2c

(

F−(p0)D(0)−

∫ p0

0

(
F−(p0)− F−(t)

)
dΨ(t)

)

, 33

= 2c

(

F−(p0)(D(0)−Ψ(p0)) +

∫ p0

0

F−(t)dΨ(t)

)

,

= 2c

(

F−(p0)D−(p0) +

∫

[0,p0)

F (t)dΨ(t)

)

.

Expected recoverable costs can be simplified in a similar way:

R = αc

∫

[0,p0)

D(p)dH(p),

= αc

(

H−(p0)D−(p0) +

∫

[0,p0)

H(t)dΨ(t)

)

.

Next, we rewrite gross consumer utility at price p:

U(p) =

∫ p0

p

D(t)dt+ pD(p),

= D(0)(p0 − p)−

∫ p0

p

Ψ(t)dt+ p(D(0)−Ψ(p)),

= p0D(0)− pΨ(p)−

∫ p0

p

(∫ t

p

dΨ(x) + Ψ(p)

)

dt,

= p0D(0)− pΨ(p)− (p0 − p)Ψ(p)−

∫ p0

p

(
∫ p0

x

dt

)

dΨ(x), by Fubini’s theorem,

= p0D(0)− p0Ψ(p)− p0(Ψ(p0)−Ψ(p)) +

∫ p0

p

xdΨ(x),

= p0D(0)− p0Ψ(p0) +

∫ p0

p

xdΨ(x),

= p0D−(p0) +

∫ p0

p

xdΨ(x).

33Note that
∫ p0

t

dF−(p) = F−(p0)− lim
x↑t

F (x).

Since F is monotone, the set of t’s such that limx↑t F (x) 6= F (t) is at most countable. Since Ψ is continuous,
the measure associated with Ψ assigns no weight to that set. Therefore,

∫ p0

0

(
F−(p0)− F−(t)

)
dΨ(t) =

∫ p0

0

(

F−(p0)− lim
x↑t

F (x)

)

dΨ(t).
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Therefore, expected consumer gross utility is given by:

U =

∫

[0,p0)

U(p)dG(p),

=

∫ p0

0

(

p0D−(p0) +

∫ p0

p

xdΨ(x)

)

dG−(p),

= p0D−(p0)G−(p0) +

∫ p0

0

(∫ x

0

dG−(p)

)

xdΨ(x),

= p0D−(p0)G−(p0) +

∫ p0

0

xG−(x)dΨ(x),

= p0D−(p0)G−(p0) +

∫

[0,p0)

xG(x)dΨ(x).

Putting things together, we obtain expected social welfare:

W (F ) =
(
p0G−(p0)− 2cF−(p0) + αcH−(p0)

)
D−(p0)

+

∫

[0,p0)

(pG(p)− 2cF (p) + αcH(p)) dΨ(p),

=
(
p0(1− (1− F−(p0))2)− 2cF−(p0) + αcF−(p0)2

)
D−(p0)

+

∫

[0,p0)

(
p(1− (1− F (p))2)− 2cF (p) + αcF (p)2

)
dΨ(p),

= Φ(p0, F−(p0))D−(p0) +

∫

[0,p0)

Φ(p, F (p))dΨ(p),

where

Φ(p, F ) ≡ p(1− (1− F )2)− 2cF + αcF 2, ∀(p, F ) ∈ R+ × [0, 1].

It is straightforward to show that, for every p ∈ [0, p0],

arg max
F∈[0,1]

Φ(p, F ) =







{0} if p ≤ c,
{

p−c

p−αc

}

if p ∈ (c, p0].

It follows that, for every policy F ∈ F ,

W (F ) = Φ(p0, F−(p0))D−(p0) +

∫

[0,p0)

Φ(p, F (p))dΨ(p),

≤ Φ

(

p0,
p0 − c

p0 − αc

)

D−(p0) +

∫

[c,p0)

Φ

(

p,
p− c

p− αc

)

dΨ(p),

= Φ
(
p0, F ∗−(p0)

)
D−(p0) +

∫

[0,p0)

Φ
(
p, F ∗−(p)

)
dΨ(p),

= W (F ∗).

50



Next, we argue that F ∗ is the only optimal policy whenever D is strictly decreasing. Let

F ∈ F . Since D is strictly decreasing, Ψ(p) < Ψ(p′) for every p < p′ < p0. Therefore, the

measure associated with Ψ assigns a positive weight to every non-degenerate interval. Assume

that F (p̂) 6= F ∗(p̂) for some p̂ < p0. If F (p̂) > F ∗(p̂), then, since F is non-decreasing and F ∗

is continuous on [0, p0), there exists ε > 0 such that F (p) > F ∗(p) for every p ∈ (p̂, p̂+ ε). It

follows that Φ(p, F (p)) < Φ(p, F ∗(p)) for every p ∈ (p̂, p̂ + ε). Since Ψ puts strictly positive

weight on that interval, this implies that W (F ) < W (F ∗), i.e., F is not optimal. Next,

assume instead that F (p̂) < F ∗(p̂). Then, by monotonicity of F and continuity of F ∗, there

exists ε > 0 such that F (p) < F ∗(p) for every p ∈ (p̂ − ε, p̂). Again, this implies that F is

not optimal.

References

Amann, E., and W. Leininger (1996): “Asymmetric All-Pay Auctions with Incomplete

Information: The Two-Player Case,” Games and Economic Behavior, 14(1), 1–18.

Anderson, S., A. Baik, and N. Larson (2015): “Personalized pricing and advertising:

An asymmetric equilibrium analysis,” Games and Economic Behavior, 92(C), 53–73.

Arnold, M., C. Li, C. Saliba, and L. Zhang (2011): “Asymmetric market shares, ad-

vertising and pricing: Equilibrium with an information gatekeeper,” Journal of Industrial

Economics, 59(1), 63–84.

Baye, M., D. Kovenock, and C. de Vries (1992): “It takes two to tango: Equilibria in

a model of sales,” Games and Economic Behavior, 4(4), 493–510.

(1993): “Rigging the Lobbying Process: An Application of the All-Pay Auction,”

American Economic Review, 83(1), 289–94.

Baye, M. R., and J. Morgan (2001): “Information Gatekeepers on the Internet and the

Competitiveness of Homogeneous Product Markets,” American Economic Review, 91(3),

454–474.

Belleflamme, P., and M. Peitz (2010): Industrial Organization: Markets and Strategies.

Cambridge University Press.

Bernstein, F., and A. Federgruen (2004): “A General Equilibrium Model for Industries

with Price and Service Competition,” Operations Research, 52(6), 868–886.

(2007): “Coordination Mechanisms for Supply Chains Under Price and Service

Competition,” Manufacturing & Service Operations Management, 9(3), 242–262.

Billingsley, P. (2012): Probability and Measure. John Wiley & Sons, Hoboken, 4th edn.

51



Blanchard, O. (1983): “The Production and Inventory Behavior of the American Auto-

mobile Industry,” Journal of Political Economy, 91(3), 365–400.

Blinder, A. S. (1986): “Can the Production Smoothing Model of Inventory Behavior be

Saved?,” The Quarterly Journal of Economics, 101(3), 431–453.

Blume, A. (2003): “Bertrand without fudge,” Economics Letters, 78(2), 167–168.

Border, K. C. (1996): “Integration and Differentiation,” Lecture notes.

Butters, G. R. (1977): “Equilibrium Distributions of Sales and Advertising Prices,” Re-

view of Economic Studies, 44(3), 465–491.

Che, Y.-K., and I. L. Gale (1998): “Caps on Political Lobbying,” The American Econo-

mic Review, 88(3), 643–651.

(2006): “Caps on Political Lobbying: Reply,” American Economic Review, 96(4),

1355–1360.

Chen, F., Z. Drezner, J. K. Ryan, and D. Simchi-Levi (2000): “Quantifying the

Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and

Information,” Management Science, 46(3), 436–443.

Chowdhury, S. M. (2017): “The All-Pay Auction with Nonmonotonic Payoff,” Southern

Economic Journal, 84(2), 375–390.

Cohen, C., T. Kaplan, and A. Sela (2008): “Optimal rewards in contests,” RAND

Journal of Economics, 39(2), 434–451.

Davidson, C., and R. Deneckere (1986): “Long-Run Competition in Capacity, Short-

Run Competition in Price, and the Cournot Model,” RAND Journal of Economics, 17(3),

404–415.

De Nijs, R. (2012): “Further results on the Bertrand game with different marginal costs,”

Economics Letters, 116(3), 502–503.

Deneckere, R., and J. Peck (1995): “Competition Over Price and Service Rate When

Demand is Stochastic: A Strategic Analysis,” RAND Journal of Economics, 26(1), 148–

162.

Deneckere, R. J., and D. Kovenock (1996): “Bertrand-Edgeworth duopoly with unit

cost asymmetry,” Economic Theory, 8(1), 1–25.

Fabinger, M., and E. G. Weyl (2012): “Pass-Through and Demand Forms,” mimeo.

52



Gertner, R. H. (1986): “Simultaneous move price-quantity games and equilibrium without

market clearing,” in “Essays in Theoretical Industrial Organization,” Ph.D. dissertation,

Massachusetts Institute of Technology.

Grossman, G. M., and C. Shapiro (1984): “Informative Advertising with Differentiated

Products,” Review of Economic Studies, 51(1), 63–81.

Hammond, J. H. (1994): “Barilla SpA (A),” Harvard Business School Case 694-046.

Hansen, R. G. (1988): “Auctions with Endogenous Quantity,” RAND Journal of Econo-

mics, 19(1), 44–58.

Harsanyi, J. C. (1973): “Games with randomly disturbed payoffs: A new rationale for

mixed-strategy equilibrium points,” International Journal of Game Theory, 2(1), 1–23.

Kahn, J. A. (1987): “Inventories and the Volatility of Production,” American Economic

Review, 77(4), 667–679.

Kaplan, T., I. Luski, A. Sela, and D. Wettstein (2002): “All-Pay Auctions with

Variable Rewards,” Journal of Industrial Economics, 50(4), 417–430.

Kaplan, T. R., I. Luski, and D. Wettstein (2003): “Innovative activity and sunk

cost,” International Journal of Industrial Organization, 21(8), 1111 – 1133.

Kaplan, T. R., and D. Wettstein (2006): “Caps on Political Lobbying: Comment,”

American Economic Review, 96(4), 1351–1354.

Kartik, N. (2011): “A note on undominated Bertrand equilibria,” Economics Letters,

111(2), 125–126.

Kreps, D., and J. Scheinkman (1983): “Quantity Precommitment and Bertrand Com-

petition Yield Cournot Outcomes,” Bell Journal of Economics, 14(2), 326–337.

Krishna, V., and J. Morgan (1997): “An Analysis of the War of Attrition and the

All-Pay Auction,” Journal of Economic Theory, 72(2), 343–362.

Lang, K., and R. W. Rosenthal (1991): “The Contractors’ Game,” The RAND Journal

of Economics, 22(3), 329–338.

Lebrun, B. (1999): “First Price Auctions in the Asymmetric N Bidder Case,” International

Economic Review, 40(1), 125–42.

(2006): “Uniqueness of the equilibrium in first-price auctions,” Games and Econo-

mic Behavior, 55(1), 131–151.

Lee, H. L., V. Padmanabhan, and S. Whang (1997a): “The Bullwhip Effect in Supply

Chains,” Sloan Management Review, 38(3), 93–102.

53



(1997b): “Information Distortion in a Supply Chain: The Bullwhip Effect,” Mana-

gement Science, 43(4), 546–558.

Levitan, R., and M. Shubik (1978): “Duopoly with price and quantity as strategic vari-

ables,” International Journal of Game Theory, 7(1), 1–11.

Marquez, R. (1997): “A note on Bertrand competition with asymmetric fixed costs,”

Economics Letters, 57(1), 87–96.

Maskin, E. (1986): “The Existence of Equilibrium with Price-Setting Firms,” American

Economic Review, 76(2), 382–86.

Maskin, E., and J. Riley (2000): “Equilibrium in Sealed High Bid Auctions,” Review of

Economic Studies, 67(3), 439–454.

(2003): “Uniqueness of equilibrium in sealed high-bid auctions,” Games and Eco-

nomic Behavior, 45(2), 395–409.

Moldovanu, B., and A. Sela (2001): “The Optimal Allocation of Prizes in Contests,”

American Economic Review, 91(3), 542–558.

(2006): “Contest architecture,” Journal of Economic Theory, 126(1), 70–96.

Narasimhan, C. (1988): “Competitive Promotional Strategies,” The Journal of Business,

61(4), 427–449.

Plum, M. (1992): “Characterization and Computation of Nash-Equilibria for Auctions with

Incomplete Information,” International Journal of Game Theory, 20(4), 393–418.

Ramey, V. A. (1991): “Nonconvex Costs and the Behavior of Inventories,” Journal of

Political Economy, 99(2), 306–334.

Riley, J., and W. F. Samuelson (1981): “Optimal Auctions,” American Economic Re-

view, 71(3), 381–92.

Rudin, W. (1976): Principles of mathematical analysis. McGraw-Hill Book Co., New York,

third edn., International Series in Pure and Applied Mathematics.

Sharkey, W., and D. S. Sibley (1993): “A Bertrand model of pricing and entry,” Eco-

nomics Letters, 41(2), 199–206.

Shelegia, S., and C. M. Wilson (2016): “A generalized model of sales,” Economics

Working Papers 1541, Department of Economics and Business, Universitat Pompeu Fabra.

Siegel, R. (2009): “All-Pay Contests,” Econometrica, 77(1), 71–92.

54



(2010): “Asymmetric Contests with Conditional Investments,” American Economic

Review, 100(5), 2230–2260.

(2014a): “Asymmetric Contests with Head Starts and Nonmonotonic Costs,” Ame-

rican Economic Journal: Microeconomics, 6(3), 59–105.

(2014b): “Contests with productive effort,” International Journal of Game Theory,

43(3), 515–523.

Spulber, D. (1995): “Bertrand Competition When Rivals’ Costs Are Unknown,” Journal

of Industrial Economics, 43(1), 1–11.

Tasnadi, A. (2004): “Production in advance versus production to order,” Journal of Eco-

nomic Behavior & Organization, 54(2), 191–204.

Teschl, G. (2012): Ordinary Differential Equations and Dynamical Systems, Graduate

studies in mathematics. American Mathematical Society.

Thomas, C. J. (2002): “The effect of asymmetric entry costs on Bertrand competition,”

International Journal of Industrial Organization, 20(5), 589 – 609.

Tirole, J. (1987): The Theory of Industrial Organization. Cambridge, MA: MIT Press.

Varian, H. R. (1980): “A Model of Sales,” American Economic Review, 70(4), 651–659.

Weber, R. (1985): “Auctions and competitive bidding,” in Proceedings of Symposia in

Applied Mathematics, vol. 33, pp. 143–170.

Zhao, X., and D. R. Atkins (2008): “Newsvendors Under Simultaneous Price and Inven-

tory Competition,” Manufacturing & Service Operations Management, 10(3), 539–546.

55


