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Leaning AgainstHousing Prices As RobustlyOptimal Monetary Policy�Klaus Adam , University of MannheimMichael Woodford, Columbia UniversityMay 15, 2018
AbstractWe analytically characterize optimal monetary policy for an augmented New Key-nesian model with a housing sector. In a setting where the private sector has rationalexpectations about future housing prices and in�ation, optimal monetary policy can becharacterized without making reference to housing price developments: commitment toa �target criterion� that refers to in�ation and the output gap only is optimal, as in thestandard model without a housing sector. When the policymaker is concerned with po-tential departures of private sector expectations from rational ones and seeks to choose apolicy that is robust against such possible departures, then the optimal target criterionmust also depend on housing prices. In the empirically realistic case where housing issubsidized and where monopoly power causes output to fall short of its optimal level,the robustly optimal target criterion requires the central bank to �lean against� housingprices: following unexpected housing price increases, policy should adopt a stance thatis projected to undershoot its normal targets for in�ation and the output gap, and simi-larly aim to overshoot those targets in the case of unexpected declines in housing prices.The robustly optimal target criterion does not require that policy distinguish between�fundamental� and �non-fundamental� movements in housing prices.JEL Class. No: D81, D84, E52
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1 IntroductionThe question of how (if at all) asset price movements should be taken into account in a centralbank�s interest-rate policy decisions has been much debated since at least the 1990s.1 Theimportance of the issue has become even more evident after the fallout for the global economyof the recent real estate booms and busts in the US and several other countries, which at leastsome attribute to monetary policy decisions that failed to take account of the consequences forthe housing market.2Yet the issue is not easily addressed using standard frameworks for monetary policy analy-sis. One reason is that it is often supposed that large movements in asset prices are particularlyproblematic when they are not justi�ed by economic �fundamentals,� but instead represent mis-taken valuations resulting from mistaken expectations.3 An analysis that evaluates alternativemonetary policies under the assumption that the outcome resulting from each candidate policywill be a rational-expectations equilibrium assumes that there can never be any misallocationof resources due to speculative mispricing of assets, regardless of the monetary policy that ischosen. Such an analysis will accordingly conclude that there is no need for a central bank tomonitor or respond to signs of such mispricing � but by assuming away the problem.Some analyses of the question have accordingly allowed for potential departures of assetprices from �fundamental� values, introducing an expectational error term in the asset pric-ing equation that is speci�ed as an exogenous stochastic process (e.g., Bernanke and Gertler(1999, 2001), Galí (2014)). But conclusions from such analyses depend on what is assumedabout the nature of expectational errors, and not only on what is assumed about the prob-ability distribution of errors under some given policy (perhaps the kind of policy that hashistorically been implemented), but also, crucially on what is assumed about how the probabil-ity distribution of errors would di¤er under each alternative policy that may be contemplated.Yet there is little basis for con�dence about the correctness of a particular choice in this regard.Here we propose a di¤erent approach to the problem. We do not assume that expectationsmust necessarily be model-consistent, but we do not assume that expectational errors must beof any speci�c type that can be predicted in advance, either; rather, we associate with anycontemplated policy a set of possible probability beliefs, that includes all possible (internallycoherent) probability beliefs that are not too di¤erent from those predicted by one�s model, inthe case of that policy and those beliefs. This is the hypothesis of �near-rational expectations�(NRE) introduced in Woodford (2010).This makes the set of possible private-sector beliefs contemplated by the policy analysisdependent on the particular policy that is adopted, as in the case of the rational expectationshypothesis. In particular, beliefs are treated as possible if it would not be too easy to discon�rmthem using observed data from the equilibrium of the model, and whether this is so will dependon policy. But the set of beliefs that are considered will include ones that result in assetvaluations di¤erent from the ones that will be judged correct according to the policy analyst�smodel; hence the policy analyst will consider the possibility of equilibria in which assets are mis-priced, and will therefore consider the consequences of responding to such asset price movementsin di¤erent ways.Because the set of possible �near-rational� beliefs associated with any given policy includesmany elements, analysis of the kind proposed here will not associate a single predicted pathfor the economy (contingent on the realized values of exogenous shocks) with a given policy. Itmay therefore be wondered how welfare comparisons of alternative policies are possible. Our1See, for example, Bernanke and Gertler (1999, 2001), Gilchrist and Leahy (2002), Christiano et al. (2010)2For example, Taylor (2007) or Adam, Marcet and Kuang (2012).3Adam, Marcet and Beutel (2017) show that stock market investors� expectations are mistaken, in the sensethat they display periods of over-optimism and over-pessimism.1



proposal, in the spirit of the robust policy analysis of Hansen and Sargent (2008), is to choose apolicy that achieves the highest possible lower bound for expected utility of the representativehousehold, across all of the equilibria with �near-rational� expectations consistent with thatpolicy.4 We call a solution to this problem a �robustly optimal� policy rule.We wish to consider the problem of robustly optimal policy within as broad a class ofpossible policy rules as possible; in particular, we do not wish to prejudge questions such asthe way in which the policy rule may involve systematic response to housing-related variablesor to indicators of market expectations. Our earlier paper without a housing sector (Adamand Woodford (2012)) shows how it is possible to characterize robustly optimal policy ruleswithout restricting oneself a priori to some simple parametric family of policy rules. The basicidea is that one can in a �rst step derive an upper bound for the maximin level of welfare that ispotentially achievable under any policy rule. This upper-bound welfare level can be determinedwithout making reference to any speci�c class of policy rules. In a second step, one can thendisplay examples of policy rules that achieve this upper-bound outcome.Here we generalize our earlier approach in a number of ways. First, we present a Lagrangiancharacterization of the upper-bound dynamics that makes it easier to verify that given dynamicssolve the upper-bound problem. Second, we extend the New Keynesian DSGE model used inour earlier analysis to include an endogenous housing supply, and equilibrium �uctuations inhouse prices. Third, we generalize our earlier approach by allowing for larger belief distortions,i.e., for distortions which a¤ect the equilibrium dynamics of in�ation and housing prices to �rstorder. In Adam and Woodford (2012), belief distortions a¤ected the equilibrium dynamics fora given monetary policy only to second order. While this complicates the solution approach5,we show how one can nevertheless derive analytical expressions characterizing optimal policy.We are especially interested in a particular way of specifying the policy rule, in which thecentral bank commits itself to ful�ll a quantitative target criterion at all times.6 Under thiscommitment it uses its policy instrument at each point in time as necessary in order to ensurethat the paths of various endogenous variables satisfy the relationship speci�ed by the targetcriterion. In a basic New Keynesian model without a housing sector and under the assumptionof rational expectations,the optimal policy commitment can be characterized in these terms, seeBenigno andWoodford (2005), Giannoni andWoodford (2017); the required target criterion is a��exible in�ation targeting� rule in the sense of Svensson (1999), in which short-run departuresfrom the long-run in�ation target are justi�ed precisely to the extent that they are proportionalto short-run variations in the rate of change of an �output gap� variable.We �rst show that if the policymaker assumes private agents to have rational expectations,commitment to a target criterion involving in�ation (�t) and an appropriately de�ned output4Hansen and Sargent assume a policy analyst who is herself uncertain that her model is precisely correctas a description of the economy; when the expectations of other economic agents are an issue in the analysis,these are typically assumed to share the policy analyst�s model, and her concerns about mis-speci�cation andpreference for robustness as well. We are instead concerned about potential discrepancies between the views ofthe policy analyst and those of the public; and the potential departures from model-consistent beliefs on the partof the public are not assumed to re�ect a concern for robustness on their part. In Benigno and Paciello (2014),instead, optimal policy is computed under the assumption that members of the public are concerned about therobustness of their own decisions, and the policymaker correctly understands the way that this distorts theiractions (relative to what the policymaker believes would be optimal for them).5A quadratic approximation to the optimal policy problem ceases to be of a standard form, as some of thecoe¢cients of the linear-quadratic optimization problem are now themselves functions of the solution to theproblem.6The robustly optimal policy rule is not unique, as is discussed in more detail in Adam and Woodford(2012). Di¤erent rules may be consistent with the same worst-case NRE equilibrium dynamics, and so achievethe same lower bound for expected utility, without being equivalent, either in terms of the out-of-equilibriumbehavior that they would require from the central bank, or in terms of the boundaries of the complete set ofNRE equilibria consistent with the policy in question. 2



gap (ygapt ) is su¢cient for implementing optimal monetary policy, even in the model withdistortions in the housing sector. The target criterion can be written in the form�t + �y(ygapt � ygapt�1) = 0;where �y > 0. While shocks to housing supply and housing demand do a¤ect the de�nitionof the target output level and hence the de�nition of the output gap ygapt , the target criterionmakes no reference to housing prices.We then show that this ceases to be the case when the policymaker fears possible deviationsof housing price and in�ation expectations from the model-consistent ones; yet a generalizationof the standard target criterion can still be used to implement robustly optimal policy. Thistarget criterion involves in�ation and the rate of change of the output gap, with identicalcoe¢cients as in the case with rational expectations, but now must additionally involve thesurprises to housing prices (bqut ) and in�ation:�t + �y �ygapt � ygapt�1�+ �� (�t � Et�1�t) + �q (bqut � Et�1bqut ) = 0; (1)where �� > 0 and �q ? 0.In the empirically realistic case in which housing is subsidized by the government, and istherefore over-supplied in equilibrium, and in which output falls short of its optimum, becauseof monopoly power and tax distortions, we have �q > 0. The robustly optimal target criterionthen requires the central bank to �lean against� unexpected increases in housing prices. By thiswe mean that it should adopt a policy stance that is projected to result in smaller increasesin in�ation and/or the output gap than would be chosen under the assumption of rationalhousing price and in�ation expectations. A positive housing price surprise thus requires a�tighter� monetary policy than suggested by a rational-expectations analysis. Similarly, thepolicymaker should aim for larger increases in in�ation and or the output gap and thus �looser�policy in the case of an unexpected decline in housing prices.Notably, the robustly optimal targeting rule makes no reference to the �fundamental� hous-ing price. Instead, it only involves responses to housing price surprises, independently ofwhether these surprises re�ect changes in fundamentals or changes in the size of belief dis-tortions. This makes the target criterion more suitable as a basis for communication with thepublic about the way that policy decisions are to be justi�ed, as it does not require the centralbank to take a public position with regard to the degree to which housing prices di¤er from theirfundamental values. The di¢culty of determining fundamental asset values in real time is oftenused as an excuse for refraining from any attempt to �lean against� asset bubbles; but in ourproposal, �leaning against� housing price increases does not require any such determination.The policy of �leaning against� house price increases is more robust than a correspondingly�exible in�ation targeting rule that ignores house price and in�ation surprises, in the sense thatthe distorted expectations that would lead to the worst possible outcome under this policy donot lower welfare as much as some possible beliefs distortions would under the conventionalpolicy.7 In particular, in a setting with an excess supply of housing and a suboptimally lowoutput level, the policymaker is most fearful of belief distortions that simultaneously increasehousing price expectations and in�ation expectations. Increased housing price expectationscause current housing prices to increase and thereby lead to an even larger supply of housingin a setting where there are already too many houses. Similarly, higher in�ation expectationsimply � via the New Keynesian Phillips curve � an even lower output level for any given levelof in�ation, in a situation where output is already suboptimally low. By engineering a (more)negative correlation between housing price and in�ation surprises � as implied by policies that7This assumes that belief distortions must comply in both cases with the same maximum bound on thepossible size of belief distortions. 3



�lean against� housing prices � belief distortions are less able to simultaneously increase bothof these expectations. This helps to reduce the maximum harm that belief distortions of anygiven size can possibly in�ict. The degree to which the robustly optimal policy requires �leaningagainst� house prices increases depends, however, on model parameters. Notably, it dependsboth on the size of the housing subsidy and on the size of the output shortfall, as discussedfurther below.The paper is structured as follows. Section 2 de�nes robustly optimal policy and presents thegeneral approach that we use to characterize it. Section 3 presents our New Keynesian monetaryDSGE model with a housing sector, and de�nes an equilibrium with possibly distorted privatesector expectations, generalizing the standard concept of rational-expectations equilibrium.Section 4 considers optimal monetary policy under the assumption of rational expectations.It demonstrates the irrelevance of housing prices for monetary policy by deriving a targetingrule that implements optimal monetary policy and that depends on in�ation and the outputgap only. Section 5 considers equilibrium dynamics with distorted expectations. It explains inwhat sense we allow for larger belief distortions than in our earlier work and how these giverise to �rst-order terms in the linear approximations to the model structural equations. It alsopresents the kind of linear dynamics that we admit as possible solutions. Section 6 determinesthe upper bound on what monetary policy can maximally achieve in the presence of beliefdistortions. It presents the nonlinear �rst-order conditions, as well as the linearized equationscharacterizing the optimal linear upper-bound dynamics. We also show how to verify second-order conditions so as to insure that the presented dynamics in fact represent an optimum fromthe policymaker�s perspective. Section 7 then presents the robustly optimal targeting criterion.It discusses under what conditions it involves �leaning against� housing prices and how onecan (numerically) verify that it attains the upper-bound solution as worst-case outcome. Wecompare the outcomes associated with robustly optimal and rational expectations optimalpolicies in a numerical illustration in section 8. A conclusion brie�y summarizes. Technicalmaterial is relegated to a series of appendices.2 The Policy Problem in General TermsThis section describes the general approach that we use to characterize robustly optimal policy.These general ideas are then applied to a New Keynesian model with a housing sector in section3.2.1 Robustly Optimal PolicyConsider a policymaker who cares about some vector y of endogenous economic outcomes in thesense of seeking to achieve as high a value as possible for some (welfare) objective W (y). Thevalue of y depends both on policy and on forward-looking private sector decisions, which in turndepend on the private-sector�s belief distortions as parameterized by some vector �. Amongthe determinants of y is a set of structural economic equations, typically involving �rst-orderconditions of private agents and market clearing conditions, that we write asF (y; �) = 0: (2)We assume that the equations (2) are insu¢cient to completely determine the vector y, undergiven belief distortions �, so that the policymaker faces a non-trivial choice.Let us suppose that the policymaker must choose a policy commitment c from some set C offeasible policy commitments. Our results about robustly optimal policy do not depend on theprecise speci�cation of the set C; for now, we simply assume that there exists such a set, but we4



make no speci�c assumption about what its boundaries may be. We only impose two generalassumptions about the nature of the set C: �rst, we assume that each of the commitments inthe set C can be de�ned independently of what the belief distortions may be8; and second, weshall require that for any c 2 C, there exists an equilibrium outcome for any choice of � insome set of possible belief distortions Z. This last assumption assigns to the policymaker theresponsibility for insuring existence of equilibrium for arbitrary belief distortions.Given our general requirements, the set C may include many di¤erent types of policy com-mitments. For example, it may involve policy commitments that depend on the history ofexogenous shocks; commitments that depend on the history of endogenous variables, as is thecase with Taylor rules; and commitments regarding relationships between endogenous variables,as is the case with so-called targeting rules. Also, the endogenous variables in terms of whichthe policy commitment is expressed may include asset prices (futures prices, forward prices,etc.) that are often treated by central banks as indicators of private-sector expectations, aslong as the requirement is satis�ed that the policy commitment must be consistent with beliefdistortions of an arbitrary form.In order to de�ne the robustly optimal decision problem of the policymaker, we furtherspecify that the equilibrium outcome y associated with a given policy commitment c 2 C anda given belief distortion � are given by an outcome functionO : Z � C ! Y;with the property that F (O(�; c); �) = 0for all all � 2 Z and c 2 C. Here we have not been speci�c about what we mean by an�equilibrium,� apart from the fact that (2) must be satis�ed. In the context of the speci�cmodel presented in the next section, equilibrium has a precise meaning. For purposes of thepresent discussion, it does not actually matter how we de�ne equilibrium; only the de�nitionof the outcome function matters for our subsequent discussion.9Our de�nition of robustly optimal policy depends on a function V (�; y) � 0 that measuresthe size of the belief distortions. We assume that V (�; y) is equal to zero only in the case ofbeliefs that agree precisely with those of the policymaker, and that higher values of V (�; y)represent more severe distortions. The functional form for V (�; y) ultimately re�ects our con-ception of �near-rational expectations.� Section 2.2 introduces a speci�c functional form, basedon a relative entropy measure, but our remarks here would also apply to other measures of beliefdistortions.The robustly optimal policy problem can then be represented as a choice of a policy com-mitment that solves
maxc2C �min�2Z W (O(�; c)) s.t. V (�; O(�; c)) � V� (3)where V � 0 measures the policymaker�s degree of concern for robustness. For the special casewith V = 0 the robustly optimal policy problem reduces to a standard optimal policy problemwith model-consistent private sector expectations. As V increases, the policymaker becomes8As is made more speci�c in the application below, we specify policy commitments by equations involvingthe endogenous and exogenous variables, but not explicitly the belief distortions. Of course, the endogenousvariables referred to in the policy commitment will typically also be linked by structural equations that involvethe belief distortions.9If the set of equations (2) is not a complete set of requirements for y to be an equilibrium, this only has theconsequence that the upper-bound outcome de�ned below might not be a tight enough upper bound; it doesnot a¤ect the validity of the assertion that it provides an upper bound.5



concerned with increasingly larger deviations of private sector expectations from those thatwould be consistent with its own model used for policy analysis.Let cR denote the robustly optimal policy commitment and �R the associated worst-casebeliefs, i.e., the solution to the inner problem in (3). Suppose that there exists a Lagrangemultiplier � � 0 such that �R also solves
min�2Z W (O(�; cR)) + �V (�; O(�; cR))with �[V (�; O(�; cR))� V ] = 0. Then cR and �R also jointly solve the alternative problem

maxc2C min�2Z U(O(�; c); �) (4)where U(y; �) � W (y) + � V (�; y);and the parameter � used in the de�nition of U(y; �) parameterizes the concern for robustness.In what follows, we shall de�ne the robustly optimal policy problem in this way, taking thevalue of � as part of the de�nition of our problem.Our general strategy for characterizing robustly optimal policy can be summarized as fol-lows. Let the worst-case beliefs associated with a policy commitment be de�ned by the problemK(c) � min�2Z U(O(�; c); �): (5)Let us also consider the maximization problemJ(�) � maxy2Y U(y; �) s.t. F (y; �) = 0: (6)We then observe that
maxc2C K(c) � min�2Z maxc2C U(O(�; c); �) � min�2Z J(�): (7)The optimization problem on the r.h.s. of inequality (7) provides an upper bound to the robustlyoptimal policy problem, i.e., the problem on the l.h.s. of inequality (7). In the upper-boundproblem, belief distortions � are chosen �rst and the remaining outcomes y second. In therobustly optimal policy problem, the policymaker must �rst make a policy commitment c andthe belief distortions � to be chosen second.We can obtain a potentially weaker upper bound by considering the Lagrangian problem

min�2Z maxy2Y U(y; �) � '0F (y; �) (8)for some vector of Lagrange multipliers �': Suppose that there exists a vector of multipliers �'such that the solution (��; �y) to problem (8) satis�es F (�y; ��) = 0: Then one can show that �y alsosolves the maximization problem (6) when � = ��:Furthermore, if we let �J(�;') be the maximized value of the inner problem in (8), we observethat J(�) = maxy2Y min' U(y; �) � '0F (y; �)
� maxy2Y U(y; �) � �'0F (y; �) = �J(�; �'):It follows that the solution to the Lagrangian problem (8) when ' = �' provides an upper boundfor the solution to the problem on the right-hand side of (7), and hence that6



maxc2C K(c) � min�2Z J(�) � min�2Z �J(�; �'): (9)Thus the solution to the Lagrangian problem (8) when ' = �' provides another upper boundfor the robustly optimal policy problem. This would be true for any vector of multipliers ';but when ' = �'; this upper bound is attained by the solution to the problem in the middle of(9). Hence this is the upper bound of interest to us.Our strategy will be to �rst �nd Lagrange multipliers �' for which the solution to theLagrangian upper-bound problem (8) satis�es the structural equations F (�y; ��) = 0; and tocharacterize the outcome and belief distortions that solve that problem. We then demonstratethat this upper bound is achievable by some policy commitment �c: If we can do this, �c mustthen be at least one example of a robustly optimal policy commitment. This approach has theadvantage of allowing us to study a problem (the Lagrangian upper-bound problem) that canbe de�ned independently of any particular class of policy rules C, and then simply demonstratethat some particular rule �c satis�es the requirements for robust optimality, without ever havingto de�ne the complete set of possible policy rules, let alone determine the worst-case beliefs forall of them. This is the strategy that we shall pursue in the remaining part of the paper.We proceed as follows. We begin by considering the �rst-order conditions (FOCs) for theproblem in the middle of (9), and use these to �nd a pair (��; �y) that represent a candidatesolution to this problem. Because �y satis�es the FOCs for problem (6), there must exist avector of Lagrange multipliers �' such that �y also satis�es the FOCs for the inner problem in(8). We then use those same FOCs to construct a policy rule �c that is consistent with outcome
�y in the case of belief distortions ��:It is then only necessary to verify (i) that �y not only satis�es the FOCs for the inner problem(8), but is an actual maximum, and more generally that (��; �y) solve the Lagrangian upper-boundproblem (8) when ' = �'; (ii) that �y is not only consistent with policy �c, but is the uniqueoutcome determined by policy �c in the case of beliefs ��; and (iii) that �� are the worst-case beliefdistortions in the case of policy �c. If these additional three conditions are veri�ed, we will haveestablished that �c is an example of a robustly optimal policy commitment.2.2 Distorted Private Sector ExpectationsWe next discuss our quantitative measure of belief distortions. At this point it becomes neces-sary to specify that our analysis concerns dynamic models in which information is progressivelyrevealed over time, at a countably in�nite sequence of successive decision points.Let (
;B;P) denote a standard probability space with 
 denoting the set of possible re-alizations of an exogenous stochastic disturbance process f�0; �1; �2; :::g, B the ��algebra ofBorel subsets of 
; and P a probability measure assigning probabilities to any set B 2 B.We consider a situation in which the policy analyst assigns probabilities to events using theprobability measure P but fears that the private sector may make decisions on the basis of apotentially di¤erent probability measure denoted by bP.We let E denote the policy analyst�s expectations induced by P and bE the correspondingprivate sector expectations associated with bP. A �rst restriction on the class of possible dis-torted measures that the policy analyst is assumed to consider � part of what we mean by therestriction to �near-rational expectations� � is the assumption that the distorted measure bP,when restricted to events over any �nite horizon, is absolutely continuous with respect to thecorrespondingly restricted version of the policy analyst�s measure P.The Radon-Nikodym theorem then allows us to express the distorted private sector expec-tations of some t+ j measurable random variable xt+j as

bE[xt+jj�t] = E[Mt+j
Mt xt+jj�t]7



for all j � 0 where �t denotes the partial history of exogenous disturbances up to period t. Therandom variable Mt+j is the Radon-Nikodym derivative, and completely summarizes beliefdistortions.10 The variable Mt+j is measurable with respect to the history of shocks �t+j,non-negative and is a martingale, i.e., satis�esE[Mt+jj!t] =Mtfor all j � 0. De�ning mt+1 = Mt+1
Mtone step ahead expectations based on the measure bP can be expressed as

bE[xt+1j�t] = E[mt+1xt+1j�t];where mt+1 satis�es E[mt+1j�t] = 1 and mt+1 � 0: (10)This representation of the distorted beliefs of the private sector is useful in de�ning a measureof the distance of the private-sector beliefs from those of the policy analyst. As discussed inHansen and Sargent (2005), the relative entropyRt = Et[mt+1 logmt+1] (11)is a measure of the distance of (one-period-ahead) private-sector beliefs from the policymaker�sbeliefs with a number of appealing properties.We wish to extend this measure of the size of belief distortions to an in�nite-horizon economywith a stationary structure. In the kind of model with which we are concerned, the policyobjective in the absence of a concern for robustness is of the formW (y) � E0 " 1Xt=0 �tU(yt)# ; (12)for some discount factor 0 < � < 1; where U(�) is a time-invariant function, and yt is a vectordescribing the real allocation of resources in period t. Correspondingly, we propose to measurethe overall degree of distortion of private-sector beliefs by a discounted criterion of the formE0 " 1Xt=0 �t+1mt+1 logmt+1# ; (13)as in Woodford (2010). This is a discounted sum of the one-period-ahead distortion measures
fRtg: We assign relative weights to the one-period-ahead measures Rt for di¤erent dates anddi¤erent states of the world in this criterion that match those of the other part of the policyobjective (12). Use of this cost function implies that the policymaker�s degree of concern forrobustness (relative to other stabilization objectives) remains constant over time, regardless ofpast history.10See Hansen and Sargent (2005) for further discussion.
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2.3 Parameterization of Belief DistortionsIn stating the robustly optimal policy problem, it will be convenient to work with a simplerparameterization of the possible belief distortions. In the dynamic models that we consider,the structural equations (2) are a vector of conditions of the formF (yt�1; yt; bEt[g(yt+1)]; �t) = 0for each period t, where we use the notation bEt[xt+1] = bE[xt+1j�t] for subjective expectations,and x = g(y) is some function of the complete state vector y.Suppose that the penalty for large belief distortions is given by (13). Then, the worst casebeliefs associated with a robustly optimal policy problem of the form (4) will solve a problemof the form
minmt+1�0Et[�mt+1 logmt+1]s:t: : Et[mt+1xt+1] = xet (14)Et[mt+1] = 1for some distorted expectations xet , and some parameter � > 0.11 The solution to this problemis given by

logmt+1 = ��1� 0txt+1 � logEt[exp(��1� 0txt+1)]; (15)where �t is a vector of Lagrange multipliers associated with constraint (14). It therefore su¢cesto consider possible belief distortions of the form described by equation (15) and we can para-meterize belief distortions in any period t by the vector �t. Note that as in the notation usedin section 2.1, the assumption of rational expectations will correspond to �t = 0 at all times.In the case of distorted expectations of this parametric form, we can evaluate the relativeentropy (11), obtaining12 Rt = R(��1�t; fxt+1g):The cost function (13) for a dynamic problem can then be evaluated asV (�; y; �) = E0 1Xt=0 �t+1R(��1�t; fg(yt+1)g): (16)The upper bound on what robustly optimal policy can achieve will then be de�ned by a problemof the form given on the right-hand side of equation (7), where W (y) is given by equation (12)and V (�; y) by equation (16).3 A Sticky Price Model with a Housing SectorWe shall begin by deriving the exact structural relations describing a New Keynesian modelfeaturing a long-lived asset and potentially distorted private sector expectations. The existingstock of assets is assumed to generate a service �ow that directly enters agents� utility. Assetsdepreciate over time but can be produced using a technology with decreasing returns to scale.11The parameter � might seem unnecessary since minimization of E[�m logm] is equivalent to minimizationof E[m logm]. Below, however, we are interested in characterizing the worst case beliefs in a limiting case wherethe amplitude of exogenous disturbances, and hence the variation in xt+1 is made arbitrarily small, but thevalue of � is made correspondingly small, so that there continue to be non-trivial di¤erences in mt+1 acrossstates, regardless of how small the amplitude of the disturbances.12The notation fxt+1g used below refers to the time t conditional distribution of the random variable xt+1:9



For convenience we interpret the long-lived asset as housing, though other interpretations arepossible.The model is completely standard, except for the presence of the long-lived asset and the factthat the private sector holds potentially distorted expectations. The exposition here extendsthe framework of Adam and Woodford (2011), who write the exact structural relations for asimpler model without a housing sector.3.1 Model StructureThe economy is made up of identical in�nite-lived households, each of which seeks to maximizeU � bE0 1Xt=0 �t �~u(Ct; �t)� Z 10 ~v(Ht(j); �t)dj + ~!(Dt; �t)� ; (17)subject to a sequence of �ow budget constraints13PtCt +Bt + (Dt + (1� �)Dt�1) qtPt + ktPt
� (1 + sd) ~d(kt; �t)qtPt + Z 10 wt(j)PtHt(j)dj +Bt�1(1 + it�1) + �t + Tt;where bE0 is the common distorted expectations held by consumers conditional on the state ofthe world in period t = 0, Ct an aggregate consumption good which can be bought at nominalprice Pt; Ht(j) is the quantity supplied of labor of type j and wt(j) the associated real wage, Dtthe stock of durable assets or houses, � 2 [0; 1] the housing depreciation rate, qt the real priceof houses, kt investment in new houses and ~d(kt; �t) the resulting production of new houses,sd ? 0 a government subsidy or tax applied to the value of newly produced houses, Bt nominalbond holdings, it the nominal interest rate, and �t is a vector of exogenous disturbances, whichmay induce random shifts in the functions ~u, ~v, ~! and ~d. The variable Tt denotes lump sumtaxes levied by the government and �t pro�ts accruing to households from the ownership of�rms.The aggregate consumption good is a Dixit-Stiglitz aggregate of consumption of each of acontinuum of di¤erentiated goods,Ct � �Z 10 ct(i) ��1� di� ���1 ; (18)with an elasticity of substitution equal to � > 1. We further assume isoelastic functional forms

~u(Ct; �t) � C1�~��1t �C ~��1t
1� ~��1 ; (19)

~v(Ht; �t) � �
1 + �H1+�t �H��t ; (20)

~!(Dt; �t) = �dtDt; (21)
~d(kt; �t) = Adt

~� k~�t ; (22)where ~�; � > 0; ~� 2 (0; 1) and f �Ct; �Ht; �dt ; Adt g are bounded exogenous and positive disturbanceprocesses which are among the exogenous disturbances included in the vector �t. Our speci�ca-tion includes two housing related disturbances that will be of particular interest for our analysis,13We abstract from state-contingent assets in the household budget constraint because the representativeagent assumption implies that in equilibrium there will be no trade in these assets.10



namely �dt which captures shocks to housing preferences and Adt shocks to the productivity inthe construction of new houses. We impose linearity in the utility function (21) as this greatlyfacilitates the analytical characterization of optimal policy.Each di¤erentiated good is supplied by a single monopolistically competitive producer; thereis a common technology for the production of all goods, in which (industry-speci�c) labor isthe only variable input, yt(i) = Atf(ht(i)) = Atht(i)1=�; (23)where At is an exogenously varying technology factor, and � > 1. The Dixit-Stiglitz preferences(18) imply that the quantity demanded of each individual good i will equal14yt(i) = Yt�pt(i)Pt ��� ; (24)where Yt is the total demand for the composite good de�ned in (18), pt(i) is the (money) priceof the individual good, and Pt is the price index,Pt � �Z 10 pt(i)1��di� 11�� ; (25)corresponding to the minimum cost for which a unit of the composite good can be purchasedin period t. Total demand is given byYt = Ct + kt + gtYt; (26)where gt is the share of the total amount of composite good purchased by the government,treated here as an exogenous disturbance process.3.2 Household Optimality ConditionsEach household maximizes utility by choosing state contingent sequences fCt; Ht(j); Dt; kt; Btgtaking as given the process for fPt; wt(j); qt; it;�t; Ttg. The �rst order conditions give rise toan optimal labor supply relation wt(j) = ~vH(Ht(j); �t)
~uC(Ct; �t) ; (27)a consumption Euler equation

~uC(Ct; �t) = � bEt �~uC(Ct+1; �t+1)1 + it
�t+1 � ; (28)an equation characterizing optimal investment in new houseskt = ��1 + sd�Adt qt� 11�~� ; (29)and an asset pricing equation qut = �dt + �(1� �) bEtqut+1; (30)where qut � qtC�~��1t �C ~��1t (31)14In addition to assuming that household utility depends only on the quantity obtained of Ct; we assume thatthe government also cares only about the quantity obtained of the composite good de�ned by (18), and that itseeks to obtain this good through a minimum-cost combination of purchases of individual goods.11



is the market valuation of housing in period t, expressed in marginal-utility units. The variablequt provides a measure of whether housing is currently expensive or inexpensive, in units thatare particularly relevant for determining housing demand. More importantly, because of (30),it is expectations about the future value of quT , rather than the future value of qT as such,that in�uence the current market value of housing, so that the degree of distortion that may bepresent in expectations regarding the former variable is of particular importance for equilibriumdetermination. The housing-price variable qut is accordingly of particular interest.Equations (27)-(30) jointly characterize optimal household behavior under distorted beliefs.Using (26) and (29), one an express aggregate demand asYt = Ct + 
tC ~��11�~�t
1� gt (32)where


t � ��1 + sd�Adt �C�~��1t qut � 11�~� > 0 (33)is a term that depends on exogenous shocks and belief distortions only.3.3 Optimal Price Setting by FirmsThe producers in each industry �x the prices of their goods in monetary units for a randominterval of time, as in the model of staggered pricing introduced by Calvo (1983) and Yun(1996). Let 0 � � < 1 be the fraction of prices that remain unchanged in any period. Asupplier that changes its price in period t chooses its new price pt(i) to maximize
bEt 1XT=t �T�tQt;T�(pt(i); pjT ; PT ;YT ; quT ; �T ); (34)where bEt is the distorted expectations of price setters conditional on time t information, whichare assumed identical to the expectations held by consumers, Qt;T is the stochastic discountfactor by which �nancial markets discount random nominal income in period T to determine thenominal value of a claim to such income in period t, �T�t is the probability that a price chosenin period t will not have been revised by period T , and the function �(pt(i); : : :) indicates thenominal pro�ts of the �rm in period t (discussed further below). In equilibrium, the discountfactor is given by Qt;T = �T�t ~uC(CT ; �T )

~uC(Ct; �t) PtPT : (35)Pro�ts are equal to after-tax sales revenues net of the wage bill. Sales revenues are deter-mined by the demand function (24), so that (nominal) after-tax revenue equals
(1� �t)pt(i)Yt�pt(i)Pt ��� :Here �t is a proportional tax on sales revenues in period t; f�tg is treated as an exogenousdisturbance process, taken as given by the monetary policymaker. We assume that �t �uctuatesover a small interval around a non-zero steady-state level � . We allow for exogenous variations inthe tax rate in order to include the possibility of �pure cost-push shocks� that a¤ect equilibriumpricing behavior while implying no change in the e¢cient allocation of resources.The real wage demanded for labor of type j is given by equation (27) and �rms are assumedto be wage-takers. Because the right-hand side of (32) is a monotonically increasing functionof Ct, (32) implies the existence of a di¤erentiable functionCt = C(Yt; qut ; �t) (36)12



solving (32) with the derivative CY satisfying 0 < CY (Yt; qut ; �t) < 1 � g. Using this functionand the assumed functional forms for preferences and technology, the nominal wage bill willequal Ptwt(j)ht(i) = Pt�Ht(i)�H��tC�e��1t Ce��1t ht(i)
= �Pt�pt(i)Pt ���� pjtPt!���� H��t � YtAt�1+! �C(Yt; qut ; �t)Ct �e��1where ! � �(1 + �)� 1 > 0is the elasticity of real marginal cost in an industry with respect to industry output. Subtractingthe nominal wage bill from the above expression for nominal after tax revenue, we obtain thefunction �(pt(i); pjT ; PT ;YT ; quT ; �T ) used in (34). The vector of exogenous disturbances �t nowincludes At; gt and �t, in addition to the shocks ( �Ct; �Ht; �dt ; Adt ).Each of the suppliers that revise their prices in period t chooses the same new price p�t ; thatmaximizes (34). Note that supplier i�s pro�ts in (34) are a concave function of the quantitysold yt(i); since revenues are proportional to yt(i) ��1� and hence concave in yt(i), while costsare convex in yt(i). Moreover, since yt(i) is proportional to pt(i)��; the pro�t function is alsoconcave in pt(i)��. The �rst-order condition for the optimal choice of the price pt(i) is the sameas the one with respect to pt(i)��; hence the �rst-order condition with respect to pt(i);
bEt 1XT=t �T�tQt;T�1(pt(i); pjT ; PT ;YT ; quT ; �T ) = 0;is both necessary and su¢cient for an optimum. The equilibrium choice p�t (which is the same foreach �rm in industry j) is the solution to the equation obtained by substituting pt(i) = pjt = p�tinto the above �rst-order condition.Under the assumed isoelastic functional forms, the optimal choice has a closed-form solutionp�tPt = �KtFt � 11+!� ; (37)where Ft and Kt capture the e¤ects of discounted marginal costs and revenues, respectively,and are de�ned by Ft � bEt 1XT=t(��)T�tf(YT ; quT ; �T )�PTPt ���1 ; (38)Kt � bEt 1XT=t(��)T�tk(YT ; �T )�PTPt ��(1+!) ; (39)where f(Y; qu; �) � (1� �) �C ~��1Y C(Y; qu; �)�e��1 ; (40)k(Y ; �) � �� � 1�� �H��A1+!Y 1+! (41)Relations (38)�(39) can also be written in the recursive formFt = f(Yt; qut ; �t) + �� bEt[���1t+1Ft+1] (42)Kt = k(Yt; �t) + �� bEt[��(1+!)t+1 Kt+1]; (43)13



where �t � Pt=Pt�1:15 The price index then evolves according to a law of motionPt = �(1� �)p�1��t + �P 1��t�1 � 11�� ; (44)as a consequence of (25). Substitution of (37) into (44) implies that equilibrium in�ation inany period is given by
1� ����1t
1� � =

� FtKt� ��11+!� : (45)Equations (42), (43) and (45) jointly de�ne a short-run aggregate supply relation betweenin�ation, output and house prices, given the current disturbances �t; and (potentially distorted)expectations regarding future in�ation, output, house prices and disturbances.3.4 Summary and Equilibrium De�nitionFor the subsequent analysis it will be helpful to express the model in terms of the endogenousvariables (Yt; Kt; Ft;�t; qut ;mt; it) only, where mt is the belief distortions of the private sectorand
�t � Z 10 �pt(i)Pt ���(1+!) di � 1a measure of price dispersion at time t. The vector of exogenous disturbances is given by�t = �At; gt; �t; �Ct; �Ht; �dt ; Adt �0.We begin by expressing expected household utility (evaluated under the objective measure

P) in terms of these variables. Inverting the production function (23) to write the demand foreach type of labor as a function of the quantities produced of the various di¤erentiated goods,it is possible to write the utility of the representative household as a function of the expectedproduction plan fyt(i)g. One thereby obtainsU � E0 1Xt=0 �t �u(Yt; qut ; �t)� Z 10 v(yjt ; �t)dj + ~!(Dt; �t)� ; (46)with u(Yt; qut ; �t) � ~u(C(Yt; qut ; �t); �t)v(yjt ; �t) � ~v(f�1(yjt=At); �t)where in this last expression we make use of the fact that the quantity produced of each goodin industry j will be the same, and hence can be denoted yjt ; and that the quantity of laborhired by each of these �rms will also be the same, so that the total demand for labor of type jis proportional to the demand of any one of these �rms.One can furthermore express the relative quantities demanded of the di¤erentiated goodseach period as a function of their relative prices, using (24). This and the linear dependence ofutility on the stock of assets allows us to write the utility �ow to the representative householdin the form u(Yt; qut ; �t)� v(Yt; �t)�t + ��dt Adt~� k~�t ;15It is evident that (38) implies (42); but one can also show that processes that satisfy (42) each period,together with certain bounds, must satisfy (38). Since we are interested below only in the characterization ofbounded equilibria, we can omit the statement of the bounds that are implied by the existence of well-behavedexpressions on the right-hand sides of (38) and (39), and treat (42)�(43) as necessary and su¢cient for processes
fFt;Ktg to measure the relevant marginal conditions for optimal price-setting.14



where
��dt � 1XT=t Et[(1� �)T�t �T�t�dT ]: (47)We can use (29), (31) and (36) to express kt in terms of Yt, qut and exogenous shocks. Hencewe can express the household objective (46) asU = E0 1Xt=0 �tU(Yt;�t; qut ; �t): (48)where the explicit expression for the �ow utility is given byU(Yt;�t; qut ; �t) = C ~��1t C(Yt; qut ; �t)1�~��1

1� ~��1
�

�
1 + � �H��t � YtAt�1+!�t

+
Adt ��dt
~� 
(qut ; �t)~� C(Yt; qut ; �t) ~�1�~� ~��1 ; (49)which is a monotonically decreasing function of � given Y , qu and � and where 
(qut ; �t) is thefunction de�ned in (33).The consumption Euler equation (28) can be expressed as

~uC(C(Yt; qut ; �t); �t) = � bEt �~uC(C(Yt; qut ; �t); �t+1)1 + it�t+1 � ; (50)Using (45) to substitute for the variable �t equations (42) and (43) can be expressed asFt = f(Yt; qut ; �t) + �� bEt [�F (Kt+1; Ft+1)] (51)Kt = k(Yt; �t) + �� bEt [�K(Kt+1; Ft+1)] ; (52)where the functions �F ; �K are both homogeneous degree 1 functions of K and F . The systemconsisting of (51)-(52) can be written more compactly asZt = z(Yt; qut ; �t) + �� bEt [�(Zt+1)] ; (53)where Zt � � FtKt � ; z(Y; qu; �) � � f(Y; qu; �)k(Y ; �) � ; �(Z) � � �F (K;F )�K(K;F ) � : (54)Because the relative prices of the industries that do not change their prices in period tremain the same, one can use (44) to derive a law of motion for the price dispersion term �tof the form
�t = h(�t�1;�t); (55)where h(�;�) � ����(1+!) + (1� �)�1� ����1

1� � � �(1+!)��1 :This is the source of welfare losses from in�ation or de�ation. Using once more (45) to substitutefor the variable �t one obtains
�t = ~h(�t�1; Kt=Ft): (56)The asset pricing equation (30) and equations (50)-(56) represent �ve constraints on the equilib-rium paths of the seven endogenous variables (Yt; Ft; Kt;�t; qut ;mt+1; it). For a given sequenceof belief distortions mt satisfying restriction (10) there is thus one degree of freedom left, whichcan be determined by monetary policy.We are now in a position to de�ne the equilibrium with distorted private sector expectations:15



De�nition 1 (DEE) A distorted expectations equilibrium (DEE) is a bounded stochastic processfor fYt; Ft; Kt;�t; qut ;mt+1; itg1t=0 satisfying equations (10), (30) and (50)-(56).We can also de�ne the following special case considered in the standard literature on optimalmonetary policy:De�nition 2 (REE) A rational expectations equilibrium (REE) is a bounded stochastic processfor fYt; Ft; Kt;�t; qut ; itg1t=0 satisfying equations (30) and (50)-(56) with mt+1 � 1 in all states.4 Optimal Policy under Rational ExpectationsWe �rst consider the nature of an optimal policy commitment under the assumption of rationalexpectations. We will then consider the more general case allowing for belief distortions as aperturbation of our solution for this case.Under the assumption of rational expectations, equation (30) has a unique bounded solutiongiven by qut = ��dt (57)for all t. Thus the housing price is necessarily equal to its fundamental value ��dt regardlessof policy. Note that ��dt , de�ned in equation (47), is purely a function of exogenous distur-bances. Thus under the assumption of rational expectations, we can treat qut as an exogenousdisturbance, rather than an additional endogenous variable. Our model with a housing sectorthen becomes equivalent to a standard New Keynesian model, except with additional sourcesof exogenous disturbances.4.1 Optimal Dynamics under CommitmentAn optimal policy commitment will be a rule that results in an evolution of the endogenousvariables that maximizes (48) subject to the constraints that (53) and (56) hold for each t � 0,and an initial precommitment specifying a value for a linear combination of �(Z0) and qu0 ,chosen so as to allow us to obtain a time-invariant system of �rst-order conditions. Note thatwe need not list equation (50) as a constraint on the problem. Under the assumption that thezero lower bound on nominal interest rates is not binding, constraint (50) imposes no restrictionson the path of the other variables.16 The required path for nominal interest rates can then becomputed ex-post using the solution for the other variables and equation (50).The �rst-order conditions of this planning problem are given byUY (Yt;�t; qut ; �t) + �0tzY (Yt; qut ; �t) = 0 (58)
�
t~h2(�t�1; Kt=Ft)KtF 2t � �1t + ��0t�1D1(Kt=Ft) = 0 (59)
t~h2(�t�1; Kt=Ft) 1Ft � �2t + ��0t�1D2(Kt=Ft) = 0 (60)U�(Yt;�t; qut ; �t)� 
t + �Et[
t+1~h1(�t; Kt+1=Ft+1)] = 0 (61)for all t � 0. The Lagrange multiplier vector �t is associated with constraints (51) and (52) andhas elements �0t = (�1t;�2;t). The multiplier 
t is associated with constraint (56). The �rst-order conditions take this form also for t = 0 on the assumption that the initial precommitmentspeci�es a value for ��0�1�(Z0) + (1� �)	�1qu0 (62)16This assertion also depends on our assumption here that the central bank chooses its interest-rate operatingtarget it with full information about the state of the economy at date t.16



for some multipliers ��1 and 	�1:Above, ~hi(�; K=F ) denotes the partial derivative of ~h(�; K=F ) with respect to its i-thargument, and Di(K=F ) is the i-th column of the matrixD(Z) � � @F�F (Z) @K�F (Z)@F�K(Z) @K�K(Z) � : (63)Since the elements of �(Z) are homogeneous degree 1 functions of Z, the elements of D(Z)are all homogenous degree 0 functions of Z, and hence functions of K=F only. Thus we canalternatively write D(K=F ).The optimal dynamics are then bounded stochastic processes {Yt,Ft, Kt,�t} that satisfy thestructural equations (51)-(56) and the �rst order conditions (58)-(61), together with the initialpre-commitments.4.2 The Second-Best Steady StateWe shall be concerned solely with optimal outcomes that involve small �uctuations around adeterministic state. The considered deterministic steady state is the one associated with anoptimal monetary policy, taking as given the real distortions (such as the housing subsidy andmonopolistic competition) that monetary policy by itself cannot eliminate. We call this steadystate the second-best steady state and it is de�ned as follows:De�nition 3 The second-best steady state is a set of constant values (Y ; Z;�; qu; 
;�) thatsolve the structural equations (30),(51)-(56) and the FOCs (58)-(61) in the case that �t = � atall times and initial conditions consistent with the steady state are assumed.We now compute this steady state. Equation (30) implies qu = �d. Moreover, as in themodel without housing, considered in Adam and Woodford (2012), the second-best steady statesatis�es F = K = (1� ��)�1k(Y ; �), which implies � = 1 (no in�ation) and � = 1 (zero pricedispersion), where the value of Y is implicitly de�ned byf(Y ; qu; �) = k(Y ; �): (64)As shown in appendix A.1, there exists a unique steady state consumption level Y solving (64).Furthermore, with ~h2(1; 1) = 0 (the e¤ects of a small non-zero in�ation rate on the measureof price dispersion are of second order), conditions (59)�(60) reduce in the steady state to theeigenvector condition
�0 = ��0D(1): (65)Moreover, since when evaluated at a point where F = K;@ log(�K=�F )@ logK = �

@ log(�K=�F )@ logF =
1�;we observe that D(1) has a left eigenvector [1 � 1]; with eigenvalue 1=�; hence (65) is satis�edif and only if �2 = ��1.Condition (58) provides one additional conditionUY (Y ; 1; qu; �) + �1(fY (Y ; qu; �)� kY (Y ; qu; �)) = 0; (66)which uniquely determines �1, given the solutions for Y and qu. Appendix A.1 shows thatkY � fY > 0;17



so that �1 has the same sign as UY , the sign of which is discussed below.Condition (61) provides a restriction that determines the steady state value of 
 :U�(Y ; 1; qu; �)� 
 + �
~h1(1; 1) = 0:Since U� < 0 and ~h1(1; 1) = �, we have
 = U�(Y ; 1; qu; �)
(1� ��) < 0:4.3 Comparison with the Optimal Steady StateThe optimality of the equilibrium level of output can be assessed by evaluating UY . In thesecond-best steady state, appendix A.1 proves thatUY (Y ; 1; qu; �) = (67)

�C ~��1C �Y ; qu; ���~��1  1� g + sdCY �Y ; qu; ��
1 + sd �

� � 1� (1� �)! :This shows that in the absence of a housing subsidy (sd = 0), we have UY = 0 and thus �1 = 0,if and only if the output subsidy eliminates the steady state monopoly distortion, i.e., whenthe wedge � = 0, where
� � log

�� � 1 1� g
1� � . (68)We refer to the steady state in which steady-state distortions are absent as the optimal steadystate:De�nition 4 The optimal steady state (Y �; Z�;��; qu�; 
�;��) is a set constant values ofour endogenous variables associated with a second-best steady state in which sd = 0 and � = 0.We will locally approximate our structural equations and household welfare around thisoptimal steady state. More generally, we shall consider the case with a non-zero housingsubsidy/tax. Conditional on the value of housing subsidy sd 7 0 one can then de�ne ane¢cient steady state output subsidy � eff (sd), which is the value of � such that UY = 0 in(67).17 Appendix A.2 then establishes the following result:Lemma 1 Given a housing subsidy sd 7 0 and the e¢cient output subsidy 1�� = 1�� eff (sd),we have UY (Y ; 1; qu; �) = �1 = 0:If the output subsidy falls short of its e¢cient value, 1� � < 1� � eff (sd), thenUY (Y ; 1; qu; �) > 0, �1 > 0:If instead 1� � > 1� � eff (sd), one obtainsUY (Y ; 1; qu; �) < 0, �1 < 0:17Note that implementing the e¢cient steady state substidiy �eff does result in an e¢cient steady stateoutcome when sd 6= 0.
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The previous lemma shows that the marginal utility of output is positive (negative) inthe second-best steady state, whenever the output subsidy falls short of (exceeds) the outputsubsidy that would be e¢cient given the actual level of housing subsidies.We can also consider the e¤ect of perturbations to the asset pricing equation (30). If wetreat qut as an endogenous variable in the planning problem considered in section 4.1, andequation (30) as an additional constraint, we obtain the additional �rst order conditionUqu(Yt;�t; qut ; �t) + �0tzqu(Yt; qut ; �t) + 	t�1(1� �)�	t = 0 (69)for all t � 0, where 	t is the Lagrange multiplier associated with constraint (30). In the steadystate, equation (69) implies
	 =

1� �Uqu(Y ; 1; qu; �) + �1fqu(Y ; qu; �)� : (70)Appendix A.3 then proves the following result:Lemma 2 If sd = 0, Uqu(Y ; 1; qu; �) = 0. If sd > 0 (sd < 0), then Uqu < 0 (Uqu > 0). Since
�1 = 0 for � = � eff (sd), it follows that

	 = 0 if sd = 0 and � = � eff (0)
	 < 0 if sd > 0 and � is su¢ciently close to � eff (sd)
	 > 0 if sd < 0 and � is su¢ciently close to � eff (sd)This shows that for a positive housing subsidy, the representative household�s utility is de-creasing with further house price increases, whenever the output subsidy is su¢ciently close toits e¢cient level. Correspondingly, in the presence of a housing tax, household utility decreaseswith a fall in housing prices. Intuitively, holding the level of total output Y �xed, an increasein the housing price leads to a further increase in housing investment, which is already ine¢-ciently high (low) when there is a housing subsidy (tax). House price changes due to distortedexpectations will have welfare e¤ects of this kind as in the case of any other perturbation ofequation (30).4.4 Local Approximation of Optimal DynamicsWe can now characterize equilibrium dynamics under an optimal policy commitment by lin-earizing equations (58)-(61) around the optimal steady state.It is useful to write these linearized equations in terms of an output gap that measuresthe deviation of equilibrium output from its welfare maximizing level. Let us consider theallocation de�ned by fYt; qut g1t=0 that maximizes the utility of the representative household,taking as given the equilibrium response of housing supply to any housing price sequence. Inany period t, we de�ne (Y �t ; qu�t ) as the values (Yt; qut ) that maximize U(Yt; 1; qut ; �t). These areimplicitly de�ned by UY (Y �t ; 1; qu�t ; �t) = Uqu(Y �t ; 1; qu�t ; �t) = 0: (71)Appendix A.4 shows that UY Y < 0; UY qu = 0 and Uququ < 0 at the optimal steady state, sothat the second-order conditions for optimality are also satis�ed for allocations close enough tothe optimal steady state. We also show in appendix A.4 thatqu�t =

�dt
1 + sd ; (72)which implies that if sd > 0, the equilibrium housing price under rational expectations, givenin equation (57), is higher than the optimal level at all times.19



One can then derive a �rst-order approximation of the optimal dynamics for the variables�t � log �tygapt = log Yt � log Y �twhere ygapt denotes the output gap.Our local approximation applies to the case of exogenous disturbances that are small in thefollowing sense. We assume linear dynamics for the vector of exogenous disturbances �t of theform �t = E0�t + �Xk t�1Xj=0 �j;kek;t�j; (73)where fE0�tg1t=0 is a deterministic sequence satisfying E0�t� � � O(�) for all t � 0; the ekt area set of independent underlying disturbance processes, each assumed to be an i.i.d. randomvariable with distribution N(0; 1); the �j;k are vectors of coe¢cients; and � � 0 is an expansionparameter. We �x the coe¢cients �j;k but consider the limiting case in which the parameter �is small. We also assume that steady state distortions are small in the sense thatsd � O(�) and � � O(�); (74)the initial price dispersion ��1 is small (��1 � O(�2)), and the initial precommitment (62)involves multipliers ��1, 	�1 of order O(�).Under these assumptions, the second-best steady state corresponding to the non-zero valuesfor sd and � involves � and 	 of order O(�), as well as a steady state value for the output gap xtof order O(�). The second-best optimal dynamics will involve deviations of the variables fromtheir steady state values that will also be of order O(�). To this �rst order of approximation,we can characterize the second-best optimal dynamics by log-linearizing equilibrium conditions(53), (56), and (58)-(61) around the constant values associated with the optimal steady state.4.5 The Irrelevance of Housing Prices under Rational ExpectationsUnder the assumption of an initial precommitment satisfying �1;�1 = ��2;�1, the second-bestoptimal dynamics involve �1;t = ��2;t for all t � 0 as well, allowing us to characterize thesecond-best optimal dynamics of in�ation and the output gap (�t; ygapt ) without reference toany other endogenous variables. The evolution of these two variables is given by the uniquebounded solution to the pair of linearized equations18�t = �Et�t+1 + �yygapt + ut (75)
���t + �y�y �ygapt � ygapt�1� = 0; (76)where the constants �y > 0;�� > 0 and �y > 0 are functions of the deep model parameters.(An explicit expression for �y is provided in Appendix A.5, while Appendix A.6 derives ��and

�y.) The cost-push disturbance in equation (75) is given byut = (1� �) (1� ��)�(1 + !�) (� + b�t � bgt) ; (77)18Equations (75) and (76) are a special case of the ones derived below for the more general case with beliefdistortions. Given the signs established for the coe¢cients �y;�� and �y and the fact that � 2 (0; 1), theexistence of a unique bounded solution follows from the same argument as in the model without a housingsector, see section 5.3 in Adam and Woodford (2012).20



where
b� � � log�1� �t

1� � �
bg � � log�1� gt

1� g �de�ne deviations of �t and gt from their second-best steady state values.Equation (75) indicates the form taken by the New Keynesian Phillips curve in our model.The presence of the housing sector makes no di¤erence to this equation, when written in termsof in�ation and the output gap, though housing variables, i.e., housing supply shocks Adt andhousing demand shocks �dt , do a¤ect the de�nition of the target output level Y �t and hence thede�nition of the output gap.Equation (76) represents a target criterion for optimal monetary policy. This equation alsoinvolves only in�ation and the output gap and is una¤ected by any of the housing variables(except again insofar as they are involved in the de�nition of the output gap); in fact thecriterion is identical to the optimal target criterion for a model without a housing sector. Itimmediately follows that the second-best optimal dynamics of in�ation do not respond to shocksto housing supply or demand, nor do the second-best optimal dynamics of the output gap. Notonly is it possible to formulate a criterion for optimal policy that makes no reference to housingprices, but none of the equilibrium determinants of housing prices a¤ect this criterion, either.Thus under the assumption of rational expectations it would be appropriate for the monetaryauthority to determine a path for in�ation that would not respond in any way to the occurrenceof a housing boom.5 Linear Dynamics in the Presence of Belief DistortionsWe next consider how the equilibrium dynamics of endogenous variables are a¤ected by beliefdistortions. We begin by observing that the only private sector expectations that matter forthe determination of endogenous variables under any policy are the subjective expectations
bEt[�(Zt+1)] that enter equation (53) and bEt[qut+1] that enter equation (30). It follows thatunder any policy, the worst-case beliefs will be of the form (15), wherext+1 � � �(Zt+1)qut+1 � : (78)The multipliers f�tg1t=0 appearing in (15) can then be used to parameterize possible beliefdistortions.We are again interested in a local approximation of the dynamics of �rst order in the expan-sion parameter �, where the vector of exogenous disturbances �t is assumed to evolve accordingto (73). In addition to assuming only small �uctuations in the exogenous disturbances, we as-sume that the belief distortion process f�tg1t=0 involves �uctuations only of order O(�) aroundsome constant vector �; we later verify that the worst case beliefs are indeed of this form, fora vector � that remains to be determined. We similarly assume that the Lagrange multipliers
f�t;	tg1t=0 are of order O(�), as in the rational expectations case, and that f
tg1t=0 di¤ers fromits optimal steady state value 
� only by a term of order O(�); we later verify that this is indeedthe case. As in section 4.4, we also assume that steady state distortions are small, in the sensethat sd � O(�) and � � O(�), that the initial price dispersion ��1 is small (��1 � O(�2)),and that the initial precommitment (62) involves multipliers ��1, 	�1 of order O(�).We also assume that the parameter �, measuring the degree of concern for robustness tobelief distortions, is small in the sense that� � O(�2): (79)21



Under this assumption, the belief distortion factor mt+1 implied by (15) will continue to varyacross states to a non-trivial extent, even in the limit as � is made arbitrarily small. Thisassumption allows for more signi�cant belief distortions in the case of small exogenous distur-bances than in the analysis in Adam and Woodford (2012), where � was assumed to have a�xed positive value regardless of the magnitude of �, so that the worst-case �uctuations inmt+1were only of order O(�). In our earlier paper, this implied that the e¤ects of belief distortionson the model�s structural equations were at most of order O(�2). Here, instead, we obtainlinear approximations to the model structural equations that include belief distortion terms oforder O(�). In particular, we �nd that the worst-case belief distortions will generally implymis-pricing of housing of order O(�).We look for solutions to the structural equations in which the log deviationswt � �ygapt ; bqut ; bFt; bKt� ;de�ned as bqut � log qut =�d, bFt � logFt=K�, bKt � logKt=K�, each evolve (to a �rst-orderapproximation) according to linear dynamics of the formwt = E0wt + �PkPt�1j=0wj;kek;t�j; (80)where E0wt � O(�).Our assumption that the log deviations evolve in this way implies that (to a �rst-orderapproximation) the variables xt+1 have surprise components
ext+1 � xt+1 � Etxt+1 = �Xk x0;kek;t+1 (81)for certain time-invariant coe¢cients x0;k. We can then approximate the expectation terms inthe structural equations using the approximationEt[mt+1xt+1] = Et[xt+1] + Et[emt+1ext+1] +O(�2); (82)where

log emt+1 = ��1� 0text+1 � logEt[exp(��1� 0text+1)] (83)is an approximation to (15) obtained using this linear approximation to the surprise componentof xt+1. Using properties of normal and log-normal random variables (see for example Yang(2008)), we can evaluate the expressionEt[emt+1ext+1] =M�t; (84)where M �
1�Et[ext+1ex0t+1] = 1�Xk x0;kx00;k: (85)This allows us to write the forward-looking structural equations (30) and (53) to a �rst-orderapproximation as

(bqut � bqu�t ) = �(1� �)Et[bqut+1 � bqu�t+1] + (1� �(1� �))sd + �(1� �)M3�t (86)
bZt = (1� ��) �z + zyygapt + zq (bqut � bqu�t ) + z0��t�+ ��D(1)Et bZt+1 + ��fM�t; (87)where

fM �

� M1M2 � ;22



we use the notation Mi for the i -th row of M , and (z; zy; zq; z�) are the coe¢cients of a log-linear approximation to the function log z(Yt; qut ; �t) at the optimal steady state. This yieldsa system of linear relations with constant coe¢cients linking the endogenous variables wt, theexogenous disturbances �t, and the belief distortions �t. These equations generalize the log-linearized structural equations of the RE model, discussed in section 4, by adding the linearterms in �t. Our initial precommitment (62) can also be approximated by a linear restriction,using the approximation19��0�1�(Z0) + (1� �)	�1qu0 = K��0�1 bZ0 + (1� �)�d	�1bqu0 +O(�3): (88)We shall further restrict the class Z of belief distortions that we consider to ones of theform �t = E0�t + �PkPt�1j=0�j;kek;t�j +O(�2); (89)where E0�t � O(�), so that the linearized structural equations (86) and (87) continue to admitsolutions of the linear form (80) to a �rst-order approximation, just as in the RE case, whenpolicy is speci�ed by a linear target criterion. Note that while assumption (89) requires thatbelief distortions be small (of order O(�)), they still modify the form of the structural equations(86) and (87) to �rst order. In this respect, the belief distortions allowed here are not requiredto be as small as those assumed in Adam and Woodford (2012), which a¤ected the structuralequations only to second order.Appendix A.5 shows that the linearized structural equations (87) imply a generalizedPhillips curve of the form�t = �yygapt + �q(bqut � bqu�t ) + ut + �Et�t+1 + �0��t; (90)where the coe¢cients � are de�ned in appendix and satisfy �y > 0; �q > 0. The disturbance utremains the one de�ned in equation (77). This equation generalizes the RE Phillips curve (75)in two respects: mispricing of housing (bqut 6= bqu�t ) has a cost-push e¤ect, and belief distortionsa¤ecting subjective expectation of in�ation shift the Phillips curve as well.6 Upper-Bound Dynamics Allowing for Belief Distor-tionsWe shall now formulate the upper bound problem, i.e., the problem on the right-hand side ofinequality (7), for the nonlinear New Keynesian model with a housing market and distortedprivate sector expectations, and characterize its solution.We �rst characterize the policymaker�s best response problem (the problem in equation(6)) to an arbitrary belief distortion process f�tg1t=0 2 Z. This problem can be written as aLagrangian problem of the form
max

fYt;Zt;�t;qut g1t=0E0 1Xt=0 �t 2664 U(Yt;�t; qut ; �t) + ��mt+1 logmt+1
+
t[~h(�t�1; Kt=Ft)��t]
+�0t[z(Yt; qut ; �t) + ��mt+1�(Zt+1)� Zt]
+	t[�dt + �(1� �)mt+1qut+1 � qut ]
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+ ��0�1�(Z0) + (1� �)	�1qu0 ; (91)where 
t;�t and 	t are the Lagrange multipliers associated with the same three constraints asin sections 4.1 and 4.3, and the initial precommitment (62) has again been added to allow for19The approximation (88) is accurate to second order because of our assumption that the multipliers ��1 and
	�1 are of order O(�). 23



a time-invariant solution. The initial precommitment speci�es a value for a linear combination�e�0�1�(Z0)+ (1� �)qu0 , and 	�1 is the Lagrange multiplier associated with this constraint. Wefurther use the notation ��1 � 	�1e��1 in the Lagrangian (91) so that our �rst-order conditionshave a time-invariant form. In evaluating the Lagrangian (91), we substitute the process (15)for fmt+1g1t=0 implied by the chosen process for fxt+1g1t=0 and the process f�tg1t=0.6.1 Local Approximation of the Best-Reponse ProblemWe are interested in a local approximation of the best-response dynamics of �rst order in theexpansion parameter �, under the assumptions stated in section 5. The terms in the Lagrangian(91) involving belief distortions are of the form�Et[mt+1 logmt+1] + �0tEt[mt+1xt+1]; (92)where
�t � " �K��t

(1� �)�d	t # :We compute a linear approximation to the best response dynamics in which the variables wt+1are assumed to have a solution of the form (80) for some time-invariant coe¢cients wj;k.Again using (81) we can approximate the terms in equation (92) using (82) andEt[mt+1 logmt+1] = Et[emt+1 log emt+1] +O(�2);where ext+1 is de�ned in equation (81) and log emt+1 given in equation (83). The properties ofnormal and log-normal random variables, mentioned earlier, allow us to write (84) andEt[emt+1 log emt+1] = 1

2�� 0tM�t;where M is de�ned in (85). Hence the terms in the Lagrangian involving the belief distortionscan be approximated to second order as�Et[mt+1 logmt+1] + �0tEt[mt+1xt+1] = Et[�0txt+1] + 12� 0tM�t + �0tM�t +O(�3): (93)We show in appendix A.6 how to compute second-order approximations to the other termsin the Lagrangian (91), using a second-order Taylor expansion around the constant values ofthe variables associated with the optimal steady state. This allows us to write
1Xt=0�t[U(Yt;�t; qut ; �t) + 
t(~h(�t�1; Kt=Ft)��t)] (94)
= �

1Xt=0 �t[���2t + �y (ygapt )2 + �q(bqut � bqu�t )2] + t:i:p:+O(�3);where �� > 0;�y > 0;�q > 0; and t:i:p: collects terms that are independent of policy.20The terms in the Lagrangian (91) that still need to be approximated are equal to
�0t(z(Yt; qut ; �t) + ��Et[�(Zt+1)]� Zt) + 	t(�dt + �(1� �)Et[qut+1]� qut ): (95)20Note that in addition to a Taylor expansion of the objective, we have used a second-order approximationto equation (45) to substitute variations in in�ation �t for variations in Kt=Ft. Explicit expressions for thecoe¢cients ��; �y and �q are provided in appendix A.6.24



Note that we include here the terms of the form Et[�0txt+1] from the right hand side of equation(93). Because the multipliers �t and 	t are of order O(�), approximation of the terms (95)to second order requires only a �rst order approximation to the constraints, i.e., the structuralequations. These have been approximated to �rst order in section 5, see equations (86) and(87). A quadratic approximation to (95) is thus given byK��0t[(1� ��) �z + zyygapt + zq (bqut � bqu�t ) + z0��t�+ ��D(1)Et bZt+1 � bZt]
+ �d	t[(1� �(1� �))sd + �(1� �)Et[bqut+1 � bqu�t+1]� (bqut � bqu�t )]:We can similarly quadratically approximate the initial precommitment using (88).Thus we obtain an approximation to the Lagrangian (91) that is quadratic in the policy-maker�s decision variables of the formE0 1Xt=0 �t��12 ����2t + �y (ygapt )2 + �q(bqut � bqu�t )2� (96)

+K�0t � (1� ��) �z + zyygapt + zq (bqut � bqu�t ) + z0��t�
+��D(1)Et bZt+1 � bZt �

+ �d	t �(1� �(1� �))sd + �(1� �)Et[bqut+1 � bqu�t+1]� (bqut � bqu�t )�
+ �K�0�1D(1) bZ0 + (1� �)�d	�1bqu0
+
1

2
�� 0tM�t + ��0tM�t� ;neglecting terms independent of policy and terms of order O(�3):We further specialize our analysis to the case of belief distortions with the property that�2;t = ��1;t at all times. This restriction on the class of contemplated belief distortions can onlyraise the value of the upper bound computed as the right-hand side of equation (7), so thatour computed upper bound must also be an upper bound for our original problem. We showbelow that even this potentially looser upper bound is in fact achievable through an appropriatepolicy commitment; hence our restriction on the class of contemplated belief distortions is nota binding constraint.Under this assumption, we can also show, as in the rational expectations analysis in section4, that in the case of an initial precommitment in which �2;�1 = ��1;�1, the best responsedynamics will involve multipliers for which �2;t = ��1;t for all t � 0. We accordingly assumethis restriction as well in what follows. In this case, only two linear combinations of the vector

ext+1 matter for our calculations and we can write
�0text+1 = �'t (�t+1 � Et�t+1)� (1� �) t �bqut+1 � Etbqut+1�� 0text+1 = ��t (�t+1 � Et�t+1) + �qt �bqut+1 � Etbqut+1� ;where we introduce a new parameterization of the Lagrange multipliers for the policymaker�sproblem, 't � K� �

1� �(1 + !�)�1;t,  t � ��d	t; (97)and a new parameterization of belief distortions
b�t � (��t ; �qt )0;where ��t � �K�

�
1 + !�
1� � � �1;t, �qt � �d�3;t:25



We can then rewrite � 0tM�t = ��1b� 0tV b�t
�0tM�t = ���1 ('t; (1� �) t)V b�twhere V � Et h��t+1 � Et�t+1; bqut+1 � Etbqut+1� � ��t+1 � Et�t+1; bqut+1 � Etbqut+1�0i (98)is a covariance matrix for the surprise components of �t+1 and bqut+1. This allow us to writethe Lagrangian (96) entirely in terms of the evolution of in�ation, the output gap and housingprices.6.2 A Modi�ed Linear-Quadratic Approximate ProblemUsing the results from the previous section, we rewrite the Lagrangian (96) in the formE0 1Xt=0 �tf�12 ����2t + �y (ygapt )2 + �q(bqut � bqu�t )2�+ �

2� b� 0tV b�t
+ 't � �t � �yygapt � �q (bqut � bqu�t )� ut � �Et�t+1

����1V1b�t �

+  t " (bqut � bqu�t )� (1� �(1� �))sd
��(1� �)�Et[bqut+1 � bqu�t+1] + ��1V2b�t� #

�'�1�0 � (1� �) �1 (bqu0 � bqu�0 )g ; (99)where Vi is the i-th row of the covariance matrix of surprises V de�ned in (98).The approximate Lagrangian (99) is in fact the Lagrangian for a problem of choosing evo-lutions for the endogenous variables f�t; ygapt ; bqut g1t=0 so as to minimize a quadratic loss functionE0 1Xt=0 �t2 ����2t + �y (ygapt )2 + �q(bqut � bqu�t )2 � �� b� 0tV b�t� (100)subject to the constraints �t =�Et�t+1 + �yygapt + �q (bqut � bqu�t ) + ut
+ ���1V1b�t (101)

(bqut � bqu�t ) =�(1� �)Et[bqut+1 � bqu�t+1] + (1� �(1� �))sd
+ �(1� �)��1V2b�t (102)for all t � 0, and an initial precommitment of the form'�1 �1�0 + (1� �)(bqu0 � bqu�0 ) = G0; (103)where the coe¢cients '�1= �1 and G0 are given. Here the constraints (101) and (102) representthe �rst-order approximations to the structural equations derived in section 5, but with thebelief distortion terms now written in terms of the smaller vector b�t. The �rst two terms inthe loss function (100) would also be present under the assumption of rational expectations,but the third term would not be needed (as it would be independent of policy), and the fourthterm would not be present (as this re�ects the penalty for large belief distortions).26



The problem of minimizing the loss function (100) subject to the constraints (101) and (102)is more complicated than the linear-quadratic problem that would approximately characterizean optimal policy commitment in the case of rational expectations. First, the constraints (101)and (102), while containing only terms of order O(�), are no longer linear in the responses ofthe endogenous variables to shocks, because of the belief distortion terms (recall that V1 and V2themselves depend on those responses). Second, the loss function remains a quadratic functionof the responses of the endogenous variables, but it is no longer a simple sum of squared termswith positive weights, but now includes a �nal term that is concave rather than convex as afunction of the responses of the endogenous variables.Note that we restrict the policies that we consider to be ones that result in equilibriumdynamics, to a �rst order of approximation, in which the evolution of the endogenous variablesis of the form (80). Thus in our approximate characterization of robustly optimal policy, thee¤ects of the underlying disturbances ekt on endogenous variables such as in�ation and outputare linear, as in standard characterizations of optimal policy under commitment in the case ofrational expectations. We can thus compare the robustly optimal dynamics that we obtain tothe optimal dynamics under rational expectations by comparing the linear impulse responsefunctions to di¤erent types of exogenous disturbances.Because of this, we can express our endogenous variables as sums of forecastable and un-forecastable components, �t+1 = Et�t+1 +Xk �0;kek;t+1 (104a)ygapt+1 = Etygapt+1 +Xk y0;kek;t+1 (104b)
bqut+1 = Etbqut+1 +Xk q0;kek;t+1; (104c)for each t � 0. Substituting these expressions into the Lagrangian for the problem of minimizing(100) subject to the constraints (101)-(102), we �nd that the Lagrangian for the policymaker�sbest response problem can be written as the sum Le+Lu, where Le depends only on (�0; ygap0 ; bqu0 )and the predictable components fEt�t+1; Etygapt+1; Etbqut+1g1t=0, taking as given the evolution ofthe belief distortions and the Lagrange multipliers, and Lu depends only on the coe¢cients

(�0;k; y0;k; q0;k) describing the surprise components of each of the variables.We further observe that Le is a convex quadratic function of the predictable components,and accordingly has an interior minimum corresponding to the unique solution to a system oflinear di¤erence equations.21 The function Lu is a quadratic function of the formLu = E0P1t=0�tPk �a0t;k � �0;kq0;k �+ (�0;k; q0;k) H � �0;kq0;k �+ bty0;k + �y
2
(y0;k )2� ; (105)where the coe¢cients (at; bt; H) are de�ned in appendix A.7 and where we ignored terms thatare independent of policy. This is a convex function of the response coe¢cients if and only ifthe 2x2 matrix H is positive semi-de�nite, i.e., if and only ifH11 � 0 and det(H) � 0: (106)As discussed in appendix A.7, conditions (106) are necessarily satis�ed in the case of any largeenough value for �=�2.22 In this case, the response coe¢cients that minimize the Lagrangianare given by a system of linear equations, the coe¢cients of which depend on the paths of thebelief distortions and the Lagrange multipliers.21This system is of the same form as in the case of rational expectations.22In our numerical illustration below, we verify numerically that conditions (106) hold.27



The �rst order conditions for the minimization of Le + Lu, together with the linearizedstructural equations (101)-(102), provide a system of equations to solve for the dynamics of theendogenous variables and the Lagrange multipliers. Assuming that this solution implies pathsfor the multipliers that satisfy condition (106), we have obtained a solution to the problem ofminimizing the Lagrangian, given the belief distortions f��t ; �qt g1t=0.6.3 Worst-Case Belief DistortionsWe turn next to the problem of choosing the worst-case belief distortions in the Lagrangianupper-bound problem (8). We wish to consider the e¤ect of variations in the belief distortions
b� = (b�0; b�1; : : :) on the minimized value of the Lagrangian (99) for the policymaker�s best-response problem. Let x(b�) denote the policymaker�s best response to any belief distortions�̂ ; where x = (x0; x1; :::) and xt = (�t; ygapt ; bqut ; 't;  t). Using the notation �(b�; x) for theLagrangian (99), we wish to �nd the belief distortions �̂ that solve the problem

maxb� �(b�; x(b�)): (107)We begin by �nding a saddle point of the Lagrangian, namely a pair (x�; b��) such thatx� = x(b��) and at the same time b�� is a solution to the problem
max�̂ �(b�; x�): (108)With a solution of this kind,

�(b�; x(b�)) � �(b�; x�) � �(b��; x�)for all b�, so that b�� is in fact the solution to the worst-case belief problem (107).We note further that the �rst-order conditions for problem (108) are given by@�@� (b��; x�) = 0, (109)together with the requirement that x� = x(�̂�): We begin by looking for a solution to thissystem of equations.For given x, the e¤ects of the belief distortions on the Lagrangian (99) are captured by theterms ��1E0 1Xt=0 �t+1 �('t; (1� �) t)V b�t � 1
2
b� 0tV b�t� ; (110)where V is given for given x. The �rst-order condition (109) for b�t delivers the condition

b��0t = ('�t , (1� �) �t ); (111)where '�t and  �t are the Lagrange multipliers associated with the solution to the policymaker�sbest-response problem. This condition implies that the worst-case belief distortions distortprobability beliefs to the greatest extent precisely in those periods and states of the world inwhich tightening the constraints implied by the forward-looking structural equations will bemost uncomfortable for the policymaker.It remains to show that a solution to these �rst-order conditions is actually a solution tothe maximization problem (108). A second-order expansion of �(b�; x�) around b� = b�� delivers:
�(b�; x�) = �(b��; x�) + @�@b� 0 (b��; x�)b� + b� 0 @2�@b�@b� 0 (b��; x�)b� +O(�3): (112)28



At the conjectured optimum, we have @�@b� (b��; x�) = 0 from equation (109). From equation (110)follows that @2�@b�@b� 0 (b��; x�) = ���1Vwhere V is de�ned in equation (98) and necessarily a positive semi-de�nite matrix. Equation(112) thus implies that condition (108) locally holds around the conjectured solution. Thisproves that the saddle-point distortions (111) solve the worst-case belief problem (107).6.4 Linearized Upper-Bound DynamicsWe can now substitute the solution (111) for the belief distortions into the system of linearequations characterizing the best-response dynamics. We obtain a system of linear equations23
���t � 't + 't�1+��1E'' (�t � Et�1�t)

+��1(1� �)E' (bqut � Et�1bqut ) = 0 (113)
�yygapt + �y't = 0 (114)

�q(bqut � bqu�t )+�q't �  t + (1� �) t�1
+��1(1� �)E' (�t � Et�1�t)
+��1(1� �)2E  (bqut � Et�1bqut ) = 0 (115)for all t � 1, and �t = �yygapt + �q(bqut � bqu�t )+ut + �Et�t+1

+���1V1 ('t; (1� �) t)0 (116)
(bqut � bqu�t ) = (1� �(1� �))sd+�(1� �)Et[bqut+1 � bqu�t+1]

+�(1� �)��1V2 ('t; (1� �) t)0 ; (117)for all t � 0. In period t = 0, we also have the conditions
���0 � '0 + '�1 = 0 (118)
�yygap0 + �y'0 = 0 (119)

�q(bqu0 � bqu�0 ) + �q'0 �  0 + (1� �) �1 = 0: (120)together with the initial precommitment (103). Here we have introduced the notation
E �

� E'' E' E' E  � � (1� �)E0 1Xt=0 �t� 't t � ('t;  t) : (121)Equations (113)-(115), together with the special forms (118)-(120) for the initial period,correspond to the �rst-order conditions for the policymaker�s best response, after substitutingsolution (111) for the worst-case beliefs. Equations (116) and (117) correspond to the linearizedstructural equations (101) and (102), again substituting solution (111) for the belief distortions.Taking as given the time-invariant coe¢cients of the matrices E and V , these equations, togetherwith the initial precommitment (103), provide a system of �ve linear equations per period to23To simplify notation, we do not add the star superscripts to the variables to indicated the upper boundsolution, unlike in the previous section. 29



solve for the dynamics of the variables f�t; ygapt ; bqut ; 't;  tg1t=0 together with the initial multiplier �1. Note that a bounded solution to these equations will necessarily be of the conditionallylinear form (104). Given such a solution, we can then compute the matrices E and V impliedby the solution, using equations (98) and (121). This allows us to de�ne a �xed-point problemto solve for matrices E and V .The implied dynamics of the belief distortions associated with such a solution are given byequation (111). We can then evaluate the matrix H appearing in equation (105), obtainingH �
1

2

�
�� + ��1E'' ��1(1� �)E' ��1(1� �)E' �y + ��1(1� �)2E  � : (122)Note that the de�nition (121) implies that E is a positive semi-de�nite matrix. Since ��;�y > 0,equation (122) implies thatH must be positive de�nite, so that the solution to our linear systemcorresponds to a minimum of the Lagrangian for the policymaker�s best-response problem.A pair of matrices E and V that solve the �xed-point problem, together with the associatedsolution of the linear equations (113)-(120), provide a characterization of the linearized upper-bound dynamics, by which we mean a log-linear approximation to the solution to the Lagrangianupper-bound problem (8). The associated dynamics of the belief distortions are given byequation (111). We observe that the implied paths of the Lagrange multipliers f't;  tg1t=0 areindeed of order O(�), as assumed in section 6.1, because both the constant term (1��(1��))sdand the disturbance terms (bqu�t ; ut) appearing in equations (113)-(120) are of order O(�), dueto assumption (74). Because the belief distortions are proportional to the Lagrange multipliers,in accordance with equation (111), the processes fb�tg1t=0 are also of order O(�), as also assumedin section 6.1.Associated with this solution for the evolution of the endogenous variables are evolutions ofthe complete set of Lagrange multipliers f�t; 
t;	tg1t=0 for the nonlinear best-response problem(91). We show in appendix A.8 that these multipliers satisfy ��t; 
t � 
�;	t� � O(�), asassumed in section 6.1. Hence if the system of linear equations (113)-(120) has a boundedsolution implying a matrix H that is positive semi-de�nite, we can construct paths for allvariables satisfying the assumptions made in our speci�cation of the Lagrangian upper-boundproblem.7 A Robustly Optimal Target Criterion for MonetaryPolicyThe equations in the previous section describe the dynamics of in�ation, the output gap andhousing prices that solve the upper-bound problem. It remains to be determined if there existsa monetary policy commitment that can achieve this upper bound, when belief distortions arechosen as the worst-case distortions in response to this policy commitment.We begin by noting that conditions (113) and (114) require that under the upper-bounddynamics the joint evolution of in�ation, output gap and house prices necessarily satisfy�t + �y

���y �ygapt � ygapt�1�
+
��1
�� E'' (�t � Et�1�t) + ��1

�� (1� �)E' (bqut � Et�1bqut ) = 0 (123)for all t � 1. Equation (123) is a necessary condition for achieving the upper bound and wecan propose it as a target criterion for monetary policy, i.e., the central bank adjusts its policy30



instrument as necessary in order to ensure that condition (123) is satis�ed in each periodt � 1.24 The coe¢cients E'' and E' in the target criterion should now be interpreted asspeci�c numbers, corresponding to the values in the upper-bound dynamics, so that the targetcriterion establishes a linear relationship among the endogenous variables (as does the initialprecommitment).Analytically showing that the targeting rule (123) implements the upper-bound dynamics asa worst-case outcome turns out to be di¢cult. Nevertheless, the next section presents a generalapproach that allows us to verify numerically whether this is the case. Using this approach, weverify that the target criterion (123) is an example of a robustly-optimal policy commitmentfor the numerical example presented in section 8 below. We found this also to be true for anumber of alternative model parameterizations.The target criterion (123) generalizes the target criterion (76), which is optimal in theabsence of robustness concerns (or under an assumption of rational expectations). In fact, therational-expectations optimal policy commitment is obtained from (123) in the limiting casein which �2=� ! 0, which captures a setting in which belief distortions are more costly.25 Thetarget criterion (123) also generalizes the one for a New Keynesian model without a housingsector presented in Adam andWoodford (2012), which featured only the term involving in�ationsurprises in the second line of equation (123).26The coe¢cients in the targeting rule (123) have the following signs
�y
���y > 0��1E''
�� > 0sign(��1

�� (1� �)E' ) = sign(E' ):From equation (121) follows that - for the case where the steady state distortions are su¢cientlylarge relative to the standard deviation of the shocks27 - the sign of E' is identical to the signof ' �  , where the lower bars indicate the second-best steady state value of the Lagrangemultipliers. From lemmas 1 and 2 and de�nition (97) we then obtain for the empiricallyrelevant case with a housing subsidy (sd > 0 ) and an ine¢ciently low output subsidy (1� � <
1� � eff (ss)) that E' > 0.A positive coe¢cient on housing price surprises implies that surprise increases (decreases) inhousing prices require either lower (higher) in�ation or a lower (higher) output gap, comparedto a situation where policy is not concerned about deviations from rational expectations. It isin this sense that robustly optimal policy requires �leaning against� housing prices.Intuitively, a situation with a positive housing subsidy and an ine¢ciently low output sub-sidy is one where there is too little (non-durable) consumption and too many houses. Thepolicymaker thus fears belief distortions that simultaneously generate additional housing sup-ply and an additional shortfall in consumption. This can be achieved by distorting probability24Monetary policy in period t = 0 is speci�ed by the requirement that the initial precommitment be satis�ed.25Recall that he coe¢cients (E''; E' ) are of order O(�2) in our setting where steady-state distortions areof order O(�).26Adam and Woodford (2012) assumed � � O(�). In a setting where steady-state distortions are of order
O(�), as considered here, we have (E''; E' ) � O(�2), so that � � O(�) implies that the terms in the secondline of (123) are all of second-order. This shows that it is important to either allow for larger belief distortions,as we do in our present setting where � � O(�2), or to allow for steady-state distortions of order O(0), as inAdam and Woodford (2012).27Speci�cally, we need that sd=� and (1� �eff (sd)� (1� �))=� are su¢ciently large.31



beliefs in a way such that they overstate the likelihood of future states in which both in�ationand housing prices are high. From the New Keynesian Phillips curve (101) it follows thatupwardly distorted in�ation expectations (��1V1b�t > 0) either cause lower output or to highercurrent in�ation, both of which are costly. Likewise, it follows from the housing price equation(102) that upwardly distorted housing price expectations (��1V2b�t > 0) cause higher housingprices today and thus an increased excess supply of housing. If housing price and in�ation sur-prises are positively correlated (the matrix V features a large and positive o¤-diagonal element),then both of these expectations can be moved in the same direction with a single distortion (oneof the elements of the vector b�t), which amounts to reducing the e¤ective cost of moving bothexpectations upwards. The robustly optimal policy (123) causes in�ation and output surprisesto be more negatively correlated when E' > 0. This causes the o¤-diagonal element of V tobe less positive and thus makes it harder (or more costly) to distort both expectations upwards.Finally, we note that veri�cation of the target criterion (123) does not require a determina-tion of the extent to which actual housing prices deviate from �fundamental� housing prices.In fact, there is no need to respond di¤erently to housing price surprises arising from changesin fundamentals and those due to changes in expectational errors. Nor does the target criterionmake reference to shocks to housing demand or housing supply, except to the extent that theseshocks a¤ect an assessment of the policy-relevant output gap.7.1 Verifying that the Target Criterion Implements the Upper-BoundDynamicsTo verify that the target criterion (123) implements the upper-bound solution as a worst-caseoutcome, we return to the general strategy spelled out in the last two paragraphs of section2.1. We already know that the target criterion is consistent with the solution to the Lagrangianupper-bound problem (it has been derived from its �rst-order conditions). It remains to showthat the upper-bound solution is the locally unique outcome when policy commits to the pro-posed target criterion, and when beliefs are given by the upper-bound beliefs. Finally, we needto show that the upper-bound distortions are in fact the worst-case distortions when policycommits to the targeting rule (123). We now turn to these latter two issues.We start by considering the worst-case dynamics associated with the policy commitment(123), by which we mean the equilibrium dynamics resulting from the worst-case belief distor-tions, as de�ned in equation (5). The worst-case belief distortion problem can be formulated asthe choice of paths for the variables f�t; ygapt ; bqut ; ��t ; �qt g1t=0 satisfying the target criterion (123)in each period t � 1, the initial precommitment in period t = 0, as well as the structuralequations (101) and (102), so as to maximize the loss function (100).The worst-case belief distortion problem is an in�nite-dimensional optimization problem,which is not easily expressed in a recursive form. This makes it somewhat more complicatedto numerically verify that the upper-bound distortions actually achieve (locally) the maximumloss in terms of the objective function (100). We deal with this issue in two steps.In a �rst step, we verify condition (157) in appendix A.10. This condition insures that thetarget criterion (123), the initial precommitment, and the structural equations (101) and (102)imply a locally unique outcome for the variables f�t; ygapt ; bqut g1t=0 for given belief distortions
f��t ; �qt g1t=0 in the neighborhood of the worst case belief distortions. This insures that we have awell-de�ned outcome function O(�; c) that determines the endogenous variables for alternativebelief distortion, as assumed in equation (5), and that the outcome associated with the upper-bound solution is indeed the locally determinate outcome implied by the target criterion whenthe belief distortions are those associated with the upper-bound solution.In a second step, we show in appendix A.9 that for a given matrix V , the �rst-order con-ditions to the worst-case belief distortion problem in which policy commits to the targeting32



rule (123) imply that the predictable part of the worst-case belief distortions Et�1(��t ; �qt ) areidentical to the predictable part of the multipliers Et�1 ('t; (1� �) t) solving the upper boundequations (113)-(120) for the same matrix V . The predictable part of the multipliers thus havea recursive solution. This insight allows us to numerically verify whether the target criterion(123) implements the upper-bound solution by considering the e¤ects of variations in a �nitenumber of parameters.Speci�cally, we consider alternative values for V in the neighborhood of the values implied bythe upper-bound solution, and the associated predictable dynamics of the belief distortions. Wethen consider alternative response coe¢cients to the surprise components of belief distortions(in the neighborhood of the response coe¢cients assume in the upper-bound solution), suchthat they give rise to equilibrium dynamics consistent with the hypothesized matrix V . In thisway, we have transformed a potentially in�nite-dimensional optimization problem of choosingalternative belief distortions f��t ; �qt g1t=0 into a problem of varying a small number of parameters,in fact only four. Details of the numerical procedures are spelled out in online Appendix C.Using this approach, we check for the numerical example presented in the next sectionwhether alternative belief distortions in the neighborhood of the upper-bound distortions yieldhigher or lower losses in terms of the objective function (100).28 Figure 1 depicts the distributionof incremental welfare losses relative to the losses associated with the upper-bound distortions.The �gure is obtained by considering 1000 random alternative belief distortion choices in theneighborhood of the upper-bound distortions. The �gure shows that additional losses arenegative, i.e., that the alternative belief distortions lead to lower losses for the policymakerthan those in the upper-bound solution. The belief distortions associated with the upper-boundsolution thus represent worst-case belief distortions, so that the proposed target criterion (123)has the upper-bound solution as its worst-case outcome.8 A Numerical IllustrationThis section determines the upper-bound dynamics, compares them to the RE equilibrium dy-namics and computes the robustly optimal targeting criterion for a numerical example. Detailsof the computations are reported in the online appendix of the paper.Numerically solving for the upper-bound solution requires parameter values for (�; �; �y; �q;
�Y =��;�q=��; sd), a value for the (scaled) robustness parameter ��1=��, as well parameterscharacterizing the stochastic processes for ut and b�dt . We consider exogenous disturbances ofthe form ut � w + but

bqu�t = b�dt � sd;where w � (1� �) (1� ��)�(1 + !�) �

but � (1� �) (1� ��)�(1 + !�) (b�t � bgt) ;where but and b�dt are autoregressive processes of the form
but = �ubut�1 + eut
b�dt = ��b�dt�1 + e�t ;28Obviously, we �rst check that condition (157) is in fact satis�ed.33
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Figure 1: Distribution of incremental welfare losses associated with belief distortions in theneighborhood of the upper-bound distortions, when policy commits to the targeting rule (123).Parameteric example from section 8.with eut � iiN(0; (�eu)2), e�t � iiN(0; (�e�)2)Table 1 reports our model parameterization, which is motivated in detail in appendix A.11.The parameterization assumes the presence of a steady state housing subsidy, which will leadto an oversupply of housing in the second best steady state relative to the optimal steady state.It also assumes an output subsidy that falls 15% short of its e¢cient level, so that steady-state output will be below its optimal steady-state value. For the case where the robustnessparameter ��1=�� is set to zero instead of the value reported in table 1, one obtains the optimaldynamics in the absence of robustness concerns, i.e., under rational expectations.
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Discount factor � 0.99Housing depreciation rate � 0.03/4Phillips curve coe¤. on output gap �y 0.024Phillips curve coe¤. on house price gap �q -0.0023Relative weight on output gap �Y�� 0.0031Relative weight on housing gap �q�� 0.0014Steady state housing subsidy sd 15%Steady state mark-up gap w 0.0057Mark-up shock persistence �u 0.9907Housing preference shock persistence �� 0.99Std. dev. mark-up shock innovation �eu 0.0002Std. dev. housing pref. shock innovation �e� 0.024Robustness parameters ��1�� 50Table 1: Parameterization (quarterly model)Table 2 reports the average values of the output gap, the in�ation rate and the housing pricegap. The table reports these values for the RE solution and for the upper-bound solution.29For the RE solution, the average values correspond to the ones in the second-best steady state.For the upper-bound solution, the average values di¤er from the second-best steady state dueto the presence of belief distortions. In the REE, housing prices are on average 15% abovetheir e¢cient value, in line with the assumed housing subsidy. The high level of housing pricescauses equilibrium housing supply to be ine¢ciently high. Moreover, due to the suboptimallylow output subsidy, the average output gap is negative, despite suboptimally high levels ofhousing investment. As a result, non non-durable consumption (not reported in the table)is also depressed relative to its optimal steady-state value. In the upper-bound solution, theoutput gap is on average less negative than in the RE equilibrium. This is due to the fact thatthe housing price gap is more than 5 percentage points larger than under RE. This shows thatworst case beliefs distort (on average) housing prices further upwards and by doing so give riseto even higher levels of housing investment. This leads to a slightly reduced output gap. Thein�ation rate is on average equal to zero in both solutions. Conditional in�ation dynamics,however, di¤er notably, as we show next. RE Upper-boundsolution solutionOutput gap (bY � bY �) �22:3% �21:8%In�ation (�) 0% 0%Housing price gap (bqu � bqu�) 15% 20:3%Table 2: Average valuesFigure 2 depicts the impulse response of the output gap, the in�ation rate, the price level andthe housing price to a positive innovation in housing preferences e�t of one standard deviation.To facilitate comparisons across equilibria, the housing price response in �gure 2 is shown interms of deviations of housing prices from their second-best steady state value. A demand shockof the considered size causes housing prices to increase in a persistent manner, with an impact29The upper-bound solution is the outcome associated with a robustly optimal policy commitment and theassociated worst case beliefs, while the RE solution is associated with an RE optimal policy commitment andno belief distortions. 35
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Figure 2: RE vs. robustly optimal dynamics (housing pref. shock, +1 std.dev.)e¤ect of approximately 2.4%.30 In the REE, the in�ation rate and the output gap do not respondto the housing shock, in line with the results derived in section 4.5. Under the upper-boundsolution, it becomes optimal to lean against the housing price increase: in�ation and the outputgap both fall persistently below their steady state level. On impact, in�ation is almost 0.15 %and output more than 0.5% lower than in the absence of the housing demand shock. Giventhe relatively small size of the housing price innovation, this is a sizeable response. Stronger(weaker) robustness concerns, i.e., higher (lower) values for (�=��)�1), would cause this reactionto be stronger (weaker). Under the upper bound dynamics, the price level remains permanentlylower following the housing price surprise, i.e., the price level incorporates a random walkcomponent under robustly optimal policy, while the RE optimal policy implies a stationaryprice level.It is worth emphasizing that the optimal reaction to positive and negative shocks is sym-metric in the upper-bound dynamics: for a negative housing demand shock, the upper-boundsolution calls for a looser policy than under RE, i.e., for a persistent increase in in�ation andthe output gap. The online appendix of the paper also reports the impulse responses to apositive mark-up shock. In�ation then reacts identically under both policies and the outputgap and the housing price gap di¤er along the impulse response across the two solutions onlyby a constant that is equal to the corresponding di¤erence in average values reported in table2. Table 3 reports the coe¢cients for the robustly optimal targeting rule (123) that implementsthe upper-bound solution as a worst case equilibrium outcome. The response coe¢cient on the30The impact e¤ect is exactly 2.4% in the RE solution and 2.56% in the upper bound dynamics, as beliefdistortions amplify the e¤ect of the shock. 36



housing price surprise in this targeting rule turns out to be rather sizable. For instance, itimplies that a 2.4 % housing price surprise would call on impact for a 0.75% drop in the outputgap when keeping in�ation at its pre-shock zero value; alternatively, it would call for a 0.37%drop in (annualized) in�ation when keeping the output gap at its pre-shock average value,i.e., roughly .31 In the worst-case equilibrium outcome associated with a commitment to theconsidered robustly optimal targeting rule, the output gap and in�ation both fall on impact,but each by smaller amounts, see �gure 2.Coe¢cient on RE optimal Robustly optimalChange in output gap �y���y 0.1292 0.1292In�ation surprises ��1�� Enew'' 0 0.0414Housing price surprises ��1�� (1� �)Enew' 0 0.0406Table 3: Optimal targeting rule coe¢cients9 ConclusionsMonetary policymakers concerned about whether private-sector expectations will necessarilycoincide with those implied by their own model, that they use to understand the economy andchoose their policy commitment, may �nd it desirable to include housing prices in the set ofvariables that they must track in order to verify that policy is on course, alongside the traditional�target variables� of in�ation and a suitably de�ned measure of the output gap. This can bethe case even under circumstances where an optimal policy commitment could be formulatedpurely in terms of a desired relationship between the paths of in�ation and the output gap, ifone could be con�dent that one�s policy would result in a rational-expectations equilibrium.We have illustrated this in the context of a standard New Keynesian model extended to includea housing sector, where we �nd that robustly optimal policy can be characterized by a linear�target criterion,� but this must involve housing price surprises in addition to the paths ofin�ation and the output gap. In the presence of a housing subsidy, this requires monetarypolicy to be tighter (less tight) following unexpected increases (decreases) in the housing pricethan in the case in which the policymaker can rely on the private sector to have the sameexpectations as herself.Of course, our analysis does not pretend to provide a complete analysis of the problem ofthe desirable policy response to housing booms and busts. In our simple model, mis-pricingof housing due to expectational errors matters for welfare only because of its consequencesfor the degree to which productive resources are drawn into the housing sector; hence thedependence of our results on the degree to which there is already an ine¢cient over-supply ofhousing in the steady state, owing to housing subsidies. We believe that this is one reason whyhousing booms are harmful, but it probably is not the only one. Central banks� concern to�lean against� housing booms is often based on the fear that both household and bank balancesheets may be impaired in the event of a subsequent collapse of housing prices, as a result ofthe increased household borrowing often observed during a housing boom. Our model doesnot address this issue, as for simplicity we abstract both from household borrowing and fromthe existence of banks. The exercise must therefore be viewed more as an illustration of ourproposed approach than as a complete treatment of a policy issue. It should, however, su¢ceto indicate that conclusions about the need to include asset prices among the target variables31The latter number is obtained by dividing 0.023�0.0406, i.e., the product of the housing price suprise andthe response coe¢cient in the targeting rule, by 1.044, which the sum of the coe¢cient on in�ation and thein�ation surprise in the targeting rule, and by mutliplying the result by 4 to obtain annualized rates of in�ation.37
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A AppendixA.1 Steady State ResultsThis appendix proves a number of claims made in sections 4.2 and 4.3. Using (40) and (41) oncan write (64) more explicitly as�� �H��A1+!Y ! = � � 1� (1� �) �C ~��1C �Y ; qu; ���~��1 : (124)Since the left-hand side is increasing and the right-hand side decreasing in Y (as CY > 0), thereis a unique value for Y solving this equation, as claimed.Using the de�nitions of k and f and (124), we havefY = (1� �) �C ~��1C(Y; qu; �)�e��1
� e��1(1� �) �C ~��1Y C(Y; qu; �)�e��1�1CY (Y; qu; �)kY = �� � 1�� �H��A1+! (1 + !)Y !
= (1 + !)(1� �) �C ~��1C �Y ; qu; ���~��1 ;so that from CY > 0 and ! > 0 we getkY � fY = (1� �) �C ~��1C �Y ; qu; ���~��1

�
�! + e��1Y C(Y; qu; �)�1CY (Y; qu; �)�> 0: (125)From (49) we getUY (Yt;�t; qut ; �t) = C ~��1t C(Yt; qut ; �t)�~��1CY (Yt; qut ; �t)

�
�

1 + � (1 + !) �H��tA1+!t Y !t �t
+
Adt ��dt
~� 
(qut ; �t)~�� ~�

1� ~� ~��1�C(Yt; qut ; �t) ~�1�~� ~��1�1CY (Yt; qut ; �t): (126)Using (124), 1 + ! = �(1 + �) and evaluating at the steady state we haveUY (Y ; 1; qu; �) = C ~��1C(Y ; qu; �)�~��1CY (Y ; qu; �)
�
� � 1� (1� �)C ~��1C(Y ; qu; �)�~��1

+
Ad��d
~� 
~�� ~�

1� ~� ~��1�C(Y ; qu; �) ~�1�~� ~��1�1CY (Y ; qu; �):Using the fact that at the steady stateCY �Y ; qu; �� = 1� g
1 + 
 e��11�e�C(Y ; qu; �) e��11�e��1 (127)
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and (33) we haveUY (Y ; 1; qu; �) =C ~��1C(Y ; qu; �)�~��1CY (Y ; qu; �)
� C ~��1C(Y ; qu; �)�~��1 � � 1� (1� �)
+ C ~��1C(Y ; qu; �)�~��1CY (Y ; qu; �)
 1

1 + sd � ~��1
1� ~��C(Y ; qu; �) ~��11�~��1

=C ~��1C(Y ; qu; �)�~��1
�

0
@�� � 1� (1� �) + CY (Y ; qu; �)1 + sd + 
 ~��11�~�C(Y ; qu; �) ~��11�~��1

1 + sd 1
A

=C ~��1C(Y ; qu; �)�~��1 � 1� g
1 + sd � � � 1� (1� �) + sd

1 + sdCY (Y ; qu; �)� : (128)A.2 Proof of Lemma 1The e¢cient output subsidy 1 � � eff (sd) is the one giving rise to UY (Y ; 1; qu; �) = 0 and isimplicitly de�ned as
1� � eff (sd) = �� � 1  1� g + sdCY (Y ; qu; �)

1 + sd !

=
�� � 1 (1� g)0BB@1 + sd1+
 e��11�e�C(Y ;qu;�) e��11�e��1

1 + sd 1
CCA :From 
 e��11�e�C(Y ; qu; �) e��11�e��1 > 0 follows that @ �1� � eff (sd)� =@sd < 0. Using (127) we canexpress the terms in the last parenthesis in (128), which determine the sign of UY whenever �deviates from � eff (sd), as

1� g
1 + sd � � � 1� (1� �) + sd

1 + sdCY (Y ; qu; �)
=
1� g
1 + sd � � � 1� (1� �) + sd

1 + sd 1� g
1 + 
 e��11�e�C(Y ; qu; �) e��11�e��1 : (129)The derivative of the r.h.s of (129) w.r.t. (1� �) is given by

�
� � 1� �

sd
1 + sd 1� g

�
1 + 
 e��11�e�C(Y ; qu; �) e��11�e��1�2CY (Y ; qu; �) @Y@(1� �)and is strictly negative because CY > 0 and because (124) implies @Y@(1��) > 0. Since UY = 0for � = � eff (sd) this shows that UY < 0 whenever 1 � � > 1 � � eff (sd) and UY > 0 whenever

1� � < 1� �(sd), as claimed in lemma 1.
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A.3 Proof of Lemma 2From (49) we obtain using (33)Uqu(Y ; qu; �) = C ~��1C(Y ; qu; �)�~��1Cqu(Y ; qu; �)
+ Ad��d
~� ~��1

1� ~�C(Y ; qu; �) ~�1�~� ~��1�1Cqu(Y ; qu; �)
+ Ad��d
~��1 C(Y ; qu; �) ~�1�~� ~��1 � 1qu 


1� e��
= C ~��1C(Y ; qu; �)�~��1Cqu(Y ; qu; �)�1 + ~��1

1� ~�
C(Y ; qu; �) ~��11�~��1 1

1 + sd�
+

Ad
1� e�
~� C(Y ; qu; �) ~�1�~� ~��1Implicitly di¤erentiating (32) we obtainCqu(Y ; qu; �) = �

@
(qu;�)@q C(Y ; qu; �) ~��11�~�
1 + �� (130)where �� = e��11�e�
C(Y ; qu; �) e��11�e��1 > 0 and @
(qu;�)@qu = 1qu 11�e�
. Using this we can writeUqu(Y ; qu; �) = �C ~��1C(Y ; qu; �) �1�~� ~��1 1 + ��1+sd
1 + �� 1qu 1

1� e�

+

Ad
1� e�
~� C(Y ; qu; �) ~�1�~� ~��1

= �C ~��1C(Y ; qu; �) �1�~� ~��1 1qu 1

1� e�
 1 + ��1+sd
1 + �� �

1

1 + sd!

= �C ~��1C(Y ; qu; �) �1�~� ~��1 1qu 1

1� e�
� sd
(1 + ��) (1 + sd)�
proving that Uq < 0 for sd > 0, Uq > 0 for sd < 0, and Uq = 0 for sd = 0. For � su¢cientlyclose to � eff (sd) we furthermore have from lemma 1 that UY is su¢ciently close to zero, so that(66) implies that �1 is also su¢ciently to zero, so that from (70) it follows that 	 has the samesign as Uq, whenever � 6= � eff . Furthermore, for � = � eff we have UY = �1 = 0 and also Uq =

0 for sd = 0, so that from (70) we obtain 	 = 0.A.4 Second Order Conditions for Optimal AllocationThis appendix establishes that (Y �t ; qu�t ), de�ned in equation (71), satisfy the second-orderconditions of optimality. Speci�cally, we establish that UY Y < 0, Uququ < 0 and UY qu = 0 holdsat the e¢cient steady state where sd = 0 and 1� � = (1� g)�=(� � 1). By continuity, secondorder conditions then also hold for nearby allocations that involving su¢ciently small steadystate distortions and su¢ciently small disturbances. From equation (49) we getUqu(Yt;�t; qut ; �t)
= Cqu(Yt; qut ; �t) C ~��1t C(Yt; qut ; �t)�~��1

+ ~��11�~�Adt ��dt
(qut ; �t)~� C(Yt; qut ; �t) ~�1�~� ~��1�1 !
+ Adt ��dt
(qut ; �t)~��1 1

~�� 1 
(qut ; �t)qut C(Yt; qut ; �t) ~�1�~� ~��142



Using Cqu(Yt; qut ; �t) = � 1qut 11�e�
(qut ; �t)C(Yt; qut ; �t)�+1
1 + (1 + �) 
(qut ; �t)C(Yt; qut ; �t)� (131)where � � ~��1

1� ~� � 1;we getUqu(Yt;�t; qut ; �t) = 1qut 11�e�
(qut ; �t)
1 + (1 + �) 
(qut ; �t)C(Yt; qut ; �t)�C ~��1t  �dt

(1 + sd) qut � 1! : (132)We have Uqu = 0 if and only if qu�t =
�dt

(1 + sd) : (133)At the e¢cient steady state, we have sd = 0 and thus qu = �d = qu�t ; so that the term in thelast parenthesis in (132) is zero. Evaluating Uququ at such a steady state deliversUququ = 1qu 11�e�
(qu; �)
1 + (1 + �) 
(qu; �)C(Y ; qu; �)�C ~��1  

�
�d

(1 + sd) 1
�qu�2! < 0. (134)From equation (49) we also getUY (Yt;�t; qut ; �t) = C ~��1t C(Yt; qut ; �t)�~��1CY (Yt; qut ; �t)

�
�

1 + � (1 + !) �H��tA1+!t Y !t �t
+
Adt ��dt
~� 
(qut ; �t)~�� ~�

1� ~� ~��1�C(Yt; qut ; �t) ~�1�~� ~��1�1CY (Yt; qut ; �t): (135)Using CY (Yt; qut ; �t) = 1� gt
1 + 
(qut ; �t) (1 + �)C(Yt; qut ; �t)� > 0;together with Adt ��dt
(qut ; �t)~� = 
(qut ; �t)

1 + sd C ~��1tand (133), we obtainUY (Yt;�t; qut ; �t)
=C ~��1t C(Yt; qut ; �t)�~��1 (1� gt) 1 + 
(qut ; �t) (1 + �)C(Yt; qut ; �t)� � qu�tqut �

1 + 
(qut ; �t) (1 + �)C(Yt; qut ; �t)�
�

�
1 + � (1 + !) �H��tA1+!t Y !t �t: (136)Di¤erentiating once more w.r.t. Yt and evaluating at the steady state where qu = qu�, oneobtainsUY Y = �~��1(1� g)C ~��1C(Y ; qu; �)�~��1�1CY � �

1 + � (1 + !)! �H��A1+!Y !�1 < 0: (137)43



Di¤erentiating (136) w.r.t. qut and one obtainsUY qu(Yt;�t; qut ; �t)
= �~��1C ~��1t C(Yt; qut ; �t)�~��1�1Cqu(Yt; qut ; �t) (1� gt)
� C ~��1t C(Yt; qut ; �t)�~��1 (1� gt) 
(qut ; �t) (1 + �)C(Yt; qut ; �t)� qu�t(qut )2

1 + 
(qut ; �t) (1 + �)C(Yt; qut ; �t)�:Using (131) and evaluating at a steady state with qu = qu� one obtainsUY qu = 0.A.5 Linearized Phillips CurveThis appendix shows that the linearized structural equations (87) imply the generalized Phillipscurve (90) and derives the values of the Phillips curve coe¢cients. Premultiplying equations(87) by (1;�1) and using the fact that this is a left eigenvector of D(1), we obtain
bFt � bKt = (1� ��)[��+ (fy � ky) ygapt + fq (bqut � bqu�t ) + �f 0� � k0�� ��t � ��]

+ �Et[ bFt+1 � bKt+1] + ��[M1 �M2]�t (138)To a �rst-order approximation, equation (45) implies that�t = 1� �� 1

1 + !� � bKt � bFt� :Substituting the preceding equation into (138), one obtains (90) where the coe¢cients � aregiven by �y = 1� �� 1� ��
1 + !� (ky � fy)�q = �1� �� 1� ��
1 + !� fq�0� = (1� �) �

1 + !� [M2 �M1]:From fq < 0 we obtain �q > 0. From (125) we obtain �y > 0.A.6 Quadratically Approximated Welfare ObjectiveThis appendix derives the result stated in equation (94). We can write
1Xt=0 �t[U(Yt;�t; qut ; �t) + 
t(~h(�t�1; Kt=Ft)��t)]
=

1Xt=0 �t[U(Yt;�t; qut ; �t) + 
t(h(�t�1;�t)��]:Since UY = Uqu = UY qu = 0 and since U� + 
(�h1 � 1) = 0 at the optimal steady state andgiven our assumption that ��1 � O(�2), which implies �t � O(�2) for all t � 0, a second orderapproximation of the contribution of the variables (Yt;�t; qut ;�t;�t; �t) to household utility isgiven by
1

2
UbY bY (bYt � bY �t ) + 12Ubqubqu(bqut � bqu�t ) + 12
�h22�2t + t:i:p:;44



where t:i:p: denotes terms independent of policy and where we used the fact that h2 � @h(�;�)@� =
0 at the optimal steady state. The approximation coe¢cients are given by UbY bY � Y @@Y (UbY ) �Y @@Y (Y UY ) = Y �UY + (Y �)2 UY Y and correspondingly for Ubqubqu . Evaluated at the optimalsteady state where UY = Uqu = 0, we get

�� = �1
2

�h22 > 0

�y = �1
2
(Y �)2 UY Y > 0

�q = �1
2

�qu��2 Uququ > 0;where explicit expressions for Uququ and UY Y are given in (134) and (137), respectively, andh2 � @2h(�;�)(@�)2 and 
� are given byh22 = �� (1 + !) (1 + !�)
1� � > 0
� = U�

1� a� < 0;with U� = � �
1 + � �H�� �Y �A �1+!

= �
Y �(1� g)
1 + !  

�C ~��1C(Y �; qu�; �)!~��1 < 0;where the last line follows from (124) and the property that the wedge in (68) satis�es � = 0at the e¢cient steady state.A.7 Details of the LQ Approximate ProblemThis appendix derives the coe¢cients (a; b;H) of the Lagrangian Lu in equation (105) andshows that H is positive de�nite for su¢ciently large values of �=�2.The Lagrangian Lu captures the period t terms that are unpredictable as of period t� 1 inthe Lagrangian associated with minimizing the loss function (100) subject to the constraints(101) and (102). These terms are given byLu = E0 1Xt=1�t8<: 12Pk ��� (�0;k)2 + �y (y0;k)2 + �q(q0;k � q�0;k�2
�'tPk ��0;k � �yy0;k � �q �q0;k � q�0;k�� ek;t
� tPk �q0;k � q�0;k� ek;t 9

=
;

+ E0 1Xt=0�t��� ('t; (1� �) t) S b�t � �
2� b� 0t S b�t�

+ t:i:p: (139)where t:i:p: summarizes additional terms that are independent of policy, q�0;k denotes the reactioncoe¢cient of bqu�t to the k-th disturbance (ekt) andS = � Pk (�0;k)2 Pk�kq0;kPk�0;kq0;k Pk (q0;k)2 � :45



The coe¢cients a and b are thus given byat;k � � �'t
��qq�0;k + 't�q �  t �bt � 't�y:One can furthermore writeE0 1Xt=0�t��� ('t; (1� �) t) S b�t � �

2� b� 0t S b�t�
=

�
1� � 8<: 1� tr �S(1� �)E0X1t=0�tb�t ('t; (1� �) t)�

� 12� tr �S(1� �)E0X1t=0�tb�tb� 0t� 9
=
; : (140)De�ning E��' � (1� �)E0P1t=0��t 'tE�� � (1� �)Et0P1t=0��t  tE�q � (1� �)E0P1t=0�tt�qt  tE�q' � (1� �)E0P1t=0�t�qt 'tE���� � (1� �)Et0P1t=0��t ��tE���q � (1� �)Et0P1t=0��t �qtE�q�q � (1� �)Et0P1t=0�qt �qtand using (140), the quadratic terms in (139) can be written as�

1� � 8><>: 12Pk ��� (�0;k)2 + �y �ygap0;k �2 + �q(q0;k)2�
+1�Pk (�0;k; q0;k)�� E��' (1� �)E�� E�q' (1� �)E�q �� 12 � E���� E���qE���q E�q�q �� (�0;k; q0;k)0 9>=>; ;which impliesH �

� ��2 + 1� �E��' � 12E����� 1� �(1� �)E�� � 12E���q�1� �E�q' � 12E���q� �q2 + 1� �1� �)E�q � 12E�q�q� � :For the limit �2=� ! 0; the H matrix converges to
� ��2 0

0 �q2 � ;which is positive de�nite because �� > 0 and �q > 0.A.8 Multipliers in the Nonlinear Best-Response ProblemThe FOCs of the nonlinear best-response problem (91) are given byUY (Yt;�t; qut ; �t) + �0tzY (Yt; qut ; �t) = 0 (141)
�
t~h2(�t�1; Kt=Ft)KtF 2t � �1t + �mt�0t�1D1(Kt=Ft) = 0 (142)
t~h2(�t�1; Kt=Ft) 1Ft � �2t + �mt�0t�1D2(Kt=Ft) = 0 (143)U�(Yt;�t; qut ; �t)� 
t + �Et[
t+1~h1(�t; Kt+1=Ft+1)] = 0 (144)Uq(Yt;�t; qut ; �t) + �0tzq(Yt; qut ; �t) + 	t�1(1� �)mt �	t = 0 (145)46



for all t � 0. At the optimal steady state, we have UY = � = 0, see section 4.3, and 	 = 0,see lemma 2. Given the assumptions in (74) and the assumed disturbance process (73), theendogenous variables (Yt;�t; qut ; Kt=F ) will deviate from their optimal steady sate value onlyby a gap of order O(�). Equation (141) then implies that �t = (�1t;��1t) is of order O(�),as claimed. Likewise, equation (144) implies that 
t will deviate from its optimal steady statevalue 
� < 0 only by a gap of order O(�). Equation (145) then implies that 	t is of order O(�),provided the initial precommitment satis�es 	�1 � O(�), as assumed, and the belief distortionssatisfy mt � O(1). The latter follows from equation (15) and the facts (��t ; �qt ) � O(�),xt+1 = (�t+1; bqut+1) � O(�) and � � O(�2).A.9 Worst-Case Distortions for the Targeting Rule (123)The worst-case belief distortion problem is given by
max

fb�t;�t;ygapt ;bqut g1t=0E0 1Xt=0 �t2 ����2t + �y (ygapt )2 + �q(bqut � bqu�t )2 � �� b� 0tV b�t� (146)subject to the constraints �t =�Et�t+1 + �yygapt + �q (bqut � bqu�t ) + ut
+ ���1V1b�t (147)

(bqut � bqu�t ) =�(1� �)Et[bqut+1 � bqu�t+1] + (1� �(1� �))sd
+ �(1� �)��1V2b�t (148)for all t � 0, subject to the proposed target criterion

0 = �t + �y
���y �ygapt � ygapt�1�

+
��1
�� E'' (�t � Et�1�t) + ��1

�� (1� �)E' (bqut � Et�1bqut ) (149)for all t � 1;and subject to an initial precommitment for t = 0 of the form'�1 �1�0 + (1� �)(bqu0 � bqu�0 ) = G0; (150)where the coe¢cients '�1= �1 and G0 are taken as given. The matrix V satis�esV = �(V ); (151)where the function �(�) is de�ned in Appendix A.10. Appendix A.10 furthermore provides asu¢cient condition, see equation (157), which insures that there is a unique V solving (151)for belief distortions f��t ; �qt g1t=0 in the neighborhood of the upper bound distortions. Thesame condition also insures that that equations (147)-(150) imply a locally unique equilibriumoutcome for all belief distortions f��t ; �qt g1t=0 in the neighborhood of the upper bound distortions.We proceed under the assumption that the su¢cient condition (157) is satis�ed.The Lagrangian of the worst-case problem is
47



max
fb�t;�t;ygapt ;bqut g1t=0 min

f t�1;'t;�t+1g1t=0E0 1Xt=0 �t2 ����2t + �y (ygapt )2 + �q(bqut � bqu�t )2 � �� b� 0tV b�t� (152)
+

1Xt=0 �t 26664 't ���t + �Et�t+1 + �yygapt + �q (bqut � bqu�t ) + ut + ���1V1b�t�
+ t ��(bqut � bqu�t ) + �(1� �)Et[bqut+1 � bqu�t+1] + (1� �(1� �))sd + �(1� �)��1V2b�t�
+��t+1 ��t+1 + �y���y �ygapt+1 � ygapt �

+ ��1�� E'' (�t+1 � Et�t+1) + ��1�� (1� �)E' �bqut+1 � Etbqut+1��
+  �1�'�1 �1�0 + (1� �)(bqu0 � bqu�0 )�G0� ;where ('�1= �1; G0) are given by the initial precommitment, �t+1 is the Lagrange multiplier onthe policy commitment in period t + 1, and  �1 the multiplier on the initial precommitment.All choice variables X take the form Xt+1 = EtXt+1 +PkX0;kek;t+1:The Lagrangian (152) can be written as the sum Lu+Le, where Le depends on �b�0; �0; ygap0 ; bqu0 ;  �1;  0; '�and the predictable components fEtb�t+1; Et�t+1; Etygapt+1; Etbqut+1; Et t+1; Et't+1; Et�t+1g1t=0 andLu on the surprise components in t. The �rst-order condition with respect to b�0 and Etb�t+1 areV b�0 + '0V 01 +  0(1� �)V 02 = 0V Et�1b�t + Et�1'tV 01 + Et�1 t(1� �)V 02 = 0 for t � 1;which deliver Et�1b�t = Et�1� 't

(1� �) t � for all t � 0; (153)when de�ning E�1b�0 = b�0. Note that condition (153) is also satis�ed in the upper boundsolution, see equation (111), which suggests that with regard to choosing the predictable com-ponents of the belief distortion, the targeting rule (123) is not binding, i.e., Et[�t+1] � 0.To verify this conjecture, we derive the FOCs with respect to the forecastable components ofin�ation, output gap and housing price gap :
���0 � '0 + '�1 = 0

��Et�1�t � Et�1't + 't�1 � Et�1�t = 0 for t � 1
�yy0 + '0�y � � �y

���yE0�1 = 0
�yEt�1yt + Et�1't�y + �y

���y (Et�1�t � �Et�1�t+1) = 0 for t � 1
�q(bqu0 � bqu�0 ) + '0�q �  0 + (1� �) �1 = 0

�qEt�1(bqut � bqu�t ) + Et�1't�q � Et�1 t + (1� �) t�1 = 0 for t � 1The previous equations together with the predictable parts of the constraints (147)-(148) fort � 0 Et�1�t =�Et�1�t+1 + �yEt�1ygapt + �qEt�1 (bqut � bqu�t ) + Et�1ut
+ ���1V1Et�1b�t (154)Et�1(bqut � bqu�t ) =�(1� �)Et�1[bqut+1 � bqu�t+1] + (1� �(1� �))sd
+ �(1� �)��1V2Et�1b�t (155)48



and the predictable parts of the targeting rule and the initial commitment
��Et�1�t = ��y�y �Et�1ygapt � ygapt�1� for t � 1 (156)'�1 �1�0 + (1� �)(bqu0 � bqu�0 ) = G0:determine the predictable dynamics of the worst-case problem. It is easy to note that forEt[�t+1] � 0, the predictable components are identical to the predictable components of the�rst-order conditions (113)-(120) describing the upper-bound solution when using the same Vmatrix . Since there is locally only one solution, the predictable dynamics of the worst-casebelief problem must be identical to the predictable dynamics implied by equations (113)-(120).For given V we can thus easily determine the predictable dynamics of the belief distortions.A.10 Local Uniqueness Around Upper Bound: Su¢cient ConditionsThis appendix provides su¢cient conditions for there to be a locally unique matrix V forall belief distortions in the neighborhood of the upper bound distortions. It also shows thatthe same condition implies that the targeting rule (123) and the initial precommitment thendeliver a locally unique equilibrium outcome for all belief distortions close to the upper bounddistortions.We prove below the following auxiliary result:Lemma 3 Consider given belief distortions f��t ; �qt g1t=0 and a given positive semi-de�nite sym-metric matrix V . The structural equations (101) and (102), together with the target criterion(123) for t � 1 and the initial precommitment in period t = 0 then determine a locally uniqueequilibrium outcome for f�t; ygapt ; bqut g1t=0.Let eV denote the covariance matrix of in�ation and housing price surprises, as de�ned inequation (98), implied by the locally unique equilibrium outcome for f�t; ygapt ; bqut g1t=0 in lemma3 and let �(V ) = eV denote the function mapping the assumed covariance matrix V into therealized covariance matrix eV for in�ation and housing price surprises, when belief distortionsare given by the upper-bound distortions f���t ; ��qt g1t=0. For the upper-bound belief distortions

f���t ; ��qt g1t=0 and the associated covariance matrix V �, we have �(V �) = V �.Suppose that @vec�(V )=@vecV has rank 3, (157)when evaluated at V = V �. It then follows from the implicit function theorem that there is alocally unique �xed point �(V ) = V for all belief distortions f��t ; �qt g1t=0 in the neighborhood ofthe upper bound belief distortions f���t ; ��qt g1t=0. From lemma 3 we then obtain that there is alocally unique equilibrium outcome for f�t; ygapt ; bqut g1t=0 associated with these belief distortions,as claimed in the main text. Condition (157) can veri�ed numerically.It remains to prove lemma 3. Consider a given process for belief distortions f��t ; �qt g1t=0 anda given matrix V . We can then uniquely solve equation (102) for a bounded linear process
fbqut g1t=0. Taking expectations of the structural equations (101) and (102) deliversEt�t+1 = �yEtygapt+1 + �Et�t+2 + vt (158)

��Et�t+1 = ��y�y �Etygapt+1 � ygapt � (159)
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for all t � 0, wherevt � Etut+1 + �qEt(bqut+1 � bqu�t+1) + ���1V1 �Et��t+1; Et�qt+1�0is a known linear process. The system consisting of equations (158) and (159) has a uniquebounded linear solution for the processes fEt�t+1; Etygapt+1g1t=0 given the exogenous disturbanceprocesses, linear processes for the belief distortions, and a value for ygap0 . Note that the system isthe same one that determines the equilibrium evolution of expected in�ation and the expectedoutput gap under rational expectations and a commitment to the RE target criterion (76),except that the forcing term vt is now not simply given by Etut+1.32 In addition, the solutionsfor �0 and ygap0 must satisfy�0 =�E0�1 + �yygap0 + �q (bqu0 � bqu�0 ) + u0
+ ���1V1 (��0 ; �q0)0 (160)and the initial precommitment; these latter two linear conditions can be solved uniquely for�0 and ygap0 . (Given our solution for bqu0 , the initial precommitment uniquely determines �0;condition (160) then uniquely determines ygap0 ). In this way, the forecastable components ofthe processes f�t; ygapt g1t=0 are uniquely determined given the matrix V and the belief distortionprocesses f��t ; �qt g1t=0.The time-invariant coe¢cients (�0;k; ygap0;k ) de�ning the surprise components of these processesmust satisfy �0;k = �yygap0;k + �q �q0;k � q�0;k�+ u0;k + ��1;k + ���1V1(��0;k; �q0;k)0 (161)

�
�� + ��1E''� �0;k = ��y�y ygap0;k � (1� �)��1E' q0;k, (162)where the �1;k coe¢cients are given by the linear solution above for the process fEt�t+1g1t=0.Because

det

 
1 ��y

�� + ��1E'' �y�y !
=
�y�y + �y ��� + ��1E''� > 0;the system (161)-(162) can be uniquely solved for the coe¢cients (�0;k; ygap0;k ) for each k. We havethus uniquely determined all of the coe¢cients describing linear processes for the endogenousvariables f�t; ygapt ; bqut g1t=0 implied by the belief distortions and the assumed matrix V .A.11 Details of the Model ParameterizationFollowing table 5.1 in Woodford (2003), we set � = 0:99 and �y = 0:024. From Woodford�stable 6.1 we take �Y�� = �x = 0:048=16 = 0:0031, where we divide by 16 because in�ation ratesin our model are expressed in quarterly rates of increase. We set the housing depreciation rate� equal to 3% per year, following Adam, Marcet and Kuang (2012). We also have�q = �(1� ��) (1� �)�(1 + �!) fq (163)�y = (1� ��) (1� �)�(1 + �!) (ky � fy) ; (164)where fq = @ log f=@ log q; ky = @ log k=@ log y and fy = @ log f=@ log y, so that�q�y = � fqky � fy ;32We have noted earlier that the system consisting of equations (75) and (76) has a unique bounded solution,given that �y;��;�y > 0 and � 2 (0; 1). 50



with ky � fy denoting the elasticity of real marginal costs with respect to output. Followingtable 5.1 in Woodford (2003), we set ky � fy = "mc = 0:63, so that we only need to determinefq in order to obtain a value for �q. Usingfq = (1 + �) 
C�
1 + (1 + �) 
C�and assuming � = e��11�� � 1 � 0, which for a long-run elasticity of housing supply equal to �ve

(e� = 0:8), in line with the estimated value in Adam, Kuang and Marcet (2012) and in the rangeof estimates in Topel and Rosen (1988), implies e��1 = 15 , we getfq � 
C�
1 + 
C� :From Y (1� g) = C(1 + 
C�

)we can see that privately consumed output Y (1 � g) is divided up into consumption C andresources invested in the housing sector, 
C1+�, so that 
C� is the steady state ratio of housinginvestment over private expenditures. Over the period 1947-2012, this ratio, when measured asresidential �xed investment spending over the sum of personal consumption expenditure andnonresidential �xed investment, is equal to 6.3% on average for the United States.33 We thushave fq � 0:063=1:063 � 6%and obtain �q = � fqky � fy�y = �0:060:630:024 = �0:0023:We also have34
�q
�� = 1

1� e� 
C�
1 + 
C� 1

(1 + (1 + �) 
C�
)

1"mc �Y�� :Using the parameterization from above, then delivers
�q
�� = 1

1� 0:8 0:0631:063 1

(1 + 0:063) 1

0:630:0031
� 0:0014:Next, we determine the parameters of the stochastic process for b�dt . For this purpose wecompute the log of the ratio of the nominal housing price index over nominal GDP for theUS from 1975:Q1-2013:Q4 and extract a linear trend. The log deviations from trend have aquarterly autocorrelation of 0.9875 and a standard deviation of 0.072. Assuming that about onequarter of those �uctuations re�ect e¢cient �uctuations and that the sample autocorrelationslightly underestimates the actual auto-correlation at values close to one, we set �� = 0:99 and�e� = 0:024. Assuming a 15% output subsidy for housing (sd = 0:15), this determines thestochastic process for bqu�t .33We dowloaded data from FRED St Louis Fed, using the series PRFIA (Private Residential Fixed Investment,Billions of Dollars, Annual, Not Seasonally Adjusted), PCECA (Personal Consumption Expenditures, Billionsof Dollars, Annual, Not Seasonally Adjusted), and PNFIA (Private Nonresidential Fixed Investment, Billionsof Dollars, Annual, Not Seasonally Adjusted).34This follows from calculations that are contained in our notes "AW_notes 091415", which are availableupon request. 51



Finally, we determine the mark-up distortions. To compute the steady state mark-up dis-tortion w, note that �y = 0:024, ky � fy = 0:63, and equations (163) and (164) jointly imply
(1� �) (1� ��)�(1 + !�) =

0:024
0:63 :Assuming � = 0:15, which means that the output subsidy falls short 15% of its optimal steadystate value, we get w = (1� �) (1� ��)�(1 + !�) �

=
0:024
0:63 0:15

� 0:0057:From the mark-up shock estimates for the post-1980 sample reported in table 3 in Ireland(2004), we obtain �u = 0:9907 and �eu = 0:0002.
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ONLINE APPENDIX - NOT FOR PUBLICATION"Leaning Against Housing Pricesas Robustly Optimal Monetary Policy"Klaus Adam and Michael WoodfordB Numerically Solving for the Upper Bound DynamicsB.1 The Upper Bound DynamicsFrom equations (113)-(117) in the main text we have:
���t � 't + 't�1 + ��1E'' (�t � Et�1�t)

+��1(1� �)E' (bqut � Et�1bqut ) = 0 (165)
�Y ygapt + �y't = 0 (166)

�q(bqut � bqu�t ) + �q't �  t + (1� �) t�1
+��1(1� �)E' (�t � Et�1�t)
+��1(1� �)2E  (bqut � Et�1bqut ) = 0 (167)�t � �yygapt � �q(bqut � bqu�t )� �Et�t+1 � ut
���1�'tE �(�t+1 � Et�t+1)2�

���1�(1� �) tE �(�t+1 � Et�t+1) �bqut+1 � Etbqut+1�� = 0 (168)
bqut � (1� �(1� �))b�dt � �(1� �)Etbqut+1

���1�(1� �)'tE �(�t+1 � Et�t+1) �bqut+1 � Etbqut+1��
���1�(1� �)2 tE h�bqut+1 � Etbqut+1�2i = 0; (169)where E'', E' and E  are de�ned in equation (121), and where ut is de�ned in (77).Log-linearizing equation (72) around the optimal steady state (in which there are no steadystate distortions), we get

bqu�t = b�dt � sd; (170)where sd � O(�) and bqu�t denotes the log deviation of qu�t from the optimal steady state. Theprevious equation has been used to derive equation (169) from equation (117).We wish to solve (165)-(169) for the equilibrium values of f�t; ygapt ; bqut ; 't;  tg1t=0, given theexogenous processes fbut;b�g1t=0 and the initial conditions ('�1;  �1).B.2 Parameterization ApproachLet us de�ne
(�new)�1 � (�)�1 =�� (171)'newt � 't=�� newt �  t=��and ut � w + but; (172)53



where w � (1� �) (1� ��)�(1 + !�) �

but � (1� �) (1� ��)�(1 + !�) (b�t � bgt) :We also de�ne Enew'' � (1� �)E0 1Xt=0 �t ('newt )2 > 0 (173)Enew' � (1� �)E0 1Xt=0 �t'newt  newt (174)Enew  � (1� �)E0 1Xt=0 �t ( newt )2 > 0: (175)We can then write (165)-(169) as�t � 'newt + 'newt�1 + (�new)�1Enew'' (�t � Et�1�t)
+ (�new)�1 (1� �)Enew' (bqut � Et�1bqut ) = 0 (176)

�Y
�� ygapt + �y'newt = 0 (177)

�q
�� (bqut � bqu�t ) + �q'newt �  newt + (1� �) newt�1

+(�new)�1 (1� �)Enew' (�t � Et�1�t)
+ (�new)�1 (1� �)2Enew  (bqut � Et�1bqut ) = 0 (178)�t � �yygapt � �q(bqut � bqu�t )� �Et�t+1 � w � but
� (�new)�1 �'newt E �(�t+1 � Et�t+1)2�

� (�new)�1 �(1� �) newt E �(�t+1 � Et�t+1) �bqut+1 � Etbqut+1�� = 0 (179)
bqut � (1� �(1� �))b�dt � �(1� �)Etbqut+1

� (�new)�1 �(1� �)'newt E �(�t+1 � Et�t+1) �bqut+1 � Etbqut+1��
� (�new)�1 �(1� �)2 newt E h�bqut+1 � Etbqut+1�2i = 0: (180)The previous equations show that the upper bound solution< is determined by the para-meters �; �; �y; �q; �Y�� ; �q�� ; sd; w and(�new)�1 ; as well as stochastic processes for but and b�dt (thelatter determines b�dt and jointly with sd also bqu�t ). The model is solved for the parametersreported in table 1 of the main text.B.3 Solution ApproachWe simplify (176)-(180) by using (177) to eliminate the output gap:ygapt = �

�y
�Y =��'newt : (181)We furthermore simplify using bqu�t = b�dt � sd and the relationship

b�dt = (1� (1� �)�)b�dt + (1� �) �Etb�dt+1; (182)54



together with the law of motion for b�dt to express b�dt as a function of b�dt :
b�dt = 1� (1� �) ���

1� (1� �)� b�dt : (183)This delivers �t � 'newt + 'newt�1 + (�new)�1Enew'' (�t � Et�1�t)
+ (�new)�1 (1� �)Enew' (bqut � Et�1bqut ) = 0 (184)

�q
�� (bqut � b�dt � sd) + �q'newt �  newt + (1� �) newt�1

+(�new)�1 (1� �)Enew' (�t � Et�1�t)
+ (�new)�1 (1� �)2Enew  (bqut � Et�1bqut ) = 0 (185)�t + (�y)2

�Y =��'newt � �qbqut + �qb�dt � �qsd � �Et�t+1 � w � but
� (�new)�1 �'newt E �(�t+1 � Et�t+1)2�

� (�new)�1 �(1� �) newt E �(�t+1 � Et�t+1) �bqut+1 � Etbqut+1�� = 0 (186)
bqut � (1� (1� �) ���)b�dt � �(1� �)Etbqut+1

� (�new)�1 �(1� �)'newt E �(�t+1 � Et�t+1) �bqut+1 � Etbqut+1��
� (�new)�1 �(1� �)2 newt E h�bqut+1 � Etbqut+1�2i = 0: (187)We look for time-invariant solutions to these equations in which the variablesx0t = �'newt ;  newt ; �t; bqut ;b�dt ; but; Et�t+1; Etbqut+1�evolve as follows xt = A+Bxt�1 + C � e�teut � : (188)The conjectured solution structure (188) is self-consistent in the following sense: given a con-jecture about the solution parameters P � (A;B;C) and given initial conditions (x�1; bu0;;b�d0),one can determine the coe¢cients Enew'' ; Enew' and Enew  de�ned in (173)-(175). In addition, onecan determine the time-invariant valuesE�� = Et[(�t+1 � Et�t+1)2]E�q = Et �(�t+1 � Et�t+1) �bqut+1 � Etbqut+1��Eqq = Et h�bqut+1 � Etbqut+1�2i :Given the conjectured solution structure (188), equation system (184)-(187) is thus a linearexpectational di¤erence equation system with time invariant coe¢cients of the form

�0xt = �c + �1xt�1 + �	� e�teut �+ ��� ��t�qt � ; (189)55



where ��t = �t � Et�1�t and �qt = bqut � Et�1bqut denote forecast errors. Equation (189) has asolution of the form (188), which can be readily computed using the approach developed inSims (2000). Under the conjecture (188), the only non-standard feature of equations (184)-(187) is that the coe¢cients eE = �Enew'' ; Enew' ; Enew  ; E��; E�q; Eqq� entering the system dependthemselves on the solution. Solving the equation system thus requires solving a �xed pointproblem.We now explain how we solve for the �xed point. In a �rst step, we start by solving (184)-(187) for the case (�new)�1 = 0, i.e., for the case without robustness concerns. Equations (184)-(187) are then independent of eE and assume the standard form (189) with known coe¢cients.The REE solution serves as a benchmark to which we can compare the outcomes for the casewith robustness concerns and we use the set of coe¢cient eE implied by it as a starting guesswhen solving for the case with robustness concerns.Given some guess eE , the coe¢cients in (189) implied by (184)-(187) are given as follows:
�0 =0
BBBBBBBBBBB@

�1 0 1 0 0 0 0 0�q �1 0 �q�� ��q�� 0 0 0(�y)2�Y =�� � (�new)�1 �E�� � (�new)�1 �(1� �)E�q 1 ��q �q �1 �� 0

� (�new)�1 �(1� �)E�q � (�new)�1 �(1� �)2Eqq 0 1 � (1� (1� �) ���) 0 0 ��(1� �)
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

1
CCCCCCCCCCCA
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�0c = � 0 ��q�� sd ! + �qsd 0 0 0 0 0
�

�1 =
0
BBBBBBBBBB@

�1 0 0 0 0 0 0 0
0 �(1� �) 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 �� 0 0 0
0 0 0 0 0 �u 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

1
CCCCCCCCCCA

�	 =
0
BBBBBBBBBB@

0 0
0 0
0 0
0 0
1 0
0 1
0 0
0 0

1
CCCCCCCCCCA

�� =
0
BBBBBBBBBB@

� (�new)�1Enew'' � (�new)�1 (1� �)Enew' 
� (�new)�1 (1� �)Enew' � (�new)�1 (1� �)2Enew  

0 0
0 0
0 0
0 0
1 0
0 1

1
CCCCCCCCCCA

;
Solving (189) with these coe¢cients delivers a set of solution coe¢cients P (eE) = fA(eE); B(eE); C(eE)gfor (188). The latter coe¢cients then imply, together with the initial values (x�1; bu0;b�d0), whichwe set equal to the steady state values implied by P (eE), an implied value for eE , which we denoteZ(eE). We then solve for the value eE� satisfying

eE� = Z(eE�) (190)using a standard root �nding routine. The implied values for the components E��; E�q; Eqq inZ(eE) can be readily computed from the solution coe¢cients P (eE). The updated guesses forEnew'' ; Enew' ; Enew  can be computed using the following observations. The solution (188) impliesfor t � 1 and for a starting value x0 at the steady state35, the following recursive law of motionfor E0xtx0t : E0 [xtx0t] = E0 �(A+Bxt�1 + Cet) �A0 + x0t�1B0 + e0tC 0��
= AA0 + Ax00B0 +Bx0A0 + C�eC 0
+BE0 hxt�1x0t�1iB0;where e0t � �e�t ; eut � and �e � V AR(et) and where we use the fact that for our initial conditions35The fact that x0 is at the steady state is implied by our assumptions about the initial conditions for

(x�1; bu0;b�d0). 57



E0xt = x0. We start the iteration withE0 [x1x01] = AA0 + Ax00B0 +Bx0A0 + C�eC 0 +Bx0x00B0

= (A+Bx0)(A0 + x00B0) + C�eC 0
= x0x00 + C�eC 0:Then E0 [x2x02] = AA0 + Ax00B0 +Bx0A0 + C�eC 0 +BE0 hx1x01iB0

= AA0 + Ax00B0 +Bx0A0 + C�eC 0 +B (x0x00 + C�eC 0)B0

= x0x00 + C�eC 0 +BC�eC 0B0and more generally for t � 0E0xtx0t = x0x00 + tXj=1 Bj�1C�eC 0 (B0)
j�1 ;so that

(1� �) 1Xt=0 �tE0xtx0t = x0x00 + (1� �) 1Xt=1 �t tXj=1 Bj�1C�eC 0 (B0)
j�1

= x0x00 + tXj=1 �jBj�1C�eC 0 (B0)
j�1 :We numerically compute the sum in the last row by truncating the in�nite sequence when theterms �jBj�1C�eC 0 (B0)j�1 reach values below (1 � ��B) � 10�9 where �B < 1 is the largesteigenvalue of B. This insures that approximation errors from computing the truncated sum arebelow 10�9. The values for Enew'' ; Enew' ; Enew  are then given by elements (1,1), (1,2) and (2,2),respectively, of the matrix (1� �)P1t=0 �tE0xtx0t.The numerical code also checks whether the matrix H in equation (122) is positive semi-de�nite, which insures that the policymaker�s best response in fact achieves a minimum loss inthe upper bound solution. Since H � �� �Hnew, withHnew � 1

2

�
1 + (�new)�1Enew'' (�new)�1 (1� �)Enew' 
(�new)�1 (1� �)Enew' �y=�� + (�new)�1 (1� �)2Enew  � ;this can be achieved by checking whether Hnew is positive semide�nite.The MatLab routine �Solve_UpperBound.m� reliably solves for the �xed point eE� in (190)for all values (�new)�1 � 54 when using the parameters from table 1 in the main text. Forvalues (�new)�1 > 54, one gets problems with non-existence of equilibria during the numerical�xed point search, i.e., the conjectured solution coe¢cients E imply that equation system (189)has no non-explosive solution. The Matlab routine computes the steady states and the impulseresponses to shocks for the RE optimal policy and for the upper bound dynamics. Table 2 inthe main text reports the steady state outcomes for (�new)�1 = 50.C Verifying that the Targeting Rule Implements the Up-per BoundThe MatLab routine �Solve_UpperBound.m� also evaluates whether condition (157) in appen-dix A.10 is satis�ed. This can be achieved by checking whether the matrix@( eE��; eE�q; eEqq)@(E��; E�q; Eqq)0 has rank 3, (191)58



when evaluated at the upper bound solution, where ( eE��; eE�q; eEqq) denotes the values of in-�ation and housing price surprises implied by the solution to equations (184)-(187) for theassumed values (E��; E�q; Eqq). It insures that there is locally a unique RE equilibrium foralternative belief distortions around the upper bound distortions.We can now evaluate the outcomes associated with alternative belief distortions when thepolicymaker commits to the proposed targeting rule (123). We do so by considering valuesfor V in the neighborhood of the upper bound values V �. We can then construct belief dis-tortions by using the predictable dynamics involved by the solution to equations (184)-(187)for the considered value of V . In this solution the multipliers ('newt ;  newt ) can be writtenfor t � 1 as linear functions of their lagged values, the lagged shock values (b�dt�1; but�1), thelagged expectations (Et�1�t; Et�1bqut ) and the shock innovations (e�t ; eut ). It then follows fromEt�1�newt = Et�1���t = Et�1 ('new�t ; (1� �) �t )0 that the (scaled) worst-case belief distortionsfor t � 1 can similarly be written as
�newt = a0 + A00BBBBB@ �newt�1

b�dt�1
but�1Et�1�tEt�1bqut

1
CCCCCA
+ A1� e�teut � : (192)

where the 2x1 vector a0 the and the 2x6 matrix A0 are implied by the predictable dynamics;the 2x2 matrix A1 contains the still undetermined surprise coe¢cients. We consider surprisecoe¢cients in the neighborhood of the values implied by belief distortions in the upper boundsolution, such that they are consistent with the assumed matrix of surprises V . The latterrequires solving a �xed point problem, as we now explain.Given a value for A1 and given the considered value V , we can determine the locally uniqueoutcome f�t; �t; ygapt ; bqut g1t=1 using the structural equations (101) and (102) and the targetingrule (123). Using (170),(182), (183), and (171) these equations can be expressed as
0 =�qsd + w � �t + �Et�t+1 + �yygapt + �qbqut + � (�new)�1 V1b�newt � �qb�dt + but (193)
0 =� bqut + �(1� �)Et[bqut+1] + �(1� �) (�new)�1 V2b�newt + (1� �(1� �)��)b�dt (194)
0 =�t + �y

���y �ygapt � ygapt�1�
+ (�new)�1E'' (�t � Et�1�t) + (�new)�1 (1� �)E' (bqut � Et�1bqut ) (195)For given V , equations (192)-(195) take the standard di¤erence equation form (189) with xt =��t; ygapt ; bqut ; �new�0t ;b�dt ; but; Et�t+1; Etbqut+1�0 and

�0 =
0
BBBBBBBBBBBBB@

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0

1 ��y ��q �� (�new)�1 V1 �q �1 �� 0

0 0 1 ��(1� �) (�new)�1 V2 �(1� �(1� �)��) 0 0 ��(1� �)
�1 � �y���y 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

1
CCCCCCCCCCCCCA59



�c =
0
BBBBBBBBBB@

a0�qsd + w
0
0
0
0
0
0

1
CCCCCCCCCCA

�1 =
0
BBBBBBBBBBBB@

0 0 0 A0;1
0 0 0 A0;2
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 � �y���y 0 0 0 0 0 0 0

0 0 0 0 0 �� 0 0 0
0 0 0 0 0 0 �u 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCA

;
where A0;i denotes the i-th row of A0, and

�	 =
0
BBBBBBBBBBBB@

A1;1A1;2
0 0
0 0
0 0
1 0
0 1
0 0
0 0

1
CCCCCCCCCCCCA

;
where A1;i denotes the i-th row of A1, and

�� =
0
BBBBBBBBBBBB@

0 0
0 0
0 0
0 0

(�new)�1E'' (�new)�1 (1� �)E' 
0 0
0 0
1 0
0 1

1
CCCCCCCCCCCCA

:
The solution implies actual surprise coe¢cients (eV1; eV2) and we can use a root �nding routineto solve for surprise coe¢cients A1 such that point (eV1; eV2) = (V1; V2). This can be achieved byvarying one of the surprise coe¢cients and determining the value for the remaining three suchthat the �xed point property holds. The solution dynamics are then given for all t � 1 byxt = AV +BV xt�1 + CV et: (196)Before we can determine the losses associated with these alternative belief distortions and theassociated equilibrium dynamics, we need to determine the initial value x0. The time zero60



�rst-order conditions of the worst-case belief distortion problem (152) can be written as�0 � 'new0 +  new�1 �'�1 �1� = 0 (197)
�y
�� ygap0 + 'new0 �y = 0 (198)

�q
�� (bqu0 � bqu�0 ) + 'new0 �q �  new0 + (1� �) new�1 = 0 (199)'�1 �1�0 + (1� �)(bqu0 � bqu�0 )�G0 = 0; (200)where '�1 �1 and G0 are (�xed) coe¢cient from the initial pre-commitment, which assume thesame value as in the upper bound solution. We can insure that conditions (197)-(200) hold int = 0 by choosing appropriate initial conditions for x�1 and then letting x0 = AV +BV x�1,which assumes - as in the upper bound solution - that e0 = 0. Since the columns in BVmultiplying ���1; bqu�1� are zero, these values can be chosen arbitrarily. The initial values forthe lagged disturbances assume the same value as in the upper bound, i.e., bu�1 = b��1 = 0.It thus remains to determine the �ve remaining initial values (ygap�1 ; �new0�1 ; E��0; E�1bqu0 ), where�new0�1 = ('new�1 ; (1 � �) new�1 ). These are determined by the requirement that (198)-(200) hold,in addition to (197). Equation (197) holds if  new�1 �'�1 �1�+ �y

���y ygap�1 = 0 (201)��1
�� E'' (�0 � E�1�0) + ��1

�� (1� �)E' (bqu0 � Etbqu0 ) = 0; (202)because (197) is then implied by the target criterion (123), which is satis�ed for the dynamicsdetermined by (AV ; BV ; CV ). Equations (198)-(202) determine the �ve remaining initial con-ditions x�1, such that x0 = AV + BV x�1 satis�es (197)-(200). It now remains to evaluate theobjective function associated with the alternative solution fxtg1:t=0.The period contributions of some outcome xt to the objective can be written as 12�tx0t�xt,where
� =

0
BBBBBBBBBBBBB@

1 0 � � � 0

0 �y�� 0

0 �q�� 0 0 0

0 �� (�new)�1 V11 �� (�new)�1 V12 0... 0 �� (�new)�1 V21 �� (�new)�1 V22 0
...

0 0 0
0
0

0 � � � 0

1
CCCCCCCCCCCCCA

:
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Furthermore, we have thatE0[x0t�xt] = E0[(AV +BV xt�1 + CV et)0� (AV +BV xt�1 + CV et)]
= E0[(AV +BV xt�1)0� (AV +BV xt�1)] + E0[e0tC 0V�CV et]| {z }=diag(C0V �CV )0diag(�e)
= E0[(AV +BV (AV +BV xt�2 + CV et�1))0� (AV +BV (AV +BV xt�2 + CV et�1))]
+ diag (C 0V�CV )0 diag (�e)
= E0[(AV +BV (AV +BV xt�2))0� (AV +BV (AV +BV xt�2))]
+ diag (C 0V�CV )0 diag (�e) + diag(C 0VB0V�BVCV )diag (�e)]
= :::
= (E0xt)0 � (E0xt) + tXj=1 diag(C 0VBj�10V �Bj�1V CV )0! diag (�e)where E0xt evolves recursively as E0xt = A+BE0x�1;with initial conditionE0x0 = x0. We can then numerically evaluate the in�nite sum 12E0[P1j=0 �jx0j�xj],truncating the summation, as before, when the additional contribution reaches a value below

(1� ��B) � 10�9, where �B is the largest eigenvalue of B.Figure 1 in the main text depicts the distribution of welfare losses relative to the losses as-sociated with the upper-bound distortions, for 1000 random alternative belief distortion choicesin the neighborhood of the upper-bound distortions. We draw 1000 alternative values from auniform distribution with support +/- 1% around the upper-bound values for V and from asupport of +/- 0.5% of the upper-bound value of the coe¢cient (2,2) in the matrix A1 in (192)(the remaining coe¢cients in A1 are chosen so as to be consistent with the considered value ofV ). The �gure shows that additional losses are negative, i.e., that alternative belief distortionslead to signi�cantly lower losses for the policymaker than the upper bound distortions.36 Thisshows that that the target criterion (123) implements the upper-bound solution as worst-caseoutcome.D Impulse Response to Mark-up ShockFigure 3 depicts the response to a positive mark-up shock surprise of one standard deviation.Except for the persistent di¤erences in the output gap, housing price and housing price gap,the responses under RE and the upper bound are very similar. Since house prices under RE donot react following the mark-up shock, leaning against the wind is not required under robustlyoptimal policy in response to mark-up shocks.
36While 3 of the 1000 considered losses turn out to be positive, the incremental gains are tiny in these cases,when compared to the losses depicted in �gure 1 and thus very likely the result of numerical imprecisions:the three positive welfare gains amount to 0.000006189485077, 0.000014156768140 and 0.000017972231905,respectively. 62
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Figure 3: RE vs. robustly optimal dynamics in response to a positive mark-up shock (1 std.deviation)
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