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Abstract

How should a society choose between two social alternatives if participa-

tion in the decision process is voluntary and costly and monetary transfers are

not feasible? Considering symmetric voters with private valuations, we show

that it is utilitarian-optimal to use a linear voting rule: votes get alternative-

dependent weights, and a default obtains if the weighted sum of votes stays

below some threshold. Standard quorum rules are not optimal. We develop a

perturbation method to characterize equilibria in the case of small participa-

tion costs and show that leaving participation voluntary increases welfare for

linear rules that are optimal under compulsory participation.

1 Introduction

Participating in collective decision procedures is typically individually costly. Thus,

if participation is voluntary then those for whom too little is on stake will abstain.

This is a non-trivial issue in modern societies in which a vast range of decisions

in public agencies, boards of companies, committees, parliaments, congressional

and party caucuses and private and professional associations are reached demo-

cratically. From a welfare point of view, there is a trade-off between aggregating

preferences while at the same time saving on participation costs. This raises impor-

tant practical questions. Which decision rules should institutions use for different

issues to maximize the welfare of their members? Should participation be volun-

tary or compulsory? Is it always desirable to lower participation costs when this
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is feasible? This paper delivers new insights on these questions using mechanism

design theory.

We derive our results from a Bayesian model in which each individual is pri-

vately informed about her preferences over two social alternatives and about her

preference intensity relative to the cost of participating in the decision. Such a

private-values setup is well suited to capture many practical applications of vot-

ing which are dominated by material conflicts among the individuals. Assuming

private values allows us to study the probability of being pivotal as the crucial deter-

minant of an individual’s participation decision. In a setting with common values,

the event of being pivotal would in itself implies information that is relevant to an

individual’s participation decision, leading to well-known complications.1

We build a model that is symmetric across the individuals that constitute the

electorate. Symmetry across the social alternatives, S(tatus quo) and R(eform), is

not required. We allow for arbitrary anonymous mechanisms with voluntary partic-

ipation, simultaneous moves, and no monetary transfers.2 A mechanism together

with a symmetric Bayes-Nash equilibrium is optimal if it maximizes the agents’

ex-ante expected utility. Without loss of generality, we restrict attention to mech-

anisms that are voting rules, that is, each individual chooses among at most three

actions that can be interpreted as voting for R, voting for S, and abstention.

We have two main contributions. First, we show that any optimal voting rule

with voluntary participation is (up to outcome-equivalence) linear. A linear rule

is a generalization of a majority rule. Under a linear rule, one alternative can be

designated as a default such that, concerning the non-default alternative, only the

votes that are cast in addition to some required minimum number are weighed

against the votes in favor of the default (cf. Figure 1). An extreme type of linear

rules are one-sided rules in which votes for the default alternative are not counted at

all. We show that both qualified majority rules (i.e., majority thresholds different

from 50% and no default) and all one-sided linear rules can be optimal for any

population size. It can also happen that the optimal rule belongs to neither of

these classes. We provide an example in a setting with 15 individuals in which the

following rule is the unique optimum: implement reform if and only if there are at

least two more R-votes than S-votes.

1Building on Condorcet’s jury setting, there is an extensive literature on voting rules in settings

with common values. Here, voters may abstain for informational reasons even when there is no

participation cost (Feddersen and Pesendorfer, 1996). A major question addressed in this literature

is whether in equilibrium the voters’ private information is successfully aggregated (Feddersen and

Pesendorfer, 1997).
2The analysis of compulsory participation is equivalent to the analysis of voting without a par-

ticipation cost, which is well known for our setting; cf. Barbera and Jackson (2006), Schmitz and

Tröger (2012).
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Laruelle and Valenciano (2011) cover linear rules in their taxonomy of “weight-

ed anonymous quaternary voting rules”. They provide an extensive list of examples

of one-sided linear rules and qualified majority rules used in political institutions,

showing that a range of different majority requirements is applied. Thus, certain

linear rules are commonly used. But since a linear rule that is neither a qualified

majority rule nor a one-sided rule can be optimal as well, our results can also be

used to provide novel recommendations for the practical design of voting rules.

It is important to distinguish the class of linear rules from the standard quorum

rules that require a participation or approval quorum to upset the default alterna-

tive.3 Overcoming the default requires both a minimum number of votes (in total

or in favor of the non-default) and a qualified majority among all cast votes (cf.

Figure 2). The minimum required number of votes can be seen as “a simple way

of protecting the status quo” (Maniquet and Morelli, 2015). A similar protection

is achieved in a linear rule with a default alternative. The difference is that the

standard quorum rules have a kink in the cutoff line that separates the outcomes

S and R, which makes these rules non-linear and thus, in our model, sub-optimal

(unless complete abstention of one side of the electorate happens to be optimal).

An important special case of the costly-voting model is the neutral preference

setting (cf. Börgers, 2004). Here, both alternatives are equally likely to be pre-

ferred with any given intensity. A rule is called neutral if it treats both alternatives

identically. We show that there exist neutral settings in which no neutral rule is

optimal (instead a one-sided rule is optimal). Thus, the ability to implement a

non-neutral rule can be crucial.

The implementation of a non-neutral rule relies on the implicit assumption that

the two social alternatives can be unambiguously mapped into the model variables

R and S. This assumption fails in situations in which the available alternatives

are fundamentally symmetric, like two non-incumbent candidates running for an

office. In such situations, only rules that are neutral can be implemented. Spe-

cializing our analysis to neutral rules in a neutral preference setting, the standard

voluntary majority rule is always optimal. This may be seen as a justification for

the widespread use of the standard majority rule. At the same time, the result em-

phasizes the importance of the class of linear rules because the standard majority

rule is the unique neutral linear rule.

A long-standing issue in voting theory is whether there are cases in which in-

stitutions should enforce participation in a vote. Our second main contribution

3From the outset of democracy, collective decisions were made both with and without quorum

requirements. In the Athenian Assembly, most decisions were made by majority without a quorum

requirement (i.e., a linear rule), but some decisions required a quorum of 6000 citizens and were

made by secret ballots (cf. Blackwell, 2003). For quorum rules used in practice today, see Corte-

Real and Pereira (2004) and Herrera and Matozzi (2010).
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is a comparison of voluntary and compulsory participation in linear voting rules.

We show that an institution designer with very limited information about the en-

vironment always prefers voluntary participation over compulsory participation.

For technical reasons (see below), we restrict attention to settings with a small

participation cost that can be obtained as perturbations of the setting without a par-

ticipation cost. Given our model, the only information the designer needs about

individuals’ preferences in order to implement an optimal rule with compulsory

participation is a single number: the ratio between the welfare weights put on the

two alternatives (cf. Rae, 1969, Barbera and Jackson, 2006). This allows her to

set the optimal qualified majority threshold. We show that leaving participation

voluntary will increase equilibrium welfare in every deterministic linear rule with

the optimal majority threshold. Thus, making participation voluntary is socially

beneficial whether or not the design of the rule takes abstention into consideration

optimally (note that the same conclusion is trivially true if the participation cost is

sufficiently large).

On a technical level, our paper offers two contributions. First, we exploit a

mismatch of dimensionalities. The symmetry across agents means that equilibria

are mere two-dimensional objects, given by the expected participation rates of the

agents preferring R and S, respectively. But the space of voting rules is of much

higher dimensionality, given by the set of functions that map election results into

probabilities of implementing R. The difference between the dimensionalities im-

plies that any given equilibrium will prevail in a large set of voting rules. Thus,

maximizing welfare across such a set of rules carries a long way. This maximiza-

tion is easily tractable because both the welfare and the equilibrium conditions are

linear functions of the probabilities that define the voting rules. Technically, this is

the fundamental tool in our proof that optimal rules are linear.

Our second technical contribution is a perturbation method for establishing

existence and analytical properties of equilibria in voting rules with voluntary par-

ticipation if the participation cost is small. The equilibrium conditions establish a

smooth relationship between three numbers: the (commonly known) participation

cost and the participation rates of the R- and S-agents. An obvious idea is to start

with full participation at 0 participation cost and use the implicit function theorem

to establish an equilibrium with almost-full participation if the participation cost

is small. For deterministic linear rules, however, this approach fails because either

the R-participation rate or the S-participation rate changes at an infinite rate as the

participation cost tends to 0. To overcome this problem, we switch the roles of

dependent and independent variables. We show that for any S-participation rate,

there exists an R-participation rate and a participation cost such that the equilib-

rium conditions hold. Finally, we invert functions back so that the equilibrium is

described as a function of the participation cost.
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Further results and relation to the literature

Ledyard (1984) and Palfrey and Rosenthal (1985) introduce the costly-voting

setting with private values4 on which we build our model.5 They analyze the stan-

dard voluntary majority rule, mainly considering a setting in which the numbers of

R-agents and S-agents are common knowledge. We can show that in that setting

optimal rules are again linear, underlining the robustness of our main result (cf.

Appendix B).

Concerning welfare comparisons of voting rules, a seminal contribution is

Börgers (2004) who compares voluntary and compulsory participation in the stan-

dard majority rule.6 He shows that voluntary participation yields a higher welfare

if the preference setting is neutral across alternatives. Taken together with our re-

sult that the voluntary majority rule is optimal among all voluntary neutral rules,

one obtains a fundamental conclusion: the standard voluntary majority rule is op-

timal among all neutral rules, whether one assumes compulsory participation or

voluntary participation.

Krasa and Polborn (2009) point out that Börgers’ result depends on the neu-

tral preference setting. If ex-ante one alternative is sufficiently more likely to be

preferred than the other, then participation will be inefficiently low in the standard

voluntary majority rule so that a voting subsidy will increase welfare. The same

conclusion applies if types are sufficiently strongly correlated, implying that en-

hancing the voluntary majority rule with a preelection opinion poll reduces welfare

(Goeree and Grosser, 2007).

Further results on welfare have been obtained in the large-population limit.

Campbell (1999) shows that, in general, a large majority rule with voluntary par-

ticipation will be dominated by the most strongly affected voters, precluding ef-

ficiency. Krishna and Morgan (2015) provide a contrasting result by assuming

heterogeneous participation costs with a positive density at 0: the standard major-

ity rule is utilitarian optimal in the limit if the distribution of participation costs

is identical on the two sides of the electorate.7 This preference specification is a

special case of our’s.

An institution designer may be interested in promoting turnout in order to lend

4Palfrey and Rosenthal (1983) analyze costly voting with complete information. See Nöldeke

and Pena (2016) for equilibrium existence and further comparative statics results in this setting.
5For costly participation in auctions, see Celik and Yilankaya (2009) and Cai et al. (2016).
6Further welfare comparisons can be found in the working paper Börgers (2000); e.g., an example

in which a one-sided linear rule yields a higher welfare than a standard majority rule.
7This result is robust to various specifications of uncertainty of the population size, including

Poisson uncertainty as introduced by Myerson (1998).
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“legitimacy” to a collective decision (Qvortrup, 2005). The earlier literature has

investigated turnout under specific voting rules. Palfrey and Rosenthal (1985) con-

sider the standard majority rule and provide comparative statics of turnout with re-

spect to participation cost and population size. Using numerical methods, Aguiar-

Conraria and Magalhães (2010) give examples which show that augmenting a ma-

jority rule by a quorum requirement has an ambiguous effect on aggregate turnout.

These examples also suggest that the problem of strategic abstention of the status-

quo-supporters in quorum rules is most severe with a participation quorum. Using

a large-population Poisson model, Maniquet and Morelli (2015) provide a formal

result on this: due to strategic abstention, a planner prefers an approval quorum

rule over a participation quorum rule even if with sincere voting she would be

better off under the latter rule. Herrera et al. (2014), who’s main interest is an

experiment, compare turnout across the majority rule and the “proportional power

sharing rule”.

An important theme in the literature on turnout is the “underdog compensation

effect” in situations in which one alternative is supported by an expected minor-

ity. The effect refers to turnout among the underdog supporters being higher than

turnout among the supporters of the opposite alternative, in a neutral voting rule.

Ledyard (1984) demonstrates the underdog effect for the standard majority rule

under the assumption that the conditional distributions of the R- and S-agents’

preference intensities are equal. Making an equivalent assumption, Herrera et al.

(2014) extend the underdog effect to proportional power-sharing rules, and Kartal

(2015) to all “regular voting rules”.8 Taylor and Yildirim (2010) show that the un-

derdog effect is reversed if (i) each agent is equally likely to prefer S and R and (ii)

the S-agents’ conditional distribution of preference intensities stochastically dom-

inates the R-agents’ conditional distribution. Myatt (2015) shows that substantial

turnout can occur in a large population if valuations are correlated, and under a

weak condition the minority’s preferred candidate can win the election.

Our linearity result can be extended to incorporate a concern for turnout: max-

imizing a weighted average of R-agents’ turnout, S-agents’ turnout, and expected

utility, again leads to a linear voting rule.

There is a growing literature on the design of utilitarian-optimal voting rules

when there is no participation cost (or, equivalently, when voting is compulsory).9

8Weak majority rules (cf. Schmitz and Tröger, 2012) are examples of non-regular neutral voting

rules. To see that the underdog effect can fail without regularity, consider the weak majority rule

that implements each alternative with probability 1/2 unless both agents participate and vote unan-

imously for one alternative. If the participation cost is small then there exists an equilibrium with a

positive participation rate among S-agents and zero participation of R-agents.
9A setting with two alternatives can be interpreted as a binary-public-good problem. Ledyard

and Palfrey (2002) show that the welfare from any interim-efficient allocation of the public good
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Rae (1969) considers the class of qualified majority rules. Barbera and Jack-

son (2006) consider the optimal two-stage aggregation of preferences and apply

this to characterize the optimal voting rules at the level of the European Union.

Schmitz and Tröger (2012) emphasize the potential importance of weak-majority

rules when valuations are correlated across agents. Azrieli and Kim (2014) charac-

terize the interim-efficient rules again with stochastically independent valuations.

Drexl and Kleiner (forthcoming) show that a qualified majority rule is utilitarian

optimal among anonymous deterministic dominant-strategy rules even when trans-

fers are feasible, provided that any budget imbalance is subtracted from the welfare.

Gershkov et al. (2017) characterize optimal voting rules in dominant strategies in

a model with more than two social alternatives.

Concerning the design of optimal voting rules with costly participation, a dom-

inant-strategy requirement is rather restrictive—not even majority rules have a

symmetric dominant-strategy equilibrium. Relying on implementation in Bayes-

Nash equilibrium, Kartal (2015) shows that in a preference setting that is neu-

tral across alternatives, the standard majority rule is optimal among regular vot-

ing rules. In a setup with commonly known voter preferences and private costs,

Faravelli and Sanchez-Pages (2014) compare all convex combinations of simple

majority rule and proportional rules, finding that welfare increases in the weight

of simple majority rule in neutral environments. Bognar et al. (2015) allow for

asymmetric participation costs, but assume away any uncertainty about preference

intensities. They show that, if both alternatives are equally attractive ex-ante, then

the first best allocation can be implemented in a sequential variant of a one-sided

voting rule in which the agents are invited to participate conditionally on the history

of votes.

The rest of the paper organized as follows. After introducing the model in

Section 2, we present our linearity results in Section 3. Section 4 identifies set-

tings in which particular linear rules are optimal. Section 5 compares voluntary

and compulsory participation and uses our techniques to draw further conclusions.

Following the conclusion (Section 6), Appendix A contains the central proofs, and

Appendix B summarizes the remaining proofs.

2 Model

Consider n ≥ 2 individuals who have to implement one of two possible social

alternatives, denoted S (“status quo”) and R (“reform”). The decision about R

(with monetary transfers) can be achieved with a qualified majority rule in the large-population limit.

Bierbrauer and Hellwig (2016) show that if one requires a robust version of coalition-proofness, then

all mechanisms other than qualified majority rules become infeasible.
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versus S is made via a mechanism that determines a social alternative depending

on the participating individuals’ actions. Each individual may abstain from the

mechanism. We build a model that is symmetric across individuals.

Preferences

Each agent i cares about four outcomes R, iR, S, and iS, where R means that

alternative R is implemented and agent i abstains from participating in the mecha-

nism, iR means that R is implemented and agent i participates in the mechanism,

and similarly for S and iS. Von-Neumann-Morgenstern preferences over outcome

lotteries are represented in terms of the agent’s type or valuation vi ∈ R that is

private information of the agent, and a participation cost c > 0 that is common to

all agents. The agent’s Bernoulli utilities are vi for outcome R, vi − c for outcome

iR, 0 for outcome S, and −c for outcome iS. Assuming a common participation

cost rather than private participation costs entails no loss of generality. Making c
flexible is best for presenting our perturbation results. The absolute value |vi| can

be viewed as the “intensity” of type vi’s preference.

Agents have i.i.d. beliefs about others’ types; the c.d.f. is denoted F . We

assume that F has no atoms and that there can be agents on both sides of the

electorate,

FR = 1− F (0) > 0 and FS = F (0) > 0.

If F (−v) = 1− F (v) for all v, then we say the environment is neutral.

Voting mechanisms

A (voluntary) mechanism is a mapping Φ : An → [0, 1], where all individuals i
simultaneously select actions ai ∈ A, where A includes a particular action A (“ab-

stain”), and social alternative R is implemented with probability Φ(a1, . . . , an).
10

From individual i’s point of view, the resulting lottery outcome is

(
R S

Φ(a1, . . . , an) 1− Φ(a1, . . . , an)

)

if ai = A,

and (
iR iS

Φ(a1, . . . , an) 1− Φ(a1, . . . , an)

)

if ai 6= A.

10 Sequential procedures cannot be studied in this framework. Transforming a sequential proce-

dure into its normal form would mean that, from an individual’s interim point of view, her participa-

tion can be uncertain and can depend on others’ actions. Cf. Bognar et al. (2015).
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We restrict attention to anonymous mechanisms, that is, mechanisms that treat all

agents the same:11 for all action profiles (a1, . . . , an) and all permutations ξ of

{1, . . . , n},

Φ(aξ(1), . . . , aξ(n)) = Φ(a1, . . . , an).

Each agent i employs a strategy that specifies an action in A for each type vi. If

all others employ the strategy σ and individual i of type vi takes action ai, then her

(interim) expected utility is

viρ
Φ,σ(ai)− c1ai 6=A,

where

ρΦ,σ(ai) =

∫

Φ(ai, (σ(vj))j 6=i)
∏

j 6=i

dF (vj)

denotes the probability that the social alternative R is implemented, from the point

of view of agent i.
To get a fully symmetric model, we assume that agents’ behavior does not

depend on their labels when playing the game, that is, we focus on symmetric

(Bayesian) equilibria: all agents employ the same strategy σ, where

σ(v) ∈ argmax
a∈A

vρΦ,σ(a)− c1a 6=A for all v ∈ supp(F ).

Given a mechanism-equilibrium pair m = (Φ, σ), let Um(v) denote the interim-

expected utility of any type v.

Mechanism-equilibrium pairs (Φ, σ) and (Φ′, σ′) are called equivalent if they

induce the same interim-expected utilities for all types.

Lemma 1 below shows that we can restrict attention to mechanisms with up to

three actions, including A.12 This holds because any participating R-agent chooses

an action that maximizes the probability of the social alternative R, and any par-

ticipating S-agent chooses an action that minimizes the probability of the social

alternative R.13

11Committee rules in which only some players are allowed to participate, and anonymity is re-

quired among the participants (cf. Börgers, 2000) can be analyzed with similar methods.
12Thus, our analysis will be an instance of mechanism design with finite (specifically, three-

elementary) action spaces. Another such exercise, in the different context of auctions and no partici-

pation cost, is Kos (2012).
13Lemma 1, while extending to asymmetric settings, is specific to the case of two social alter-

natives. Here, conditional on participation only two different preference relations exist—the agent

prefers iR or iS. With a third social alternative T , post-participation preferences would concern

three alternatives, iR, iS, and iT , yielding a continuum of post-participation preference relations

and accordingly an infinite action set.
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Lemma 1. For any mechanism-equilibrium pair (Φ, σ), there exists an equivalent

mechanism-equilibrium pair (Φ′, σ′) such that Φ′ allows at most three actions for

each voter.

Proof. An agent of type v > 0 will abstain or take an action a ∈ A \ {A}
that maximizes ρΦ,σ(a); if instead v < 0, then she will abstain or take an action

a ∈ A \ {A} that minimizes ρΦ,σ(a).
Consider (according to σ and F ) the distribution d> over actions a across all

types v > 0 that do not abstain; consider the distribution d< over actions a across

all types v < 0 that do not abstain. We obtain a new, interim payoff equivalent,

equilibrium in Φ by assuming that all types v > 0 that do not abstain randomize

their action according to the distribution d>, and all types v < 0 that do not ab-

stain randomize their action according to the distribution d<. Now define Φ′ by

restricting the set of actions to d>, d<, and A. This completes the proof.

By Lemma 1, it is sufficient to consider voting mechanisms (or rules) in which

each agent chooses among three actions, denoted A, S, and R (for convenience we

use the same notation S and R as for social alternatives). Any such mechanism can

be described as a function M : {(r, s)|r ≥ 0, s ≥ 0, r + s ≤ n} → [0, 1], where

M(r, s) denotes the probability that R is implemented if r agents play R and s
agents play S. For convenience we will use the notation Mrs = M(r, s) when the

arguments r and s are simple enough expressions. Any outcome (r, s) is called a

tally. A voting rule M is deterministic if M(r, s) ∈ {0, 1} for all tallies (r, s).
A special class of voting rules are the R-one-sided rules that are defined by

the property that Mr,s = Mr,0 for all (r, s), and the S-one-sided rules that are

defined by the property that Mr,s = M0,s for all (r, s). In any equilibrium of a

one-sided rule, at most one side of the electorate—either the S-agents or the R-

agents—participate with positive probability. A voting rule that is not one-sided

is called two-sided. A constant mechanism M has Mr,s = M0,0 for all (r, s); in

equilibrium, nobody participates.

A mechanism M is called linear with default bias ξ, R-weight ξR, and S-

weight ξS if

ξR ≥ 0, ξS ≥ 0, and (ξS > 0 or ξR > 0 or ξ 6= 0), (1)

and, for all s and r,

Mrs =

{
1 if rξR − sξS − nξ > 0,
0 if rξR − sξS − nξ < 0.

(2)

(Cf. Figure 1.) Observe that linearity entails no condition on Mr,s along the “cutoff

line” where rξR − sξS − nξ = 0. We say that (ξ, ξR, ξS) are parameters for M .

10



The class of linear rules is — up to the indeterminacy along the “cutoff line”

where rξR − sξS − nξ = 0 — a two-dimensional class of rules because only the

relative size of the three parameters ξ, ξR, and ξS , is relevant.

❄

✲

s

r

n

nnξ/ξR

✐

rξR − sξS − nξ = 0, slope = ξR

ξS

Mr,s = 1

Mr,s = 0

Figure 1: A voting rule maps every vote tally (r, s) into the probability of implementing

alternative R. For each linear rule M , there is a cutoff line described by the equation

rξR − sξS − nξ = 0. Above the line, alternative R is chosen, below the line S is chosen.

On the cutoff line there is no restriction.

While a linear rule can weigh votes for one alternative stronger than the votes

for the other alternative (by having ξR 6= ξS), it can at the same time take either

alternative as the “default” (by having ξ 6= 0). The linear rules with default bias

ξ = 0 are the “qualified majority rules”. An example of a qualified majority rule is

the standard voluntary majority rule, which is defined by the property Mr,s = 1 if

r > s, Mr,s = 1/2 if r = s, Mr,s = 0 otherwise.

Any R-one-sided linear rule can be represented with an S-weight ξS = 0;

analogously for S-one-sided linear rules. Note that there exist linear rules with

horizontal or vertical cutoff-lines that are not one-sided.

A quorum rule (see, e.g., Aguiar-Conraria and Magalhaes, 2010) reacts to a

qualified majority among all cast votes, once a minimum number of votes for re-

form (“approval quorum”) or minimum total number of votes (“participation quo-

rum”) is received; a default obtains if the quorum is not reached (cf. Figure 2).

Thus, with the exception of pathological cases like with n = 2 agents, the standard

quorum rules have kinks in the cutoff line that separates status quo and reform. In

contrast to that, a linear rule with ξ > 0 and ξR > 0 reacts to a qualified majority

among (i) the number of votes for the status quo and (ii) the number of votes that

are cast for reform in addition to a minimum required number.

In many practical applications the available social alternatives can be unam-

biguously mapped into the model variables R and S (say, when there is a sta-

tus quo and a reform proposal). In some situations, however, the alternatives are

11
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s s

r r

n n

n n

Mrs = 1
Mrs = 1

Mrs = 0 Mrs = 0

Figure 2: Examples of a participation quorum rule (left) and an approval quorum rule

(right)

fundamentally symmetric, like two new candidates running for an office; in such

applications, only rules that are neutral in the sense of treating both alternatives

identically may be feasible. Formally, a voting rule M is neutral if

M(r, s) = 1−M(s, r) for all s and r. (3)

The unique neutral linear rule is the voluntary majority rule.

Equilibria of voting mechanisms

Consider a voting mechanism M and an equilibrium strategy σ. In the following

we will use the shortcuts ρ(a) = ρM,σ(a) for a = A,S,R. We can assume without

loss of generality that ρ(R) ≥ ρ(S) (exchange the labels of the actions R and S if

necessary). An agent of type v prefers action R over action A if

v(ρ(R)− ρ(A)) ≥ c,

and prefers S over A if

v(ρ(S)− ρ(A)) ≥ c.

For any mechanism-equilibrium pair there exists an equivalent pair such that

ρ(R) ≥ ρ(A) and, analogously, ρ(S) ≤ ρ(A). (4)

To see this, note first that ρ(R) = ρ(A) if M is S-one-sided. If ρ(R) < ρ(A), then

all types v > 0 will abstain; we can replace the mechanism M by an S-one-sided

mechanism M̂ (if ρ(S) < ρ(R) < ρ(A), nobody will take action R, otherwise

ρ(S) = ρ(R) < ρ(A) and one first replaces S and R by a single action S by

arguing as in the proof of Lemma 1).
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Assuming (4) and using the fact that F has no atoms, any equilibrium strategy

σ is characterized by the pivot probabilities ∆R = ρ(R) − ρ(A) ≥ 0 and ∆S =
ρ(A)− ρ(S) ≥ 0, via

σ(v) =







R if v∆R > c,
S if − v∆S > c,
A otherwise.

(5)

Thus, we can take the pair of pivot probabilities as independent variables and for-

mulate the equilibrium conditions in terms of (∆R,∆S). An equilibrium requires

that the strategy σ defined via (∆R,∆S) is a best response to itself.

To formulate the equilibrium conditions, we need additional notation. From

the point of view of a given agent, the probability of any particular tally (r, s)
(r + s ≤ n− 1) of others’ votes is given by a multinomial distribution,

Pr
τR,τS

(r, s) =

(
n− 1

r s

)

(τR)r(τS)s(1− τR − τS)n−1−r−s, (6)

where τR ∈ [0, FR] (“R-participating rate”) denotes the probability that a given

other agent is a participating R-agent, τS ∈ [0, FS ] (“S-participating rate”) de-

notes the probability that a given other agent is a participating S-agent, and
(
n−1
r s

)
=

(n−1)!
r!s!(n−1−r−s)! . If an agent anticipates that the other agents use the strategy defined

via (∆R,∆S), then from (5) she anticipates the participation rates

τR = lR(∆R)
def
= 1− F (c/∆R),

τS = lS(∆S)
def
= F (−c/∆S).

(Let lR(0) = 0 and lS(0) = 0.) An agent’s best-response will be based on the pair

of pivot probabilities (dR, dS) that she anticipates given the behavior of others,

dR(M, τR, τS) =
∑

r+s≤n−1

Pr
τR,τS

(r, s)(Mr+1,s −Mr,s),

dS(M, τR, τS) =
∑

r+s≤n−1

Pr
τR,τS

(r, s)(Mr,s −Mr,s+1).

Pivot probabilities (∆R,∆S) ∈ [0, 1]2 are called an equilibrium if14

∆R = dR(M, lR(∆R), lS(∆S)), (7)

∆S = dS(M, lR(∆R), lS(∆S)). (8)

14Note that, given an equilibrium (∆R′
,∆S ′

) with lR(∆R′
) = 0, the equilibrium strategy (5)

could be represented via any pair (∆R,∆S) with 0 ≤ ∆R ≤ ∆R′
and ∆S = ∆S ′

. Conditions (7)

and (8) fix a unique representation. Similar for equilibria with lS(∆S ′
) = 0.

13



Observe that the equilibrium conditions are linear in M and are non-linear in ∆R

and ∆S .

Given an equilibrium, any type or player who takes action R (resp., S) is called

an R-voter (resp., S-voter).

Sometimes it will be convenient to describe equilibria not in terms of the pivot

probabilities (∆R,∆S), but in terms of the participation rates (τR, τS) ∈ [0, FR]×
[0, FS ]. There is a continuous one-to-one relationship between the equilibrium

representations via pivot probabilities and via participation rates:15

(∆R,∆S) 7→ (lR(∆R), lS(∆S)), (τR, τS) 7→ (dR(M, τR, τS), dS(M, τR, τS)).
(9)

Via this translation, the equilibrium conditions (7) and (8) can be applied to any

pair (τR, τS).
We will refer to any (M,∆R,∆S) satisfying (7) and (8) as a mechanism-

equilibrium pair; we say that (M,∆R,∆S) is neutral if M is neutral and ∆R =
∆S . Via the translation (9) we extend the same terminology to (M, τR, τS).

Optimal mechanisms

A mechanism-equilibrium pair m = (M, τR, τS) yields, for each type v, the in-

terim expected utility

Um(v) = vρm(A) +

{
max{vdR(M, τR, τS)− c, 0} if v > 0,
max{−vdS(M, τR, τS)− c, 0} if v < 0,

where, from the point of view of an abstaining voter, R gets implemented with

probability

ρm(A) =
∑

r+s≤n−1

Pr
τR,τS

(r, s)Mr,s. (10)

The objective is to maximize the welfare of each individual from an ex-ante point

of view. For the equilibrium analysis we have normalized the Bernoulli utilities

such that all types v ∈ supp(F ) have the same participation cost. Towards the

welfare analysis, a weight function g(v) > 0 is required to capture cases with

heterogenous participation costs (cf. Appendix B). We denote by the measure

G(v) =
∫

v′≤v
g(v′)dF (v′) the total weight assigned to types below v (where we

15Recall that, w.l.o.g., we are restricting attention to equilibria of the form (5) with ∆R ≥ 0 and

∆S ≥ 0. Equivalently, we are restricting attention to equilibria (τR, τS) with dR(M, τR, τS) ≥ 0
and dS(M, τR, τS) ≥ 0.
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assume the first moment of G exists). The aggregate weight is denoted γ = G(∞).
The welfare is defined as

W (m) =

∫

Um(v)dG(v) = E[Um(ṽ)], (11)

where we introduce the random-variable notation ṽ as a shortcut.

At a first reading, the reader may focus on the constant weight function g(v) =
1 for all v, that is, G = F . This means that changing the outcome from S to iS
(or from R to iR) is equally costly for any two (equally likely) types. We find it

important, however, to allow for a general g in order to cover various other wel-

fare criteria that are used in the related literature. In particular, in much of the

related literature, valuations are fixed on each side of the electorate and participa-

tion costs private. This leads to a different ex-ante welfare criterion according to

which changing the outcome from S to R is equally beneficial for any two types

who prefer R and equally costly for any two types who prefer S.16

Sometimes it will be useful to express the welfare in terms of pivot probabili-

ties::

W̌ (M,∆R,∆S) = E[ṽ]ρ(M,lR(∆R),lS(∆S))(A) (12)

+E[(ṽ∆R − c)1ṽ∆R>c] + E[(−ṽ∆S − c)1−ṽ∆S>c].

We say that a mechanism-equilibrium pair is optimal if it solves the problem

(opt) max
(M,∆R,∆S)

W̌ (M,∆R,∆S)

s.t. (7), (8),

∆R ≥ 0, ∆S ≥ 0,

0 ≤ Mrs ≤ 1 for all (r, s).

Implicit to our formulation is the classical mechanism-design doctrine: the de-

signer selects an equilibrium with highest welfare if the optimal mechanism has

multiple equilibria. The feasible set of problem (opt) is non-empty and compact.

Hence, an optimum exists by Weierstraß’ Maximum-Value Theorem.

In a neutral environment, we may also consider a “neutral” social planner who

maximizes the ex-ante welfare among all neutral mechanism-equilibrium pairs,

16For example, consider Börgers (2004), where, for all agents i, the valuations vi ∈ {−1, 1}
are equally likely and the cost ci ∈ [c, c] is independently distributed according to a c.d.f. with

density h. Translated to our preference representation, the distribution of types is F with density

f(v) = (1/2)h(c/|v|)c/v2 (|v| ∈ [c/c, c/c]). To make W equal to the ex-ante welfare of Börgers,

define the weights g(v) = 1/(|v|G), where G = 2
∫ c/c

c/c
f(v)/v.
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using neutral weights (g(v) = g(−v) for all v). Describing any neutral equilibrium

in terms of its pivot probability ∆R = ∆S def
= ∆, the welfare with neutral rule M is

W̌ (M,∆) = 2

∫

max{v∆− c, 0}dG(v). (13)

Thus, the welfare is maximal if ∆ is maximal.

For a neutral pair (M,∆), the equilibrium conditions (7) and (8) are identical

to each other. Thus, the neutral planner solves

(neutral opt) max
(M,∆)

W̌ (M,∆)

s.t. (3),

(7) with ∆R = ∆S = ∆,

∆ ≥ 0,

0 ≤ Mrs ≤ 1 for all (r, s) with r < s.

Finally, we extend the welfare expression (11) to capture mechanism-participation-

pair combinations m = (M, τR, τS) in which (τR, τS) is not an equilibrium. This

is achieved by first computing the aggregate welfare conditional on each tally. Ex-

pression (14) will allow us to consider the “first-best” benchmark of a hypothetical

social planner who is able to impose arbitrary participation rates.

W (m) =
1

n

∑

r+s≤n

(
n

r s

)

(τR)r(τS)s(1− τR − τS)n−r−sMrsωrs(τ
R, τS)

−(αR(τR) + αS(τS))c, (14)

where

αR(τR) = γ −G(F−1(1− τR)) and αS(τS) = G(F−1(τS)),

and ωrs(τ
R, τS) is the welfare conditional on the tally (r, s) and R being imple-

mented. Thus,

ωrs(τ
R, τS) = rηR(τR)− sηS(τS) + (n− r − s)ηA(τR, τS), (15)

where

ηR(τR) =
E[ṽ1ṽ>F−1(1−τR)]

τR
if τR > 0,

ηS(τS) =
E[−ṽ1ṽ<F−1(τS)]

τS
if τS > 0,

ηA(τR, τS) =
E[ṽ1F−1(τS)<ṽ<F−1(1−τR)]

1− τR − τS
if τR + τS < 1
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denote the G-conditional-expected valuation of an R-voter, S-voter, and abstaining

type, respectively, each normalized such that the probability of the conditioning

event if computed using F . (Note that (14) is continuous at the boundaries τR = 0,

τS = 0, and τR + τS = 1 because the denominators in the definitions of ηR,

ηS , and ηA get cancelled.) If the weight function g is identically equal to 1, the

expressions above simplify to αR = τR, αS = τS , and ηR = E[ṽ|ṽ > F−1(1 −
τR)], ηS = E[−ṽ|ṽ < F−1(τS)], ηA = E[ṽ|F−1(τS) < ṽ < F−1(1− τR)].

3 Optimality of linear rules

Our first contribution is to establish that always some linear mechanism is opti-

mal. As an aside, we establish that full participation is never optimal (even when

mechanism-equilibrium pairs with full participation exist). Moreover, linearity is

essentially necessary for optimality: any optimal mechanism is linear on the set of

tallies that occur with positive probability in equilibrium.

Proposition 1. There exists an optimal mechanism-equilibrium pair in which the

mechanism is a linear voting rule.

Any optimal mechanism-equilibrium pair (M∗, τR∗, τS∗) is such that τR∗ +
τS∗ < 1. Moreover, if τR∗ > 0 and τS∗ > 0, then M∗ is linear; if τR∗ > 0 and

τS∗ = 0, then M∗
r0 (r = 0, . . . , n) is as an R-one-sided linear rule; if τR∗ = 0

and τS∗ > 0, then M∗
0s (s = 0, . . . , n) is as an S-one-sided linear rule.

To prove the optimality of partial abstention, we suppose to the contrary that

there is an optimal rule such that in equilibrium all types participate. Then only the

tallies with r + s = n occur with positive probability. To obtain a contradiction,

we replace the rule by an R-one-sided rule that yields the same collective decision

at lower participation cost. The difficult part is to prove that the R-one-sided rule

has an equilibrium in which all R-agent types participate; to this end, we first show

that the optimal rule can be chosen as a linear rule.

Towards proving the linearity claims, an important initial insight is that the

space of mechanisms M is (n+ 1)(n+ 2)/2-dimensional, whereas—by the sym-

metry across agents—equilibria are merely two-dimensional objects. Therefore, if

a participation pair is an equilibrium in some mechanism, then it will be an equi-

librium in a large set of mechanisms, M. Thus, fixing an optimal participation pair

and finding in M the mechanism that yields the highest welfare carries a long way.

Consider the “biased” case in which E[ṽ] > 0 and neither side of the electorate

abstains entirely, τR > 0 and τS > 0, so that each tally (r, s) occurs with positive

probability. The welfare expression (12) reveals that a mechanism-equilibrium

pair m = (M, τR, τS) can be optimal only if M maximizes (10) subject to the
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equilibrium conditions (7) and (8). The objective (10) is increasing in each Mrs.

But increasing an Mrs can imply that the planner loses some R-pivotality dR on

the right-hand side of (7) and/or S-pivotality dS on the right-hand side of (8). For

all (r, s) where losing pivotality is too expensive given the shadow prices µR and

µS set by the Lagrangian, implementing S (i.e., Mrs = 0) is optimal.

Imagine increasing some Mrs by ǫ. This changes the objective (10) by

dρ(A) = Pr(r, s)ǫ.

There are two countervailing effects on the R-pivotality in (7) because an R-vote

can either bring about the election result (r, s) (with Pr(r − 1, s)) or avoid this

election result (with Pr(r, s)). The resulting gain of R-pivotality is

(Pr(r − 1, s)− Pr(r, s))ǫ =

(

r
1− τS

τR
+ s− n

)
dρ(A)

n− r − s
.

Similarly, in (8) there is an S-pivotality gain of

(Pr(r, s)− Pr(r, s− 1))ǫ =

(

−r − s
1− τR

τS
+ n

)
dρ(A)

n− r − s
.

❄

✲

s

r

n

n

dR↑ dS↑

dR↑dS↓

dS↓

dR↓

dR↓ dS↑

Figure 3: Effect of increasing any Mrs on the pivotalities. For all (r, s) below the steeper

dashed line, increasing Mrs increases the R-pivotality dR; vice versa below the line.

Above the flatter dashed line, increasing Mrs increases the S-pivotality dS ; vice versa

below the line. The intersection point of the dashed lines, (nτR, nτS), is the stochastic

expectation of the election result.

For all (r, s) such that increasing Mrs increases both pivotalities (the upper

right triangle in Figure 3), it is optimal to implement R. For all other tallies there

is a trade-off. Summarizing the expressions above, the value of the Lagrangian
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changes by
[

n− r − s+ µR

(

r
1− τS

τR
+ s− n

)

+ µS

(

−r − s
1− τR

τS
+ n

)]
dρ(A)

n− r − s
.

The expression in brackets [. . . ] is linear in r and s. Setting Mrs = 1 if [. . . ]
positive and = 0 if it is negative yields the optimal rule.

The cases in which E[ṽ] < 0 and/or one side of the electorate abstains, τR = 0
or τS , are similar.

Finally, consider the remaining “unbiased” case E[ṽ] = 0. Here, the welfare

(12) is independent of ρm(A) and is increasing in ∆R and ∆S . Thus, the optimal

mechanism makes each side, the R-voters and the S-voters, “as pivotal as possible”

given the equilibrium conditions. Put differently, among the pairs (∆R,∆S) that

are equilibrium feasible, the optimal mechanism selects a Pareto point.

The problem of characterizing Pareto points (∆R,∆S) can be looked at from

the point of view of any player, given the participation decisions of the other play-

ers. More formally, we first show that the equilibrium conditions (7) and (8) can

be relaxed to become inequality (≤) constraints. Consequently, at an optimum one

cannot change the mechanism to increase both the R-pivotality and the S-pivotality

because otherwise one could increase ∆R and ∆S without violating the constraints.

Given that, the separating-hyperplane theorem implies that any optimal rule maxi-

mizes a weighted sum of the voter’s R-pivotality and her S-pivotality. This implies

linearity of the optimal rule by arguments analogous to the biased case above.

In summary, the essential reasons behind the optimality of a linear rule are as

follows. First, the objective and the constraints are linear in the probabilities Mrs.

Second, we rely on the particular form of the relative probabilities of neighboring

tallies; this form follows from the stochastic independence of the voters’ types.

The proof of Proposition 1 can be found in the Appendix, except for the unbi-

ased case which is relegated to Appendix B.

By varying the arguments from the proof of Proposition 1, its conclusions can

be extended to a variety of important related settings. Firstly, a linear rule is optimal

if there is a positive mass of R-types that do not strictly prefer outcome R over

iR, that is, who have no participation cost, and a positive mass of S-types with

analogous preferences (cf. Appendix B). Secondly, a linear rule is optimal if the

designer’s objective is any convex combination of expected utility, turnout of R-

agents (τR), and turnout of S-agents (τS); here, full participation may be optimal.

Thirdly, a linear rule is optimal if there is a fixed population of R-agents and a fixed

population of S-agents, as in Palfrey and Rosenthal (1985) (cf. Appendix B). This

last example constitutes one case where the agents’ types are not i.i.d. distributed

and the optimal rule is still linear.17

17Another possible deviation from the i.i.d. case is that the vector of valuations has an exchange-
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Quorum rules are, with the exception of pathological cases, non-linear, due to

the kink in the cutoff line (cf. Figure 2). By Proposition 1, such quorum rules can

be optimal only with an equilibrium in which one side of the electorate abstains; in

this case the outcome is the same as with a one-sided linear rule. Accordingly, our

results suggest that linear rules rather than quorum rules should be used.

It is instructive to compare the “second-best” considered in Proposition 1 with

a hypothetical planner who chooses a “first-best” mechanism-participation-rates

pair (M, τR, τS) that maximizes (14) not subject to the equilibrium conditions. It

is immediate that any first-best M is linear, with parameters

ξR = ηR − ηA, ξS = ηS + ηA, ξ = −ηA. (16)

Proposition 1 shows that the “second-best” is linear as well, but with generally

different parameters of the optimal rule.

For the neutral social planner, a result similar to Proposition 1 holds. The

standard voluntary majority rule—the unique voting rule that is both linear and

neutral—is always optimal. In contrast to Proposition 1, however, full participation

may be optimal.

Proposition 2. Consider a neutral environment.

There exists a neutrally optimal mechanism-equilibrium pair in which the mech-

anism is the standard voluntary majority rule. Moreover, in any neutrally optimal

mechanism-equilibrium pair with non-zero participation and non-zero abstention,

the mechanism is identical to the standard voluntary majority rule.

The proof of Proposition 2 is analogous to the proof of the unbiased case in

Proposition 1: one first shows that (7) can be relaxed into an inequality and then

maximizes the right-hand-side of (7) across all neutral M ; we omit the details.18

On first sight, Proposition 2 may appear un-surprising. But other neutral set-

tings are known in which the standard majority rule is suboptimal, even among

neutral rules and neutral equilibria: Schmitz and Tröger (2012) show that, in the

absence of voting costs, but with correlated valuations, a weak majority rule can

yield a higher welfare. In a weak majority rule, a lottery is used if neither alterna-

tive has a sufficiently strong majority over the other alternative.

able distribution, as in Schmitz and Tröger (2012), where the participation cost is zero. In some

cases such as when the valuations are affiliated, Schmitz and Tröger obtain the optimality of the

standard majority rule among dominant-strategy rules. With a participation cost, an agent’s partici-

pation decision depends crucially on her believed pivotality, so dominant-strategy implementation is

rather restrictive. Turning to Bayesian implementation, characterizing optimal rules with affiliated

valuations is an open problem even when there is no participation cost.
18The essence of the arguments goes back to Rae (1969).
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It is interesting to relate the solution to problem (neutral opt) to Börger’s (2004)

fundamental insight that too many agents participate in a voluntary majority rule

compared to the ‘first-best” participation rate selected by a social planner who is

not constrained by equilibrium. In the “second-best”, it is optimal to use a mech-

anism that induces participation of as many agents as possible. The voluntary

majority rule is optimal because it induces maximum participation among neutral

rules and neutral equilibria. Analogously, in the unbiased case E[ṽ] = 0 of Propo-

sition 1, optimality requires a “Pareto-optimal” participation pair.

4 Which linear rules can be optimal?

Which linear rules can be optimal if one goes beyond the case of a neutral social

planner operating in a neutral environment? Information about the distribution of

types is needed to answer this question. We consider low-cost environments and

show that a one-sided rule is optimal if uncertainty concerns mainly an agent’s

preferred alternative, but not her preference intensity. In this case, it is enough to

only count one side of the electorate because almost all the relevant information

about the other side is already contained. A qualified majority rule is optimal if

preference intensities play a role in an all-or-nothing manner, that is, if each agent

is either significantly affected by the public decision or is almost indifferent. In this

case, the participation decision screens out the significantly affected agents and it

is important to distinguish types of agents on both sides of the electorate. Both

results hold for arbitrary continuous welfare-weight functions. A general linear

rule that belongs to neither of these classes can also be optimal.

The constructions in this section rely on type distributions that approximate

two- or three-point distributions. Using these to build examples is natural be-

cause with three actions a distribution with three types corresponds to the maxi-

mum amount of separation that technically can be achieved in a voluntary voting

mechanism. In addition, our examples are such that the equilibrium in the optimal

mechanism is straightforward. Consider a distribution of valuations, F̂ :

(
vS v0 vR

pS p0 pR

)

,

with the realizations vS < v0 ≤ 0 < vR occuring with the probabilities pS > 0,

p0 ≥ 0, and pR > 0, respectively. Thus, F̂ is a three-point distribution if p0 6= 0
and is a two-point distribution otherwise.

We fix a continuous weight function g(v) > 0 for all v in a neighborhood of

supp(F̂ ).
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While the equilibrium conditions (7) and (8) are not formulated for a discrete

type distribution such as F̂ , they do apply to approximations. Let ǫ > 0. In

an ǫ-approximation, each realization of F̂ is replaced by a continuum of types in

its ǫ-neighborhood (for example, the ǫ-approximation may have a piecewise flat

density).

Formally, a continuous type distribution F is an ǫ-approximation of F̂ if

suppF ⊆ [vS − ǫ, vS + ǫ] ∪ [v0 − ǫ, v0 + ǫ] ∪ [vR − ǫ, vR + ǫ],

where pR = 1−F (vR − ǫ) and pS = F (vS + ǫ). We assume ǫ is small enough so

that g is defined on supp(F ).
In the discrete setting, similar to (15), the welfare from implementing R con-

ditional on r voters having type vR, s voters having type vS , and n− r − s voters

having type v0, is

w(r, s) = rvRg(vR) + svSg(vS) + (n− r − s)v0g(v0), (17)

ignoring the participation cost.

An important benchmark for our analysis are environments in which the valu-

ation distribution F approximates a two-point distribution, that is p0 = 0. Here,

uncertainty concerns mainly an agent’s preferred alternative, but not her preference

intensity. Assuming the participation cost is small, we show that the optimal rule

is one-sided, where the side of the electorate with lower (weighted) participation is

called to vote. Remark 1 implies that one-sided rules with arbitrary parameters can

be optimal for any population size.

Remark 1. (Optimality of one-sided rules.) Consider a two-point distribution F̂
satisfying

w(r, n− r) 6= 0 for all r. (18)

Let the participation cost c be sufficiently small. If F is an ǫ-approximation of

F̂ where ǫ is sufficiently small (given c), then a one-sided voting rule is opti-

mal. Specifically, if pRg(vR) < pSg(vS), then the mechanism-equilibrium pair

(1w(r,n−r)>0, p
R, 0) is the unique optimum; if pRg(vR) > pSg(vS), then

(1w(n−s,s)>0, 0, p
S) is the unique optimum.

To prove this (for details see the Appendix), observe that, if c is small and F
a close approximation of F̂ , then the R-one-sided mechanism 1w(r,n−r)>0 has an

equilibrium with full participation of the R-agents, and the S-one-sided mechanism

1w(n−s,s)>0 has an equilibrium with full participation of the S-agents.

In any optimum, at least one side of the electorate will fully participate: if both

a type close to vR and a type close to vS did not participate, then the equilibrium
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conditions would yield upper bounds for both the R-pivotality and the S-pivotality

such that the welfare achieved would be close to the welfare of a constant rule, a

contradiction to optimality because c is small.

Say that all R-agents participate. Then, given any election result (r, s), it is

ex-post optimal to implement R if and only if w(r, n − r) > 0, independently

of s. The least participation-intense way to achieve this implementation is with

the R-one-sided rule 1w(r,n−r)>0. Similarly, we would have arrived at the S-one-

sided candidate 1w(n−s,s)>0 if above we had assumed that all S-agents participated.

Among the two candidates, the one with less participation (as measured with the

weights g) gives higher welfare because both candidates implement the same col-

lective decision.

In order to make the case for qualified majority rules, we consider a family

of type distributions F̂ v0 where v0 is treated as a parameter, while vS , vR, and

the probability distribution (pS , p0, pR) are kept fixed. By considering v0 close

to 0 we capture environments in which each agent is either significantly affected

by the public decision or is almost indifferent. We use the notation wv0(r, s) for

the function (17). We fix a continuous weight function g in a neighborhood of

supp(F̂ 0).
Assuming a small participation cost and excluding, in the limit v0 → 0, non-

generic cases (19) as well as extreme cases in which a single agent’s preferences

can outweigh everybody else (20), we show that the optimal rule is a qualified

majority rule in which only the significantly affected agents participate. Remark 2

implies that qualified majority rules with arbitrary parameters can be optimal for

any population size.

Remark 2. (Optimality of qualified majority rules.) Consider a three-point type

distribution F̂ v0 for each v0 in a left-neighborhood of 0. Assume that

w0(r, s) 6= 0 for all (r, s) 6= (0, 0), (19)

w0(n− 1, 1) > 0, and w0(1, n− 1) < 0. (20)

Let the participation cost c be sufficiently small. If F is an ǫ-approximation of F̂ v0

where v0 < 0 is sufficiently close to 0 (given c) and ǫ is sufficiently small (given

c and v0), then the mechanism-equilibrium pair (1w0(r,s)>0, p
R, pS) is the unique

optimum.

The proof is relegated to the Appendix. From the start we can restrict attention

to v0 so small that

wv0(r, s) has the same sign as w0(r, s) for all (r, s) 6= (0, 0). (21)
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Note that wv0(0, 0) < 0 if v0 < 0. We first consider the limit setting in which types

are distributed according to the three-point distribution F̂ v0 and the participation

cost equals 0. We consider the “first-best” problem (*): maximize the welfare (14)

across all mechanisms and all feasible participation pairs, ignoring the equilibrium

conditions. Clearly, (M,pR, pS), with M rs = 1w0(r,s)>0, is a solution because by

(21) it is welfare-maximizing tally by tally. Moreover, by (19) and (20) it is the

unique maximizer if v0 < 0; if v0 = 0, then there are other maximizers that differ

at (r, s) = (0, 0) so that the set of maximizers is

M = {M | M(r, s) = 1w0(r,s)>0 for all (r, s) 6= (0, 0)}. (22)

This implies (by a subsequence argument) that any maximizer of any variant of

(*) with a slightly perturbed objective must be close to the set M×{pR} × {pS}.

With this background, we move away from the limit setting. Since we choose

c small, v0 close to 0 given c and ǫ small given c and v0, the pair (pR, pS) becomes

an equilibrium in M and, moreover, the welfare objective is only slightly different

from the objective in (*). Thus, any optimal mechanism-equilibrium pair is close

to M×{pR} × {pS}.

Using the gaps in the support of F , the equilibrium conditions imply that in any

mechanism sufficiently close to M, any equilibrium sufficiently close to (pR, pS)
is in fact equal to (pR, pS). Thus, in any optimal mechanism-equilibrium pair

the equilibrium (pR, pS) is played. Given these participation rates, the welfare

conditional on any tally (r, s) approximates wv0(r, s) so that by (19) no mechanism

other than M can be optimal.19

Remark 2 relies on the assumption that v0 is small given c. It is instructive to

also consider the opposite case in which c is small given v0. Here, every “first-

best” solution still approximates a point in the set M×{pR} × {pS}. However, it

is straighforward to see that no mechanism close to M has an equilibrium close to

(pR, pS) because the types close to v0 < 0 would not abstain. Thus, the second-

best mechanism differs from the first-best mechanism.

Finally, we provide an example of an environment in which neither a one-sided

rule nor a qualified majority rule are optimal. Instead, optimality requires that not

only the ratio of R-votes versus S-votes is taken into account, but also the number

of abstentions is. Consider the following three-point distribution:
(

vR vS v0

pR pS p0

)

=

(
54 −66 −6
0.3 0.2 0.5

)

. (23)

19Remark 2 does not cover the welfare criterion that is obtained when the participation cost is

private and the valuation is fixed on each side of the electorate as, e.g., in Palfrey and Rosenthal

(1985) or Börgers (2004). The corresponding welfare weights g(v) are proportional to 1/|v| which

cannot be extended continuously to v = 0. A valuation approaching 0 in our setting corresponds to

a participation cost approaching infinity in Palfrey and Rosenthal (1985) or Börgers (2004).
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It is optimal to implement R if and only if there are at least two more votes in favor

of R than votes in favor of S; in equilibrium, the strongly affected types 54 and

−66 participate and the less affected type −6 abstains.

Remark 3. (Optimality of a general linear rule.) Consider a population of

n = 15 agents with participation cost c = 1. Assume the weight function g(v) = 1
for all v. If the type distribution F is an ǫ-approximation of (23), where ǫ is suffi-

ciently small, then the mechanism-equilibrium pair (1r>s+1, p
R, pS) is the unique

optimum.

The proof is relegated to Appendix B. We first show that all one-sided rules

yield a lower welfare than the candidate optimum. This implies that in any op-

timum the types around vR and around vS participate. If n = 15, and c = 1,

and F is an ǫ-approximation with sufficiently small ǫ, then the participation pair

(τR, τS) = (pR, pS) is an equilibrium in the linear mechanism M ,

M rs = 1r>s+1. (24)

It is straightforward to verify that the equilibrium maximizes the sum of the payoffs

ex post:

r > s+ 1 ⇔ w(r, s) > 0.

Given that, we can establish optimality of (1r>s+1, p
R, pS) by ignoring the equi-

librium conditions, similar to the proof of Remark 2.

5 Voluntary versus compulsory participation

An important question is whether the designer of a voting rule should make partic-

ipation compulsory. Börgers (2004) answers this to the negative for the standard

majority rule in neutral environments. On the other hand, a subsidy for voting can

improve welfare if the standard majority rule with voluntary participation is used

in a non-neutral environment (Krasa and Polborn, 2009). This suggests that com-

pulsory participation can be better than voluntary participation. However, given

any non-neutral environment and assuming compulsory participation, the standard

majority rule is not an optimal rule under the ex-ante welfare criterion. This raises

a question: if one starts with a rule that is optimal with compulsory participation,

what is the welfare effect of leaving participation to be voluntary?

To simplify, we make a genericity assumption:

y(r)
def
= r

E[ṽ1ṽ>0]

FR
+ (n− r)

E[ṽ1ṽ<0]

FS
6= 0 for all r = 0, . . . , n, (25)
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where y(r) is the welfare of implementing R conditional on r agents prefering R.

Let t∗ = miny(r)>0 r denote the minimum number of agents preferring R such that

alternative R is welfare-maximizing.

Compulsory participation in a voting rule M corresponds to the assumption

that agents cannot take the action A, that is, full participation is enforced. A voting

rule M with compulsory participation is welfare-maximizing if and only if

Mr,n−r = 1r≥t∗ , (26)

where the R-agents take action R and the S-agents take action S (cf. Rae, 1969,

Barbera and Jackson, 2006). Thus, very limited information about the environment

is required in order to implement an optimal rule with compulsory participation:

knowing the ratio between the weighted conditional valuations on the two sides of

the electorate is enough for a planner to set the optimal qualified majority threshold

t∗. Many linear rules satisfy (26) because it entails no restriction of Mrs if r+ s <
n.

Proposition 3 below is the central result in this section. Starting with any de-

terministic linear voting rule that is optimal with compulsory participation, leav-

ing participation voluntary improves welfare if the participation cost is sufficiently

small. Proposition 3 does not rely on the comparison with the optimal rule with

voluntary participation. Thus, any designer whose it able to compute the optimal

compulsory majority threshold t∗ (and knows that the participation cost is small)

prefers voluntary over compulsory participation.

Proposition 3. Assume (25). Suppose that F has a strictly positive and continuous

density in a neighborhood of 0.

Consider any deterministic two-sided linear voting rule M that is optimal if

participation is compulsory. If participation is made voluntary and the partici-

pation cost is sufficiently small, then M has an equilibrium that yields a higher

welfare than compulsory participation.

The main difficulty towards proving this is to find and characterize the claimed

equilibrium in M . We cannot use the techniques from the examples in Section 4

where we established equilibria in particular voting rules using the gaps in the sup-

port of F . Also, we need to go beyond the known literature in which equilibrium

analysis is largely restricted to qualified majority rules.

Our approach to equilibrium analysis in voting rules is presented in Lemma 2.

For a two-sided rule, we can assume full participation at 0 participation cost. The

neighboring small-cost cases are interesting due to the assumption that the support

of F includes 0; otherwise a small participation cost would keep full participation
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Figure 4: Some entries of a two-sided deterministic linear rule M . Here, Mrs is the entry

at the intersection of the column labelled r and the row labelled s.

intact so that there would be no difference between voluntary and compulsory par-

ticipation.20 Using the implicit function theorem, we establish an equilibrium with

almost-full participation if the participation cost is sufficiently small. We obtain

the conclusion of Proposition 3 via comparing, across equilibria with voluntary and

compulsory participation, the first-order welfare effect of changing c at c = 0.21

Additional notation is needed to lay out the details. Without loss of generality,

assume that (cf. Figure 4)

Mt∗,n−t∗ = 1, Mt∗−1,n−t∗+1 = 0, Mt∗−1,n−t∗ = 0. (27)

(Assuming the mirror Mt∗−1,n−t∗ = 1 of the third condition yields an analogous

analysis with the roles of R and S reversed.)

Let q ≤ n− t∗ − 1 be maximal with the property Mt∗−1,q = 1 (such a q exists

because M is two-sided).

If participation in M is compulsory, the resulting welfare is W ∗ − c, where

W ∗ =
1

n

n∑

r=t∗

(
n
r

)

(FR)r(FS)n−ry(r). (28)

Consider voluntary participation. We begin by showing the existence of an

equilibrium with almost-full participation. A pair (τR, τS) with τR > 0 and τS >

20Consider for example the preference representation of Börgers (2004) where each agent i has

a private participation cost ci distributed according to a c.d.f. with compact support [c, c] and a

valuation ∈ {−1, 1}. Translating this into our preference representation yields a type distribution

with support [−1/c,−1/c] ∪ [1/c, 1/c], that is, with a gap around 0.
21For some non-deterministic two-sided linear rules, the first-order welfare effect is the same with

voluntary and compulsory participation so that one would have to compare higher-order effects.
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0 is an equilibrium in a voting rule M if and only if both type F−1(1 − τR) > 0
and type F−1(τS) < 0 are indifferent between participating and abstaining, that

is,

φ(c,M, τR, τS) =

(
0

0

)

, (29)

where

φ(c,M, τR, τS) =

(
F−1(1− τR)dR(M, τR, τS)− c

F−1(τS)dS(M, τR, τS) + c

)

.

We are now ready to present Lemma 2: if c is close to 0, then M has an equilibrium

with almost full participation, and there is an explicit formula for the marginal

welfare effect of introducing a participation cost.22 Note that Lemma 2 in fact holds

for all t∗ = 1, . . . , n−1. Using similar methods, first-order welfare effects for non-

deterministic rules, for other equilibria, and for one-sided rules can be computed.23

In the welfare effect (30), the term proportional to the density F ′(0) stems from

types around 0 beginning to abstain if a participation cost is introduced. The other

term, −γ, is the direct cost effect that stems from increasing c in (14) when the

mechanism-equilibrium pair is kept fixed: in equilibrium essentially everybody

pays the participation cost.

Lemma 2. Make the assumptions of Proposition 3 and consider a deterministic

two-sided linear voting rule M satisfying (27). Then, for all c > 0 sufficiently

close to 0, there exists an equilibrium (τ̃R(c), τ̃S(c)) (→ (FR, FS) as c → 0)

such that

lim
c→0

W (M, τ̃R(c), τ̃S(c)) = W ∗.

Moreover,

d

dc
W (M, τ̃R(c), τ̃S(c))

∣
∣
∣
∣
c=0

= F ′(0)

(

1−
1

n− t∗ + 1− q

)

(−y(t∗ − 1))− γ.

(30)

The proof of Lemma 2 is relegated to the Appendix. A major difficulty is that

we cannot apply the implicit function theorem directly to describe the equilibrium

22Formula (30) shows that the first-order welfare effect is strictly decreasing in q. Thus, M with

q = 0 (“almost one-sided rule”) beats every other rule considered in the lemma in pairwise welfare

comparison if c is small.
23Yet, a comparison of first-order welfare effects is not necessarily sufficient to find the optimal

voting rule for small c because the set of (deterministic and non-deterministic) linear mechanisms is

not finite, and the first-order welfare effect is not a continuous function of the mechanism.
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(τR, τS) as a function of the cost c because the full-rank condition for the relevant

Jacobi matrix is violated. Indeed,

lim
c→0

dτ̃S

dc
= −∞.

To overcome this problem, we first describe τR and c as implicit functions of τS .

This allows us to describe the welfare as a function of τS . We show that the relation

between τS and c is monotonic, so that a (locally unique) equilibrium in fact exists

for every small c. Finally, we use L’Hospital’s rule to compute the marginal welfare

effect.

Proof of Proposition 3. In the limit c → 0, both voluntary and compulsory

participation yield the welfare W ∗. The marginal welfare effect of introducing c
equals −γ if participation is compulsory. If participation is voluntary, the welfare

effect (30) is > −γ because y(t∗ − 1) < 0 by definition of t∗. This completes the

proof.

The basic intuition behind Proposition 3 is that, with voluntary participation

and a small participation cost, equilibrium turnout τR + τS is already “too high”

relative to the turnout that would be enforced by a planner who is not constrained

by equilibrium: while in equilibrium τR + τS ≈ 1, the unconstrained planner

would require a non-negligible abstention rate.24 This suggests that making par-

ticipation compulsory lowers welfare. This intuition is similar to Börgers (2004),

who’s setting is indeed one-dimensional. But in our setting welfare is a function

of the turnout pair (τR, τS) rather than a function of the turnout τR + τS—we

have to deal with two dimensions rather than one. We address this problem with

a different proof strategy that relies on local variations of equilibria in low cost

environments.25

To conclude the analysis of voluntary versus compulsory voting, consider again

a neutral social planner in a neutral environment. With compulsory participation,

she finds the compulsory majority rule optimal (cf. Schmitz and Tröger, 2012).

Börgers’ (2004) analysis implies that the voluntary majority rule yields a higher

welfare than the compulsory majority rule. Thus, from Proposition 2 we have:

24Suppose otherwise; that is, suppose the planner’s optimum is (τR, τS) = (FR, FS) at c = 0.

Then, by the envelope theorem, the “first-best” welfare (14) achieved by the planner would change

at the rate dW/dc|c=0 = −γ. This contradicts Lemma 2 which implies that the second-best welfare

changes at a rate > −γ.
25For one-sided rules, we can prove a related, weaker result: making the same assumptions as in

Proposition 3, there exists a one-sided linear mechanism-equilibrium pair that yields a higher welfare

than the best compulsory voting rule if the participation cost is small; see Appendix B.
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Corollary 1. In any neutral environment, the voluntary majority rule maximizes

the ex-ante welfare across all neutral equilibria of neutral mechanisms, voluntary

and compulsory.

Finally, we come to the question whether it is always desirable to lower partic-

ipation costs when this is feasible. The following result answers this to the nega-

tive. If the density of weakly affected types is sufficiently large, then introducing

a small participation cost can increase welfare; a similar result was obtained by

Chakravarty et al. (2014) for the standard majority rule. The proof is immediate

from Lemma 2 and q ≤ n− t∗ − 1.

Corollary 2. Assume (25). Suppose that F has a continuous density in a neigh-

borhood of 0, and

F ′(0) >
2

−y(t∗ − 1)
.

Consider any deterministic two-sided linear voting rule M that is optimal if par-

ticipation is compulsory. If participation is made voluntary and the participation

cost is sufficiently small, then M has an equilibrium that yields a higher welfare

than full participation in the setting without participation cost.

It is interesting to contrast Corollary 2 with Drexl and Kleiner (forthcoming)

who show that, in the absence of participation costs, a qualified majority rule maxi-

mizes welfare among anonymous deterministic dominant-strategy rules even when

transfers are feasible. A participation cost can be interpreted as a transfer scheme.

Thus, Corollary 2 identifies cases in which there exists a very simple welfare-

enhancing transfer scheme if the dominant-strategy requirement is given up.

6 Conclusion

Our results shed light on the complex relationship between voting rules, voter par-

ticipation and social welfare. The considerable variation in the design of voting

rules in real-world institutions suggests that rules are—at least to some extent—

tailored to different environments.26 As far as the standard majority rule, the qual-

26Often, the same decision-making body uses different rules to decide on different issues.

An example is the University of Mannheim which generally applies a simple majority rule

(with a participation quorum of 50 percent) in its decision making bodies, but requires a

two-third majority (in combination with a 60 percent approval quorum) for changes of its con-

stitutions, and requires unanimous approval for some other decisions. Cf. https://www2.uni-

mannheim.de/1/universitaet/leitung_organe/grundordnung/grundo_neu_ab_4_2015.pdf and

https://www2.uni-mannheim.de/1/universitaet/partner_ehrungen/ehrungen/ehrenordnung /ehrenord-

nung.pdf).
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ified majority rules, and the one-sided linear rules are concerned, this view is con-

sistent with our results. But our main linearity result also has a normative angle: it

suggests to reconsider the common practice of using non-linear quorum rules.

We contribute to an explanation of why so many institutions frequently rely

on voluntary participation. It is obvious that compulsory participation can depress

social welfare when voting costs are large. However, technological progress has

significantly reduced the physical cost of participating in many collective decisions.

Is compulsory participation welfare-enhancing when voting costs are small? We

provide an argument for the answer “No”: in a broad class of mechanisms that

would be optimal with compulsory participation, voluntary participation leads to a

higher welfare.

Two warnings are in place. First, our approach is not detail-free: the designer

needs to know the informational and preference environment in order to determine

the optimal linear voting rule. More research is needed to evaluate the perfor-

mance of any particular linear rule in a broad class of environments (featuring, for

instance, various types of asymmetry, correlation, or interdependence of values)

as a basis for a practical recommendation. Second, our model is not primarily in-

tended to represent large electorates such as in many public referenda, where other

approaches may be more appropriate (e.g., Feddersen and Sandroni, 2006).

The technical methods that we have developed in this paper may prove use-

ful in other settings as well. First, whenever a mechanism-design problem shares

the feature that different mechanisms lead to the same equilibrium, properties of

the optimal mechanism may be proven by maximizing welfare subject to a fixed

equilibrium. Second, the perturbation method for analyzing equilibria when the

participation cost is small is applicable to voting rules beyond the class of linear

mechanisms that we consider.

7 Appendix A

Define the shortcuts

GR = E[ṽ1ṽ>0] > 0, GS = E[−ṽ1ṽ<0] > 0. (31)

Proof of Proposition 1. We first treat the cases with E[ṽ] > 0 (the cases with

E[ṽ] < 0 are analogous). Following this, we show that full participation is not

optimal. The proof of the linearity result for the unbiased case E[ṽ] = 0 uses

similar techniques and is relegated to Appendix B.

Consider an optimal mechanism-equilibrium pair (M∗, τR∗, τS∗). Define cor-

responding pivot probabilities ∆R∗ and ∆S∗ via (9).
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Case E[ṽ] > 0, τR∗ > 0, τS∗ > 0, and τR∗ + τS∗ < 1.

Here,

PrτR∗,τS∗(r, s) > 0 for all tallies (r, s) with r + s < n. (32)

Define the (convex and non-empty) set of mechanisms

M = {M | ∆R∗ = dR(M, τR∗, τS∗), ∆S∗ = dS(M, τR∗, τS∗),

0 ≤ Mrs ≤ 1 for all (r, s)}.

By optimality, the mechanism M∗ solves the following problem:

(lin) max
M

ρM,τR∗,τS∗

(A) s.t. M ∈ M.

Problem (lin) is linear. Hence, the Kuhn-Tucker conditions are necessary, without

any constraint qualification. Thus, there exist Lagrange multiplier µR, µS , and µrs
27 for all (r, s) such that

µrs =
∂

∂Mrs

(

ρM,τR∗,τS∗

(A) + µRdR(M, τR∗, τS∗) + µSdS(M, τR∗, τS∗)
)

,

(33)

where µrs ≤ 0 if M∗
rs < 1 and µrs ≥ 0 if M∗

rs > 0 (complementary slackness).

Put differently,

M∗
rs =

{
1 if µrs > 0,
0 if µrs < 0.

(34)

Consider a tally (r, s) with r + s < n. Rewriting (33) and dropping the index

(τR∗, τS∗) when writing multinomial probabilities,

µrs = Pr(r, s)
(
1− µR + µS

)
+ Pr(r − 1, s)µR − Pr(r, s− 1)µS

(6)
=

Pr(r, s)

(n− r − s)τR∗τS∗
(
rξR − sξS − nξ

)
, (35)

where

ξR = µRτS∗(1− τR∗ − τS∗)− (1− µR + µS)τR∗τS∗, (36)

ξ = −(1− µR + µS)τR∗τS∗, (37)

ξS = µSτR∗(1− τR∗ − τS∗) + (1− µR + µS)τR∗τS∗. (38)

27We use a single Lagrange multiplies for both constraints 0 ≤ Mrs and Mrs ≤ 1 because only

one constraint can be binding.
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Using (32), we conclude that (2) holds; it is straightforward to check that (2) also

holds for tallies with r + s = n.

To show (1), observe first that ξR ≥ 0 (otherwise (34) implies that M∗
r+1,s ≤

M∗
rs for all (r, s), implying ∆R∗ = 0 and hence τR∗ = 0). Similarly, ξS ≥ 0.

Moreover, if ξ = 0, then 1 − µR + µS = 0 by (37), implying µS ≥ 0 by (38).

Thus, µR = 1 + µS ≥ 1, thus ξR > 0 by (36). Hence, M∗ is a linear mechanism.

Case E[ṽ] > 0, τR∗ > 0 and τS∗ = 0. (The case τR∗ = 0 and τS∗ > 0 is

analogous).

Note that τR∗ ≤ FR < 1. Define the (convex and non-empty) set of mecha-

nisms

MR = {M | ∆R∗ = dR(M, τR∗, 0),

Mrs = Mr0, 0 ≤ Mrs ≤ 1 for all (r, s)}.

For any M ∈ MR, the pair (∆R∗, 0) is an equilibrium. Thus, by optimality, the

mechanism M̂ , where M̂rs = M∗
r0, solves the following problem:

(lin)R max
M

ρM,τR∗,0(A) s.t. M ∈ MR.

Problem (lin)R is linear. Hence, there exist Lagrange multipliers µR and µr for all

r such that

µr =
∂

∂Mr0

(

ρM,τR∗,0(A) + µRdR(M, τR∗, 0)
)

, (39)

where µr ≤ 0 if M̂r0 < 1 and µr ≥ 0 if M̂r0 > 0 (complementary slackness). Put

differently,

M̂rs =

{
1 if µr > 0,
0 if µr < 0.

Rewriting (39) yields

µr =
(n− 1)!

(n− r)!r!
(τR∗)r−1(1− τR∗)n−1−r

(
(n− r)τR∗(1− µR) + r(1− τR∗)µR

)
.

Thus, (2) holds with

ξR = (1− τR∗)µR − τR∗(1− µR), (40)

ξ = τR∗(1− µR), (41)

ξS = 0.
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To see (1), observe first that ξR ≥ 0 (otherwise M̂r+1,s ≤ M∗
rs for all (r, s),

implying ∆R∗ = 0 and hence τR∗ = 0). Moreover, if ξ = 0, then 1 − µR = 0 by

(41), implying ξR > 0 by (40). We conclude that M̂ is a linear mechanism.

Finally, we show

τR∗ + τS∗ < 1.

Suppose otherwise. Then τR∗ = FR and τS∗ = FS . In such an equilibrium, only

the tallies (r, s) with r + s = n occur with positive probability.

Let vR be the smallest positive type in supp(F ) and vS the largest negative

type. By assumption, participation is optimal for the types vR > 0 and vS < 0.

Define the (convex and non-empty) set of mechanisms with the property that

full participation is an equilibrium:

M = {M | dR(M,FR, FS) ≥ c/vR, dS(M,FR, FS) ≥ −c/vS ,

0 ≤ Mrs ≤ 1 for all (r, s)}.

By optimality, using (12), the mechanism M∗ solves the following problem:

(lin) max
M∈M

E[ṽ]ρM,FR,FS
(A) +GRdR(M,FR, FS) +GSdS(M,FR, FS).

Thus, there exist multipliers µR ≥ 0, µS ≥ 0, and

µrs =
∂

∂Mrs

(

E[ṽ]ρM,τR∗,τS∗

(A) + (GR + µR)dR(M, τR∗, τS∗)

E[v]ρM,τR∗,τS∗

(A) + (GS + µS)dS(M, τR∗, τS∗)
)∣
∣
∣
M=M∗

, (42)

where µrs ≤ 0 if M∗
rs < 1 and µrs ≥ 0 if M∗

rs > 0 (complementary slackness).

Moreover, (34) holds. Note that

µrs = 0 for all tallies (r, s) with r + s ≤ n− 2 (43)

because Pr(r, s) = 0. Consider tallies (r, s) with r + s = n − 1. Then µrs =

Pr(r, s)(−µR + µS). This implies µR = µS def
= µ (if, say, “>”, then M∗

rs = 1 by

(34), implying dR(M∗, FR, FS) ≤ 0, implying ∆R∗ = 0 by (7), thus τR∗ = 0).

Thus,

µrs = 0 for all tallies (r, s) with r + s = n− 1. (44)

Now consider tallies (r, s) with r + s = n. Then

µrs = Pr(r − 1, s)(GR + µ)− Pr(r, s− 1)(GS + µ).
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Rearranging and using (34) yields that M∗
r,s = 1 if r > r∗ and = 0 if r < r∗, for

some r∗.

Because in the linear problem (lin) the Lagrange conditions are sufficient, all

mechanisms in the following non-empty set are optimal:

M = {M | dR(M,FR, FS) = ∆R∗, dS(M,FR, FS) = ∆S∗,

∀(r, s) : 0 ≤ Mrs ≤ 1, if r + s = n then Mrs = M∗
rs}.

For any M ∈ M, let r(M) be maximal with Mr,n−1−r < 1 und r(M) be

minimal with Mr,n−1−r > 0. Observe that r(M) ≥ r∗ − 1 because otherwise

dR(M,FR, FS) ≤ 0. Similarly, r(M) ≤ r∗. Choose

M̂ ∈ arg max
M∈M

r(M)− r(M).

We claim that

r(M̂)− r(M̂) ≥ 0. (45)

To prove this, consider M ∈ M such that r(M)− r(M) ≤ −1. Then r ≥ r + 1.

Beginning with M ′ = M , lower M ′
r,n−1−r and increase M ′

r,n−1−r while keeping,

for all rules M ′ along the resulting path, the following expression constant:

Pr(r, n− 1− r)M ′
r,n−1−r − Pr(r, n− 1− r)M ′

r,n−1−r.

Thus, M ′ ∈ M along the path. The path ends with a rule M ′ such that M ′
r,n−1−r =

0 or M ′
r,n−1−r = 1. Thus, r(M ′)− r(M ′) > r(M)− r(M). This proves (45).

From (45), M̂r∗−1,n−r∗ = 0 or M̂r∗,n−1−r∗ = 1. Consider the first case (the

second is treated analogously). Because dS(M̂, FR, FS) > 0,

M̂r∗,n−1−r∗ > M̂r∗,n−r∗ . (46)

Define the R-one-sided rule M̂R via M̂R
rs = M̂r,n−r. Then (FR, 0) is an equi-

librium in M̂R because dR(M̂R, FR, 0) > dR(M̂, FR, FS) by (46). Moreover,

W (M̂R, FR, 0) = W (M̂, FR, FS) + G(0)c, showing that (M̂, FR, FS) is not

optimal. Thus, (42) follows. This completes the proof of Proposition 1.

Proof of Remark 1. By the mean-value theorem, we can represent the rele-

vant conditional expectations below (15) with weighted types close to vR and vS ,

respectively:

∃ νR ∈ [vR − ǫ, vR + ǫ] : ηR(pR) = νRg(νR),

∃ νS ∈ [vS − ǫ, vS + ǫ] : ηA(pR, 0) = νSg(νS).
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Thus, using (15) we find the limit welfare of implementing R given any election

result induced by full one-sided participation:

ωt,0(p
R, 0) → w(t, n− t) for all t as ǫ → 0, (47)

where here and below the limit applies uniformly across all ǫ-approximations F .

Choose ǫ > 0 so small that, for all νR ∈ [vR − ǫ, vR + ǫ], νS , νA ∈ [vS −
ǫ, vS + ǫ], t = 0, . . . , n and s = 0, . . . , n− t, the expression

tg(νR)νR + sg(νS)νS + (n− t− s)g(νA)νA has the same sign as w(t, n− t).
(48)

Define t∗ = min{r|w(r, n− r) > 0} and M via M rs = 1r≥t∗ .

Assume c < vR PrpR,0(t
∗ − 1, 0). Thus, for all

ǫ < vR −
c

PrpR,0(t
∗ − 1, 0)

,

the pair (τR, τS) = (pR, 0) is an equilibrium in the mechanism M because dR(M,pR, 0) =
PrpR,0(t

∗ − 1, 0)). Using (14), the resulting welfare is

W (M,pR, 0) =
1

n

n∑

t=0

(
n

t

)

(pR)t(pS)n−tmax{0, ωt,0(p
R, 0)} − αR(pR)c.

(49)

Thus, using (47),

lim
c→0, ǫ→0

W (M,pR, 0)−max{0, E[ṽ]} > 0.

Let c > 0 and ǫ > 0 be so small that

W (M,pR, 0) > max{0, E[ṽ]}+ 2ǫ. (50)

Consider any optimal m∗ = (M∗, τR∗, τS∗) with corresponding pivot probabilities

∆R∗ = dR(m∗) and ∆S∗ = dS(m∗).
Suppose that both types vR − ǫ and vS + ǫ find it optimal to abstain. Then

(vR − ǫ)∆R∗ ≤ c, (−vS − ǫ)∆S∗ ≤ c.

Thus, using (12) and the shortcuts αR∗ = αR(τR∗) and αS∗ = αS(τS∗),

W (m∗) ≤ E[ṽ]ρm
∗

(A) + αR∗((vR + ǫ)∆R∗ − c) + αS∗((−vS + ǫ)∆S∗ − c)

≤ max{0, E[ṽ]}+ 2ǫ,
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which by (50) contradicts the optimality of m∗.

Thus, participation is optimal either for all types in [vR − ǫ, vR + ǫ] (implying

τR∗ = pR) or for all types in [vS − ǫ, vS + ǫ] (implying τS∗ = pS).

Consider the case τR∗ = pR. Thus αR∗ = αR(pR). We can write the welfare

(14) by first summing over the number t of R-agents (all of which will participate),

and then summing over the number s of S-voters:

W (m∗) =
1

n

n∑

t=0

(
n

t

)

(pR)t(pS)n−t
n−t∑

s=0

(
n− t

s

)

(
τS∗

pS
)s(1−

τS∗

pS
)n−t−sM∗

tsωts(p
R, τS∗)

−(αR(pR) + αS∗)c, (51)

where

ωts(p
R, τS∗) = tηR(pR) + s

∫ F−1(τS∗)

vS−ǫ

vdG(v)

τS∗
+ (n− t− s)

∫ vS+ǫ

F−1(τS∗)

vdG(v)

pS − τS∗

is the welfare from implementing R conditional on the tally (t, s). Using the mean-

value theorem, there exist νR ∈ [vR − ǫ, vR + ǫ] and νS , νA ∈ [vS − ǫ, vS + ǫ]
such that

ωts(p
R, τS∗) = tg(νR)νR + sg(νS)νS + (n− t− s)g(νA)νA.

Thus, using (48),

ωts(p
R, τS∗)

{
> 0 if t ≥ t∗,
< 0 if t < t∗.

Hence, by optimality of M∗,

M∗ = M. (52)

By a basic property of the binomial distribution,

n−t∑

s=0

(
n− t

s

)

(
τS∗

pS
)s(1−

τS∗

pS
)n−t−s · s =

τS∗

pS
(n− t).

Thus, for any t ≥ t∗,

n−t∑

s=0

(
n− t

s

)

(
τS∗

pS
)s(1−

τS∗

pS
)n−t−sωts(p

R, τS∗)

= tηR(pR) +
τS∗

pS
(n− t)

∫ F−1(τS∗)

vS−ǫ

vdG(v)

τS∗
+ (1−

τS∗

pS
)(n− t)

∫ vS+ǫ

F−1(τS∗)

vdG(v)

pS − τS∗

= tηR(pR)− (n− t)ηS(pS)

= ωt,0(p
R, 0).
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Hence, using (51) and (52),

W (M∗, pR, τS∗) =
1

n

n∑

t=t∗

(
n

t

)

(pR)t(pS)n−t

(
n−t∑

s=0

(
n− t

s

)

(
τS∗

pS
)s(1−

τS∗

pS
)n−t−s

(
τS

pS
)s
(
n− t

s

)

· ωt,s(p
R, τS∗)

)

− (αR(pR) + αS∗)c

≤
1

n

n∑

t=t∗

(
n

t

)

(pR)t(pS)n−tωt,0(p
R, 0)− αR(pR)c

(49)
= W (M,pR, 0).

We conclude that the mechanism-equilibrium pair (M,pR, 0) is the unique opti-

mum with τR∗ = pR. Analogously, the mechanism-equilibrium pair (1s≤n−t∗ , 0, p
S)

is the unique optimum with τS∗ = pS . Comparing the welfare levels achieved with

these two candidates, the mechanism-equilibrium pair with smaller g-weighted

participation cost is optimal. This completes the proof of Remark 1.

The proof of Remark 2 relies on auxiliary notation and on a lemma. Given

any three-point distribution F̂ = F̂ v0 , consider the probability distribution that

describes an agent’s g-weighted valuation:

(
v̂S v̂0 v̂R

pS p0 pR

)

def
=

(
g(vS)vS g(v0)v0 g(vR)vR

pS p0 pR

)

,

where we have to distinguish the realizations v̂S and v̂0 even when they happen to

be of equal size. Let (v̂1, . . . , v̂n) denote an i.i.d. vector of random variables with

the above distribution.

Denote the set of feasible mechanism-participation-rates combinations by

F = {(M, τR, τS)|∀(r, s) : 0 ≤ Mrs ≤ 1, τR + τS ≤ 1,

0 ≤ τR ≤ pR + p0, 0 ≤ τS ≤ pS + p0}.

(In this definition we allow τR > pR even when v0 < 0 so that the definition is the

same as when v0 = 0.)

Consider any (M, τR, τS) ∈ F . Let (ã1, . . . , ãn) denote an i.i.d. random

vector that describes each agent i’s action R, S, or A such that the participation

pair (τR, τS) arises if agent i’s valuation is chosen according to v̂i. That is, Pr[ãi =
R, v̂i = v̂R] = min{pR, τR}, Pr[ãi = S, v̂i = v̂R] = 0, Pr[ãi = R, v̂i = v̂0] =
max{p0, τR − pR}, and so on.
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Let W
F̂ ,0(M, τR, τS) denote the welfare, ignoring the participation costs:

W
F̂ ,0(M, τR, τS) =

1

n
E

[
n∑

i=1

v̂iMr̃,s̃

]

, (53)

where

r̃ = |{j|ãj = R}| and s̃ = |{j|ãj = S}|.

By construction, analogously to (14),

W
F̂ ,0(M, τR, τS) =

1

n

∑

r+s≤n

(
n

r s

)

(τR)r(τS)s(1− τR − τS)n−r−sMrs

·
(
rη̂R − sη̂S + (n− r − s)η̂A

)
,

where

η̂R = E[v̂i1ãi=R]/τ
R if τR > 0,

η̂S = E[v̂i1ãi=S ]/τ
S if τS > 0,

η̂A = E[v̂i1ãi=A]/(1− τR − τS) if τR + τS < 1.

Observe that W
F̂ ,0 is continuous in (M, τR, τS) and in v0.

Given any δ̂ > 0, we can choose ǫ > 0 so small that

max
v∈[vS−ǫ,vS+ǫ]

|vg(v)− v̂S | < δ̂, max
v∈[vR−ǫ,vR+ǫ]

|vg(v)− v̂R| < δ̂,

and, for all v0 ∈ (vS , 0] around which g is defined,

max
v∈[v0−ǫ,v0+ǫ]

|vg(v)− v̂0| < δ̂.

Consider any ǫ-approximation F of F̂ . By construction, using the functions defined

below (15),

|ηR(τR)− η̂R| ≤ δ̂ if τR > 0,

|ηS(τS)− η̂S | ≤ δ̂ if τS > 0,

|ηA(τR, τS)− η̂A| ≤ δ̂ if τR + τS < 1.

Thus, making the direct dependence of W on F and c explicit with lower indices,

|W
F̂ ,0(M, τR, τS)−WF,c(M, τR, τS) + (αR(τR) + αS(τS))c| ≤ δ̂. (54)
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In particular, as (c, ǫ) → 0,

sup
(M, τR, τS) ∈ F , all v0,

F an ǫ-approximation of F̂ v0

∣
∣
∣WF̂ v0 ,0

(M, τR, τS)−WF,c(M, τR, τS)
∣
∣
∣ → 0.

(55)

Define the mechanism M that, combined with participation of the types around vR

and vS and abstention of the types around v0, implements the optimal alternative

conditional on any tally (r, s):

M rs = 1w(r,s)>0 = 1rv̂R+sv̂S+(n−r−s)v̂0>0. (56)

Using the definition (15),

|ωrs(p
R, pS)− w(r, s)| ≤ δ̂. (57)

The following lemma determines the “first-best”. The crucial aspect of this result

is that we fully characterize the solution set.

The first condition in (59) excludes extreme cases in which a single agent with

type vS outweighs all others’ preferences in the electorate. Without the second

condition, it would be unnecessary to distinguish types vS and v0 to determine

the welfare-maximizing alternative—counting the number of agents with type vR

would suffice. This condition also excludes extreme cases in which a single agent

with type vR outweighs all others’ preferences in the electorate. Given (21), con-

ditions (58) and (59) are implied by (19) and (20). Note that Lemma 3 includes

cases with v0 = 0.

Lemma 3. Consider a three-point distribution F̂ such that

w(r, s) 6= 0 for all (r, s) 6= (0, 0) (58)

and

w(n− 1, 1) > 0, and (59)

∃r̂ ∈ {1, . . . , n− 2} : w(r̂, n− r̂) < 0, w(r̂, 0) > 0.

The set of solutions to the problem

(∗) max
(M, τR, τS)∈F

W
F̂ ,0(M, τR, τS)

is given by the singleton (M,pR, pS) if v̂0 < 0, and is given by the set M×{pR}×
{pS} if v̂0 = 0.
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Proof of Lemma 3. Let (M, τR, τS) denote a maximizer of (∗). Using (53),

W
F̂ ,0(M, τR, τS) ≤

1

n
E

[

max{0,
n∑

i=1

v̂i}

]

= W
F̂ ,0(M,pR, pS).

Because (M, τR, τS) is optimal, the “≤” is in fact an “=”. Hence,28

if

n∑

i=1

v̂i > 0 then Mr̃,s̃ = 1, (60)

if

n∑

i=1

v̂i < 0 then Mr̃,s̃ = 0. (61)

First of all, this implies

τR ≥ pR or τS ≥ pS . (62)

Suppose not. Then Pr[v̂1 = · · · = v̂n = v̂R, ã1 = · · · = ãn = A] > 0, implying

M0,0 = 1 by (60). Similarly, Pr[v̂1 = · · · = v̂n = v̂S , ã1 = · · · = ãn = A] > 0,

implying M0,0 = 0 by (61), a contradiction. Next,

if τR < pR then τS = 1− pR. (63)

Suppose not. Then, using (62),

Pr[v̂1 = v̂S , v̂2 = · · · = v̂n = v̂R, ã1 = S, ã2 = · · · = ãn = A] > 0,

implying M0,1 = 1 by (59) and (60). On the other hand, using τS < 1− pR,

Pr[v̂1 = v̂S , v̂2 = · · · = v̂n = v̂0, ã1 = S, ã2 = · · · = ãn = A] > 0.

implying M0,1 = 0 by (61), a contradiction.

Next,

τR ≥ pR (64)

Suppose not. Then, using (63) and r̂ from (59),

Pr[v̂1 = · · · = v̂r̂ = v̂R, v̂r̂+1 = · · · = v̂n = v̂S ,

ã1 = · · · = ãr̂ = A, ãr̂+1 = · · · = ãn = S] > 0,

implying M0,n−r̂ = 0 by (61). On the other hand,

Pr[v̂1 = · · · = v̂r̂ = v̂R, v̂r̂+1 = · · · = v̂n = v̂0,

ã1 = · · · = ãr̂ = A, ãr̂+1 = · · · = ãn = S] > 0,

28Read as ”the event described after ‘if’ implies the event described after ‘then’.”

41



implying M0,n−r̂ = 1 by (60), a contradiction.

Next,

if τS < pS then τR = 1− pS . (65)

Suppose not. Then

Pr[v̂1 = · · · = v̂r̂ = v̂R, v̂r̂+1 = · · · = v̂n = v̂S ,

ã1 = · · · = ãr̂ = R, ãr̂+1 = · · · = ãn = A] > 0,

implying Mr̂,0 = 0 by (61). On the other hand,

Pr[v̂1 = · · · = v̂r̂ = v̂R, v̂r̂+1 = · · · = v̂n = v̂0,

ã1 = · · · = ãr̂ = R, ãr̂+1 = · · · = ãn = A] > 0,

implying Mr̂,0 = 1 by (60), a contradiction.

Next

τS ≥ pS (66)

Suppose not. Then, using (65),

Pr[v̂1 = v̂S , v̂2 = · · · = v̂n = v̂0, ã1 = A, ã2 = · · · = ãn = R] > 0,

implying Mn−1,0 = 0 by (61). On the other hand,

Pr[v̂1 = v̂S , v̂2 = · · · = v̂n = v̂R, ã1 = A, ã2 = · · · = ãn = R] > 0,

implying Mn−1,0 = 1 by (59) and (60), a contradiction.

Now we show that

τR = pR (67)

Suppose not. Then, using (64) and (66),

Pr[v̂1 = v̂S , v̂2 = · · · = v̂n = v̂0, ã1 = S, ã2 = · · · = ãn = R] > 0,

implying M1,n−1 = 0 by (61). On the other hand,

Pr[v̂1 = v̂S , v̂2 = · · · = v̂n = v̂R, ã1 = S, ã2 = · · · = ãn = R] > 0,

implying M1,n−1 = 1 by (59) and (60), a contradiction.

Finally, we show that

τS = pS (68)
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Suppose not. Then, using (66) and (67),

Pr[v̂1 = · · · = v̂r̂ = v̂R, v̂r̂+1 = · · · = v̂n = v̂S ,

ã1 = · · · = ãr̂ = R, ãr̂+1 = · · · = ãn = S] > 0,

implying Mr̂,n−r̂ = 0 by (61). On the other hand,

Pr[v̂1 = · · · = v̂r̂ = v̂R, v̂r̂+1 = · · · = v̂n = v̂0,

ã1 = · · · = ãr̂ = R, ãr̂+1 = · · · = ãn = S] > 0,

implying Mr̂,n−r̂ = 1 by (60), a contradiction.

From (67) and (68), r̃ = |{j|v̂j = v̂R}| and s̃ = |{j|v̂j = v̂S}|.
Consider any (r, s) and a realization of (v̂1, . . . , v̂n) such that r̃ = r and s̃ = s.

Thus,
∑n

i=1 v̂i = rv̂R + sv̂S + (n − r − s)v̂0. By (58), (i)
∑n

i=1 v̂i > 0 or (ii)
∑n

i=1 v̂i < 0 if (r, s) 6= (0, 0). In the case (i), Mrs = 1 by (60); in the case (ii),

Mrs = 0 by (61). Moreover, if v̂0 < 0, then w(0, 0) < 0 so that M = M . But

if v̂0 = 0 then the value of the objective W
F̂ ,0(M,pR, pS) is independent of M0,0.

This completes the proof of Lemma 3.

Proof of Remark 2. Assume (21). Moreover, using that (57) holds for any δ̂,

we can assume ǫ is so small that, for all v0 < 0 around which g is defined and all

(r, s),

ωrs(p
R, pS) has the same sign as wv0(r, s). (69)

Let W ∗∗(v0) denote the maximum value of problem (∗) if F̂ = F̂ v0 . Using the

definition (22), denote

∆
R
= min

M∈M
dR(M,pR, pS) > 0 and ∆

S
= min

M∈M
dS(M,pR, pS) > 0.

Let

c =
1

2
min{vR∆

R
,−vS∆

S
}.

By continuity, there exist v0(c) > 0, ǫ(c, v0) > 0 and an open neighborhood N of

the set M × {pR} × {pS} such that, for all c < c, v0 < v0(c), ǫ < ǫ(c, v0) and

(M, τR, τS) ∈ N ∩ F :

(vR − ǫ)dR(M, τR, τS) > c, (−vS − ǫ)dS(M, τR, τS) > c,

−v0 + ǫ < c. (70)
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In particular, then (pR, pS) is the unique equilibrium of M among all participation

pairs (τR, τS) with (M, τR, τS) ∈ N ∩ F .

Next, we show that there exists δ > 0, c′ > 0, v0
′
< 0, and ǫ′ > 0 such that

(71) holds for all c < c′, v0 > v0
′
, ǫ < ǫ′, any ǫ-approximation F of F̂ v0 , and any

(M, τR, τS) ∈ F :

if WF,c(M, τR, τS) > W ∗∗(v0)− δ, then (M, τR, τS) ∈ N . (71)

To see why, suppose (71) fails. Then there exist sequences δj → 0, v0j → 0,

cj → 0, ǫj → 0, a sequence Fj , where Fj is an ǫj-approximation of F̂ v0j , and

a sequence (Mj , τ
R
j , τSj ) ∈ F such that WFj ,cj (Mj , τ

R
j , τSj ) > W ∗∗(v0j ) −

δj and (Mj , τ
R
j , τSj ) 6∈ N . By Bolzano-Weierstraß, there exists a limit point

(M̂, τ̂R, τ̂S) 6∈ N that yields by (55) the limit welfare W
F̂ 0,0(M̂, τ̂R, τ̂S) ≥

W ∗∗(0). Moreover, (M̂, τ̂R, τ̂S) 6∈ M, contradicting Lemma 3.

Now, w.l.o.g., let c′ < δ/2 and ǫ′ so small that (54) applies with δ̂ = δ/2 if

ǫ < ǫ′.
Thus, for all c < c′, ǫ < ǫ′, v0 > v0

′
, and any ǫ-approximation F of F̂ v0 ,

WF,c(M,pR, pS) ≥ W
F̂ v0 ,0

(M,pR, pS)− δ̂ − c > W ∗∗(v0)− δ. (72)

Now consider any c < min{c, c′}, v0 > max{v0(c), v0
′
}, ǫ < min{ǫ(c, v0), ǫ′}

and any ǫ-approximation F of F̂ v0 . Consider any optimal mechanism-equilibrium

pair (M∗, τR∗, τS∗). Then

WF,c(M
∗, τR∗, τS∗) ≥ WF,c(M,pR, pS).

Together with (71) and (72) this implies (M∗, τR∗, τS∗) ∈ N .

Hence, (τR∗, τS∗) = (pR, pS) by (70). Given these participation rates, the

welfare is

WF,c(M
∗, pR, pS) =

1

n

∑

r+s≤n

(
n

r s

)

(pR)r(pS)s(p0)n−r−sωrs(p
R, pS)M∗

rs

−(αR(pR) + αS(pS))c,

implying that the unique best rule is M∗ = M because of (69). This completes the

proof of Remark 2.

Proof of Lemma 2. We will use the shortcut

d∗ = dR(M,FR, FS) = Pr
FR,FS

(t∗ − 1, n− t∗).
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For all (r, s) with r + s ≥ t∗ + q − 2,

Mr,s =







1 if r ≥ t∗,
1 if r = t∗ − 1, s = q,
0 if r ≤ t∗ − 1, s ≥ q + 1.

Other tallies (r, s) will not be relevant in the computations below. The remaining

free variable is Mt∗−2,q. At m∗ = (M,FR, FS),

dR(m∗) = d∗ > 0, dS(m∗) = 0, F−1(FS) = 0, F−1(1− FR) = 0. (73)

The function φ is continuously differentiable in a neighborhood N of (0,m∗). For

all (c,m) = (c,M, τR, τS) ∈ N , the Jacobi matrix with respect to the first and

third variables is

φ∂c,∂τR(m) =

(
−1 −(F−1)′(1− τR)dR(m) + F−1(1− τR)dR

τR
(m)

1 F−1(τS)dS
τR

(m)

)

,

(74)

where lower indices denote partial derivatives. Using (73),

detφ∂c,∂τR(m
∗) =

d∗

f(0)
> 0,

where f = F ′ denotes the density of F . Also, (29) holds at (0,m∗). Thus, by the

implicit-function theorem (IFT), there exists an open neighborhood U of FS and

an open neighborhood V of (0, FR) and a (unique) function (č, τ̌R) : U → V such

that

{(č(τS), τ̌R(τS), τS) | τS ∈ U} = {(c, τR, τS) | τS ∈ U , (c, τR) ∈ V, (29)}.

(75)

The relevant domain of the implicit function (č, τ̌R) is {τS ∈ U | τS < FS}. From

(75),

č(FS) = 0, τ̌R(FS) = FR.

In order to compute the first-order derivatives of (č, τ̌R), we invert (74),

φ−1
∂c,∂τR

=
1

detφ∂c,∂τR

(
F−1(τS)dS

τR
(F−1)′(1− τR)dR − F−1(1− τR)dR

τR

−1 −1

)

,

and consider the derivative

φ∂τS =

(
F−1(1− τR)dR

τS

F−1(τS)dS
τS

+ (F−1)′(τS)dS

)

. (76)
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From the IFT,

(
dč/dτS

dτ̌R/dτS

)

= −φ−1
∂c,∂τR

· φ∂τS , (77)

where · denotes matrix-vector multiplication and where we have dropped the argu-

ment (M, τ̌R(τS), τS) at which both matrix and vector are evaluated.

For any function of τS , denote the lth derivative evaluated at FS by an upper

index (l). Let

k = n− t∗ + 1− q ≥ 2.

(In Figure 4, k equals the number of 0s below row s = q in column r = t∗ − 1.)

Using (77) recursively, we find (for details see Appendix B)

č(l) = 0, (τ̌R)(l) = 0 for all 1 ≤ l < k (78)

and

(
č(k)

(τ̌R)(k)

)

=
(n− 1)!

(t∗ − 1)!q!
(FR)t

∗−1(FS)q(−1)k−1 · k ·

(
− 1

f(0)
1
d∗

)

.

(79)

From (78) and (79)

(−1)lč(l)
{

= 0 if l < k,
> 0 if l = k.

(80)

Thus,29 there exists ǫ > 0 such that č′(τS) < 0 for τS ∈ (FS − ǫ, FS) ⊆ U and,

similarly, (τ̌R)′(τS) > 0. In particular, defining c = č(FS − ǫ) > 0, the function

č has an inverse τ̃S on [0, c).
Defining τ̃R(c) = τ̌R(τ̃S(c)), the pair (τ̃R(c), τ̃S(c)) is an equilibrium at cost

c ∈ (0, c).

29A simple calculus lemma. If a k times continuously differentiable function h(x) has k − 1
derivatives equal to 0 at x = 0 and the kth derivative is strictly positive at 0, then the function is

strictly increasing in a right-neighborhood of 0. Denoting derivatives with a lower index, hk−1(x) =∫ x

0
hk(y)dy > 0 by the fundamental theorem of calculus, hence hk−2(x) =

∫ x

0
hk−1(y)dy >

0, and so on continuing inductively until we find h1(x) > 0 for all x in a right neighborhood

of 0, showing that h is strictly increasing. Now consider the function ĥ(x) = h(−x) in a left-

neighborhood of 0, then the kth derivative ĥk(0) = (−1)khk(0). So, if (−1)kĥk(0) > 0 then ĥ is

strictly decreasing in a left neighborhood of 0.
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In order to prove (30), we begin by writing the welfare as a function

W̌ (τS) = W (č(τS),M, τ̌R(τS), τS)

= E[ṽ]ρ̌(τS) +

∫

v≥0
max{vďR(τS)− č(τS), 0}dG(v)

+

∫

v≤0
max{−vďS(τS)− č(τS), 0}dG(v),

where we have used the shortcuts

ρ̌(τS) = ρM,τ̌R(τS),τS (A)

ďR(τS) = dR(M, τ̌R(τS), τS),

ďS(τS) = dS(M, τ̌R(τS), τS).

From (29),

ďR(τS) =
č(τS)

F−1(1− τ̌R(τS))
, ďS(τS) =

−č(τS)

F−1(τS)
. (81)

Thus,

W̌ (τS) = E[ṽ]ρ̌(τS) +

∫

v≥F−1(1−τ̌R(τS))
(ďR(τS)v − č(τS))dG(v)

+

∫

v≤F−1(τS)
(ďS(τS)(−v)− č(τS))dG(v). (82)

Observe that, from (81), the integrands in (82) equal 0 at the variable boundary of

the respective integration area. Thus,

dW̌

dτS
= ρ̌′(τS)E[ṽ]

+

∫

v≥F−1(1−τ̌R(τS))
((ďR)′(τS)v − č′(τS))dG(v)

+

∫

v≤F−1(τS)
((ďS)′(τS)(−v)− č′(τS))dG(v).

= ρ̌′(τS)E[ṽ]

+(ďR)′(τS)

∫

v≥F−1(1−τ̌R(τS))
vdG(v) + (ďS)′(τS)

∫

v≤F−1(τS)
(−v)dG(v).

−

∫

v≥F−1(1−τ̌R(τS))
dG(v)č′(τS)−

∫

v≤F−1(τS)
dG(v)č′(τS). (83)
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Using this, we find (for details see Appendix B)

W̌ (l) = 0 for all 1 ≤ l ≤ k − 1. (84)

and

W̌ (k) = č(k)
(

−F ′(0)

(

1−
1

n− t∗ + 1− q

)

y(t∗ − 1)− γ

)

. (85)

The desired first-order welfare effect can be computed as

lim
c→0

d

dc
WF,c(M, τ̃R(c), τ̃S(c)) = lim

c→0

d

dc
W̌ (τ̃S(c))

= lim
c→0

W̌ ′(τ̃S(c)) · (τ̃S)′(c)

= lim
c→0

W̌ ′(τ̃S(c))

č′(τ̃S(c))

= lim
τS→FS

W̌ ′(τS)

č′(τS)
.

Due to (78) and (84), we can apply L’Hospital’s rule k − 1 times, so that

lim
τS→FS

W̌ ′(τS)

č′(τS)
=

W̌ (k)

č(k)
. (86)

Now (85) implies (30). This completes the proof of Lemma 2.
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Appendix B

Heterogenous participation costs

The game-theoretic literature on costly voting largely relies on (special cases of)

the following preference model. Voters have stochastically independent types (vi, ci)
distributed according to a c.d.f. H(vi, ci), where vi is the Bernoulli utility from out-

come R, vi − ci from iR, 0 from S and −ci from iS. The marginal distribution

of vi/ci is assumed to be atom-free. The objective is to maximize the ex-ante ex-

pected utility. We show here that any such objective is captured by our model if

the weight density function is chosen appropriately.

Let (ṽ, c̃) denote a random vector with distribution H .

Let c > 0 denote a fixed parameter, e.g. c = 1.

The distribution H can be alternatively represented by a two-step experiment,

where first cṽ/c̃ is realized and then c̃/c is realized. Let F denote the c.d.f. for

cṽ/c̃ and Jv denote the c.d.f. for c̃/c, conditional on cṽ/c̃ = v.

The equilibrium conditions (7) and (8) and definitions of τR and τS apply

unchanged. Let m denote a mechanism-equilibrium pair. The ex-ante expected

utility is

WH(m) = ρm(A)EH [ṽ] +

∫

vi>0
max{0, vi∆

R − ci}dH(vi, ci)

+

∫

vi<0
max{0,−vi∆

S − ci}dH(vi, ci)

= ρm(A)

∫
cvi
ci

ci
c

dH(vi, ci) +

∫

v>0
max{0,

cvi
ci

∆R − c}
ci
c

dH(vi, ci)

+

∫

v<0
max{0,−

cvi
ci

∆S − c}
ci
c

dH(vi, ci),

= ρm(A)

∫

vg(v)dF (v) +

∫

v>0
max{0, v∆R − c}g(v)dF (v)

+

∫

v<0
max{0,−v∆S − c}g(v)dF (v),

where we use the weights g(v) =
∫
(ci/c)dJv(ci).

A second, alternative, welfare expression is obtained by aggregating across

agents and dividing through the population size n. To obtain this formula, note

52



that

WH(m) = ρm(A)

∫

vdG(v) +

∫

v∆R>c

(
v∆R − c

)
dG(v)

+

∫

−v∆S>c

(
−v∆S − c

)
dG(v),

= ρm(A)

∫

v∆R<c,−v∆S<c

vdG(v) + ρm(R)

∫

v∆R>c

vg(v)dG(v)

+ρm(S)

∫

−v∆S>c

vdG(v)−

∫

v∆R>c or −v∆S>c

cdG(v)

= ρm(A)(1− τR − τS)yA + ρm(R)τRyR + ρm(S)τS(−yS)− yc

=
∑

r+s≤n−1

Mrs

n

Pr(r, s)
n− r − s

n
yA +

∑

r+s≤n−1

Mr+1,s

n

Pr(r + 1, s)
r + 1

n
yR

+
∑

r+s≤n−1

Mr,s+1

n

Pr(r, s+ 1)
s+ 1

n
(−yS)− yc

=
∑

r+s≤n

Mrs

n

Pr(r, s)
n− r − s

n
yA +

∑

r′+s≤n

Mr′,s

n

Pr(r′, s)
r′

n
yR

+
∑

r+s′≤n

Mr,s′

n

Pr(r, s′)
s′

n
(−yS)− yc

=
1

n

∑

r+s≤n

Mrs

n

Pr(r, s)((n− r − s)yA + ryR − syS)− yc,

where Prn(r, s) =

(
n
r s

)

(τR)R(τS)S(1− τR − τS)n−r−s denotes the equilib-

rium probability of tally (r, s), and

yc = c

∫

v∆R>c or −v∆S>c

dG(v),

yA =
1

1− τR − τS

∫

v∆R<c,−v∆S<c

vdG(v),

yR =
1

τR

∫

v∆R>c

vdG(v),

yS =
1

τS

∫

−v∆S>c

(−v)dG(v).
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Proof for the “unbiased case” E[ṽ] = 0 in Proposition 1.

We need an auxiliary result, Lemma A. Here, the welfare (11) is independent of

M . Consider a relaxed maximization problem in which the equilibrium conditions

are replaced by inequalities:

(relax) max
(M,∆R,∆S)

∫

max{v∆R − c, 0}dG(v) +

∫

max{−v∆S − c, 0}dG(v)

s.t. ∆R − dR(M, lR(∆R), lS(∆S)) ≤ 0, (R)

∆S − dS(M, lR(∆R), lS(∆S)) ≤ 0, (S)

∆R ≥ 0, ∆S ≥ 0,

0 ≤ Mrs ≤ 1 for all (r, s).

Lemma A below justifies our focus on the relaxed problem.

Lemma A. Problem (relax) always has a solution such that both (R) and (S) are

satisfied with equality. In particular, if E[ṽ] = 0, then any solution to (opt) also

solves problem (relax).

Proof. Observe first that (relax) always has a solution. This follows from

Weierstrass’ maximum-value theorem (note that (∆R,∆S) belongs to the compact

set [0, 1]2 because dR ≤ 1 and dS ≤ 1).

Consider any solution (M,∆R,∆S) to (relax). We will construct from it an-

other solution to (relax) such that the constraints (R) and (S) are satisfied with

equality. Let τS = lS(∆S) and τR = lR(∆R).
Case 1: τS > 0 and τR > 0 and τR + τS < 1. We claim that at (M,∆R,∆S)

both constraints (R) and (S) are satisfied with equality.

Because ∆R > 0 (from τR > 0), constraint (R) implies that there exists (r̂, ŝ)
such that M(r̂ + 1, ŝ)−M(r̂, ŝ) > 0. Thus,

M(r̂ + 1, ŝ) > 0 and M(r̂, ŝ) < 1. (87)

Suppose that constraint (R) is satisfied with strict inequality. Then locally only

constraint (S) is relevant. Thus, (87) implies30

0 ≤ Pr
τR,τS

(r̂ + 1, ŝ)− Pr
τR,τS

(r̂ + 1, ŝ− 1), (88)

0 ≥ Pr
τR,τS

(r̂, ŝ)− Pr
τR,τS

(r̂, ŝ− 1). (89)

(If (88) does not hold, then one can slightly decrease M(r̂+1, ŝ), thus making the

left-hand-side of (S) strictly smaller than 0, followed by an increase of ∆R (or ∆S)

30We use the convention PrτR,τS (r, s) = 0 if not r ≥ 0, s ≥ 0, and s+ r ≤ n− 1.
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that is so small that both constraints remain satisfied; the increase of ∆R increases

the welfare. A similar contradiction is obtained by increasing M(r̂, ŝ) if (89) does

not hold).

But the expression

(

Pr
τR,τS

(r, s)− Pr
τR,τS

(r, s− 1)

)
r!s!(n− r − s)!

(n− 1)!(τR)r(τS)s−1(1− τR − τS)n−1−r−s

= (n− r − s)τS − s(1− τR − τS)

is strictly decreasing in r, a contradiction to (88) and (89). The proof that constraint

(S) is satisfied with equality is analogous.

Case 2: τR + τS = 1. Then τR = FR and τS = FS . We claim that at

(M,∆R,∆S) both constraints (R) and (S) are satisfied with equality.

The steps leading to (88) and (89) are as in Case 1. Here, ŝ = n−1− r̂ in (87)

because only the tallies (r, s) with r + s = n − 1 occur with positive probability

from any agent’s point of view. Thus, (88) and (89) simplify to

Pr
τR,τS

(r̂ + 1, n− 2− r̂) = 0, Pr
τR,τS

(r̂, n− 1− r̂) = 0.

The first equation implies r̂ = n− 1, a contradiction to the second equation.

Case 3: τS = 0 and τR > 0. (The case τR = 0 and τS > 0 is analogous).

In the objective of (relax), the right-most integral = 0. Thus, another solution to

(relax) is given by (M̂,∆R, 0) with M̂rs = Mr0 for all r and s. At (M̂,∆R, 0),
constraint (S) is satisfied with equality. Also, constraint (R) is satisfied with equal-

ity because otherwise one could increase ∆R (while (S) remains satisfied with

equality).

Case 4: τS = 0 and τR = 0. Then the objective of (relax) obtains the value 0
so that another solution to (relax) is given by (M̂, 0, 0) with M̂rs = 0 for all (r, s).
The solution (M̂, 0, 0) satisfies both constraints (R) and (S) with equality. This

completes the proof of Lemma A.

By Lemma A, (M∗,∆R∗,∆S∗) solves problem (relax).

Case E[ṽ] = 0, τR∗ > 0, τS∗ > 0, and τR∗ + τS∗ < 1.

It is not possible to change M∗ such that both constraints (S) and (R) become

strict, because if so then one could increase ∆R∗ and ∆S∗ slightly while keep-

ing the constraints satisfied and increasing the objective. In other words, by the

separating hyperplane theorem, there exist µR ≥ 0 and µS ≥ 0 with

µR > 0 or µS > 0 (90)
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such that M = M∗ solves the problem

max
M

µSdS(M, τR∗, τS∗) + µRdR(M, τR∗, τS∗)

s.t. 0 ≤ Mrs ≤ 1 for all (r, s).

The objective of this problem is linear in M , that is, there exist coefficients µrs ∈ R

such that the objective can be written
∑

r,s

µrsMrs + const.

By optimality, (34) holds. Rewriting the coefficients yields that (35) holds with

ξR = τS∗(µR − µRτS∗ − µSτR∗),

ξS = τR∗(µS − µSτR∗ − µRτS∗), (91)

ξ = τS∗τR∗(µR − µS). (92)

We conclude that (2) holds for all tallies with r+s < n; the same conclusion holds

if r + s = n.

To show (1), observe first that ξR ≥ 0 (otherwise (34) implies that M∗
r+1,s ≤

M∗
rs for all (r, s), implying ∆R∗ = 0 and hence τR∗ = 0). Similarly, ξS ≥ 0.

Moreover, if ξ = 0, then µR = µS by (92), implying µR > 0 and µS > 0 by

(90), implying ξR = τS∗µR(1 − τR∗ − τS∗) > 0 by (91). Hence, M∗ is a linear

mechanism.

Case E[ṽ] = 0, τR∗ > 0, and τS∗ = 0. (The case with τR∗ = 0 and τS∗ > 0
is analogous).

Defining M̂(r, s) = M∗(r, 0) for all (r, s), (M̂,∆R∗, 0) also solves problem

(relax). Changing any M̂r0 (while keeping M̂rs = M̂r0 for all s) cannot make con-

straint (R) become strict, because otherwise one could increase ∆R∗ slightly while

keeping the constraints satisfied and increasing the objective. Thus, M̂ solves the

problem

max
M

dR(M, τR∗, 0) s.t. 0 ≤ Mrs ≤ 1 for all (r, s).

From this one can conclude that M̂(r, 0) is as in an R-one-sided linear rule.

Model variant with 0-cost agents

Suppose that each agent, with probability zR (resp., zS), has 0 participation cost

and valuation vR0 > 0 (resp., vS0 < 0); call this type 0R (resp., 0S).31 Moreover,

31Introducing different positive-valuation types with 0 participation cost is not necessary because

these types would have identical incentives; similar for negative-valuation types.
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each agent, with probability 1− zR− zS > 0, has a type v distributed according to

the c.d.f. F/(1− zR − zS). The weights for the new types are denoted yR and yS ,

respectively. The weights of the incumbent types are given by g/(1− yR − yS).
An equilibrium is still described by a pair (∆R,∆S), with the additional un-

derstanding that type 0R takes action R if ∆R > 0 and otherwise takes action A;

similar for type 0S .

Equilibrium conditions are as before, with

lR(∆R) = zR1∆R>0 + 1− zR − zS − F (
c

∆R
),

lS(∆S) = zS1∆S>0 + F (−
c

∆S
).

Any equilibrium can alternatively be expressed in terms of the participation pair

(τR, τS), where τR = 0 or τR ≥ zR; similar for τS .

Given a mechanism-equilibrium pair m, the interim-expected utilities of the

new types are

Um(0R) = vR0 ρ
m(A)+vR0 d

R(M, τR, τS), Um(0S) = vS0 ρ
m(A)−vS0 d

S(M, τR, τS).

Using the shortcut E0 = zRvR0 +zSvS0 +
1−yR−yS

1−zR−zS

∫
vdG(v) for the expected valu-

ation, the ex-ante expected welfare of each individual is as in (11) and (12), but with

E[ṽ] replaced by E0, and with the additional terms yRvR0 d
R(m)+yS(−vS0 )d

S(m)
in (11) and yRvR0 ∆

R + yS(−vS0 )∆
S in (12).

Proposition 4. Consider the model variant with 0-cost agents. There exists an

optimal mechanism-equilibrium pair in which the mechanism is a linear voting

rule.

Any optimal mechanism-equilibrium pair (M∗, τR∗, τS∗) is such that τR∗ +
τS∗ < 1. Moreover, if τR∗ > 0 and τS∗ > 0, then M∗ is linear; if τR∗ > 0 and

τS∗ = 0, then M∗
r0 (r = 0, . . . , n) is as an R-one-sided linear rule; if τR∗ = 0

and τS∗ > 0, then M∗
0s (s = 0, . . . , n) is as an S-one-sided linear rule.

Sketch of proof. All arguments are analogous to the proof of Proposition 1. The

main case distinction now is E0 > 0 versus E0 = 0. In case E0 = 0 one considers

a variant of problem (relax) with the additional terms yRvR0 ∆
R + yS(−vS0 )∆

S in

the objective.

Model variant with separate populations of R-agents and S-agents

Suppose there is a fixed number nR (resp. nS) of R-agents (resp., S-agents) with

types v stochastically independently distributed according to a distribution FR on

R+ (resp., FS on R−), as in Palfrey and Rosenthal (1985). Let GR and GS denote
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c.d.f.s for the weights. Let ṽR and ṽS denote random variables with distribution

GR and GS , respectively.

A voting rule is given by a mapping M : {0, 1, . . . , nR} × {0, 1, . . . , nS} →
[0, 1].

We focus on equilibria in which all R-agents use the same strategy, and so

do all S-agents. These strategies are defined via (∆R,∆S). The strategy of the

R-agents (resp., S-agents) is given by (5), restricted to valuations v > 0 (resp.,

v < 0). Let

lR(∆R) = 1− FR(
c

∆R
), lS(∆S) = FS(−

c

∆S
).

Let Prq,m(t) denote the probability of t successes in a binomial distribution with

any parameters (q,m). An agent’s anticipated pivot probabilities in a mechanism

M are given by

dR(M, τR, τS) =
∑

r≤nR−1

∑

s≤nS

Pr
τR,nR−1

(r) Pr
τS ,nS

(s)(Mr+1,s −Mr,s),

dS(M, τR, τS) =
∑

r≤nR

∑

s≤nS−1

Pr
τR,nR

(r) Pr
τS ,nS−1

(s)(Mr,s −Mr,s+1).

where τR ∈ [0, 1] (resp., τS ∈ [0, 1]) is the probability that a given R-agent (resp.,

S-agent) participates. Equilibrium conditions are (7) for the R-agents and (8) for

the S-agents. As in the main model, we can alternatively express any equilibrium

via the participation pair (τR, τS).
A mechanism-equilibrium pair m = (M, τR, τS) yields, for an R-agent of

type v, the interim expected utility

Um(v) = vρm,R(A) + max{vdR(M, τR, τS)− c, 0},

where

ρm,R(A) =
∑

r≤nR−1

∑

s≤nS

Pr
τR,nR−1

(r) Pr
τS ,nS

(s)Mr,s.

denotes an R-agent’s expected utility from abstaining. Similarly, for an S-agent of

type v,

Um(v) = vρm,S(A) + max{−vdS(M, τR, τS)− c, 0}.

where

ρm,S(A) =
∑

r≤nR

∑

s≤nS−1

Pr
τR,nR

(r) Pr
τS ,nS−1

(s)Mr,s.

58



denotes an S-agent’s expected utility from abstaining.

We consider a social planner who is interested in maximizing a weighted av-

erage of an R-agent’s utility and an S-agent’s utility, with weights κR > 0 and

κS > 0. For instance, κR = nR and κS = nS . The resulting objective is

W (m) = κRE[Um(ṽR)] + κSE[UmṽS ]

= κRE[ṽR]ρ
m,R(A) + κSE[ṽS ]ρ

m,S(A)

+κR

∫

max{vdR(M, τR, τS)− c, 0}dGR(v) (93)

+κS

∫

max{−vdS(M, τR, τS)− c, 0}dGS(v). (94)

Proposition 5. Consider the model variant with fixed populations of R-agents and

S-agents.

There exists an optimal mechanism-equilibrium pair in which the mechanism

is linear. Any optimal mechanism-equilibrium pair (M∗, τR∗, τS∗) is such that

τR∗ < 1 and τS∗ < 1. Moreover, if τR∗ > 0 and τS∗ > 0, then M∗ is linear; if

τR∗ > 0 and τS∗ = 0, then M∗
r0 is as an R-one-sided linear rule. If τR∗ = 0 and

τS∗ > 0, then M∗
0s is as an S-one-sided linear rule.

Proof. Consider an optimal mechanism-equilibrium pair m∗ = (M∗, τR∗, τS∗).
Define corresponding pivot probabilities ∆R∗ and ∆S∗ via (9).

To show τR∗ < 1, suppose that τR∗ = 1 (the proof of τS∗ < 1 is analo-

gous). Then only tallies of the form (nR, s) can occur with positive probability.

Then (0, τS∗) is an equilibrium in the mechanism M̂ defined via M̂rs = MnR,s.

Moreover, W (M̂, 0, τS∗) = W (m∗) + κRc, contradicting the optimality of m∗.

Case 1: τR∗ > 0 and τS∗ > 0. Then

PrτR∗,nR
(r) PrτS∗,nS

(s) > 0 for all (r, s) with r ≤ nR and s ≤ nS . (95)

Define the (convex and non-empty) set of mechanisms

M = {M | ∆R∗ = dR(M, τR∗, τS∗), ∆S∗ = dS(M, τR∗, τS∗),

0 ≤ Mrs ≤ 1 for all (r, s)}.

By optimality, the mechanism M∗ solves the following problem:

(lin) max
M∈M

κRE[ṽR]
︸ ︷︷ ︸

def
=wR>0

ρ(M,τR∗,τS∗),R(A) + κSE[ṽS ]
︸ ︷︷ ︸

def
=wS>0

ρ(M,τR∗,τS∗),S(A).
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Problem (lin) is linear. Hence, the Kuhn-Tucker conditions are necessary, without

any constraint qualification. Thus, there exist Lagrange multipliers µR, µS , and

µrs
32 for all (r, s) such that

µrs =
∂

∂Mrs

(

wRρ
(M,τR∗,τS∗),R(A) + wSρ

(M,τR∗,τS∗),S(A)

+µRdR(M, τR∗, τS∗) + µSdS(M, τR∗, τS∗)
)
, (96)

where µrs ≤ 0 if M∗
rs < 1 and µrs ≥ 0 if M∗

rs > 0 (complementary slackness).

Put differently, (34) holds.

Consider a tally (r, s). Rewriting (96) and using upper indices R and S when

writing binomial probabilities,

µrs =
R

Pr
nR

(r)
S

Pr
nS

(s)

(

wR
nR − r

nR(1− τR∗)
+ wS

nS − s

nS(1− τS∗)

+µR

(
r

nRτR∗
−

nR − r

nR(1− τR∗)

)

+ µS

(
s

nSτS∗
−

nS − r

nS(1− τS∗)

))

=
R

Pr
nR

(r)
S

Pr
nS

(s)
(
rξR − sξS − nξ

)
, (97)

where

ξ =
wR − µR

1− τR∗
+

wS − µS

1− τS∗
, (98)

ξR =
µR

nRτR∗
−

wR − µR

nR(1− τR∗)
, (99)

ξS =
µS

nSτS∗
−

wS − µS

nS(1− τS∗)
. (100)

Using (95), we conclude that (2) holds.

To show (1), observe first that ξR ≥ 0 (otherwise (34) implies that M∗
r+1,s ≤

M∗
rs for all (r, s), implying ∆R∗ = 0 and hence τR∗ = 0). Similarly, ξS ≥ 0. Now

suppose that ξR = ξS = 0. Then µR 6= wR by (99), hence (99) yields

µR/wR

1− µR/wR

=
τR∗

1− τR∗
,

implying µR/wR = τR∗. Similarly, µS/wS = τS∗ by (100). Thus, ξ = wR +
wS > 0 by (98). Hence, M∗ is a linear mechanism.

32We use a single Lagrange multiplier for both constraints 0 ≤ Mrs and Mrs ≤ 1 because only

one constraint can be binding.
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Case 2: τR∗ > 0 and τS∗ = 0.

Define the (convex and non-empty) set of mechanisms

MR = {M | ∆R∗ = dR(M, τR∗, 0),

Mrs = Mr0, 0 ≤ Mrs ≤ 1 for all (r, s)}.

For any M ∈ MR, the pair (∆R∗, 0) is an equilibrium. Thus, by optimality, the

mechanism M̂ , where M̂rs = M∗
r0, solves the following problem:

(lin)R max
M∈MR

wRρ
(M,τR∗,0),R(A) + wSρ

(M,τR∗,0),S(A).

Problem (lin)R is linear. Hence, there exist Lagrange multipliers µR and µr for all

r such that

µr =
∂

∂Mr0

(

wRρ
(M,τR∗,0),R(A) + wSρ

(M,τR∗,0),S(A) + µRdR(M, τR∗, 0)
)

,

(101)

where µr ≤ 0 if M̂r0 < 1 and µr ≥ 0 if M̂r0 > 0 (complementary slackness). Put

differently,

M̂rs =

{
1 if µr > 0,
0 if µr < 0.

Rewriting (101) yields

µr =
R

Pr
nR

(r)

(

wR
nR − r

nR(1− τR∗)
+ wS + µR

(
r

nRτR∗
−

nR − r

nR(1− τR∗)

))

=
R

Pr
nR

(r)
(
rξR − nξ

)
,

where

ξ =
wR − µR

1− τR∗
+ wS , (102)

ξR =
µR

nRτR∗
−

wR − µR

nR(1− τR∗)
. (103)

Using that PrRnR
(r) > 0 for all r, we conclude that (2) holds.

To see (1), observe first that ξR ≥ 0 (otherwise M̂r+1,s ≤ M∗
rs for all (r, s),

implying ∆R∗ = 0 and hence τR∗ = 0). Moreover, using arguments analogous to

Case 1 one can show that ξR = 0 implies ξ > 0. Hence, M̂ is a linear mechanism.
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Proof of Remark 3

We use the weights g(v) = 1 for all v, that is, G = F .

In the following we list several properties of the environment considered in

Remark 3. Lemma 4 below shows that these properties together are sufficient to

prove Remark 3. First, (58) is satisfied. Second, the expectation

vRpR + v0p0 + vSpS = 0, (104)

and, third,

v0 < 0. (105)

Using the definition (56), define

∆Rg = dR(M,pR, pS) ≈ 0.149, ∆Sg = dS(M,pR, pS) ≈ 0.148.

The fourth property is that

−vS∆Sg > c > −v0∆Sg, c < vR∆Rg. (106)

This implies that (pR, pS) is an equilibrium in M if F is an ǫ-approximation of

(23) with sufficiently small ǫ.
We will use the shortcut

W = W
F̂ ,0(M,pR, pS)− c(pR + pS).

Define

WS = max{0, pS( max
p∈[pS ,pS+p0]

mn−1(p)(−vS)− c),

mn−1(p
S + p0)(pSvS + p0v0 − c)},

where, for any (l, z), ml(z) denotes the probability at the mode of the binomial

distribution with parameters (l, z). The final required property of the environment

is that

W > WS . (107)

One can check that this holds for (23) at c = 1 and n = 15.

The lemma below provides sufficient conditions such that the mechanism-

equilibrium pair (M,pR, pS) is the unique optimum.
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Lemma 4. Consider a three-point distribution F̂ , a participation cost c, and a

population size n such that (58), (104), (105), (106), and (107) hold. If F is an ǫ-
approximation of F̂ with sufficiently small ǫ, then the mechanism-equilibrium pair

(M,pR, pS) is the unique optimum.

First we provide a sketch of the proof. Note that by (104), the first term in

the welfare (12) vanishes. If either not all types around vR participated or not

all types around vS participated, then by the equilibrium conditions one of the

conditional expectations in (12) would vanish approximately as well. Thus, using

Lemma 5 below the welfare would essentially be bounded above by the welfare of

a one-sided rule. Lemma 6 states that the welfare of one-sided rules is essentially

bounded above by WS .

By (106), the pair (pR, pS) is an equilibrium in M if ǫ is small, yielding ap-

proximately welfare W .

Now we can conclude from (107) that in any optimum (M, τR, τS) all types

around vR as well as all types around vS will participate. That is, τS ≥ pS and

(using (105)) τR = pR.

The remainder of the proof uses techniques similar to the proof of Remark 2.

We consider the limit setting in which types are distributed according to the three-

point distribution F̂ (but, in contrast to the proof of Remark 2, the participation cost

is fixed). We consider problem (*’): maximize the welfare across all mechanisms

and all participation pairs (τR, τS) with τR = pR and τS ≥ pS , ignoring equilib-

rium conditions. Extending the ideas of Lemma 3, the unique solution to (*’) is

(M,pR, pS). To see this, note that at (M,pR, pS) the alternative R is implemented

if and only if the sum of the agents’ valuations is positive, and moreover the total

cost spent on participation is minimal across the feasible set.

Uniqueness in (*’) implies that any maximizer of any variant of (*’) with

slightly different objective must be close to (M,pR, pS).
Now move away from the limit setting and suppose that ǫ is small. Then

(pR, pS) is an equilibrium in M and, moreover, the welfare objective is only

slightly different from the objective in (*’). Thus, any optimal mechanism-equilibrium

pair is close to (M,pR, pS).
Using the gaps in the support of F , the equilibrium conditions imply that in any

mechanism sufficiently close to M , any equilibrium sufficiently close to (pR, pS)
is in fact equal to (pR, pS). Thus, in any optimal mechanism-equilibrium pair the

equilibrium (pR, pS) is played. Given these participation rates, the welfare con-

ditional on any election result (r, s) equals w(r, s) so that by (58) no mechanism

other than M can be optimal.

We will present the formal proof of Lemma 4 after stating and proving Lemma

5 and Lemma 6.
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Lemma 5. Consider any F , n, and c. Consider a linear rule M and an equilibrium

(τR, τS). Then there exists an R-one sided rule M̂ and an equilibrium (τ̂R, 0) such

that dR(M̂, τ̂R, 0) ≥ dR(M, τR, τS). Similarly, there exists an S-one sided rule

M̂S and an equilibrium (0, τ̂S) such that dS(M̂S , 0, τ̂S) ≥ dS(M, τR, τS).

Sketch of proof. We distinguish two cases. If M is monotonic, then we form

a one-sided rule by taking the average along the desired dimension, say the S-

dimension so that an R-one-sided rule M̂ is obtained. Using the monotonic-

ity of M , we show that, at the original participation rate τR, the R-pivotality is

higher in M̂ than in M . Starting from τR, one can imagine to further increase

the R-participation in M̂ (and, thus, increase the R-pivotality) until an equilibrium

(τ̂R, 0) is reached. If M is not monotonic, then, by linearity, it is a “sandwich”.

In an “R-sandwich”, there is a threshold number of R-votes r̂ below which S is

implemented and above which R is implement (an “S-sandwich” is defined anal-

ogously). We consider an R-one-sided rule M̂ that requires r̂ or r̂ + 1 R-votes to

implement R and again show that at the original participation rate the R-pivotality

is higher in M̂ than in M .

Proof of Lemma 5. We prove the R-part. First suppose that M is not an R-

sandwich. Then M is monotonically decreasing in s, that is, Mr,s+1 ≤ Mr,s for

all (r, s).
Given r votes for R, the conditional distribution of the number of S-votes is

denoted pr on {0, 1, . . . , n− r}:

pr(s
′) =

(
n− r

s′

)(
τS

1− τR

)s′ (
1− τR − τS

1− τR

)n−r−s′

. (108)

For all (r, s), define the mean

M̂rs =

n−r∑

s′=0

pr(s
′)Mrs′ .

Observe that M̂ is R-one-sided. Moreover,

dR(M, τR, τS) =
n−1∑

r=0

n−1−r∑

s′=0

Pr
τR

(r)pr+1(s
′)(Mr+1,s′ −Mr,s′)

=
n−1∑

r=0

Pr
τR

(r)(M̂r+1,0 −
n−1−r∑

s′=0

pr+1(s
′)Mr,s′), (109)

where PrτR(r) denotes the probability of r successes in a binomial distribution

with parameters (n− 1, τR).
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The distribution pr dominates the distribution pr+1 in terms of the monotone-

likelihood-ratio property, that is, the ratio

pr(s
′)

pr+1(s′)
=

n− r

n− r − s′
1− τR − τS

1− τR

is increasing in s′. Thus, using the monotonicity of Mrs′ in s′,

n−1−r∑

s′=0

pr+1(s
′)Mr,s′ ≥

n−r∑

s′=0

pr(s
′)Mr,s′ = M̂r,0.

Combining this with (109) we find

dR(M, τR, τS) ≤
n−1∑

r=0

Pr
τR

(r)(M̂r+1,0 − M̂r,0) = dR(M̂, τR, 0).

Using the shortcut ∆R = dR(M, τR, τS), it follows that

∆R ≤ dR(M̂, lR(∆R), 0),

Hence, using the intermediate value theorem, there exists ∆̂R ≥ ∆R such that

dR(M̂, lR(∆̂R), 0) = ∆̂R. (110)

Thus, (τ̂R, 0) = (lR(∆̂R), 0) is an equilibrium in M̂ , and τ̂R ≥ τR. This com-

pletes the proof in the non-sandwich case.

Now suppose that M is an R-sandwich. That is, there exists r̂ such that, for all

(r, s), Mrs = 1 if r > r̂ and Mrs = 0 if r < r̂. Thus,

dR(M, τR, τS) = Pr
τR

(r̂ − 1)
n−r̂∑

s=0

pr̂(s)Mr̂,s + Pr
τR

(r̂)
n−r̂−1∑

s=0

pr̂+1(s)(1−Mr̂,s)

(111)

and

dS(M, τR, τS) = Pr
τR

(r̂)
n−1−r̂∑

s=0

pr̂+1(s)(Mr̂,s −Mr̂,s+1).

If r̂ = n, then there is nothing to prove because dS(M, τR, τS) = 0 and M is an

R-one-sided rule. In the following, assume r̂ < n.

In equilibrium, dS(M, τR, τS) ≥ 0. Thus,

n−1−r̂∑

s=0

pr̂+1(s)Mr̂,s ≥
n−1−r̂∑

s=0

pr̂+1(s)Mr̂,s+1. (112)
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Below we will prove that condition (112) implies the condition

n−r̂∑

s=0

pr̂(s)Mr̂,s ≤
n−r̂−1∑

s=0

pr̂+1(s)Mr̂,s. (113)

Define M̂ via M̂rs = 1r≥r′ , where r′ ∈ argmaxr∈{r̂,r̂+1} PrτR(r−1). Then (113)

together with (111) implies

dR(M, τR, τS) ≤ Pr
τR

(r′ − 1) = dR(M̂, τR, 0).

By the same argument as in the non-sandwich case, there exists ∆̂R ≥ dR(M, τR, τS)
such that (110) holds and we are done.

It remains to prove condition (113). Using the new variable s′ = s + 1 on the

r.h.s. of (112), rewrite (112) as

n−1−r̂∑

s=0

(
n− 1− r̂

s

)(
τS

1− τR

)s(
1− τR − τS

1− τR

)n−1−r̂−s

Mr̂,s

≥
n−r̂∑

s′=1

(
n− 1− r̂

s′ − 1

)(
τS

1− τR

)s′−1(
1− τR − τS

1− τR

)n−r̂−s′

Mr̂,s′ .

Equivalently, after plugging in (108),

n−r̂−1∑

s=0

n− r̂ − s

n− r̂

1− τR

1− τR − τS
pr̂(s)Mr̂,s ≥

n−r̂∑

s′=1

s′

n− r̂

1− τR

τS
pr̂(s

′)Mr̂,s′ .

After cancelling factors and multiplying with denominators,

n−r̂−1∑

s=0

(n− r̂ − s)τSpr̂(s)Mr̂,s ≥
n−r̂∑

s=0

s(1− τR − τS)pr̂(s)Mr̂,s.

After cancelling terms sτSpr̂(s)Mr̂,s,

n−r̂−1∑

s=0

(n− r̂)τSpr̂(s)Mr̂,s ≥
n−r̂∑

s=0

s(1− τR)pr̂(s)Mr̂,s − (n− r̂)τSpr̂(n− r̂)Mr̂,n−r̂.

Moving the rightmost term to the left-hand side and dividing by (n− r̂)(1− τR),

n−r̂∑

s=0

τS

1− τR
pr̂(s)Mr̂,s ≥

n−r̂∑

s=0

s

n− r̂
pr̂(s)Mr̂,s.
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Moving terms across sides,

−
n−r̂−1∑

s=0

s

n− r̂
pr̂(s)Mr̂,s ≥ pr̂(n− r̂)Mr̂,n−r̂ −

n−r̂∑

s=0

τS

1− τR
pr̂(s)Mr̂,s.

Adding
∑n−r̂

s=0 pr̂(s)Mr̂,s on both sides,

n−r̂−1∑

s=0

n− r̂ − s

n− r̂
pr̂(s)Mr̂,s ≥ pr̂(n− r̂)Mr̂,n−r̂ +

n−r̂∑

s=0

1− τR − τS

1− τR
pr̂(s)Mr̂,s.

Thus,

n−r̂−1∑

s=0

n− r̂ − s

n− r̂
pr̂(s)Mr̂,s ≥

n−r̂∑

s=0

1− τR − τS

1− τR
pr̂(s)Mr̂,s.

Now (113) follows because n−r̂−s
n−r̂

pr̂(s) =
1−τR−τS

1−τR
pr̂+1(s). This completes the

proof of Lemma 5.

Define

WR = max{0,mn−1(p
R)(pRvR − c)}.

Lemma 6. Consider a three-point distribution F̂ , c, and n such that (104) and

(105) hold. Suppose that F is an ǫ-approximation of F̂ for some ǫ > 0. Then

the welfare that can be achieved in any equilibrium of an R-(resp., S-)one-sided

mechanism is bounded above by WR + 3ǫ (resp., WS + 3ǫ).

Proof of Lemma 6. First consider any point (M, τR, 0) with τR ≥ 0 and M
(linear and) R-one-sided. If τR < pR, then type dR(M, τR, 0)(pR − ǫ) < c by the

equilibrium condition; the welfare

WF,c(M, τR, 0) = E[ṽ]ρM,τR,0(A) +

∫ vR+ǫ

F−1(1−τR)
(dR(M, τR, 0)v − c)dv

(104)

≤ ǫ+ pR(dR(M, τR, 0)(pR + ǫ)− c) < 3ǫ ≤ WR + 3ǫ.

The remaining case is τR = pR; then

WF,c(M, τR, 0) = dR(M,pR, 0)(pRvR − c) ≤ WR.

Now consider any point (M, 0, τS) with τS ≥ 0 and M (linear and) S-one-sided.
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If τS < pS , then WF,c(M, 0, τS) < WS + 3ǫ, arguing as in the R-one-sided

case.

Suppose that pS ≤ τS < pS + p0. Then type v0 + ǫ abstains, so that

dS(M, 0, τS)(−v0 − ǫ) < c by the equilibrium condition; the welfare

WF,c(M, 0, τS) = E[ṽ]ρM,0,τS (A) +

pS(−dS(M, 0, τS)vS − c) +

∫ F−1(τS)

v0−ǫ

(dS(M, 0, τS)(−v)− c)dv

≤ ǫ+ pS(−dS(M, 0, τS)vS − c) + p02ǫ

≤ ǫ+ pS( max
p∈[pS ,pS+p0]

mn−1(p)(−vS)− c) + 2ǫ

≤ WS + 3ǫ.

In the remaining case τS = pS + p0 we argue again as in the R-one-sided case.

This completes the proof of Lemma 6.

Proof of Lemma 4. Using that (57) holds for any δ̂, we can assume ǫ is so

small that, for all (r, s),

ωrs(p
R, pS) has the same sign as w(r, s). (114)

Next, note that, because mn−1(p
R) = mn−1(1− pR) by basic properties of bino-

mial distributions, and using pRvR = pSvS − p0v0 from (104):

WR ≤ WS . (115)

Let

ǫ < ǫ =
1

8

(
W −WS

)
. (116)

Denote

∆
R
= dR(M,pR, pS) > 0 and ∆

S
= dS(M,pR, pS) > 0.

By (106), there exists ǫ′ and an open neighborhood N of (M,pR, pS) such that,

for all ǫ < ǫ′ and (M, τS , τS) ∈ N ,

(−vS−ǫ)dS(M, τS , τS) > c > (−v0+ǫ)dS(M, τS , τS), c < (vR−ǫ)dR(M, τS , τS).
(117)

Using (54), where δ̂ = ǫ because g(v) = 1 for all v,

WF,c(M,pR, pS) ≥ W − ǫ. (118)
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Next we show, for all ǫ < min{ǫ, ǫ′},

if (M, τR, τS) is optimal, then τR = pR and τS ≥ pS . (119)

To see this, define m∗ = (M, τR, τS), ∆R∗ = dR(m∗) and ∆S∗ = dS(m∗).
Suppose that τR < pR. Then type vR − ǫ abstains so that

(vR − ǫ)∆R∗ ≤ c.

Thus,

WF,c(m
∗)

(104)

≤ ǫ+ pR((vR + ǫ)∆R∗ − c) +

∫ 0

vS−ǫ

max{0, v∆S∗ − c}dF (v)

Lemma 5

≤ ǫ+ 2ǫ+WF,c(M̂
S , 0, τ̂S) + ǫ

for some S-one-sided mechanism M̂S with equilibrium (0, τ̂S). Using Lemma 6

we conclude that

WF,c(m
∗) ≤ 7ǫ+WS

(116)
< W −

1

8

(
W −WS

) (116), (118)
< WF,c(M,pR, pS).

contradicting the optimality of m∗ because (pR, pS) is an equilibrium in M by

(117). We conclude that τR ≥ pR. An analogous argument, using (115), shows

that τS ≥ pS . Actually, τR = pR from (105). This completes the proof of (119).

As in the proof of Lemma 3 one shows that the tuple (M,pR, pS) is the unique

solution to the problem

(∗′) max
M, τR, τS

W
F̂ ,0(M, τR, τS)− c(τR + τS)

s.t. 0 ≤ Mrs ≤ 1 for all (r, s),

τR = pR,

pS ≤ τS ≤ pS + p0.

In particular, the solution value of (∗′) equals W . There exists δ > 0 and ǫ′′ > 0
such that (120) holds for all ǫ < ǫ′′, any ǫ-approximation F , and any (M, τR, τS)
in the feasible set of problem (∗′):

if WF,c(M, τR, τS) > W − δ, then (M, τR, τS) ∈ N . (120)

(Suppose (120) fails. Then there exists a sequence δj → 0, a sequence ǫj → 0,

a sequence (Fj), where Fj is an ǫj-approximation, and a sequence (Mj , τ
R
j , τSj )
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such that WFj ,c(Mj , τ
R
j , τSj ) > W − δj and (Mj , τ

R
j , τSj ) 6∈ N . By (119), we

can assume that τRj = pR and τSj ≥ pS for all j. Thus, there exists a limit point

(M̂, τ̂R, τ̂S) 6∈ N with τ̂R = pR and τ̂S ≥ pS . Hence, W
F̂ ,0(M̂, τ̂R, τ̂S)− c(τR + τS) ≥

W , contradicting that (M,pR, pS) is the unique solution to the problem (*’).)

W.l.o.g., ǫ′′ < δ.

Using (118), one sees that, for all ǫ < ǫ′′,

WF,c(M,pR, pS)> W − δ. (121)

Now consider any ǫ < min{ǫ, ǫ′, ǫ′′} and any optimal mechanism-equilibrium pair

(M∗, τR∗, τS∗). Then

WF,c(M
∗, τR∗, τS∗) ≥ WF,c(M,pR, pS).

Together with (120) and (121) this implies (M∗, τR∗, τS∗) ∈ N .

Hence, (τR∗, τS∗) = (pR, pS) by (117). Given these participation rates, the

welfare is

WF,c(M
∗, pR, pS) =

1

n

∑

r+s≤n

(
n

r s

)

(pR)r(pS)s(1− pR − pS)n−r−sωr,s(p
R, pS)M∗

rs

−(pR + pS)c,

implying by (114) that the unique best rule is M∗ = M .

Proof of (78) and (79).

As an auxiliary step, we establish a result on the multinomial probabilities (6). We

will have to deal with higher order partial derivatives of functions of τR and τS .

We will use the lower index (l)τS for the lth partial derivative with respect to τS ,

evaluated at (τR, τS) = (FR, FS). Similar so for partial derivatives with respect

to τR.

Lemma 7. Let l = 0, 1, . . . . Consider any tally (r, s) with r + s ≤ n − 1. If

r + s ≤ n − 2 − l, then Pr(l)τR(r, s) = 0 and Pr(l)τS (r, s) = 0. Suppose that

r + s ≥ n− 1− l. Then

Pr
(l)τR

(r, s) =
(n− 1)!

(n− 1− s− l)!s!
(FR)n−1−s−l(FS)s

(
l

n− 1− r − s

)

(−1)n−1−r−s

and

Pr
(l)τS

(r, s) =
(n− 1)!

r!(n− 1− r − l)!
(FR)r(FS)n−1−r−l

(
l

n− 1− r − s

)

(−1)n−1−r−s.
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Proof of Lemma 7. This is a straightforward computation. The only non-

vanishing derivative of (1− τR − τS)n−1−r−s is the (n− 1− r− s)th derivative.

Thus both derivatives vanish if r+ s ≤ n− 2− l. In case r+ s ≥ n− 1− l, using

the Leibniz rule we find

Pr
(l)τR

(r, s)

=
(n− 1)!(−1)n−1−r−s

r!s!(n− 1− r − s)!

r!(FR)r−l+n−1−r−s(FS)s

(r − l + n− 1− r − s)!
(n− 1− r − s)!

(
l

n− 1− r − s

)

.

Similarly,

Pr
(l)τS

(r, s)

=
(n− 1)!(−1)n−1−r−s

r!s!(n− 1− r − s)!

s!(FR)r(FS)s−l+n−1−r−s

(s− l + n− 1− r − s)!
(n− 1− r − s)!

(
l

n− 1− r − s

)

.

Cancelling terms yields the expressions in the lemma.

We will use the shortcut

x = Pr
(k−1)τR

(t∗ − 1, q) = Pr
(k−1)τS

(t∗ − 1, q)

=
(n− 1)!

(t∗ − 1)!q!
(FR)t

∗−1(FS)q(−1)k−1.

In order to compute the relevant higher-order derivatives of (č, τ̌R), we derive ex-

pressions for some higher-order derivatives of dR, dS , and ρ(A) with respect to τR

and/or τS , evaluated at (τR, τS) = (FR, FS). Note that

dS =
∑

r+s≤n−k−2

(Mr,s −Mr,s+1) Pr(r, s)

+Pr(t∗ − 1, q) + 1t∗>1 ·Mt∗−2,q Pr(t
∗ − 2, q). (122)

From Lemma 7, all terms in (
∑

. . . ) vanish if we take the lth derivative (l ≤ k)

w.r.t. τS or τR at (FR, FS). Moreover, using the definitions of k and x,

Pr
(k)τS

(t∗ − 1, q − 1) = −x
q

FS
,

Pr
(k)τS

(t∗ − 2, q) = −x
t∗ − 1

FR
,

Pr
(k)τS

(t∗ − 1, q) = x
q

FS
k.
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Thus, for all l ≥ 0,

dS(l)τS = x ·







0 if 1 ≤ l ≤ k − 2,
1 if l = k − 1,
q

FS k −Mt∗−2,q
t∗−1
FR if l = k.

(123)

Next

dS(1)τR = 1k=2 Pr
(1)τR

(t∗ − 1, q) = 1k=2x (124)

The following formulas (125), (126), (127), and (128) are proved below.

For all l ≥ 0,

dR(l)τS = x ·







0 if 1 ≤ l ≤ k − 2,
−1, if l = k − 1,

−(1−Mt∗−2,q)
t∗−1
FR − q

FS (k − 1) if l = k,
(125)

Moreover,

dR(1)τR = d∗
t∗ − 1

FR
− 1k>2 · d

∗n− t∗

FS
. (126)

For all l ≥ 0,

ρ(A)(l)τS = x ·







0, if 1 ≤ l ≤ k − 2,
1, if l = k − 1,

−Mt∗−2,q ·
t∗−1
FR + q(k−1)

FS if l = k.

(127)

Finally,

ρ(A)(1)τR = 1k>2 · d
∗n− t∗

FS
. (128)

Proof of (125). Note that

dR =
∑

r+s≤n−k−2

(Mr+1,s −Mr,s) Pr(r, s)

+1t∗>1 · (1−Mt∗−2,q) Pr(t
∗ − 2, q)

+
k−2∑

ŝ=0

Pr(t∗ − 1, n− t∗ − ŝ), (129)

where we have used the parameter ŝ = n − t∗ − s instead of s to write the last

sum.33

33Observe that k − 1 ≤ n− t∗ by construction of k.
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Taking the lth (l ≤ k) derivative of (129) and evaluating at 1 − τR − τS = 0,

all terms in the first row vanish because (1− τR − τS) occurs in all terms with an

exponent > k. Similarly, the second row vanishes unless l = k.

We begin by showing (125) for 1 ≤ l ≤ k − 2. Consider the lth derivative of

the third row in (129), evaluated at 1 − τR − τS = 0. Within the lth derivative

expression as represented according to the general Leibniz product rule, only the

term resulting from taking the ŝth derivative of (1 − τR − τS)ŝ (and taking the

(l − ŝ)th derivative of (τS)n−t∗−ŝ) does not vanish. Thus,

dR(l)τS

=

l∑

ŝ=0

(
n− 1

t∗ − 1 ŝ

)

(FR)t
∗−1 (n− t∗ − ŝ)!

(n− t∗ − ŝ− (l − ŝ))!
(FS)n−t∗−ŝ−(l−ŝ)

·ŝ!(−1)ŝ
(

l
ŝ

)

= (FR)t
∗−1(FS)n−t∗−l

l∑

š=0

(n− 1)!

(t∗ − 1)!(n− t∗ − š)!š!

(n− t∗ − š)!

(n− t∗ − l)!

·(š)!(−1)š
(

l
š

)

= (FR)t
∗−1(FS)n−t∗−l

l∑

š=0

(n− 1)!

(t∗ − 1)!

1

(n− t∗ − l)!
· (−1)š

(
l
š

)

= (FR)t
∗−1(FS)n−t∗−l (n− 1)!

(t∗ − 1)!

1

(n− t∗ − l)!

l∑

š=0

(−1)š
(

l
š

)

= 0. (130)

To show (125) for l = k − 1, we use (129) and the general Leibniz product rule,

dR(k−1)τS =
k−2∑

ŝ=0

(
n− 1
t∗ − 1 ŝ

)

(FR)t
∗−1(FS)

=n−t∗−(k−1)=q
︷ ︸︸ ︷

n− t∗ − ŝ− (k − 1− ŝ)

·
(n− t∗ − ŝ)!

(n− t∗ − (k − 1))!
ŝ!(−1)ŝ

(
k − 1
ŝ

)

=

(
n− 1
t∗ − 1 q

)

(k − 1)!(FR)t
∗−1(FS)q ·

k−2∑

ŝ=0

(−1)ŝ
(

k − 1
ŝ

)

= −x,

where we have used the identity
∑k−1

ŝ=0(−1)ŝ
(

k − 1
ŝ

)

= 0.
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To show (125) for l = k, note that

dR(k)τS = 1t∗>1, Mt∗−2,q=0

(
n− 1

t∗ − 2 q

)

(FR)t
∗−2(FS)qk!(−1)k

+1q>0

k−2∑

ŝ=0

(
n− 1
t∗ − 1 ŝ

)

(FR)t
∗−1(FS)

=n−t∗−k=q−1
︷ ︸︸ ︷

n− t∗ − ŝ− (k − ŝ)

·
(n− t∗ − ŝ)!

(n− t∗ − k)!
ŝ!(−1)ŝ

(
k
ŝ

)

= −1t∗>1, Mt∗−2,q=0 · x
t∗ − 1

FR

+1q>0

(
n− 1

t∗ − 1 q − 1

)

k!(FR)t
∗−1(FS)q−1 ·

k−2∑

ŝ=0

(−1)ŝ
(

k
ŝ

)

= −1t∗>1, Mt∗−2,q=0 · x
t∗ − 1

FR
− 1q>0 · x

q

FS
(k − 1),

where we have used the identity

k−2∑

ŝ=0

(−1)ŝ
(

k
ŝ

)

= −
k∑

ŝ=k−1

(−1)ŝ
(

k
ŝ

)

= −(−1)k−1k−(−1)k = (−1)k(k−1).

This completes the proof of (125).

Proof of (126). Using (129),

dR(1)τR = 1t∗>1

(
n− 1
t∗ − 1 0

)

(t∗ − 1)(FR)t
∗−2(FS)n−t∗

−1k>2

(
n− 1
t∗ − 1 1

)

(FR)t
∗−1(FS)n−t∗−1

= d∗
t∗ − 1

FR
− 1k>2 · d

∗n− t∗

FS
.
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Proof of (127). Note that

ρ(A) =
∑

r+s≤n−1

(
n− 1
r s

)

(τR)r(τS)s(1− τR − τS)n−1−r−sMrs

=




∑

r+s≤n−2−k

. . .





+1q>0

(
n− 1

t∗ − 1 q − 1

)

(τR)t
∗−1(τS)q−1(1− τR − τS)k

+1t∗>1, Mt∗−2,q=1

(
n− 1
t∗ − 2 q

)

(τR)t
∗−2(τS)q(1− τR − τS)k

+

(
n− 1
t∗ − 1 q

)

(τR)t
∗−1(τS)q(1− τR − τS)k−1

+
∑

r+s≥n−1−k, r≥t∗

(
n− 1
r s

)

(τR)r(τS)s(1− τR − τS)

≤k
︷ ︸︸ ︷

n− 1− r − s.

(131)

Taking the lth derivative (1 ≤ l ≤ k − 2), only terms in the last sum can be non-

vanishing because l < k − 1. In the last sum, any term with n − 1 − r − s > l
vanishes, and any term with s + (n − 1 − r − s) < l vanishes. Thus, using the

general Leibniz product rule,

ρ(A)(l)τS =
∑

n−1−l≤r+s≤n−1, r≥t∗, n−1−r≥l

(
n− 1
r s

)

(FR)r
(

l
n− 1− r − s

)

·
s!

(n− 1− r − l)!
(FS)

=n−1−r−l
︷ ︸︸ ︷

s− (l − (n− 1− r − s))(n− 1− r − s)!(−1)n−1−r−s

=
n−1−l∑

r=t∗

(FR)r
(n− 1)!

r!(n− 1− r − l)!
(FS)n−1−r−l

·
∑

n−1−l−r≤s≤n−1−r

(
l

n− 1− r − s

)

(−1)n−1−r−s.

The last sum equals 0, as can be seen by using the variable š = n − 1 − r − s
instead of s. This shows (127) for 1 ≤ l ≤ k − 2.

The above computation also works if l = k− 1 or l = k, showing that the fifth

row on the right-hand-side of (131) can be ignored.
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Consider l = k − 1. The (k − 1)th derivative of the fourth row on the right-

hand-side of (131) equals x, while the (k− 1)th derivatives of the second and third

rows vanish.

Consider l = k. The kth derivative of the second and third rows on the right-

hand-side of (131) are obtained by taking the kth derivative of (1 − τR − τS)k,

yielding the terms

1q>0

(
n− 1

t∗ − 1 q − 1

)

(FR)t
∗−1(FS)q−1k!(−1)k

= 1q>0
(n− 1)!

(t∗ − 1)!(q − 1)!
(FR)t

∗−1(FS)q−1(−1)k

= −1q>0 · x
q

FS
. (132)

and

1t∗>1, Mt∗−2,q=1

(
n− 1
t∗ − 2 q

)

(FR)t
∗−2(FS)qk!(−1)k

= 1t∗>1, Mt∗−2,q=1 ·
(n− 1)!

(t∗ − 2)!q!
(FR)t

∗−2(FS)q(−1)k

= −1t∗>1, Mt∗−2,q=1 · x
t∗ − 1

FR
.

The last remaining term is obtained by taking the kth derivative of the fourth row on

the right-hand-side of (131). Using the Leibniz product rule, we take the (k− 1)th
derivative of (1 − τR − τS)k−1 and the 1st derivative of (τS)q and multiply with
(

k
1

)

= k, yielding the term

1q>0

(
n− 1
t∗ − 1 q

)

(FR)t
∗−1q(FS)q−1(k − 1)!(−1)k−1k

= 1q>0
(n− 1)!

(t∗ − 1)!(q − 1)!
(FR)t

∗−1(FS)q−1(−1)k−1k

= 1q>0 · x
q

FS
k.

Summarizing this with (132), we obtain the last term in (127). This completes the

proof of (127).
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Proof of (128).

ρ(A)(1)τR = 1k=2

(
n− 1
t∗ − 1 q

)

(FR)t
∗−1(FS)q(−1)

+
∑

r+s=n−2, r≥t∗

(
n− 1
r s

)

(FR)r(FS)s(−1)

+
∑

r+s=n−1, r≥t∗, r≥1

(
n− 1
r s

)

r(FR)r−1(FS)s

︸ ︷︷ ︸

=
∑

r̂+s=n−2, r̂≥t∗−1





n− 1
r̂ s



(FR)r̂(FS)s, where r̂ = r − 1

= −1k=2

(
n− 1
t∗ − 1 q

)

(FR)t
∗−1(FS)q

+

(
n− 1

t∗ − 1 n− 1− t∗

)

(FR)t
∗−1(FS)n−1−t∗

= −1k=2 · d
∗n− t∗

FS
+ d∗

n− t∗

FS

= 1k>2 · d
∗n− t∗

FS
.

Using (76) and (73), φ(1)τS = (0, 0)T . Thus, (77) implies (78) for l = 1.

We proceed by induction over l to show (78). Suppose the formula in (78)

holds for some l and we want to show it for l + 1, where l + 1 < k. Applying

the chain rule and general Leibniz product rule to (77), it is sufficient to show

φ(l′)τS = (0, 0)T for all l′ ≤ l + 1. Consider the first factor, F−1(1 − τ̌R(τS)),
of the first component of φ∂τS . By the chain rule and the induction hypothesis, the

first l derivatives of this factor vanish at τS = FS . Hence, the first l derivatives

of the first component of φ∂τS vanish at m∗. Of the second component of φ∂τS ,

the term F−1(τS) vanishes at τS = FS , and, because l < k − 1, by (123), the

first l derivatives of dS(M, τ̌R(τS), τS) also vanish at τS = FS . Hence, the first

l derivatives of the second component of φ∂τS vanish at m∗. This completes the

induction.

From (77),

(
dk č/d(τS)k

dkτ̌R/d(τS)k

)

= −
dk−1

d(τS)k−1

(

φ−1
∂c,∂τR

· φ∂τS

)

.
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Because φ(l′)τS (m
∗) = (0, 0)T for all l′ ≤ k − 1 from the induction above,





dk
č

d(τS)k

∣
∣
∣
τS=FS

dk
τ̌R

d(τS)k

∣
∣
∣
τS=FS



 = − φ−1
∂c,∂τR

∣
∣
∣
m∗

· φ(k)τS

= −
f(0)

d∗

(

0 d∗

f(0)

−1 −1

)

◦
dk−1

d(τS)k−1

(
F−1(1− τ̌R(τS))dR

τS

F−1(τS)dS
τS

+ (F−1)′(τS)dS

)∣
∣
∣
∣
τS=FS

.

(133)

By (78) and the chain rule,

dk−1

d(τS)k−1

(
F−1(1− τ̌R(τS))dRτS

)
∣
∣
∣
∣
τS=FS

= 0.

Moreover, using the general Leibniz product rule and (123),

dk−1

d(τS)k−1

(
F−1(τS)dSτS

)
∣
∣
∣
∣
τS=FS

= (k − 1)
1

f(0)
dS(k−1)τS

(123)
=

k − 1

f(0)
x.

Similarly,

dk−1

d(τS)k−1

(
(F−1)′(τS)dS

)
∣
∣
∣
∣
τS=FS

=
1

f(0)
x.

Thus, (133) implies





dk
č

d(τS)k

∣
∣
∣
τS=FS

dk
τ̌R

d(τS)k

∣
∣
∣
τS=FS



 = −
f(0)

d∗

(

0 d∗

f(0)

−1 −1

)

◦

(

0
k

f(0)x

)

,

yielding (79).

Proof of (84) and (85)

Consider

ρ̌′(τS) =
∂ρ(A)

∂τR
· (τ̌R)′(τS) +

∂ρ(A)

∂τS
, (134)

(ďR)′(τS) =
∂dR

∂τR
· (τ̌R)′(τS) +

∂dR

∂τS
, (135)

(ďS)′(τS) =
∂dS

∂τR
· (τ̌R)′(τS) +

∂dS

∂τS
. (136)
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Using (134), (127) and (78),

(ρ̌)(l) = 0 for all 1 ≤ l ≤ k − 2. (137)

Using (135), (125) and (78),

(ďR)(l) = 0 for all 1 ≤ l ≤ k − 2. (138)

Similarly, (136), (123), and (78),

(ďS)(l) = 0 for all 1 ≤ l ≤ k − 2. (139)

Applying the general Leibniz product rule to the second term on the right-hand side

in equation (83), noting that the first derivative of the second factor in this term van-

ishes, and using (138), the only non-vanishing term in the l− 1th derivative comes

from taking the l−1th derivative of the first factor. Analogous reasoning applies to

the third term on the right-hand side in (83). Applying the general Leibniz rule to

the fourth and fifth terms and using (78), the l − 1th derivative of the sum of these

terms converges to the lth derivative of c. In summary,

W̌ (l) :=
dlW̌

d(τS)l

∣
∣
∣
∣
τS=FS

= (ρ̌)(l)E[ṽ] + (ďR)(l)
∫

v≥0
vdG(v) + (ďS)(l)

∫

v≤0
(−v)dG(v)− č(l)γ.

for all l = 1, . . . , k. (140)

Using this together with (137), (138) and (139), we find (84) for all l < k − 1.

Using (134), (135), (136), and (78),

(ρ̌)(k−1) = ρ(A)(k−1)τS
(127)
= dS(k−1)τS ,

(ďR)(k−1) = dR(k−1)τS
(125)
= −dS(k−1)τS ,

(ďS)(k−1) = dS(k−1)τS .

Thus, (140) yields (84) for l = k − 1.

In order to find W̌ (k), we have to evaluate the right-hand side of (140) at l = k.

Note that

(ρ̌)(k) = (τ̌R)(k) · ρ(A)(1)τR + ρ(A)(k)τS

= x1k>2
(n− t∗)k

FS
− xMt∗−2,q ·

t∗ − 1

FR
+ x

q(k − 1)

FS
, (141)
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where the first equation follows from the chain rule, the general Leibniz rule, and

(78), and the second equation follows from (127), (128), and (79). Similarly,

(ďS)(k) = (τ̌R)(k) · dS(1)τR + dS(k)τS ,

= −x1k=2
(n− t∗)k

FS
− xMt∗−2,q ·

t∗ − 1

FR
+ x

kq

FS
, (142)

where the derivatives that occur on the right-hand side of (142) have been computed

in (123), (124), and (79). Similarly,

(ďR)(k) = (τ̌R)(k) · dR(1)τR + dR(k)τS ,

= x ·
(t∗ − 1)k

FR
− x1k>2 ·

(n− t∗)k

FS
− x(1−Mt∗−2,q) ·

t∗ − 1

FR
− x

q(k − 1)

FS
,

(143)

where the derivatives that occur on the right-hand side of (143) have been computed

in (125), (126), and (79).

Plugging (141), (142), (143), and (79) into (140) at l = k, the variable x
cancels out and we find

W̌ (k)

č(k)
= −

f(0)

k

(

1k>2
(n− t∗)k

FS
−Mt∗−2,q ·

t∗ − 1

FR
+

q(k − 1)

FS

)

E[ṽ]

−
f(0)

k

(
(t∗ − 1)k

FR
− 1k>2 ·

(n− t∗)k

FS

q(k − 1)

FS

−(1−Mt∗−2,q)
t∗ − 1

FR
−

q(k − 1)

FS

)

GR

−
f(0)

k

(

−1k=2
(n− t∗)k

FS
−Mt∗−2,q ·

t∗ − 1

FR
+

kq

FS

)

GS

−γ.

The terms with 1k>2 and 1k=2 can be summarized into a single term. Thus

W̌ (k)

č(k)
= −

f(0)

k

(

−Mt∗−2,q ·
t∗ − 1

FR
+

q(k − 1)

FS

)

E[ṽ]

−
f(0)

k

(
(t∗ − 1)k

FR
− (1−Mt∗−2,q)

t∗ − 1

FR
−

q(k − 1)

FS

)

GR

−
f(0)

k

(

−
(n− t∗)k

FS
−Mt∗−2,q ·

t∗ − 1

FR
+

kq

FS

)

GS

−γ.
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Similarly, the terms with 1−Mt∗−2,q and with Mt∗−2,q can be summarized into a

single term. Thus,

W̌ (k)

č(k)
= −

f(0)

k

q(k − 1)

FS
E[ṽ]

−
f(0)

k

(
(t∗ − 1)k

FR
−

t∗ − 1

FR
−

q(k − 1)

FS

)

GR

−
f(0)

k

(

−
(n− t∗)k

FS
+

kq

FS

)

GS

−γ

= −
f(0)

k

(
(t∗ − 1)k

FR
−

t∗ − 1

FR

)

GR −
f(0)

k

(

−
(n− t∗)k

FS
+

q

FS

)

GS

−γ

= f(0)

(

−
t∗ − 1

FR
+

t∗ − 1

kFR

)

GR + f(0)

(
n− t∗

FS
−

n− t∗ − k + 1)

kFS

)

GS

−γ

= f(0)

(

−
t∗ − 1

FR
+

t∗ − 1

kFR

)

GR + f(0)

(
n− t∗ + 1

FS
−

n− t∗ + 1

kFS

)

GS

−γ

= −f(0)

(

1−
1

k

)(

(t∗ − 1)
GR

FR
− (n− t∗ + 1)

GS

FS

)

− γ.

Thus, (85) holds.

Sketch of proof of claim in Footnote 25.

Outline: Considering an appropriate R-one sided rule and an appropriate S-one-

sided rule, the terms due to types around 0 abstaining in the first-order welfare

effects (145) and (146) are exactly opposite to each other. Thus, one of these

terms is non-negative, so that the respective one-sided rule outperforms the best

compulsory rule.

A pair (τR, 0) with τR > 0 is an equilibrium in an R-one-sided mechanism M
if and only if the type F−1(1 − τR) > 0 is indifferent between participating, that

is,

F−1(1− τR)dR(M, τR, 0)− c = 0. (144)

In such equilibria, only tallies of the form (r, 0) occur with positive probability.

S-one-sided mechanisms are treated analogously.
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Lemma 8 establishes existence and properties of equilibria with almost full

one-sided participation in the R-one-sided linear rule 1r≥t∗ . Lemma 9 is analogous

for the S-one-sided case. We use the shortcuts introduced in (31).

Lemma 8. For all c sufficiently close to 0, there exists an equilibrium (τ̃R(c), 0)
(→ (FR, 0) as c → 0) of the mechanism MR∗ = 1r≥t∗ that yields the welfare

lim
c→0

WF,c(M
R∗, τ̃R(c), 0) = W ∗.

Moreover,

d

dc
WF,c(M

R∗, τ̃R(c), 0)

∣
∣
∣
∣
c=0

= f(0)

(
GR

FR
− y(t∗)

)

− (γ −G(0)).

(145)

To prove Lemma 8, one applies the implicit-function theorem to the equilib-

rium condition (144) in order to describe the equilibrium (τR, 0) as a function of

c. The details are omitted.

To prove the following analogous result for the S-one sided rule 1s<n−t∗ , one

replaces F (v) → 1− F (−v), g(v) → g(−v) and t∗ → n− t∗ + 1.

Lemma 9. For all c sufficiently close to 0, there exists an equilibrium (0, τ̃S(c))
(→ (0, FS) as c → 0) of MS∗ = 1s<n−t∗ that yields the welfare

lim
c→0

WF,c(M
S∗, 0, τ̃S(c)) = W ∗.

Moreover,

d

dc
WF,c(M

S∗, 0, τ̃S(c))

∣
∣
∣
∣
c=0

= f(0)

(
GS

FS
+ y(t∗ − 1)

)

−G(0). (146)

As c → 0, each rule considered in Lemma 8 and Lemma 9 yields the same

welfare W ∗ as the best compulsory rule. For the best compulsory rule, the first-

order welfare effect of introducing a cost is −γ. A simple computation shows

GR

FR
− y(t∗) = −(

GS

FS
+ y(t∗ − 1)).

Thus, either the left-hand side is ≥ 0 or the right-hand side is ≥ 0. Thus, either

the left-hand side of (145) is ≥ −FR > −γ or the left-hand side of (146) is

≥ −FS > −γ.
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