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Abstract

Highly skilled knowledge workers are important drivers of innovation and long-run

growth. We study how air quality affects productivity and work patterns among these

workers, using data from GitHub, the world’s largest coding platform. We combine panel

data on daily output, working hours, and task choices for a sample of 25,000 software

developers across four continents during the period 2014-2019 with information on con-

centrations of fine particulate matter (PM2.5). An increase in air pollution reduces output,

measured by the number of total actions performed on GitHub per day, and induces de-

velopers to adapt by working on easier tasks and by ending work activity earlier. To

compensate, they work more on weekends following high-pollution days, which suggests

adverse impacts on their work-life-balance. The decline in output arises even at concen-

trations in line with current regulatory standards in the EU and US and is driven by a

reduction in individual coding activity, while interactive activities are unaffected. Expo-

sure to PM2.5 levels above the city-specific 75th percentile reduces daily output quantity

by 4%, which translates into a loss in output value by approximately $11 per developer.
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1 Introduction

Driven by technological innovation, the world of work is undergoing rapid changes. Over the

last decades, computerization has been causing an increase in the demand for workers per-

forming non-routine, analytical, and interpersonal tasks (Autor et al., 2003; Autor and Price,

2013). Skills that complement digital technologies have been growing in importance: In the

US, the share of jobs intensively requiring digital skills1 has more than quadrupled from 5% to

23% between 2002 and 2016 (Muro et al., 2017). In parallel, there have been major shifts in the

organization of work, complementing the growing role of IT. Teamwork, flexible schedules,

and discretion in task choice are common, replacing fixed 9-to-5 schedules and direct task as-

signments, especially among highly-educated workers (Bresnahan et al., 2002; Mas and Pallais,

2020; Menon et al., 2020). Because jobs characterized by these task profiles, skill requirements,

and organizational features form the backbone of the modern knowledge economy and are

expected to become even more important as digitization and automation proceed, it is critical

to understand what determines productivity in these settings.

In this paper, we study how environmental shocks impact performance and work patterns

among highly skilled knowledge workers in a flexible work environment. Vast populations are

exposed to environmental conditions such as heat and poor air quality, which have been shown

to reduce labor productivity in several settings. Existing research, however, has considered

routine jobs and/or inflexible work contexts (e.g. Chang et al., 2019; Somanathan et al., 2021).

In the settings described above, workers not only use different skills, they also have flexibility

and discretion in organizing their workday, which might allow them to adapt to productivity

shocks, thereby alleviating output effects. Moreover, in collaborative work settings, impacts

of environmental shocks might get dampened, e.g., if co-workers can help each other to focus,

or get amplified due to complementarities if co-workers depend on each others’ input.

We focus on the effects of air pollution as it is a ubiquitous public health threat in urban

areas across the globe.2 82% of the global population are exposed to levels of fine particulate

matter exceeding World Health Organization (WHO) guidelines. To implement optimal air

quality standards and policies to curb pollution, accurate estimates of the welfare costs of pol-

lution are fundamental. Recent research shows that air pollution not only causes premature

mortality and severe health damages, but also sub-clinical effects on labor market outcomes,

student performance, or decision-making (see Aguilar-Gomez et al., 2022, for a review). The

sub-clinical impacts play an important role for the total economic cost of air pollution as they

affect a broad population, while morbidity and mortality effects are concentrated among vul-

nerable groups, like infants and the elderly.

We study the causal effect of air pollution exposure on professional software developers,

1Examples of digital skills are the abilities to handle information and communication technology and to con-
duct data analyses.

2In an extension, we also provide some evidence on the effects of extreme temperatures for comparison.
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using data from GitHub to measure developer output and work patterns. Software develop-

ment is a STEM (science, technology, engineering, and math) occupation that requires ana-

lytical and advanced digital skills and generates high value for consumers, other industries,

governments, and the research community.3 Adverse productivity effects of air pollution in

this occupation would thus have important implications for growth, innovation, and compet-

itiveness. GitHub is the world’s largest online code hosting platform, used for storing and

jointly working on coding projects. It puts great emphasis on facilitating collaboration be-

tween developers. Moreover, software developers work in highly flexible settings that usually

offer discretion over working hours and the tasks a developer chooses to work on at a given

point in time. With these features, software development on GitHub is representative of the

settings that characterize modern knowledge work.4

The GitHub data allows us to address the challenge that output of knowledge workers is

often difficult to observe. We collect data on 25,000 users across four continents who work

on projects owned by tech companies, indicating that they are professional software devel-

opers. The data includes users’ locations as well as records of all actions they conduct in

public projects along with precise timestamps and some further characteristics of the under-

lying task. We construct a user-by-day panel including measures of work quantity and quality,

working hours, and task choice for the period between January 2014 and May 2019. Based on

developers’ locations, we match these outcomes to city-level air quality monitor data on par-

ticulate matter smaller than 2.5 µm (PM2.5). To account for endogeneity in air quality when

estimating a model of developer activity, we follow Deryugina et al. (2019) by instrumenting

PM2.5 concentration with daily average wind direction. The 2SLS strategy exploits the effect

of plausibly exogenous regional air pollution transport on local pollution levels, controlling

for a wide range of other weather characteristics.

To measure daily output quantity, we count the total number of actions performed, includ-

ing commits (individual code changes), opening and closing of pull requests and issues, and

comments written in discussion fora.5 As we can classify the different GitHub actions into in-

dividual and interactive activities (e.g., commits vs. comments), we can analyze heterogeneity

in the effect of pollution exposure on performance in these two distinct types of work, which

are both widespread in modern high-skilled jobs. To assess output quality, we compute the

share of commits that get undone at a later point and the share of pull requests that get rejected

as measures of error frequency. We also derive monetary estimates of the value of GitHub ac-

tivities, exploiting additional data from an online marketplace where GitHub project owners

offer payments for contributions to their projects. This allows us to translate the effects of

3Median annual pay of software developers in the US was $110,140 in 2020 (Bureau of Labor Statistics, 2021).
4We provide evidence that software development is representative of modern high-skilled work in Appendix

Figure B.1 and Table A.1: Required skills are similar (e.g., critical thinking and complex problem solving), except
for substantially stronger digital skills like programming. Both software developers and high-skilled workers in
general have a lot of flexibility in organizing their work and often work in teams.

5Pull requests are a tool to suggest changes to the code base of a repository, for more details see Section 3.
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pollution on output into monetary losses.

To study adaptation in flexible work arrangements, we investigate whether software de-

velopers exploit their discretion with respect to working hours and task choice in order to

adjust to changes in air pollution. Specifically, we exploit information on the complexity of

tasks addressed by developers’ actions and on action timestamps to study whether they focus

on easier tasks or adapt their working hours.

Our dataset covers 36 countries, including both developing and developed countries, with

large variation in pollution levels, income, and pollution awareness across sample cities. We

exploit this in heterogeneity analyses to explore how air pollution damages are distributed

and to study the mechanisms underlying the pollution impacts.

We present three main findings. First, developers produce less output on days with higher

levels of fine particulate matter. When PM2.5 concentration reaches unusually high levels –

exceeding the city-specific 75th percentile – the number of daily actions observed on GitHub

falls by 4%. This effect is mainly driven by a decline in individual coding activity: The number

of commits decreases by 6.2%. By contrast, collaborative or interactive work (e.g., commenting

on issues) is much less affected. Compared to other occupations studied in previous research,

including both physically- and cognitively-demanding jobs, the magnitude of the effects on

output is relatively small. Nonetheless, the pollution-induced output declines translate into

relevant monetary damages due to the high value generated by software developers. The loss

in output value per developer and day amounts to $4 for a standard deviation increase in PM2.5,

i.e., common fluctuations in pollution, and $11 for days with unusually high air pollution.

Second, output quality is unaffected by changes in air pollution. We find no evidence

that software developers commit more errors on days with high levels of PM2.5. A potential

explanation for the absence of quality effects, as well as the modest size of effects on quantity,

is worker adaptation to pollution-induced productivity shocks in this flexible work setting.

Our third main result provides evidence for this: We find that developers exploit their flex-

ibility in task choice by focusing on less complex tasks when air pollution increases. Among

activities related to issues6, the share that refers to issues labeled as relatively easy increases

by 5% on days with PM2.5 concentration above the city-specific 75th percentile compared to

low pollution days. Similarly, code submitted or reviewed by developers changes 4% fewer

files and contains 2% fewer new lines, indicating that the code addresses less complex tasks.

Among developers with stronger adjustment in task choice in response to PM2.5 exposure,

effects on output quantity are attenuated.

Software developers also adapt their working hours. They reallocate work activity from

high-pollution, low-productivity days to low-pollution, high-productivity weekends. In par-

ticular, developers end work activity earlier on days with unusually high PM2.5 concentration.

To compensate, they work more on weekends after a workweek with poor air quality, es-

6This includes creating, closing, and commenting on an issue.
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pecially if pollution concentration on the weekend is moderate, i.e., below the city-specific

75th percentile. The increase in weekend work makes up for 33% of the reduction in coding

output on the day of exposure. These forms of adaptation likely explain why, compared to

other professions, we find moderate effects of particulate matter on output. At the same time,

compensation by working more on the weekend also implies an additional welfare cost due to

forgone leisure time and potential negative impacts on the work-life balance. Losses in output

value are thus likely a lower bound on the overall cost of air pollution in this setting.

The adverse effects of pollution on output quantity arise at concentrations below the reg-

ulatory standards in force in the European Union and the US. Indeed, effects are strongest

at low levels of PM2.5. The effect magnitude does not vary systematically with country-level

pollution awareness, indicating that the negative effects on output are not driven by avoid-

ance behavior. This is corroborated by the fact that we find relatively small extensive margin

effects. We also show that effects are substantially larger in locations with an older building

stock, suggesting that differences in effective indoor pollution exposure play an important

role. This points towards a physiological mechanism underlying our main results.

In a dynamic analysis, we show that pollution exposure on a given day reduces both con-

temporaneous output and, to a lesser extent, output produced over the following two to three

days, but not thereafter. We repeat our main analysis at the monthly level, to assess the ef-

fect of pollution on output net of adjustment and accounting for dynamic impacts. We again

find negative effects on the number of actions performed, driven by less individual coding

activity. The impact of an increase in daily PM2.5 concentration by one unit is roughly 60%

larger according to these results compared to the results at the daily level, but still moderate

in comparison to other professions. A standard deviation increase in daily PM2.5 generates a

loss in monthly output value of approximately $6. In the monthly analysis, we also consider

the growth rate of a developer’s followers on GitHub as a summary measure of work quantity,

quality, and relevance. Air pollution exposure also reduces this outcome, indicating that it not

only reduces short-run performance but also slows down the build-up of reputation, which

could plausibly have long-run consequences for career paths.

Overall, our results imply that improvements in air quality generate economic benefits

in terms of productivity gains among highly skilled STEM workers. While flexible work ar-

rangements with respect to schedules and task choice allow workers to adapt to productivity

shocks, even in the very flexible setting we analyze here, air pollution generates economically

relevant costs. This is true even for locations with relatively low pollution levels in compliance

with existing regulatory standards.

Related Literature. This paper contributes to the research on the effect of environmental

factors on economic outcomes. Firstly, our paper directly links to the literature strand on air

pollution and worker productivity. Several studies document a negative impact of pollution on
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productivity inmanual and routine occupations, such as textile workers (Adhvaryu et al., 2022;

He et al., 2019), pear packers (Chang et al., 2016), call center agents (Chang et al., 2019), or fruit

pickers (Graff Zivin and Neidell, 2012). A small number of papers also demonstrate negative

effects of poor air quality on performance in more cognitively-demanding occupations. This

evidence comes from studies on error detection of baseball umpires in the US (Archsmith et al.,

2018), the speech quality of Canadian politicians (Heyes et al., 2019), and case handling time

by Chinese and Mexican judges (Kahn and Li, 2020; Sarmiento, 2022).

While these contexts allow to create precise measures of worker performance in a specific

domain, the settings analyzed do not reflect the typical features of work organization in most

modern high-skill jobs. As outlined above, frequent collaboration, multi-tasking, and flexi-

bility in work schedules are widespread in these jobs and each of these characteristics might

affect the severity of pollution-induced productivity shocks. Furthermore, the rather inflexible

settings studied so far do not allow to analyze worker adaptation to pollution. Related work

investigates performance in cognitively-demanding tasks, but outside of standard work set-

tings, e.g., among chess players (Künn et al., forthcoming), individual investors (Huang et al.,

2020), or brain game players (La Nauze and Severnini, 2021; Krebs and Luechinger, 2021).

We contribute to this literature by expanding the analysis to a STEM profession that is rep-

resentative for a large group of high-skilled workers in flexible, modern work environments.

Thus, our analysis adds novel insights into the labor market cost of air pollution that will likely

still be relevant after future waves of digitalization. We present first evidence on productivity

effects separately for individual and collaborative activities, a distinction absent from previ-

ous work. In addition, while existing papers are based on data from a single country and often

only a single site, we work with a large sample of developers across multiple countries. This

allows to draw more general conclusions about the pollution-productivity relationship and to

explore effect heterogeneity, e.g., with respect to local income levels or pollution awareness.7

Secondly, we contribute to the literature on worker adaptation to environmental shocks

and connect it to research on the effect of flexible work arrangements on productivity. A

number of papers study howworkers adjust working hours in response to temperature shocks

(Graff Zivin and Neidell, 2014; Neidell et al., 2021; LoPalo, forthcoming). With respect to air

pollution shocks, Adhvaryu et al. (2022) and Bassi et al. (2021) demonstrate an important role

of managers who can mitigate productivity losses, e.g., by reallocating workers to different

tasks. These studies, however, focus on rather low-skilled manufacturing workers. Our work

identifies a new margin of adjustment in a flexible high-skilled setting, namely task choice.

Moreover, we present new evidence on temporal reallocation of work activity towards the

7Borgschulte et al. (forthcoming) and Fu et al. (2021) do not consider specific professions, but conduct broader
analyses of air pollution and labor earnings in the US and manufacturing sector productivity in China, respec-
tively. We add new evidence relative to these papers due to our international sample and our analysis of worker
adaptation which requires high-frequency microdata.

6



weekend in response to pollution shocks.8 By showing that workers exploit discretion in

task choice and working hours to adapt to an environmental shock, and thereby alleviate

its impact on productivity, our work links to research on the causal effects of flexible work

arrangements and worker autonomy on productivity. Shepard et al. (1996), Beckmann et al.

(2017), and Angelici and Profeta (2020), for instance, find across different contexts in the US,

Germany, and Italy that working time autonomy increases employee productivity. Our results

suggest that the ability to adapt to idiosyncratic productivity shocks might contribute to the

positive relationship between flexible work arrangements and performance.

Our analysis of worker output and behavior also relates to a broader literature that stud-

ies drivers of worker productivity. For example, Lazear et al. (2015) show that productivity

increased during recessions because of higher worker effort. Pencavel (2015) and Shangguan

et al. (2021) examine how the output of workers is driven by their work hours. Kaur et al. (2021)

find that financial concerns reduce productivity via psychological channels. We complement

this literature with detailed evidence on how environmental shocks affect work patterns and

performance.

Lastly, another contribution of this paper is to demonstrate newways to use publicly avail-

able data on GitHub activity. While we are not the first to use this data in economics,9 we

propose strategies to construct a sample of highly active users who are likely professional

software developers, to study task difficulty, and to estimate the monetary value of the output

observed on GitHub.

Outline. The remainder of the paper is organized as follows: We begin in Section 2 with a

short explanation on how pollution affects the human body. Section 3 follows with a descrip-

tion of Github, the data and sample. We explain the research design and how we implement

the two-stages least squares strategy of Deryugina et al. (2019) in Section 4. Our main re-

sults are presented in Section 5. Findings from heterogeneity analysis and extensions follow

in Section 6. Section 7 concludes.

2 Background on Particulate Matter

In our analysis, we focus on PM2.5 to measure air pollution, i.e., particulate matter with a di-

ameter of less than 2.5 µm. Particulate matter refers to all solid and liquid particles suspended

8In parallel work, Hoffmann and Rud (2022) also show evidence that workers reallocate labor supply across
days in response to changes in PM2.5. However, they study a different setting, namely formal and informal
workers in Mexico City, whereas we focus on a sample of highly-skilled STEM workers. Moreover, Hoffmann
and Rud (2022) interpret the temporal substitution as a strategy to avoid pollution exposure, whereas in our
setting it serves as compensation for reduced productivity.

9McDermott and Hansen (2021), e.g., use the data for an analysis of the impacts of the COVID-19 pandemic
on work patterns.
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in the air. In most urban areas around the world, the majority of PM2.5 originates from an-

thropogenic sources, including traffic, industrial production and biomass burning (Karagulian

et al., 2015). While some PM2.5 is produced locally, for example by traffic, in most areas a sig-

nificant share of local pollution arises from distant sources via long-range transport. Power

plants and industrial facilities generate precursor emissions, e.g., sulphur dioxide (SO2), which

are transformed into secondary particulate matter, e.g., sulfate (SO2−
4 ) and can get transported

over long distances (Almeida et al., 2020).

A key reason to focus on PM2.5 in our study is the fact that these small particles can pen-

etrate indoors and are thus of major relevance for indoor office workers. Deng et al. (2017)

find indoor-outdoor ratios of PM2.5 between 0.4 and 1.2 for office and apartment buildings in

Beijing, which can only be reduced to a level near zero with high-quality indoor air cleaning

systems. In line with that, Xu et al. (2020) and Hoek et al. (2008) report significant and sizeable

correlations between indoor and outdoor fine particulate matter for other cities in China and

Europe.

Moreover, a large body of research documents that fine particulate matter plays a key role

for the adverse effects that air pollution exerts on various dimensions of human health. The

small particles can penetrate deeply into the lungs, causing damage to the respiratory system,

including reduced lung function, asthma, and chronic obstructive pulmonary disease. Simi-

larly, epidemiological and economic studies find evidence for cardiovascular health effects like

high blood pressure and heart diseases (Lederer et al., 2021). Medical research on humans and

animals points to systemic oxidative stress, inflammation and endothelial dysfunction (im-

paired functioning of the inner lining of blood vessels) as underlying biological mechanisms

(Anderson et al., 2011; Kelly and Fussell, 2015). While severe morbidity and mortality effects

are concentrated among vulnerable groups like the elderly and infants, even healthy indi-

viduals can experience mild, subclinical effects, including irritation in the nose and throat or

coughing (Pope, 2000). In response to the mounting evidence on adverse health effects, several

countries have introduced standards on annual ambient PM2.5 concentrations, and typically

tightened them over time. Currently, standards are in force e.g. in the US (12 µg/m3), Canada

(10 µg/m3) and the European Union (25 µg/m3). The WHO guidelines recommend a level of

no more than 5 µg/m3.

Recent clinical and epidemiological studies imply that exposure to fine particles also ex-

erts adverse effects on the central nervous system (Delgado-Saborit et al., 2021; Babadjouni

et al., 2017). Small particles have been found to reach the brain via the olfactory pathways and

the bloodstream. Animal and autopsy studies indicate that particulate matter causes neuro-

inflammation, which can lead to cognitive impairments and neuro-degenerative processes

(Calderón-Garcidueñas et al., 2007). Associations between pollution exposure and changes

in brain structure have been detected in neuroimaging studies. Consistent with this, La Nauze

and Severnini (2021) find that brain game players score 0.18 standard deviations lower when
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PM2.5 concentration exceeds 25 µg/m3 as compared to days with better air quality. Similarly,

Ebenstein et al. (2016) find that short-run exposure to PM2.5 reduces student performance on

high-stake exams.

Overall, the research on particulate matter, health, and cognitive functioning implies that

PM2.5 exposuremight plausibly reduce productivity both in physically- and cognitively-demanding

tasks. Growing evidence in economics on negative productivity effects in manual occupations,

and on reduced cognitive performance confirms this. We intend to quantify productivity im-

pacts in a high-skilled work environment, and investigate potential adaptation responses that

might occur in these settings.

3 Setting and Data

To analyze the effects of air pollution on productivity and work patterns in a high-skilled

profession, we pair information on GitHub activity for a global sample of software developers

with data on local air quality. This is complemented with data on meteorological conditions to

construct the instrumental variables and to control for local weather. This section starts with

a brief description of GitHub, followed by an overview of the GitHub data and how we use it

to measure developers’ productivity. After checking the validity of these outcome measures,

we end with a description of the environmental data.

3.1 Setting: GitHub

GitHub is built on Git, an open source version control system that records who changed which

part of a file at what point in time. GitHub is a web platform for hosting Git repositories10 and,

on top of the version control functionality, provides additional features to facilitate collabora-

tion. For each of their repositories (or repos for short), owners can choose whether to make

it public or private, i.e., whether the respective files are visible to everyone, or only to the

repository members. In 2019, more than 30 million accounts were registered on GitHub, who

together owned more than 120 million public repositories, making it the world’s largest host

of source code.

The core action in Git is a commit, which refers to saving the current version of the repos-

itory after implementing a change to a file, or a set of files. As such, a commit represents that

some work on code files was conducted by the commit author. Only repository owners and

team members invited by them can modify files via commits.

The primary additional collaboration features offered on GitHub are pull requests and is-

sues. A pull request (PR) is a tool to propose code changes to a repository. To create a PR, a

user generates a copy of the repository in question, implements the changes in his copy via

10The term repository refers to the location where all files belonging to a project are stored.
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commits, and then submits these to the original repo.11 Repo members then review the sug-

gested changes and decide whether to accept (i.e., merge) or reject them. Each PR includes

a discussion forum where users can comment directly on the proposed changes. Feedback

provided there can be implemented within the same PR. Due to these features, PRs facilitate

collaborative coding and are thus not only used to contribute to projects of which a user is no

member but also within project teams.

Issues are text messages, typically used to suggest improvements and organize tasks in

a given repo.12 Like PRs, issues contain a discussion forum where users can comment on

the problem or question at hand. Repository members can assign labels to issues in order

to highlight their category (e.g., bug, feature request), priority, or difficulty. The platform

provides nine default labels, and repository teams can create additional ones specific to their

repo. Once an issue is resolved, it can be marked as closed.

On top of that, GitHub provides social network functions, e.g., options to follow other users

and subscribe to specific repositories and issues to receive notifications about new activities.

3.2 GitHub Data on Productivity and Work Patterns

GitHub actions related to commits, PRs, and issues reflect productive work aimed at building

or improving software products. Hence, we collect data on these activities to measure out-

put generated by highly skilled developers. The GHTorrent project provides information on

GitHub users and all actions they conduct in public repositories in the form of a relational SQL

database. We use the version of the database containing data up to June 1st, 2019. The user

table comprises a unique identifier, login name and registration date for all users registered on

the platform at this point. In addition, location and company information as stated on the user

profile on this date is reported. The projects table provides identifiers and names of all public

repositories as well as a reference to the user owning the repo. Data on activities is available

separately by type of action (e.g., commits, opening issues, PR comments, etc.) and includes

the exact timestamps and the identifiers of the acting user and the repository where the event

was conducted in. For specific actions, further information is reported, e.g., the labels attached

to issues.

We complement this with data from GHArchive, which also provides a record of actions

in public repositories, and contains additional information on some events, e.g., the title of a

commit (called commit message), and the number of lines of code added and deleted, as well

as the number of files changed within a PR. GHArchive and GHTorrent data can be linked via

users’ login names.

These data have multiple favorable features for our analysis. First, the precise records

of activities conducted on GitHub enable us to quantify daily output produced by software

11An example for a PR can be found at https://github.com/microsoft/vscode/pull/54244.
12For an example of an issue, see for instance https://github.com/microsoft/vscode/issues/39526.
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developers. In this way, we address the long-standing challenge that work conducted by high-

skilled workers during a given period is often difficult to measure. Second, the data cover all

GitHub users which gives us a much broader geographic coverage and thus a clear advantage

in terms of external validity compared to previous studies based on data from only one country,

and often even just one sampling site. Moreover, the rich information included allows us to

investigate not only changes in output quantity, but also quality and work patterns, which are

of major relevance in high-skill professions.

The data also have clear limitations. In order to assign local air quality to users, we rely on

self-reported locations. Some users might report wrong or outdated locations, giving rise to

measurement error. Under the assumption of classical measurement error which is not corre-

lated with pollution levels, this issue leads to attenuation bias such that any adverse effects we

find can be considered a lower bound on the true effect. Additionally, we have no information

on work conducted in private repositories or outside the platform. Many GitHub users con-

duct no or only little work in public repositories such that it would be impossible to identify

any productivity effects of air pollution exposure based on their activity data. Thus, when

constructing our analysis sample, we aim at capturing users who are professional software

developers and do a substantial part of their formal work in public GitHub repositories.

Sample Construction. We focus on non-organizational users who report a location at the

city level, which is the degree of geographic precision required to assign local air quality.

Among them, we keep only users who ever committed in a repository owned by a company,

i.e., users with the authority to change the source code of a company-owned project. This step

is intended to focus on professionals who are in some way affiliated with the companies. To

identify these users, we compile a list of repositories operated by companies13 and then use the

information on the repository where a commit was made from the GHTorrent data. To drop

bots, we discard a small number of users with extremely high activity levels, very regular

commit patterns, or suspicious login names.14 To focus on cases where we can observe a

substantial part of an individual’s total work, we only admit users into the sample once they

have at least 20 commits in public repos in a given month. They enter the sample in the month

after they have passed this threshold for the first time. Users stay in the sample until the end

of the observation period unless they conduct less than three unproductive actions in a given

month. In this case, we drop users from the sample for that month, assuming that they might

13This is based on a publicly available list of firms active on GitHub, which can be accessed at https://github
.com/d2s/companies/blob/master/src/index.md and on the lists of open-source projects operated by Google,
Microsoft and Facebook published on their web pages.

14Bots are computer programs typically used to automate specific tasks. On GitHub, some company-affiliated
projects for instance employ bots to comment on newly opened issues and PRs to ask users to provide specific
information on their issues or to sign a contributor license agreement. To make sure not to capture bots in our
sample, we drop users if the number of actions or commits conducted by them is in the top 0.1 percentile of the
distribution, if more than 20% of their commits occur at full hours (indicating automated commits) or if their
login name indicates that they are bots.
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Figure 1: Sample Cities

Note: Each point represents one sample city. Circle size is based on the number of users observed in the city. Cities depicted
in dark blue are used in the main analysis and cities depicted in light blue are added in extensions.

have moved to a different platform or work on projects in private repositories. Unproductive

actions are activities we do not use as outcome variables, based primarily on the social network

functions GitHub offers.15 Lastly, we restrict the sample to users living in cities with at least

15 relevant users that are covered by our data on air pollution. This yields a sample of 27,701

users in 220 cities across 47 countries during the sample period from February 2014 until May

2019.16 These locations are depicted in Figure 1. For the IV approach based on changes in

wind direction, we require multiple cities in close geographic proximity, as outlined further in

Section 4. Hence, in our main analysis, we focus on 193 cities across 36 countries depicted in

dark blue, comprising 24,534 users. All descriptives reported in this section refer to this main

analysis sample. In extensions, we also include the cities depicted in light blue.

15The unproductive actions include following another user, watching a repository, (un)subscribing to an issue,
labeling an issue, and (un)assigning an issue to a user.

16During our sample period some users changed their location. Since the GHTorrent data on users is a snapshot
taken on June 1st, 2019, we use earlier versions of the database (one snapshot in each year between 2015 and
2018) to check for movements. In total, 6.3% of users reported more than one distinct location during this period.
We identify the city where they spend the biggest part of the sample period, and keep them in the sample only
while they resided in this city.
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OutcomeMeasures. For the analysis sample, we compile an unbalanced user-by-day panel

including measures of output quantity and quality, as well as work patterns. To measure over-

all daily work quantity, we count the total number of productive actions conducted per user

and day, after translating timestamps from UTC into local time. This is the sum of commits,

comments written on PRs, issues or commits, creations of PRs and issues, closing of PRs and

issues, and reopening of issues. Furthermore, we separately count the number of commits

and comments because these two action categories are observed most frequently on GitHub

and reflect two distinct types of work. While the number of commits provides a measure of

individual coding activity, comments reflect participation in discussions about issues and code

changes, i.e., collaborative work. This allows us to conduct the first analysis of the productiv-

ity impacts of air pollution in a high-skill profession that takes potential effect heterogeneity

between individual and interactive work into account.17

To assess the quality of users’ output, we measure the share of all PRs opened on a given

day that are merged, i.e., accepted. PR rejection points to issues in the code or style. Secondly,

we compute the share of commits made by a user on a given day that were reverted at a later

point. Reverting a commit, i.e. removing all changes made in it, indicates severe problems that

cannot easily be fixed in follow-on commits.18

To analyze worker adaptation, we buildmeasures of task choice andworking hours. Firstly,

to explore whether users switch to easier tasks on high-pollution days, we leverage informa-

tion on the complexity of issues and PRs. In the case of PRs, we use the number of new lines

of code added, of lines of code deleted, and of code files changed as measures of their com-

plexity. We take the average value of these variables across all PRs a user worked on a given

day, either by creating, reviewing, or commenting on the respective PR. To assess the difficulty

of issues, we rely on the user-assigned issue labels. We exploit the fact that there are several

labels indicating that a given issue is relatively easy, e.g., the default labels good first issue19

and documentation,20 or individual labels such as beginner friendly or low-hanging fruit. The

complete list of labels we use to identify easy tasks is depicted in Appendix Table A.2. We

construct the share of all issue events conducted by the user (commenting, opening, closing,

or reopening of issues) which refer to an easy issue. With this approach, we do not have

17The other action types occur less frequently and are thus considered as secondary outcomes. The number
of PRs created also reflects individual work on code, whereas the number of issues closed, opened, or reopened
provides additional measures of interactive work. The number of PRs closed reflects code review and decision-
making on whether to merge or reject the proposed changes.

18The act of reverting a commit is itself a commit, which has a specific, auto-generated commit message. The
messages are available in the GHArchive data and allow to identify both revert commits and the original commit
that is reverted.

19This issue was introduced by GitHub to encourage first-time contributions, but does not imply that the issue
cannot be addressed by more experienced developers.

20The documentation label is included because work on the documentation is typically easier than work on
code to fix bugs or build new features. This follows, e.g., from Tan et al. (2020) and from the fact that GitHub
also used the documentation label in their approach to construct the good first issue label (for details see https:
//github.blog/2020-01-22-how-we-built-good-first-issues/).
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to evaluate issue complexity ourselves but can rely on the assessment by experts who know

the project in question very well. Furthermore, the label is visible to all users, i.e., workers

searching for easy tasks due to an adverse productivity shock can easily identify these issues

as suitable.

Secondly, we exploit the timestamps reported in the data to approximate users’ working

hours in order to investigate whether they try to make up for their reduced productivity by

working longer hours in the evening or on the weekend. Evening work is measured by the

minute of the day the last action of the day was performed and the share of actions conducted

after standard working hours, i.e., after 6 pm. To measure weekend work, we use the sum of

actions conducted on Saturday and Sunday of each week.

Finally, as a summary measure of the quantity, quality, and relevance of a user’s work,

we consider the monthly growth rate of the number of a user’s followers. This allows us to

investigate whether air pollution exerts only temporary effects on daily output, or whether it

also generates effects on users’ reputation and influence over a longer time horizon.21

Descriptives. Table 1 presents summary statistics on the outcome variables. On average,

users perform 2.77 actions per day, of which 1.29 are commits and 0.93 are comments. The

remaining productive GitHub actions—opening and closing issues and PRs—are observed less

often. Hence, the sample users are indeed highly active in public repos, as casual users who

work on GitHub only occasionally can hardly achieve such figures, especially given that we

average across all days, including weekends and holidays.22 On average, users are active on

37% of all days in the sample period. Conditional on being active at all, the mean number of

actions per day is 7.59. A commit reversal is a very rare event, indicating severe errors. It

happens among only 0.2% of all commits made in the sample. Rejection of a PR occurs more

frequently, in 33% of all cases. On average, 7% of all issue events refer to an easy issue. 29% of

actions are made after 6 pm. The mean time of the final action of the day is 5:45 pm.23

Figure 2 provides more detailed information on the distribution of activity across days of

the week and hours of the day. The solid lines depict the share of all activity that is conducted

during the respective hour of the day on weekdays (left) or weekends (right), respectively.

We present this share for commits, comments, and total actions. Activity levels are highest

during core working hours (marked in grey) and considerably lower in the evening and night

hours and on weekends. Notable activity during evening hours and on weekends is not un-

common among highly educated workers (Mas and Pallais, 2020). Overall, the distribution is

similar across all three variables. However, comments, i.e., interactive activities, are evenmore

21We provide a list of all outcomes and details on their construction in Appendix Table A.3.
22Overall, ourmain sample comprises only 0.076% of all GitHub users but accounts for a disproportionally large

share of all activities in public repositories, e.g., 2.1% of issue creations, 7.6% of issue closings, 9.9% of comments
written and 6.6% of PR actions (opening and closing).

23To take into account that high-skill workers often work long hours in the evening, we define a work day to
last from 3 am on the calendar date to 3 am on the following day.
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Table 1: Summary Statistics for the Analysis Sample of GitHub Users

Mean SD SD (within) Min Max Observations

Output Quantity

Actions 2.77 7.26 6.46 0 293 14,538,351
of which Commits 1.29 3.82 3.55 0 234 14,538,351

Comments 0.93 3.37 2.94 0 280 14,538,351
PRs opened 0.15 0.71 0.67 0 151 14,538,351
Issues opened 0.10 0.80 0.74 0 222 14,538,351
PRs closed 0.17 0.94 0.89 0 284 14,538,351
Issues closed 0.12 0.89 0.87 0 263 14,538,351

Any action 0.37 0.48 0.44 0 1 14,538,351
Actions | Actions > 0 7.59 10.39 9.22 1 293 5,310,794

Output Quality

Share PRs merged 0.67 0.45 0.40 0 1.0 1,132,824
Share commits reverted 0.002 0.029 0.029 0 1 3,458,932

Task Complexity

Share easy issue events 0.07 0.21 0.20 0 1.0 3,203,772
Files changed per PR 9.37 60.15 60.00 0 9660 1,738,027
Lines added per PR 347.05 1660.15 1618.98 0 64425 1,738,027
Lines deleted per PR 125.56 700.38 686.17 0 25037 1,738,027

Working Hours

Share actions after 6 pm 0.29 0.39 0.36 0 1.0 5,296,035
Time last action 17:45 5.01 hours 4.63 hours 3:00 3:00 5,296,035

Note: This table describes the main analysis sample at the developer×date level. The first two panels provide summary statistics for outcome
variables we use to measure output quantity and quality. The bottom panels describe variables measuring task complexity and working
hours. The table displays the mean, standard deviation, within-developer standard deviation, minimum and maximum value of the variables
as well as the number of observations.

concentrated during standard working hours as compared to commits, i.e., individual coding

activities. This is plausible given that the more collaborative tasks are more productive during

common working hours, when other users are working as well.

Finally, Figure 3 presents information about the work status of users in our sample. The left

plot depicts the most frequent terms used in the biographies (bios) on their GitHub profiles.

36% (9,507 users) of the sample provide such a self-description. The data was accessed via the

GitHub API. For each term, we measure in what share of all bios it occurs, after stemming

and removing stop words. Three terms clearly stand out: engineer/engineering, software, and

developer/development occur in 15% to 25% of all bios, muchmore often than any other words.

The right plot complements this with information on employers which users can report on

their GitHub profiles. In our sample, 61% (16,385 users) provide some information in this field

with Microsoft and Google being the most frequent employers, followed by Facebook and Red

Hat, i.e., big US-based tech companies strongly engaged in open-source. While we are unable
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Figure 2: Distribution of Activity across Hours of the Day and Days of the Week

Note: Solid lines reflect the share of activities by sample users which is conducted during the respective hour of the day on
weekdays (left) orweekends (right), separately for total actions, commits and comments. Dashed linesmark 95%-confidence
intervals. Grey area reflects core working hours, 9 am to 6 pm on weekdays.

to assess whether the subsample of users who provide a bio or the company information is

representative, the clear peaks in the two plots at work-related terms and well-known tech

companies, together with the concentration of activity in core working hours, strongly suggest

that we do capture professional software developers who use GitHub as part of their formal

work. Thus, in the remainder of the paper, we use the term ‘developers’ when referring to the

users in our sample.

3.3 Gitcoin: Monetary Value of GitHub Activity

To assess the validity of the productivity metrics constructed from the GitHub data and to

translate the estimated effects of air pollution on these outcomes into monetary damages, we

draw on data from a platform called Gitcoin.24 Two types of agents interact on this platform:

GitHub project teams aiming to incentivize external contributions to their projects post open

issues from their public repos on Gitcoin, along with information on issue characteristics and

a payment they offer for a solution. On the other side of the transaction, freelance developers

can apply to solve these issues and earn money for their contributions.

Work on the issues is submitted in the form of a PR in the respective GitHub repo. If the

24Gitcoin was founded in 2019 and is complementary to GitHub. At the end of 2021, about 300,000 GitHub
users were registered on the platform.
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Bios Companies

Figure 3: Most Frequent Terms from User Self-Descriptions and Company Fields

Note: The left bar plot is based on data from 9,507 user bios, accessed in 2021 via the GitHub API. Words in the bios are
transferred to lowercase, stemmed, and stop words are removed. The total word count is divided by the number of bios.
The plot on the right is based on data from June 2019 on 16,385 users, collected from the company column in the GHTorrent
user table.

PR is accepted by the issue funder, the PR author receives the payment, typically in cryptocur-

rencies. We collect data on 292 issues for which PRs were submitted and payments made by

March 2022 via the Gitcoin API, including the value of the payment in USD and the hours

worked on the PR as reported by the submitting user. We merge this with information on the

size of the respective pull request obtained via the GitHub API (number of commits, number

of lines of code added and deleted, and number of files changed). A detailed description of the

data is provided in Appendix C.

In the data, we find mean payments of $354 per pull request and $112 per commit, one

of our primary outcome variables. On average, developers spend 1.8 hours on one commit.

Hence, their implied hourly wage amounts to $62, almost coinciding with the mean hourly

wage of $58 among software developers in the US in 2021 as reported by the Bureau of Labor

Statistics (2021). We will use the monetary values of commits and PRs, our measures of in-

dividual coding activity, to translate the estimated effects of air pollution on these outcomes

into monetary damages.

Are the outcomes we consider valid measures of productivity and task complexity? In

Appendix Tables C.1 to C.3 we use the Gitcoin data to test this. We find that both the payment

awarded for the PR and the time spent on creating it are consistently positively correlated

with the number of commits the PR comprises. We view this as a confirmation that changes

in the number of commits reflect fluctuations in developer productivity. Holding the number

of commits constant, adding more lines of code and changing more files in a PR is associated

with a higher payment, suggesting that these variables indeed reflect task complexity. 12%

of the Gitcoin issues are labeled as easy according to our definition. PRs addressing these

issues are on average rewarded $186, only half the amount among PRs addressing other issues.
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Even holding all aforementioned PR characteristics constant, these issue labels are negatively

associated with the value of a PR, supporting their validity as indicators for easy tasks.

3.4 Environmental Data

Air Quality. The pollutant of interest in our analysis is PM2.5. We collected data on PM2.5

concentrationmeasured at outdoormonitors in and around the sample cities from several envi-

ronmental agencies. For a few cities, we could not obtain monitor-measured data but instead

used high-resolution reanalysis data from the Copernicus Atmosphere Monitoring Service

(CAMS). Reanalysis datasets are constructed by combining measurements taken at ground-

level monitors, satellite images, and atmospheric transport models. Appendix Table A.4 pro-

vides a detailed list of the data sources. All data is provided at either the daily or the hourly

level. Where necessary, we transfer hourly data into local time and aggregate to the daily

level. Cities are assigned the simple average of all available monitor readings within a 40km

radius around the city centroid.25 Our data on PM2.5 covers 96% of all city×day observations.

We winsorize PM2.5 at the continent-specific 0.1𝑡ℎ percentile and the 99.9𝑡ℎ percentile to

ensure that our results are not driven by extreme outliers (e.g., extremely high concentration

of fine particulate matter due to heavy wildfire smoke). The population-weighted average

PM2.5 concentration in the sample is 12.4 µg/m3 (standard deviation: 14.5 µg/m3, within-city:

11.8 µg/m3), i.e., slightly above the annual standard of 12 µg/m3 set by the U.S. Environmen-

tal Protection Agency (EPA) and clearly above the WHO guideline value for the annual mean

concentration (5 µg/m3). Figure 4 displays the distribution of daily PM2.5 concentrations in our

sample, separated by seven large geographic regions, 𝑅 ∈ {Northern Europe, Southern Europe,

Western Europe, Eastern Europe, North America, Oceania, Asia}.26 Air quality exhibits sub-

stantial heterogeneity across regions: Cities in North America, Oceania, and Northern Europe

have relatively clean air, with concentrations above 20 µg/m3 rarely being observed. Loca-

tions in Southern and Eastern Europe by contrast experience this level of pollution on 28% of

all days, and Asian cities even 60% of the time.

Wind conditions. The instrumental variable approach is based on regional air pollution

transport driven by wind direction. We collect reanalysis data on wind conditions from the

Japan Meteorological Agency’s JRA-55 product. The u- and v-component of wind, i.e. the

eastward and northward wind vectors, are reported every six hours (in UTC) on a global

grid with a spatial resolution of 1.25° longitude×1.25° latitude, which corresponds to roughly

137.5km×137.5km at the equator.27 We translate timestamps into local time and aggregate to

25CAMS reanalysis data is reported on a 0.1° longitude×0.1° latitude grid. Given the large number of grid
points, we only use measurement points within 25km of the centroids for the relevant cities.

26We show the distribution of observations in our developer×date panel across these regions in Table A.5
27We deliberately use data reported on such a coarse spatial grid in order to capture broad wind patterns

driving regional air pollution transport instead of very local wind conditions which only affect air quality in a
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Figure 4: Distribution of Daily PM2.5 Concentrations by Geographic Region

Note: The plot shows densities of PM2.5 concentration based on 353,445 city×day observations, separately by geographic
region. Oceania: Australia, New Zealand. Northern Europe: Scandinavia, UK, Ireland, and the Baltic countries. Southern
Europe: Portugal, Spain, Italy, Croatia, Slovenia. Asia: China, India, Japan, Hong Kong. Northern America: US, Canada.
Western Europe: Switzerland, Austria, France, Germany, Belgium, and the Netherlands. Eastern Europe: Poland, Czech
Republic, Hungary, Belarus, Ukraine, Slovakia, Bulgaria, Romania.

the daily level. Each city is assigned the inverse distance weighted average of u- and v-vectors

at the four grid points located closest to its centroid (median distance = 92.3km). Finally, daily

average wind speed and direction are computed from the city-level u- and v-vectors.

Meteorological Conditions. To construct control variables for daily weather conditions

we use the ERA5-land product from the European Centre for Medium-Range Weather Fore-

casts (ECMWF). It provides hourly data on air temperature two meters above the surface, pre-

cipitation and dewpoint temperature on a fine grid with 0.1° longitude×0.1° latitude horizontal

resolution, corresponding to roughly 11km×11km. To construct city×day level variables, we

follow the same approach as taken with the wind data, the only difference being that sample

cities are assigned the inverse distance weighted average weather conditions from the eight,

instead of four, closest grid points (median distance = 10.9km). The variables constructed are

daily mean, minimum and maximum temperature, precipitation, and relative humidity.28

Wildfire Smoke. The North American west coast frequently experiences severe wildfires

generating heavy smoke that strongly increases the concentration of air pollution. Some of the

largest cities within our sample are located in this area (the tech clusters in the San Francisco

small area. The choice of data follows a suggestion by Tatyana Deryugina which we gratefully acknowledge.
28Relative humidity is inferred frommean daily air temperature and dewpoint temperature using the R package

weathermetrics which uses formulas provided by the US National Weather Service.
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Bay Area and around Seattle). Given recent evidence that exposure to heavy wildfire smoke

can trigger avoidance behavior, especially among high-income individuals (Burke et al., 2022),

we construct control variables for heavy smoke to make sure the effects we estimate reflect

physiological impacts of PM2.5 exposure, not behavioral responses to wildfires. The required

data is derived from satellite images and provided by the National Oceanographic and At-

mospheric Administration’s Office of Satellite and Product Operations. It covers the North

American continent, is reported at the level of individual smoke plumes, and includes a mea-

sure of smoke intensity. We define a city as being affected by a smoke event if the smoke

plume overlaps with a 15km radius around its centroid. We aggregate the data to the daily

level by summing over the intensity measure of all smoke plumes covering a city on a given

day. We define a heavy smoke indicator which is one if the city was covered by a plume of the

maximum intensity or if the total daily smoke intensity exceeds a value of twice the maximum

intensity, and zero otherwise. This yields 0.3% of all city-by-day observations and 8.9% of all

observations with any smoke exposure as heavy smoke days.

Thermal Inversions. In extensions and robustness checks, we use temperature inversions

instead of wind direction as an instrument for PM2.5 concentration. The required data is ob-

tained from the ECMWF’s ERA5 products29. Hourly temperature at the surface level as well

as several pressure levels is reported on a 0.25° longitude×0.25° latitude grid. We compute

the difference between upper air temperature, at the pressure level 25 hPa above the surface,

and surface air temperature. Following several recent papers, e.g. Jans et al. (2018), we then

calculate the average temperature difference during local nighttime hours (midnight to 6 am).

Cities are assigned the inverse distance weighted average from the four closest grid points.

We use the temperature difference as a measure of inversion strength, inv strength𝑐𝑑 = Δ𝑇𝑐𝑑 ,

to instrument for pollution.

4 Research Design

The first part of this section presents our baseline regression model and discusses why endo-

geneity issues are likely to arise. In the second part, we describe the instrumental variable

approach based on wind direction we adopt to address these issues.

BaselineRegressionModel. To analyze how short-run variation in local particulatematter

concentration affects output andwork patterns of professional software developers, we specify

29We use the products ERA5 hourly data on single levels from 1979 to present and ERA5 hourly data on pressure

levels from 1979 to present

20



a model for outcome 𝑦 of developers living in city 𝑐 on day 𝑑 .

𝑦𝑐,𝑑 = 𝛽PM𝑐,𝑑 +w
′
𝑐,𝑑𝛾 + 𝛿𝑅(𝑐)ℎ𝑐,𝑑 + 𝜇𝑐 + 𝜇𝑅(𝑐),𝑑𝑜𝑤 (𝑑) + 𝜇𝑅(𝑐),𝑦𝑟 (𝑑),𝑚(𝑑) + 𝜀𝑐,𝑑 (1)

Here, 𝑦𝑐,𝑑 denotes one of the measures of output quantity, quality, or work patterns described

in the previous section. We obtain this variable through an auxiliary regression that includes

the information available for each individual developer, i.e., her experience in using GitHub

and a developer fixed effect. This way we can reduce the computational burden without losing

variation in the regressor of interest which is observed at the city-day level. This procedure is

common in the literature (e.g. Currie et al., 2015) and asymptotically equivalent to estimating

the underlying individual-level regressions (Donald and Lang, 2007). Appendix D provides a

more detailed description.

PM𝑐,𝑑 is a measure of particulate pollution and varies across cities 𝑐 and days 𝑑 . The fixed

effect 𝜇𝑐 controls for time-invariant unobserved factors at the city level. Region-year-month

fixed effects 𝜇𝑅(𝑐),𝑦𝑟 (𝑑),𝑚(𝑑) capture time-varying productivity shocks common to all developers

in a geographic region 𝑅. Region×day-of-week fixed effects 𝜇𝑅(𝑐),𝑑𝑜𝑤 (𝑑) and an indicator for

holidays, ℎ𝑐,𝑑 , control for fluctuations in work patterns and productivity across days of the

week and public holidays. These fluctuations are allowed to vary in intensity across different

world regions. w𝑐,𝑑 is a vector of weather variables that can be correlated with air quality and

at the same time affect work patterns. It includes a series of indicator variables for daily mean

temperature falling into bins defined based on the 5th, 10th, 20th, 35th, 65th, 80th, 90th, and

95th percentiles of the city-specific temperature distributions. The omitted category is temper-

ature falling between the 35th and the 65th percentile. The effects of temperature fluctuations

are also allowed to differ across regions 𝑅. The vector further contains cubic polynomials of

precipitation, relative humidity, and wind speed and a dummy indicating whether the city is

affected by heavy wildfire smoke on day 𝑑 . We weight all regressions by the number of un-

derlying developer observations in each city–day cell and cluster standard errors at the city

level.

The coefficient of interest 𝛽 is estimated from day-to-day variation in city-level pollution

and developer output, conditional on average developer output and after netting out other

productivity determinants such as weather, seasonality, and region-wide business cycle dy-

namics.

Since air quality is not assigned randomly to the city-by-day observations, 𝑃𝑀𝑐,𝑑 may be

endogenous in Equation (1) due to unobservable factors which co-vary with particulate matter

and productivity. Variations in local economic conditions can for instance affect air pollution

and developers’ output at the same time. Similarly, local events like a football match or the

closing of a bridge may impact both traffic and work patterns. The OLS estimate of 𝛽 would

thus likely suffer from omitted variable bias. A second issue is measurement error in develop-
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ers’ pollution exposure, which we cannot observe, but instead have to proxy for by city-level

averages. This generates attenuation bias in the OLS estimate. While our regression model

includes a wide range of controls to account for sorting into different cities or fluctuations in

economic conditions, we still require an exogenous source of variation in local air pollution

to address these two concerns.

IV estimation. We address endogeneity in Equation (1) by instrumenting local pollution

levels with wind direction. This approach was introduced by Deryugina et al. (2019) and is

based on the idea that wind direction affects local particulate matter concentration because it

is a key driver of pollution transport. Wind blowing from the ocean or less densely populated

areas, for instance, carries substantially lower amounts of pollution into the city than wind

blowing from more densely populated or industrial areas.

It is important to note that local weather conditions can also depend on wind. For example,

wind blowing from the ocean could reduce temperatures. These local conditions could affect

labor-leisure trade-offs (Graff Zivin and Neidell, 2014) and thereby the output of developers

via channels other than air quality. Therefore, it is important to control for the wide range

of weather conditions contained in w𝑐,𝑑 to ensure that the instrument does not violate the

exclusion restriction.

The effect of wind direction is certainly not uniform across all cities in our global sample

due to differences in geography. In some cases, more pollution might be transported into the

city by wind blowing from the east, in other cases, west wind might carry in most pollution.

To account for this, we allow the impact of wind on PM2.5 to vary. In principle, we could

estimate the effect of wind direction separately for each city. In that case, however, the first

stage might pick up effects of highly local transport that affects readings at local monitors due

to their location relative to the pollution source, but simply redistributes particulate matter

within the boundaries of a city. To ensure that the first stage only captures effects of regional

pollution transport that changes PM2.5 in the whole city, we restrict the effect of wind to vary

at a geographically more aggregate level. As suggested by Deryugina et al. (2019), we use a

clustering algorithm to assign cities into groups 𝑔 based on their longitude and latitude. In

our baseline specification, we form 50 groups, using hierarchical clustering with a complete-

linkage criterion. They are illustrated in Appendix Figure B.2.30

We parameterize the pollution-wind relationship by a trigonometric function.31 By spec-

ifying wind direction 𝜃𝑐,𝑑 in radians instead of using many indicators for wind direction bins

we can substantially reduce the required number of variables to appropriately model the wind-

30When using all 220 cities depicted in Figure 1 in the clustering algorithm, it forms singletons for some cities
which are very distant from their closest neighbor, e.g. Beijing or Salt Lake City. We drop these cities (depicted
in light blue) in the main analysis because whenever a city forms its own first-stage group, the first stage might
pick up local pollution transport.

31We are grateful to Tatyana Deryugina for this suggestion.
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Figure 5: The effect of wind direction on PM2.5

Notes: This figure provides a graphical illustration of the first stage. Graphs present estimated coefficients from regressions
of PM2.5 measured in µg/m3 onwind direction. Solid black line: connects estimated coefficients on seven dummies for seven
45° bins of wind direction. The omitted direction is north-north-west, (315°, 360°]. Dashed lines: 95% confidence intervals.
Blue line: estimated relationship when wind direction is parameterized as the sine of wind direction in radians and wind
direction in radians divided by two. City groups comprise New York and Philadelphia (left), Frankfurt, Nuremberg, Munich,
Stuttgart, Karlsruhe, Walldorf, Heidelberg, Bern, Basel, Strasbourg (center), Bangalore, Chennai, Hyderabad (right).

pollution relationship. The first stage of the IV estimation is as follows.

PM𝑐,𝑑 = 𝜌
𝑔
1 sin

(
𝜃𝑐,𝑑

)
+ 𝜌

𝑔
2 sin

(
𝜃𝑐,𝑑/2

)
+w

′
𝑐,𝑑𝛾 + 𝛿𝑅(𝑐)ℎ𝑐,𝑑

+ 𝜇𝑐 + 𝜇𝑅(𝑐),𝑑𝑜𝑤 (𝑑) + 𝜇𝑅(𝑐),𝑦𝑟 (𝑑),𝑚(𝑑) + 𝜀𝑐,𝑑
(2)

The coefficients 𝜌
𝑔
1 and 𝜌

𝑔
2 are allowed to vary across city-groups 𝑔 ∈ {1, 2, ..., 50}.

Figure 5 illustrates how this trigonometric function can capture the effect of wind direction

on PM2.5 levels for the city groups represented by Frankfurt, New York City, and Bangalore.

The estimated relationships are depicted in blue. They strongly resemble the results we obtain

when we instead measure wind direction by eight indicators representing 45° sections of the

wind rose, i.e., (0°-45°], (45°-90°], etc. In Appendix Figure B.3 we present the respective plots

for all 50 city groups.

We adopt this 2SLS approach for all analyses at the city×date level. In some parts of our

analysis, e.g. when exploring effect dynamics or impacts at the monthly level, we use modified

versions of this framework that will be presented in the respective sections.

Measures of pollution. Our primary measure of air pollution is daily PM2.5 concentra-

tion in µg/m3. As an alternative, we define a binary variable that indicates whether PM2.5

is unusually high relative to common levels in city 𝑐 . More formally, it takes the value one,

when the city-day level PM2.5 exceeds the city-specific seventy-fifth percentile, ✶{PM𝑐,𝑑 >

𝑄 .75 (PM | 𝑐)}. The proposed measure, therefore, captures non-linear effects of pollution and
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allows these to differ by location.

5 Main Results

In this section, we first present results on how PM2.5 exposure affects the quantity and quality

of output developers produce. Thereafter we show that they use two margins of adjustment,

task choice and working hours, to adapt to increases in pollution concentration.

5.1 Work Quantity

Columns 1 to 3 of Table 2 display 2SLS estimates of the effect of PM2.5 exposure on the three

primary quantity outcomes—the number of total actions conducted, the number of commits

as a measure of individual coding activity, and the number of comments written in discussion

fora as a measure of collaborative work. In Panel A, we use PM2.5 concentration as regressor

and find that an increase by 1 µg/m3 causes developers’ output, measured by total actions, to

fall by 0.0032 or 0.12% of the sample mean. This decline is mainly driven by a reduction in

the number of commits, which decreases by 0.0026 or 0.20% of the sample mean. The number

of comments is much less affected by air pollution. The point estimate is close to zero and

not statistically significant. The first stage F-statistic on the excluded instruments exceeds

100, indicating that the IVs based on wind direction are sufficiently strong. For an increase in

ambient PM2.5 concentration by one within-city standard deviation (11.8 µg/m
3), the estimates

imply reductions in the number of commits and total actions by 0.030 (2.3%) and 0.038, (1.4%)

respectively.

In Panel B, we repeat the analysis, now using the binary variable indicating that PM2.5

concentration exceeds the city-specific 75th percentile. The F-statistic is again well above the

common threshold for a sufficiently strong first-stage relationship. The 2SLS estimates imply

that on a day with relatively high pollution, the number of total actions falls by 0.11 or 4% of

the mean value. The number of commits falls by 0.08 or 6.2%. Again, no significant effect on

the number of comments is found.

In sum, these results imply that fine particulate matter exposure exerts a negative effect on

developer output which is mostly driven by days with relatively poor air quality. The effect of a

high-pollution day in Panel B corresponds to an increase in PM2.5 concentration by more than

30 µg/m3 based on the coefficients in Panel A. A novel finding is the strong effect heterogeneity

across different types of work commonly conducted in high-skilled occupations: We observe

a highly significant negative impact on individual work on code, but no effect on interactive

work.

In Appendix Table A.6, we investigate the effect of PM2.5 on further action types which

occur less frequently than commits and comments—the number of issues and PRs opened
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and closed, respectively. Like a commit, opening a PR reflects individual coding work whereas

opening/closing issues generally starts/ends a discussion with other users and thus constitutes

interactive work. Closing a PR implies decision-making about whether to accept or reject the

proposed changes. Consistent with the results discussed above, the number of PRs opened

falls significantly in PM2.5 concentration, and the relative effect magnitude is similar to the

effect on commits. While we find marginally significant effects for closing of PRs, interactive

issue events are unaffected by air pollution. Overall, these results confirm the conclusions

drawn from Table 2.

Table 2: Effect of PM2.5 on WorkQuantity

Actions Commits Comments Any actions

(1) (2) (3) (4)

Panel A.

PM2.5 −0.0032∗∗∗ −0.0026∗∗∗ −0.0005 −0.00013
(0.0011) (0.0008) (0.0005) (0.00009)
[0.003] [0.001] [0.374] [0.155]
{0.006} {0.002} {0.374} {0.208}

First Stage F-Stat. 102.1 102.1 102.1 102.1
% change in Y -0.12 -0.20 -0.05 -0.04
% of full effect 11.2

Panel B.

✶{PM2.5 > 𝑄0.75} −0.1104∗∗∗ −0.0801∗∗∗ −0.0169 −0.0068∗∗∗

(0.0302) (0.0159) (0.0170) (0.0025)
[0.0004] [0.000002] [0.323] [0.008]
{0.0014} {0.00002} {0.374} {0.013}

First Stage F-Stat. 80.5 80.5 80.5 80.5
% change in Y -4.0 -6.2 -1.8 -1.9
% of full effect 17.1

Observations 353,445 353,445 353,445 353,445
Mean Dep. Var. 2.77 1.29 0.93 0.37

Note: The table presents IV estimates of the parameter 𝛽 in Equation (1). In Panel A, the regressor of interest is PM2.5 concentration
measured in µg/m3. In Panel B, a binary variable is used instead, which takes a value of one if city×day PM2.5 concentration exceeds the
city-specific 75th percentile. The first stage specification is given in Equation (2). Covariates include eight bins for mean daily temperature,
third-order polynomials in wind speed, precipitation, and relative humidity, indicators for heavy wildfire smoke and holidays, as well as
city, day-of-week, and year-by-month fixed effects. Day-of-week and year-by-month fixed effects, and the temperature controls can vary
across world regions 𝑅. Regressions are weighted by the number of active workers in a city during the current month. Standard errors
clustered at the city level are reported in parentheses. Unadjusted p-values and p-values adjusted for multiple hypothesis testing according
to the Benjamini-Hochberg procedure are shown in squared and curly brackets, respectively. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In Column 4 of Table 2 we explore the contribution of the extensive margin to the over-

all reduction in work quantity. The dependent variable is an indicator for a positive activity

level, i.e., ✶{actions𝑖𝑑 > 0}. For both measures of pollution, we find negative point estimates
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whose magnitude implies that the extensive margin effect contributes approximately 11-17%

to the full reduction in actions. The estimate is statistically significant only for the dummy

indicating PM2.5 concentration above the 75th percentile. Hence, the extensive margin does

explain part of the effect on output, but the intensive margin response is quantitatively much

more important. This result is plausible given that our sample of GitHub users likely comprises

mostly young and middle-aged adults. They are unlikely to suffer severe health damages from

short-run pollution exposure which prevent them from working, especially at moderate levels

of concentration, but rather subtle effects on health and cognitive function.

Since we derived our main results by testing eight hypotheses, we also report significance

levels that correct for multiple hypothesis testing following the Benjamini-Hochberg proce-

dure in Table 2.

In Columns 1 to 3 of Table A.7 we present results from estimating the model in Equation (1)

by OLS for the three main measures of output quantity to assess the direction and size of the

bias. We obtain negative estimates for total actions and commits with both PM2.5 in µg/m3

and the binary indicator for unusually high pollution levels, but they are significantly different

from zero only when using the binary regressor. The results replicate the pattern that effects

on commits are larger than on comments. Mirroring a common finding in the literature on

short-run impacts of air pollution exposure, all estimates are substantially smaller than the

2SLS results, pointing towards attenuation bias due to measurement error. The ratio of 2SLS-

to-OLS estimates ranges between 7 and 13 across specifications.32 In Table A.8 we re-do the

OLS analysis on the extended sample of 220 cities. Results are almost identical for the binary

indicator, but the coefficients also attain statistical significance with the continuous regressor.

Effect Magnitude. We conduct three exercises to assess the magnitude and the economic

relevance of the estimates. Firstly, we compare the impact of PM2.5 concentration above the

75th percentile on developers’ output to the effect of another highly relevant environmental

shock, exposure to extreme outdoor temperatures.33 Secondly, we compute elasticities based

on the estimated effect of PM2.5 on commits and total actions and compare these to elasticities

found in previous studies on other occupations. Finally, we leverage the information from

Gitcoin to translate the effects into monetary damages.

Figure 6a reproduces the estimated effects of PM2.5 concentration exceeding the 75th per-

centile on actions, commits, and comments in graphical form (point estimates with 95% confi-

dence intervals displayed in black on the right). In addition, coefficients from OLS regressions

of the same outcomes onmaximum daily temperature are presented. The regressors of interest

32This is in line with e.g. 2SLS-to-OLS ratios found by Deryugina et al. (2019).
33This is motivated by recent findings that, in the U.S., heat exposure exerts adverse effects, e.g., on student

performance on high stake exams (Park, 2020), on sentiment among Twitter users (Baylis, 2020), and on mental
health (Mullins and White, 2019). Please refer to these papers for more complete overviews of this literature and
potential mechanisms.
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(a) Effects of PM2.5 and Heat on Work Quantity

(b) Effects of Air Pollution Across Occupations

Figure 6: Effect Magnitude

Note: Figure 6a reproduces the estimated effects of a PM2.5 concentration exceeding the city-specific 75th percentile on actions, commits, and
comments from Panel B of Table 2 in graphical form (point estimates with 95% confidence interval displayed in black on the right). The colored
lines represent estimates from an OLS regression of the same outcomes on maximum daily temperature measured by eight dummy variables
indicating whether maximum daily temperature falls in a specific percentile range, as displayed on the x-axis. The reference category is a
maximum temperature value between the 35th and the 65th percentile. The shaded areas are 95% confidence bands. Control variables are
eight corresponding dummies for minimum daily temperature, third-order polynomials for precipitation, wind speed, and relative humidity,
indicators for heavy wildfire smoke and holidays, as well as city, day-of-week, and year-by-month fixed effects. Day-of-week and year-by-
month fixed effects can vary across world regions 𝑅. Standard errors are clustered at the city level and regressions are weighted by the
number of active workers in a city in the current month. Figure 6b shows the elasticities of commits and actions with respect to PM2.5,
based on the estimates in Columns 1 and 2 of Table 2. Besides, it presents elasticities of performance with respect to air pollution from other
studies, in particular: Künn et al. (forthcoming) (Chess players), Sarmiento (2022) (Judges), Kahn and Li (2020) (Judges (2)), Chang et al. (2019)
(Call center agents), He et al. (2019) (Textile Workers (2)), Adhvaryu et al. (2022) (Textile Workers), Chang et al. (2016) (Pear Packers), and
Graff Zivin and Neidell (2012) (Fruit pickers).
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are eight dummy variables indicating whether maximum daily temperature falls into a specific

percentile range, as displayed on the x-axis. The reference category is a maximum temperature

value between the 35th and the 65th percentile. In addition, regressions control for minimum

daily temperature, measured in the same way, further weather controls and fixed effects as

in Equation (1). For all three outcomes, the effects of temperature follow the familiar inverse

u-shape: Both unusually cold and unusually hot temperatures have adverse effects, but only

the impact of heat is statistically significant.34 Even though the developers in our samples

might work in climate-controlled office buildings, exposure to heat during commuting times

or while running other errands might plausibly generate these negative effects. Importantly,

for both commits and total actions, the point estimate on the PM2.5 dummy is more than twice

as large as the point estimate for the highest temperature bin which reflects maximum daily

temperature above the 95th percentile.35 The IV estimates (PM2.5) are less precise than the

OLS estimates (temperature), but still, even the lower bounds of the 95% confidence intervals

on the pollution effects are as large as or even exceeding the point estimates for heat. Hence,

the adverse productivity effects of poor air quality exceed those of extreme temperatures, an

environmental shock of high relevance given climate change.

Next, we compute elasticities of total actions and commits w.r.t. PM2.5 based on the esti-

mates in Panel A of Table 2. We obtain elasticities of -.014 and -.025 for actions and commits,

respectively. These values, along with elasticities of productivity or performance found in pre-

vious studies, are depicted in Figure 6b.36 Given that these estimates are derived from very

different settings and rely on different approaches (IV vs. OLS estimation, measurements of

indoor vs. outdoor pollution), we need to proceedwith cautionwhen drawing comparisons be-

tween them. However, it stands out very clearly that our estimates are at the lower end of the

range of effect sizes found so far. In particular, the effect on developers’ output is much smaller

than the estimates for judges and chess players, who are also engaged in cognitively demand-

ing tasks. As outlined above, a potential explanation is that chess players and judges face more

inflexible settings, namely chess tournaments and court hearings. These circumstances offer

no possibility to adapt working hours or the choice of tasks to productivity shocks. This is

very different in our setting, and we provide evidence on worker adjustment to an increase

in PM2.5 in Section 5.3. This underscores the importance of our analysis: It might be mislead-

ing to draw conclusions on the total economic cost of air pollution based on the estimates for

cognitively-demanding tasks in highly inflexible settings because in many high-skilled occu-

pations workers have at least some degree of flexibility in organizing their work day.

Even though productivity effects are small in comparison to other contexts, they might

34This is unsurprising given that by analyzing the effects of maximum daily temperature, we can better capture
the impact of heat than the effect of cold, and, especially in Europe, not all office buildings are equipped with air
conditioning, while heating devices are omnipresent.

35Median maximum temperature in this bin is 30.5° C, while the median value in the omitted bin is 16.9° C.
36Air pollution is measured by PM2.5 in all cases except for call center agents and fruit pickers.
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still be economically relevant, given that software development is a high-paying occupation

generating large economic value. We use the average monetary value of commits and PRs

opened (derived in Section 3.3) to translate the estimated negative effects of PM2.5 exposure

on these two outcomes into changes in output value.37 For a within-city standard deviation

increase in PM2.5 (11.8 µg/m
3) the implied reduction in daily output value amounts to $4.06

per software developer. This is of the same order of magnitude as effects reported by Chang

et al. (2016) who find that a 10 µg/m3 increase in PM2.5 reduces hourly output among pear

packers by $0.41, which would imply a damage of $3.28 for a working day of eight hours. On

days when PM2.5 concentration exceeds the city-specific 75th percentile output value falls by

$11.0 relative to days with better air quality. Given that we ignore losses from reductions in

task complexity in the calculation (see below), these estimates can be interpreted as a lower

bound.

In summary, the impact of air pollution shocks on productivity exceeds the effect of heat.

In comparison to other professions, the effect of particulate matter is relatively small, pointing

towards an important role of worker adaption in flexible work environments. Economically,

the productivity effects are nevertheless relevant, given the high monetary value of software.

Effect Dynamics. The existing literature on air pollution and worker productivity found

mixed results on the lagged impact of exposure. He et al. (2019) show evidence for lagged

effects of PM2.5 and SO2 on the productivity of textile workers in industrial towns in China,

while Künn et al. (forthcoming) find that chess players’ performance is unaffected by pollu-

tion exposure on the previous days. To explore effect dynamics in our setting, we regress the

three measures of output quantity on eleven dummies indicating whether wind was blow-

ing to city 𝑐 from the high-pollution direction on day 𝑑 and each of the previous ten days,

WDir highPM𝑐,𝑑−𝑘 , where 𝑘 ∈ {0, 1, . . . , 10} denotes the lag order. To identify this direction

for each city-group 𝑔, we run the first stage model with the level of PM2.5 concentration as

outcome and five dummies for average daily wind direction falling into a specific 60° bin as

instruments, interacted with the city-group indicators.

Appendix Table A.9 shows estimated coefficients from the łreduced form” model for total

actions, commits, and comments, including just the indicator for the same day,WDir highPM𝑐,𝑑 .

The signs and significance of the estimated coefficients are in line with the 2SLS results. The

first stage effect, reported at the bottom of the table, implies that wind from a city’s high-

pollution direction raises PM2.5 concentration on average by 3.7 µg/m3 relative to days where

wind arrives from another direction. While this approach is much less flexible than our main

2SLS model, it captures the underlying idea in a single variable and thus allows us to easily

37As stated in Section 3.3 we work with an average monetary value of $112 per commit. In the case of PRs,
we do not use the mean value of $354 found in the Gitcoin data because PRs in that sample are larger on average
than PRs created in our main analysis sample. Instead, we value PRs with 2.78 × $112 = $311 given that they
comprise, on average, 2.78 commits.
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analyze effect dynamics by including lags. Since we are mostly interested in qualitative results

– does lagged exposure reduce productivity or does it induce developers to work more in order

to catch up – we opt for this approach.

The distributed lag model we use to explore effect dynamics includes the same covariates

as our main contemporaneous model plus ten lags of weather conditions and is given by:

𝑦𝑐,𝑑 =

10∑︁

𝑘=0

𝛽𝑘WDir highPM𝑐,𝑑−𝑘 +

10∑︁

𝑘=0

w’𝑐,𝑑−𝑘𝛾𝑘 +𝜇𝑐 +𝜇𝑅(𝑐),𝑦𝑟 (𝑑),𝑚(𝑑) +𝜇𝑅(𝑐),𝑑𝑜𝑤 (𝑑) +𝛿𝑅ℎ𝑐,𝑑 +𝜀𝑐,𝑑 (3)

From the corresponding estimates 𝛽𝑘 , we compute the cumulative effect of exposure to

wind from the high-pollution direction for 𝑠 consecutive days,
∑𝑠

𝑘=0 𝛽𝑘 for 𝑠 = 0, 1, . . . , 10,

which we plot in Figure 7.

Figure 7: Effect Dynamics: WorkQuantity

Note: The plots depict estimates of the cumulative effect of wind blowing from the high-pollution direction on three measures of work

quantity. Effects are derived from a distributed lag model and given by
∑

𝑠

𝑘=0 𝛽𝑘 for 𝑠 = 0, 1, . . . , 10. The x-axis denotes the number of days
over which the cumulative effect is computed. Shaded areas represent 95% confidence intervals. Regressions control for city, Region-by-day-
of-week, and Region-by-year-by-month fixed effects, a holiday indicator, and weather controls for the current day and ten lags (third-order
polynomials in mean daily temperature, precipitation, relative humidity, and wind speed). Regressions are weighted by the number of active
workers in a city during the current month and standard errors are clustered at the city level.

For both total actions and commits, same-day exposure to pollution generates negative

and significant effects. The cumulative effect magnitude grows monotonically up to the third

lag. The current day effect of WDir highPM𝑐,𝑑 is estimated to be -.018 for total actions and

-.007 for commits. After four consecutive days of wind from the high-pollution direction, the

cumulative effect is -.037 and -.022, respectively. For more prolonged exposure the point esti-

mate of the cumulative effect remains rather constant but becomes noisier, likely due to serial

correlation in the wind direction variable. For commits, there is no decline in the cumulative
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effect magnitude at higher lags, i.e., no evidence that developers completely make up for the

output loss within the first ten days after exposure. After ten days, the point estimates for

commits and total actions are still negative and as large as or even larger than the point es-

timate for same-day exposure. For comments, the cumulative effect always remains close to

zero throughout the full time window.

In sum, pollution exposure generates an adverse effect on current-day output and, to a

smaller extent, also reduces productivity on the following three days. Compared to health

impacts, the productivity effects are rather immediate.38

5.2 Work Quality

So far, we have shown that exposure to PM2.5 reduces the quantity of output developers pro-

duce per day. In high-skill jobs, output quality is of major relevance and might also be affected

by pollution shocks.

Table 3 displays 2SLS estimates of the effect of PM2.5 on two measures of work quality. The

first is the share of all PRs a user opened on a given day that is later merged, i.e., accepted. PR

rejections suggest issues with code quality or style, indicating low work quality. The second

is the share of commits made by a user on a given day that were later reverted. Commit

reversals point toward severe errors that cannot easily be corrected in follow-on commits,

i.e., major issues with the work quality. Sample sizes are reduced relative to the results on

output quantity, because the outcomes are only defined for city×day observations with any

PRs opened and any commits, respectively. Moreover, information on commit reversals is

from the GHArchive data which is only available from 2015 onward.

We find small, insignificant point estimates for both outcomes when using PM2.5 in µg/m3

as regressor. PRs opened on days when PM2.5 concentration exceeds the 75th percentile, are

0.8 p.p. more likely to get accepted. This represents an increase of 1.3% relative to themean, i.e.,

a small improvement in work quality. Estimates remain insignificant for the share of commits

that are reverted, but the negative sign is also in line with minor reductions in error frequency.

The null effect on quality contrasts with findings by Archsmith et al. (2018) who show that

baseball umpires conduct more errors when exposed to higher pollution levels. In the next

section, we present evidence that developers change their work patterns when exposed to

high levels of pollution. This form of adaptation might explain why effects on output quantity

are relatively modest and quality is unaffected in this flexible high-skilled setting.

38Barwick et al. (2018) for instance find that PM2.5 exposure raises medical expenditures up to 90 days post
exposure.
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Table 3: Effect of PM2.5 on WorkQuality

Share PRs merged Share Commits reverted

(1) (2)

Panel A.

PM2.5 0.00013 −0.0000004
(0.00019) (0.00001)

First Stage F-Stat. 56.0 78.8
% change in Y 0.19 - 0.02

Panel B.

✶{PM2.5 > 𝑄0.75} 0.0083∗∗ −0.00015
(0.00399) (0.00022)

First Stage F-Stat. 42.9 61.1
% change in Y 1.3 -8.2

Observations 135,433 215,728
Mean Dep. Var. 0.665 0.002

Note: The table presents IV estimates of the parameter 𝛽 in Equation (1). The outcome in Column (1) is defined as the share of all PRs
opened by a developer on a given day that later gets accepted. The outcome in Column (2) is defined as the share of all commits made
by a developer on a given day that later get reverted, i.e., undone (see Section 3 for details). In Panel A, the regressor of interest is PM2.5

concentration measured in µg/m3. In Panel B, a binary variable is used instead, which takes a value of one if city×day PM2.5 concentration
exceeds the city-specific 75th percentile. The first stage specification is given in Equation (2). Covariates include eight bins for mean daily
temperature, third-order polynomials in wind speed, precipitation, and relative humidity, indicators for heavy wildfire smoke and holidays,
as well as city, day-of-week, and year-by-month fixed effects. Day-of-week and year-by-month fixed effects and the temperature controls
can vary across world regions 𝑅. Regressions are weighted by the number of active workers in a city during the current month. Standard
errors clustered at the city level are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

5.3 Worker Adjustment

In this section, we investigate whether work patterns change in response to increases in par-

ticulate pollution. We consider two potential margins of adjustment, task choice and working

hours.

Switching to Easy Tasks. We analyze whether developers switch towards easier tasks

when exposed to higher levels of pollution, for both activities related to issues, i.e., interactive

tasks, and activities related to pull requests, i.e., coding and review tasks. Table 4 presents

estimates of the impact of pollution on the share of issue events completed that refer to an

easy issue (Column (1)). As this outcome is only defined for city×day observations with non-

zero issue events (issue opened, closed, or reopened, or a comment written on an issue), the

number of observations is reduced. We find that the share of events referring to easy issues

increases if PM2.5 concentration rises. In terms of magnitude, an increase in pollution by one

within-city standard deviation raises the share by 2.6%. On days when fine particulate matter
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Table 4: Effect of PM2.5 on Task Complexity

Share Easy Lines added Lines deleted Files changed

Issue Events Issue Events per PR per PR per PR

(1) (2) (3) (4) (5)

Panel A.

PM2.5 0.00015∗∗ −0.00046 −0.0013 −0.0013 −0.0010∗∗

(0.00007) (0.00041) (0.0008) (0.0010) (0.0004)
[0.036] [0.264] [0.112] [0.202] [0.017]

First Stage F-Stat. 86.3 102.1 62.1 62.1 62.1
% change in Y 0.2 -0.5 -0.1 -0.1 -0.1

Panel B.

✶{PM2.5 > 𝑄0.75} 0.0032∗∗ −0.0219 −0.0404∗∗ −0.0196 −0.0244∗∗

(0.0015) (0.0134) (0.0181) (0.0214) (0.0098)
[0.028] [0.105] [0.027] [0.362] [0.014]

First Stage F-Stat. 66.1 80.5 45.6 45.6 45.6
% change in Y 4.9 -2.4 -4.0 -2.0 -2.4

Observations 250,376 353,445 164,883 164,883 164,883
Mean Dep. Var. 0.067 0.90

Note: The table presents IV estimates of the parameter 𝛽 in Equation (1). The outcome in Column (2) is defined as the sum of actions referring
to issues, i.e., the number of issues opened, closed, reopened, and the number of issue comments written. The outcome in Column (1) is defined
as the ratio of the number of these activities which refer to an issue classified as easy based on issue labels (see Section 3 for details) and the
total number of issue events. In Columns (3) to (5), outcomes are defined as the average number of lines of code files changed, number of new
lines of code added, and number of lines of code deleted across all PRs a developer opened, closed, or commented on. Inverse hyperbolic sine
transformations are applied to these outcomes. In Panel A, the regressor of interest is PM2.5 concentration measured in µg/m3. In Panel B, a
binary variable is used instead, which takes a value of one if city×day PM2.5 concentration exceeds the city- specific 75th percentile. The first
stage specification is given in Equation (2). Covariates include eight bins for mean daily temperature, third-order polynomials in wind speed,
precipitation, and relative humidity, indicators for heavy wildfire smoke and holidays, as well as city, day-of-week, and year-by-month fixed
effects. Day-of-week and year-by-month fixed effects and temperature controls can vary across world regions 𝑅. Regressions are weighted
by the number of active workers in a city during the current month. Standard errors clustered at the city level are reported in parentheses.
P-values are reported in brackets. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

levels exceed the city-specific 75th percentile, the variable even increases by 4.9% of the mean,

or 0.32 percentage points.

In the second column, we analyze how the denominator of the share changes. Consis-

tent with earlier results on the impact of PM2.5 on interactive tasks, we find no statistically

significant effect on the number of issue events. Thus, changes in the share of easy issue

events are not driven by changes in the denominator, but by a switch towards more easy issues

for a relatively constant activity level with respect to issue events. When hit by a pollution-

induced productivity shock, developers seem to exploit the fact that certain issue labels provide

a prominent signal of issue complexity to focus on easier tasks.

This finding is corroborated when we consider the complexity of PRs in Columns (3) to (5).

We consider three PR characteristics: lines of code added, lines of code deleted, and number of

files changed, averaged across all PRs a developer worked on a given day.39 While there can

39These variables are based on GHArchive data, whereas work quantity results used GHTorrent data.

33



be very difficult tasks that involve a lot of thinking but require only small changes in the code,

we believe that these variables provide reasonable proxies of PR complexity. Fixing a severe

bug for instance likely requires changes in different parts of the source code, which implies

a larger number of files changed. Results presented in Table C.3 indicate that PRs with more

lines of code added and files changed are rewarded higher payments on Gitcoin, validating

the use of these variables as complexity metrics. Similarly, reviewing a PR is more demanding

when it contains large changes across different files. The characteristics we use to measure

complexity are prominently displayed when opening a PR on GitHub, such that reviewers can

easily assess them and jugde their difficulty level.

We apply the inverse hyperbolic sine transformation to the outcome variables such that

coefficients approximate percentage changes. The sample size is reduced relative to previous

tables because the outcomes are defined only for city×day observations with a positive num-

ber of PRs opened, closed, or commented on. Point estimates are negative across all three

outcomes and the two distinct measures of air pollution. On days with unusually high PM2.5

levels, the number of files changed falls by 2.4%, while the number of lines added drops by 4%.

The effect on the number of lines deleted is also negative, but only half as large and not signif-

icantly different from zero. This pattern is plausible since tasks related to deleting code, e.g.,

cleaning or polishing a file or dropping a deprecated or redundant part, are often easier than

creating new code. The pattern is similar for the continuous regressor, but the effect on new

lines added is not significant at conventional levels, indicating that developers move towards

less complex tasks mostly in response to large productivity shocks on high-pollution days.

In sum, the results imply that, on top of the overall reduction in the number of actions

completed, developers switch towards less complex taskswhen exposed to high levels of PM2.5.

Thus, the estimates of monetary effects of air pollution exposure presented above provide a

lower bound, given that we found in Section 3.3 that less complex pull requests and those

addressing issues labeled as easy are rewarded lower payments, evenwhen holding the number

of commits constant.

This form of adjustment might also explain why the magnitude of effects on output quan-

tity is relatively small in comparison to results found for other occupations, and why work

quality is not adversely affected. We next present some evidence that switching to easier tasks

is indeed an adaptation strategy to surges in particulate matter exposure that allows develop-

ers to prevent large declines in work quantity. Table 5 presents results from a heterogeneity

analysis based on developer characteristics. Specifically, we combine tenure (time since regis-

tration on GitHub) and the number of followers at the point in time the developer enters our

sample into an index that represents their experience and popularity.40 We split the sample

GHArchive data is only available from 2015 onward. In Appendix Table A.10 we show that using data on pull
requests from GHArchive we can replicate the results presented in Table A.6 for PRs opened or closed measured
in the GHTorrent data.

40The index is computed as the average of tenure and the number of followers, after standardizing both vari-
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developers into terciles based on experience and run the IV regression at the developer×day

level (the second stage is given by Equation D.1). Panels A and B present results estimated

separately for the bottom and the top tercile, respectively.41

Table 5: Effect Heterogeneity by Experience

Share Easy Lines added Files changed

Actions Commits Comments Issue Events per PR per PR

(1) (2) (3) (4) (5) (6)

Panel A: Bottom Tercile of Experience

PM2.5 −0.0033∗ −0.0026∗∗ −0.0008 0.00035∗∗ −0.0022 −0.0019∗∗

(0.0017) (0.0011) (0.0008) (0.00014) (0.0015) (0.0009)

First Stage F-Stat. 3187 3187 3187 586 211 211

% change in Y -0.12 -0.19 -0.10 0.47 -0.22 -0.19

Observations 4,774,247 4,774,247 4,774,247 900,318 327,297 327,297

Mean Dep. Var. 2.48 1.24 0.77 0.074

Panel B: Upper Tercile of Experience

PM2.5 −0.0062∗∗∗ −0.0044∗∗∗ −0.0009 0.0001 −0.0015 −0.0003

(0.0023) (0.0014) (0.0010) (0.0001) (0.0023) (0.0013)

First Stage F-Stat. 3010 3010 3010 756 222 222

% change in Y -0.18 -0.30 -0.06 0.17 -0.15 -0.03

Observations 4,387,377 4,387,377 4,387,377 1,105,410 324,527 324,527

Mean Dep. Var. 3.16 1.37 1.15 0.061

Note: The table presents IV estimates of the parameter 𝛽 in equation (D.1). Inverse hyperbolic sine transformations are applied to outcomes in
Columns 5 and 6. The regressor of interest is PM2.5 concentration measured in city-specific standard deviations. The first stage specification
is given in equation (2). Covariates include eight bins for mean daily temperature, third-order polynomials in wind speed, precipitation, and
relative humidity, indicators for heavy wildfire smoke and holidays, as well as developer, day-of-week, and year-by-month fixed effects.
Day-of-week and year-by-month fixed effects and temperature controls can vary across world regions 𝑅. Standard errors clustered at the
city level are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The first three columns display estimated effects of PM2.5 on the three primary measures

of work quantity. Point estimates for total actions and commits are negative in both samples,

but larger in absolute terms as well as relative to the sample means for the most experienced

developers. Effects on comments are not significantly different from zero in either sample. For

the adaptation variables examined in the last three columns, the pattern is reversed: While the

direction of the effects is again the same in both samples, effects are now stronger among the

less experienced developers and not significantly different from zero in the upper tercile.

These results confirm that switching to easier tasks is a form of adjustment to pollution-

induced productivity shocks among highly-skilled workers. A potential reason why the least

ables.
41Median tenure (number of followers) is 1.4 years (11) in the bottom tercile and 5.7 years (31) in the upper

tercile.
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Table 6: Working Hours

Time of Last Action (minutes) Share of Actions after 6 pm

(1) (2)

Panel A.

PM2.5 −0.226∗∗∗ −0.0001

(0.085) (0.0001)

[0.009] [.147]

First Stage F-Stat. 96.1 96.1

Panel B.

✶{PM2.5 > 𝑄0.75} −4.162∗∗ −0.002

(2.061) (0.003)

[0.045] [.368]

First Stage F-Stat. 73.9 73.9

Observations 302,575 302,575

The table presents IV estimates of the parameter 𝛽 in Equation (1). In Panel A, the regressor of interest is PM2.5 concentration measured in
µg/m3. In Panel B, a binary variable is used instead, which takes a value of one if city×day PM2.5 concentration exceeds the city-specific
75th percentile. The outcome variables are the timestamp of the last action conducted by a developer on a given day in minutes in
Column (1), and the share of all activities conducted after 6 pm in Column (2). Estimates are based on all developer×date observations
with at least one recorded action in Column (1) and at least two recorded actions in Column (2). The first stage specification is given in
Equation (2). Covariates include eight bins for mean daily temperature, third-order polynomials in wind speed, precipitation, and relative
humidity, indicators for heavy wildfire smoke and holidays, as well as city, day-of-week, and year-by-month fixed effects. Day-of-week
and year-by-month fixed effects and the temperature controls can vary across world regions 𝑅. Regressions are weighted by the number
of active workers in a city during the current month. Standard errors clustered at the city level are reported in parentheses. P-values are
reported in brackets. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

experienced developers show a stronger adjustment response might be that they have the

largest incentive to keep up a high activity level because the number of actions performed

per day in public repositories is visualized on a user’s GitHub profile and might be an impor-

tant signal to peers or potential employers. Work complexity on the other hand is less easily

observable.

Working Hours. A second potential adjustment margin available in flexible work environ-

ments is a change in working hours. We start by analyzing whether developers expand or

reduce activity in the evening in response to increasing pollution exposure. Table 6 presents

the estimated effects of PM2.5 on the timestamp of the last action performed by a developer on

a given day (in minutes) and on the share of total actions conducted after 6 pm.42

We find that developers on average end the work day 0.23 minutes earlier in response to an

increase in PM2.5 concentration by 1 µg/m3. On days with PM2.5 levels above the city-specific

75th percentile, the work day ends 4.2 minutes earlier than on days with better air quality. To

42These outcomes are only defined for developer×day observations with at least one action, which explains
the reduction in sample sizes.
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put this into perspective, we approximate the average time spent per action as

1

𝑁

∑︁

𝑖

∑︁

𝑑

(
timestamp(last action𝑖,𝑑) − timestamp(first action𝑖,𝑑)

)
/
(
number of actions𝑖,𝑑 − 1

)

where 𝑁 denotes the number of developer×date observations with at least two actions. This

yields an average of 72.5 minutes spent per action.43 Point estimates for the share of actions

conducted in the evening are also negative, but small and not statistically significant. Sub-

tle effects of pollution might make developers feel unproductive, inducing them to end their

work activity earlier on high-pollution days due to reduced opportunity cost of leisure time. If

PM2.5 exposure, e.g., triggers headaches or fatigue, developers might experience this as an off

day and decide to reallocate work to days when they perform better. In many jobs, knowledge

workers are very flexible in when and where they want to work. Thus, shifting work intertem-

porally from low productivity days to the weekend, a period with relatively low activity levels

and thus scope for compensation (see Figure 2), might be an important adjustment margin in

these settings. To investigate this, we estimate the effect of PM2.5 exposure during the first

half of the workweek on output produced on the weekend. This analysis is conducted at the

developer×week level, using the following, slightly modified, regression model.

𝑦weekend𝑖,𝑐,𝑤 = 𝛽PMMo-We
𝑐,𝑤 + 𝜇𝑖 + x

′
𝑖,𝑡𝜋 +w

′weekend
𝑐,𝑤 𝛾 +w

′Mo-We
𝑐,𝑤 𝛼 +

𝛿𝑅(𝑐)ℎ𝑐,𝑤 + 𝜇𝑅(𝑐),𝑦𝑟 (𝑤),𝑞(𝑤) + z
′
𝑐,𝑤𝜑 + 𝜀𝑖,𝑐,𝑤

(4)

𝑦weekend𝑖,𝑐,𝑤 denotes the sum of actions conducted by developer 𝑖 living in city 𝑐 on the week-

end of week 𝑤 . 𝑃𝑀Mo-We
𝑐,𝑤 is a measure of PM2.5 concentration in city 𝑐 between Monday and

Wednesday of week𝑤 . Specifically, we consider average PM2.5 concentration or the number of

days with PM2.5 concentration exceeding the city-specific 75th percentile. Due to the finding

that exposure to pollution exerts negative effects on output not only on the same day, but also

over the next two to three days, we focus on PM2.5 during the first half of the workweek to

make sure that we pick up developers’ behavioral adjustment to a productivity shock during

the workweek, and do not confound it with physiological effects.

Pollution is instrumented by the same variables as described in Equation (2), with the only

difference that wind direction 𝜃𝑐,𝑤 is averaged between Monday and Wednesday. To account

for auto-correlation in the instruments, we add the vector z𝑐,𝑤 to the model, which includes the

instrumental variables measured on the weekend and onThursday to Friday. This ensures that

we do not pick up the effects of wind direction-induced changes in pollution on the weekend

itself or the days immediately before. The model further includes a developer fixed effect 𝜇𝑖 ,

a region-by-year-by-quarter fixed effect, 𝜇𝑅(𝑐),𝑦𝑟 (𝑤),𝑞(𝑤) , the number of public holidays during

the workweek, ℎ𝑐,𝑤 , a vector x
′
𝑖,𝑡 of bin variables capturing the developer’s tenure on GitHub,

43Importantly, this computation gives the time input including breaks, as we cannot disentangle time spent
working on activities and breaks.
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Table 7: Effect of PM2.5 in the First Half of the Workweek on Weekend Work

Actions Commits Comments

(1) (2) (3) (4) (5) (6)

Panel A.

PM2.5 0.0043 0.0133∗∗ 0.0017 0.0062∗∗ 0.0016 0.0037∗∗

(0.0030) (0.0055) (0.0017) (0.0030) (0.0012) (0.0019)

[0.158] [0.016] [0.308] [0.041] [0.158] [0.048]

First Stage F-Stat. 1406 1147 1406 1147 1406 1147

Panel B.

High PM2.5 Days 0.0630∗∗∗ 0.1362∗∗∗ 0.0268∗ 0.0646∗∗∗ 0.0213∗∗ 0.0341∗∗∗

(0.0225) (0.0321) (0.0136) (0.0207) (0.0084) (0.0107)

[0.006] [.00004] [0.051] [0.002] [0.013] [0.002]

First Stage F-Stat. 1455 801 1455 801 1455 801

Observations 2,011,797 1,352,191 2,011,797 1,352,191 2,011,797 1,352,191

Weeks all only low PM all only low PM all only low PM

weekends weekends weekends

Note: The table presents IV estimates of the parameter 𝛽 in equation 4. Outcomes are the sum of all actions, commits, and comments made
on the weekend, respectively. In Panel A, the regressor of interest is average PM2.5 concentration between Monday and Wednesday. In
Panel B, the count of days on which the city×day PM2.5 concentration exceeds the city- specific 75th percentile during this period is used
instead. The first stage specification is given in equation 2. Regressions control for developer and region-by-year-by-quarter fixed effects,
the number of public holidays during the workweek, and the leads of the instrumental variables for both the weekend and the period from
Thursday to Friday. Further covariates are the number of days with heavy wildfire smoke, and third-order polynomials in average wind
speed, precipitation, and relative humidity during both the weekend and the period between Monday and Wednesday. Temperature controls
are included in the form of eight bin variables for the period Monday to Wednesday, and in the form of a third-order polynomial for the
weekend, and are allowed to vary across regions 𝑅. Standard errors clustered at the city level are reported in parentheses. P-values are
reported in brackets. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

and two sets of weather controls, wMo-We
𝑐,𝑤 and w

weekend
𝑐,𝑤 , covering the exposure period and the

weekend, respectively.44

Table 7 presents estimates of coefficient 𝛽 . Results in Columns (1), (3), and (5) indicate

that developers produce significantly more output on weekends if they were exposed to un-

usually high levels of PM2.5 between Monday to Wednesday of the same week (Panel B). In

terms of magnitude, one additional day with PM2.5 concentration exceeding the city-specific

75th percentile causes an increase in total actions on the weekend by 0.063 or 2.1% of the

mean. Effects are positive and significant for both commits and comments, amounting to 1.6%

and 2.8% of the mean values, respectively. When we consider average PM2.5 concentration

between Monday and Wednesday instead, we find positive point estimates, but these are not

significantly different from zero. The compensation thus seems to be most relevant after high-

44
w

Mo-We
𝑐,𝑤 and w

weekend
𝑐,𝑤 both comprise the number of days with heavy wildfire smoke exposure as well as

third-order polynomials in average precipitation, relative humidity, and wind speed during the respective period.
w

Mo-We
𝑐,𝑤 further includes eight variables counting the number of days on which daily mean temperature is falling

into the temperature bins described above. wweekend
𝑐,𝑤 includes a third-order polynomial in average temperature.
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pollution days, which is consistent with the finding that unusually high pollution levels result

in disproportionately large declines in output quantity on the day of exposure.

In Columns (2), (4), and (6), we repeat the same analysis, but using only developer×week

observations with low pollution levels on the weekend, i.e., levels below the city-specific 75th

percentile on both days. We find substantially larger coefficients, indicating that developers

reallocate work from low to high productivity periods, i.e., weekends without air pollution-

induced productivity shocks.

To put these effects into perspective, we can compare the effect magnitudes with the es-

timates in Table 2 depicting the reductions in daily output due to same-day PM2.5 exposure.

Additional work on the weekend makes up for 33% and 57% of the reduction in commits and

total actions due to PM2.5 exceeding the 75th percentile, respectively.45

To check that the estimates in Table 7 do not pick up any effects of unobservable con-

founders, but indeed reflect a behavioral response of developers to pollution-induced produc-

tivity shocks, we conduct a falsification test. We shift both the weekend and the exposure pe-

riod forward by four days. The placebo weekend comprises Wednesday andThursday and the

placebo exposure period ranges from Friday to Sunday of the week before. Since activity lev-

els are low on weekends, productivity shocks on these days should not induce compensation

during the following week. Moreover, activity is already high on Wednesday and Thursday,

such that there is not much scope for additional work. Hence, we expect no significant effects

of PM2.5 exposure. Appendix Table A.11 presents the results which confirm this hypothesis.

Effects are neither significant in the full sample, nor when considering only placebo weekends

with low pollution levels.

In summary, we find that developers work more on weekends to catch up on coding tasks

not completed due to pollution-induced productivity declines during the workweek.46 The

opportunity for compensation might allow them to end work early on high-pollution work

days. This reallocation option could thus also contribute to the absence of effects on work

quality in this setting. If developers can end work when their health or cognitive capacity

deteriorates and they face an increased risk to commit errors, this will mitigate impacts of

pollution on work quality. At the same time, sacrificing leisure time on the weekend, when it

is likely most valuable, implies a welfare cost and potentially adverse effects on the work-life-

balance.

45In the case of comments, we find positive effects on weekend activity, even though there are no significant
reductions in comments due to pollution exposure. When developers work on the weekend because they are
behind on coding tasks, they might decide to also conduct some interactive actions given that they are active
on GitHub anyways, even though there was no negative effect of pollution exposure in this domain. This might
explain the positive effect for comments and the large coefficient for total actions relative to the direct effect.

46This result is similar to the finding by Hoffmann and Rud (2022) that workers in Mexico City reallocate labor
supply across days in response to changes in PM2.5. However, the authors find strong extensive margin effects
and show that reallocation likely serves as a strategy to avoid pollution exposure and its adverse health impacts.
In our setting focused on a global sample of high-skill tech workers reallocation is likely rather a response to low
productivity during high-pollution periods.
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Overall, worker adaptation likely plays an important role in explaining the modest effects

of PM2.5 on output. By focusing on easier tasks and reallocating work from high-pollution,

low-productivity to low-pollution, high-productivity periods, developers alleviate the impact

of the environmental shock.

6 Heterogeneity and Further Results

Our main results are based on a linear measure of PM2.5 concentration and an indicator for

unusually high levels. In this section, we exploit the large variation in air quality in our inter-

national sample to investigate whether effects on output arise across the full range of concen-

trations, and how they vary in intensity. Furthermore, we analyze effect heterogeneity based

on location characteristics, repeat our analysis at the monthly level, and conduct several ro-

bustness checks.

Non-Linearity. To analyze the shape of the dose-response function between PM2.5 and out-

put quantity, we replace PM𝑐,𝑑 in equation (1) with a series of dummy variables indicating

whether PM2.5 concentration falls into a specific bin.47 We estimate the model by OLS on

the extended sample of 220 cities. Since we cannot rely on exogenous variation in air qual-

ity due to wind direction in this analysis, we opt for a more conservative specification with

stricter fixed effects for region×date and city×month. These absorb (i) region-wide shocks

to developer output on a given date that might be correlated with PM2.5 concentration and

(ii) seasonal fluctuations in activity and air quality which are allowed to vary across cities.48

Given the finding that the OLS results underestimate the true effects, we need to bear in mind

that all results should be interpreted as reflecting lower bounds.

Figure 8 displays estimated effects of the PM2.5 bin variables on actions and commits. Es-

timated coefficients reflect the impact of moving from a PM2.5 concentration between 16 and

22 µg/m3 to the respective bin. The x-axis measures the average concentration within the bins.

The baseline bin is chosen to ensure that for each city some observations fall into this range.

For perspective, it falls below the EU limit value for PM2.5 during the sample period (25 µg/m3),

but above the EPA annual standard (12 µg/m3). We find significant negative effects starting

at a concentration of approximately 75 µg/m3, but no significant differences in the outcomes

for concentrations between the reference bin and 60 µg/m3. Being exposed to a PM2.5 level

below 5 µg/m3 has a significant positive impact on both total actions (point estimate = 0.038,

p-value = 0.061) and commits (point estimate = 0.020, p-value = 0.031). This implies that even

47Bins are defined for ≤ 5, (5-6], (6-8], (8-10], (10-13], (13,16], (16,22], (22,25], (25,28], (28,31], (31,35], (35,40],
(40,50], (50,60], (60, 70], (70, 85], (85,100], (100, 160] and > 160, all in µg/m3, with (16-22] as reference bin.

48OLS results from this model with either PM2.5 in µg/m3, or the binary indicator for PM2.5 above the city-
specific 75th percentile as regressors are presented Columns 4 to 6 of Tables A.7 and A.8 for the main sample and
the extended sample, respectively.
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in cities with low tomoderate levels of PM2.5, further improvements in air quality will generate

positive effects on worker productivity.

Figure 8: Non-linear effects of PM2.5 on WorkQuantity (OLS estimates)

Note: Plot depicts point estimates on different bins of PM2.5 concentrations from an OLS regressions of total actions (left) and commits (right),
respectively, on indicators for each bin. Covariates: Weather and holiday controls as in Equation 1, region×date and city×month fixed effects.
X-axis: Average PM2.5 concentration in each bin in µ𝑔/𝑚3. Shaded areas indicate 95%- and 90%-confidence intervals.

For both outcomes, the average slope of the function is larger than the estimate found in

the linear OLS specification, especially at low PM2.5 concentrations. To zoom in on the differ-

ent parts of the function, we split the sample into terciles based on cities’ average pollution

concentration. For each subsample we define seven bin variables for PM2.5 such that each bin

includes the same number of city×date observations. The reference category is given by the

lowest bin. Figure 9 presents the results, focusing on total actions for the sake of exposition.

In the subsample of cities in the bottom tercile, mean PM2.5 concentration ranges between

5.1 µg/m3 and 8.6 µg/m3. Most of the distribution falls below current regulatory thresholds.49

Moving from the lowest bin to higher concentrations generates significant negative effects

on output. The implied slope is -0.0044, i.e., much steeper than the estimate from the linear

specification on the full sample, and even exceeds the size of the 2SLS estimate. In the middle

tercile, by contrast, the estimates imply a flat slope. Average PM2.5 concentration in this sample

ranges between 8.7 µg/m3 and 13.0 µg/m3, and it includes mostly cities in the European Union

and the US. Among the most polluted cities in the upper tercile we again find a negative slope,

but less steep than in the low pollution subsample. This subsample includes most Asian and

Eastern European cities, as well as some cities in Western Europe, with mean concentration

49This subsample includes most cities in Australia, New Zealand, Scandinavia, and Canada and more than half
the cities in the US.
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Figure 9: Non-linear effects of PM2.5 on Work Quantity across subsamples based on average
PM2.5

Note: The Figure depicts point estimates on different bins of PM2.5 concentrations from OLS regressions of total actions on indicators for each
bin for three distinct samples. Cities are assigned into subsamples based on average PM2.5 concentration. Covariates: Weather and holiday
controls as in Equation 1, region×date and city×month fixed effects. X-axis: Average PM2.5 concentration in each bin in µg/m3. Shaded areas
indicate 95%- and 90%-confidence intervals.
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ranging between 13 µg/m3 and 133 µg/m3.

We are unable to pin downwhat drives the differences in the dose-response function across

samples. They might arise because of differences in the extent of measurement error or omit-

ted variable bias. Moreover, individuals in high-pollution cities might engage more strongly

in avoidance behavior and the use of protective devices such as air purifiers.50 An impor-

tant result, however, is that PM2.5 exposure exerts adverse effects on productivity even below

relatively strict current regulatory thresholds like those by the U.S. EPA. Given that the OLS

estimates likely underestimate the true effects of PM2.5 exposure, the results imply relevant

economic benefits from complying with the stricter WHO standard for PM2.5.

Effect Heterogeneity. Next, we analyze heterogeneity in the effect of fine particulate mat-

ter on work quantity by location characteristics in order to shed light on the distribution of

air pollution damages and on potential mechanisms driving the adverse productivity effects.

We start by analyzing how the effect of an increase in PM2.5 differs between places with

low vs. high average pollution levels. To this end, we compute the average PM2.5 concentration

for each first-stage city group 𝑔 and form two subsamples comprising city-groups with below

and above median average PM2.5 levels. We assign city-groups to the two subsamples instead

of single cities to ensure that the IV approach does not capture impacts of local pollution

transport such that we cleanly identify the causal effects of interest.

Average PM2.5 concentration is 7.9 and 18.6 µg/m3 in the two subsamples. Panel A of

Table 8 presents the estimated effects on total actions and commits. We find larger point

estimates in the low pollution sample. The impact on total actions, however, is not significant

at conventional levels, likely due to the reduced sample size. This confirms the result from the

OLS estimation of the dose-response function which also suggests stronger impacts at lower

pollution levels. As mentioned above, more frequent use of air purifiers and other protective

measures in high-pollution places might explain this result. Within the US, a similar pattern

has been found by Bishop et al. (forthcoming) who analyze the impact of PM2.5 on dementia.

Secondly, we investigate differences in effect magnitude between places with relatively

high vs. low income levels. We collect data on GDP per capita in 2014, the first year of our

sample period from the OECD, World Bank, and national statistical offices.51 As before, we

compute average values at the city-group level and assign groups into either the above or

below median subsample. Average GDP per capita amounts to $38,400 in the low-income

50There is anecdotal evidence that big (tech) companies equip their offices in highly polluted places with air
purifiers and filters, e.g., Microsoft, Google, SAP and Coca-Cola in Delhi or Nokia in Beijing.

51The main data source is the OECD’s database on metropolitan areas, available at stats.oecd.org/Index.a
spx?DataSetCode=CITIES. It provides GDP per capita for metropolitan areas, i.e., for some smaller cities in
our sample we do not have city-specific data, but instead assign the value for the respective metro area. Small
cities in Silicon Valley, e.g., Cupertino, Palo Alto, and Mountain View are assigned the GDP per capita reported
for Greater San Francisco. Data for cities outside OECD countries is collected from national statistical agencies,
the OECD regional statistics database, or the World Bank. Values are converted by the purchasing power parity
conversion factor to adjust for differences in local price levels.
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Table 8: Effect Heterogeneity

Actions Commits Actions Commits

(1) (2) (3) (4)

Panel A. Below Median PM2.5 Above Median PM2.5

PM2.5 −0.0055 −0.0040∗∗ −0.0027∗∗ −0.0024∗∗

(0.0037) (0.0016) (0.0011) (0.0009)

Observations 179,220 179,220 174,225 174,225
First Stage F-Stat. 107.4 107.4 102.4 102.4
Mean Dep. Var. 2.96 1.31 2.54 1.28
Mean PM2.5 7.9 7.9 18.6 18.6

Panel B. Above Median GDP per capita Below Median GDP per capita

PM2.5 −0.0031 −0.0025∗∗ −0.0030∗∗∗ −0.0024∗∗

(0.0022) (0.0011) (0.0011) (0.0010)

Observations 173,371 173,371 180,074 180,074
First Stage F-Stat. 88.9 88.9 113.4 113.4
Mean Dep. Var. 2.99 1.33 2.43 1.23
GDP 71,008 71,008 38,409 38,409
Mean PM2.5 9.4 9.4 17.9 17.9

Note: Estimated coefficients reflect 2SLS estimates of the parameter 𝛽 in Equation (1) for four distinct samples. The two samples used in Panel
A are constructed by comparing average PM2.5 concentration in each first stage city group 𝑔 to the median value. The two samples used in
Panel B are constructed by comparing average GDP per capita in 2014 in each first-stage city-group 𝑔 to the median value. Data on per capita
GDP is collected from the OECD, World Bank, and national statistical offices. The first stage specification is given in Equation (2). Covariates
include eight bins for mean daily temperature, third-order polynomials in wind speed, precipitation, and relative humidity, indicators for
heavy wildfire smoke and holidays, as well as city, day-of-week, and year-by-month fixed effects. Day-of-week, and year-by-month fixed
effects and the temperature controls can vary across world regions 𝑅. Regressions are weighted by the number of active workers in a city
during the current month. Standard errors clustered at the city level are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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sample, and $71,000 in the high-income sample. Results are reported in Panel B of Table 8. We

find that the point estimates for total actions and commits are of very similar magnitude in

the two subsamples. In relative terms, the effects are marginally stronger in the high-income

subsample.

Since GDP and air quality are systematically correlated, the two heterogeneity analyses

cannot identify distinct drivers of effect magnitude.52 The main takeaway message from the

two heterogeneity analyses is that we find no evidence that the effects of air pollution on high-

skilled worker productivity are more severe in disadvantaged locations. If anything, effects are

stronger in places with better air quality. Health impacts of particulate pollution, on the other

hand, are typically found to be larger in lower income and high-pollution locations (Colmer

et al., 2021; Hsiang et al., 2019). A potential explanation for why we do not find the same

pattern could be that we consider only individuals in a high-paying occupation.

Next, we investigate whether effect magnitude differs between places with low vs. high

awareness of air pollution as an important issue. We use data from the Pew Research Cen-

ter International Science Survey which was conducted in early 2020 across 20 countries with

several thousand interviewees per country. Survey participants were asked whether they be-

lieve that air pollution is a big, a moderate, a small, or no problem at all in their country.

As a country-wide measure of awareness, we compute the share of respondents stating that

air pollution is a big problem. Appendix Figure B.4 shows the distribution of this variable

across the 14 countries that are included in both our data and the survey and how it varies

with average PM2.5 concentration. 152 cities in our main sample are covered by the survey

data. We split these cities into three groups with low, intermediate, and high awareness.53

Table 9 presents 2SLS estimates for the effect of PM2.5 concentration on total actions for the

total sample covered by the survey data, and the three subsamples. Effects are negative and

significant across all samples, and importantly there is no clear gradient in awareness. In fact,

the point estimate is identical in the high and the low awareness samples. This suggests that

the reduction in output is not driven by avoidance behavior, e.g., working from home on high

pollution days which reduces productivity. In this case, we would expect to see larger effects

in the high awareness sample.

Lastly, we investigate effect heterogeneity based on the quality of the local building stock.

Effective exposure to particulate matter is likely lower for individuals inside modern buildings

with low penetration rates than for individuals in older, lower-quality buildings given the

same outdoor concentration. We use data on the construction period of residential dwellings

as a proxy for building stock quality. We collect data on building stock age from different

52In Appendix Figure B.3, we present the distribution of average PM2.5 concentration in the rich vs. poor city
groups and the distribution of GDP per capita in the clean vs. polluted city groups. Lower-income locations on
average have higher pollution levels.

53US cities form the intermediate awareness sample. Among US respondents, 63.1% believe that air pollution
is a big problem. All countries where a larger (smaller) share of respondents holds this view, are assigned to the
high (low) awareness subsample.
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Table 9: Heterogeneity: Awareness and Building Stock Age

Actions

Panel A. Awareness

High Intermediate Low

Total Awareness Awareness Awareness

PM2.5 −0.0043∗∗∗ −0.0035∗∗ −0.0083∗ −0.0035∗

(0.0012) (0.0014) (0.0042) (0.0020)

Observations 280,297 80,963 120,521 78,813
First Stage F-Stat. 98 90 67 115
Share AP is Big Problem 67.4% 78.1% 63.1% 51.6%
Mean PM2.5 11.0 16.2 8.7 9.5
Mean Dep. Var. 2.9 2.6 2.9 3.1

Panel B. Building Stock Age

Above Median Below Median

Total Old Building Share Old Building Share

PM2.5 −0.0039∗∗ −0.0044∗∗∗ −0.0025
(0.0015) (0.0016) (0.0031)

Observations 300,844 167,307 133,537
First Stage F-Stat. 102 124 93
Share modern buildings 28% 19% 38%
Share old buildings 44% 55% 32%
Mean PM2.5 10.4 9.7 10.9
Mean Dep. Var. 2.92 2.98 2.90

Note: Estimated coefficients reflect 2SLS estimates of the parameter 𝛽 in Equation (1) where the outcome variable is the number of completed
actions. Each Column is estimated on a different sample. In Panel A, the sample used in Column (1) includes all 153 cities covered by the
Pew Research Center International Science Survey. Results in Columns (2) to (4) are estimated on subsamples formed based on country-level
awareness of air pollution, measured by the share of respondents stating that air pollution is a big problem in the Pew Survey. In Panel B,
the sample used in Column (1) includes all 169 cities covered by data on building stock age. Results in Columns (2) to (3) are estimated on
subsamples formed based on the city-group level share of dwellings built before 1970, which are defined as old buildings. Modern buildings
are those build after 1990. The first stage specification is given in Equation (2). Covariates are as described in Table 8. Regressions are
weighted by the number of active workers in a city during the current month. Standard errors clustered at the city level are reported in
parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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national statistical offices, covering 164 out of the 193 cities in our main sample.54 For each

first-stage cluster, we compute the average share of dwellings built before 1970, i.e., the share

of relatively old buildings which likely have high indoor penetration rates. As before, we

then assign groups into subsamples based on whether the group level share of old buildings

is above or below the median value. Panel B of Table 9 presents regression results for the

full sample covered by the building stock data, as well as the two subsamples with above and

belowmedian share of old buildings. We find that the negative effect of PM2.5 on total actions is

driven by the sample with a relatively high share of old dwellings, whereas the point estimate

is not statistically significant and less than 60% as large in the subsample with relatively few

old buildings. The fact that effects are larger in places where effective exposure is likely higher

suggests that the main results are driven by physiological effects of air pollution, rather than

by behavioral changes or avoidance behavior.

Monthly Level. Next, we quantify the effect of PM2.5 on output at a more aggregate time

period, by estimating a model at the developer×month level. This is motivated by the findings

that pollution exposure has not only contemporaneous, but also some lagged effects on output,

and that developers partially compensate for the adverse productivity shocks byworkingmore

on weekends. We analyze effects on the same output quantity measures used before (actions,

commits, and comments). In addition, we consider effects on the growth rate of the number

of developers’ followers. We view this as a proxy for the quantity, quality, and relevance of

a developer’s work on GitHub because all these dimensions likely affect the decision of other

GitHub users about whether to follow the developer or not.

To explore effects at the monthly level, we need to adapt the IV strategy. We use three

variables measuring the share of days in month𝑚 with wind direction falling into a specific

90° bin, each interacted with indicators for the first-stage city-groups 𝑔, as instruments.

Table 10 presents the results. An increase in monthly PM2.5 concentration by 1 µg/m3

reduces the number of actions performed in that month by 0.17 or 0.21% of the mean. The

implied effect of an increase in PM2.5 by one µg/m3 on a single day is .0057, and thus slightly

larger than the effect found in the analysis at the daily level (.0032). Again, this effect is mostly

driven by a reduction in commits, which fall by 0.31% of the sample mean, while the reduction

in comments is small and insignificant. PM2.5 also negatively affects the growth rate of the

number of followers. The estimate implies a decrease of 1.5% relative to the mean rate. In sum,

exposure to air pollution has negative impacts on developers’ output also over a more aggre-

gate time period. It even slows down the process of gaining reputation in the tech community,

54Thedata is collected from the American Community Survey for metropolitan areas in the US, the EU Building
Stock Observatory for EU member states (country-level), the Federal Statistical Office of Switzerland (canton-
level), the Statistics Bureau of Japan (prefecture-level), Statistics Canada (province-level), and Statistics Norway
(municipality-level).
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which might have adverse long-run consequences for developers’ career paths.55

Table 10: Analysis at the Monthly Level

Actions Commits Comments Growth Rate(Followers)

(1) (2) (3) (4)

PM2.5 (monthly) −0.173∗∗ −0.125∗∗∗ −0.033 −0.00011∗∗∗

(0.076) (0.035) (0.045) (0.00003)
[0.024] [0.0005] [0.474] [0.0004]

F-Statistics 644 644 644 636
Observations 469,373 469,373 469,373 453,443
Mean Dep. Var. 84.3 39.3 28.3 .0072

Note: The table presents IV estimates of the effect of monthly PM2.5 concentration on the outcomes described at the top of the Table. The
excluded instruments are variables measuring the share of days in the month on which wind direction was blowing from one of three
90° angles, interacted with indicators for first-stage city groups 𝑔. Regressions control for developer and region-by-year-by-month fixed
effects, third-order polynomials in average monthly temperature, precipitation, relative humidity, and wind speed, the number of holidays
and days with heavy wildfire smoke at the city×month level. Temperature controls and effects of holidays are allowed to vary across re-
gions 𝑅. Standard errors clustered at the city level are reported in parentheses. P-values are reported in brackets. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Robustness Checks. In Appendix Tables A.12 to A.13 we show that our main results are

not sensitive to specific choices on how we set up the first and second stage models. We find

evidence for a reduction in output quantity—driven by fewer commits, but no or very small

changes in comments—and a switch towards easier issues and PRs in response to PM2.5 across

specifications.

First, we examine robustness to the specification of thewind direction instruments. Instead

of sin
(
𝜃𝑐,𝑑

)
and sin

(
𝜃𝑐,𝑑/2

)
, we use three indicator variables for average daily wind direction

falling into a specific 90° bin (south-west, south-east and north-east, with north-west as omit-

ted category), following Deryugina et al. (2019). The results are reported in Panels A and B of

Table A.12.

In Panels C and D, we report results from a specification where we used a k-means clus-

tering algorithm, instead of hierarchical clustering, to form the city-groups 𝑔 across which the

effects of wind direction are allowed to differ in the first stage. In both cases, results on work

quantity and task choice are very similar to the baseline results.

Secondly, we test robustness to the functional form chosen in the second stage model.

Table A.13 shows the estimated effects of PM2.5 when work output is measured by the inverse

hyperbolic sine transformation of total actions, commits, and comments, respectively (Panels

A and B). Again, the direction and statistical significance of the baseline results persist, but this

55Inspecting GitHub pages of potential employees is a common practice in hiring decisions in the tech sector
as described in several tech blogs, see e.g., https://techbeacon.com/app-dev-testing/what-do-job-seeking-devel
opers-need-their-github or https://blog.boot.dev/jobs/build-github-profile/.
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specification implies somewhat smaller effectmagnitudes. Panel C displays results when PM2.5

in logs is used as regressor. This yields a high F-Statistic and the same pattern for second-stage

effects on work quantity and task complexity as the baseline model.

In Table A.14 we show that the statistical significance of our results persists if we cluster

standard errors at the level of the city-groups 𝑔 across which the effects of wind direction are

allowed to differ in the first stage, instead of the city level.

Lastly, we demonstrate that the results are overall robust to changes in the included fixed

effects and weather conditions. Tables A.15 to A.18 show that across specifications with differ-

ent fixed effects absorbing common time shocks at different geographic and temporal levels,

and across specifications with more and less detailed weather controls, our main results hold.

Extended Sample. In Table A.19 we show that our core results also hold in the extended

sample including all 220 cities in our dataset and with instruments based on temperature in-

versions instead of wind direction. Specifically, we estimate the model in Equation 1, but use

a variable measuring inversion strength (as specified in Section 3) interacted with indicator

variables for geographic regions 𝑟 as instruments. We allow effects of inversions to vary ge-

ographically because the strength of the first stage effect varies based on baseline emissions

(Krebs and Luechinger, 2021). We form 15 regions 𝑟 to make sure that each region comprises

multiple cities and forms a homogenous geographic area.56 In Appendix Table A.19, we present

results for the outcomes measuring output quantity (Columns 1 to 3) and the outcomes mea-

suring whether developers switch to less complex tasks (Columns 4 to 6). Apart from the effect

on the share of issue events referring to an easy issue, which is small and insignificant, results

replicate the patterns we found in our main analysis and are of comparable magnitude.

7 Conclusion

How do environmental conditions, like fluctuations in air pollution, affect workers in jobs that

form the backbone of the modern knowledge economy? These jobs are focused on interper-

sonal and analytic tasks, often require strong social and digital skills, and are organized in a

way that gives workers flexibility in schedules and task choices. As digitization and automa-

tion continue to change the world of work, these job characteristics are expected to become

even more widespread.

In this paper, we use detailed data fromGitHub to study howparticulatematter affects daily

output and work patterns in a global sample of software developers—a high-skilled occupation

that can be considered as representative of the jobs of interest.

We provide evidence that pollution exposure reduces developer output. On a day with

56These groups are the four US census regions, Canada, China, India, South East Asia, Japan and South Korea,
Australia, New Zealand, Western, Eastern, Southern, and Northern Europe.
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unusually high pollution (PM2.5 concentration above the city-specific 75th percentile) the total

number of actions conducted by software developers falls by 4% relative to days with better air

quality. This effect is mostly driven by a reduction in individual coding activity, while the level

of collaborative activity is unaffected. Our estimates are at the lower end of air pollution effects

found in other, less flexible and less collaborative occupations studied in previous research.

Moreover, we find no evidence of a deterioration in output quality. Due to the high value

generated by software developers, the implied monetary loss is nevertheless economically

relevant and comparable to findings for workers in manual occupations. Our estimates imply

that on a day with unusually high pollution, output value falls by $11 per developer.

Our second key result is that software developers exploit the flexibility of their work set-

ting to adapt to increases in air pollution. In particular, we find that they choose to work on

less complex tasks when PM2.5 increases. Among developers who respond with a stronger

shift towards easier tasks, effects on output quantity are alleviated. In addition, developers re-

allocate work activity from high-pollution, low-productivity workdays to low-pollution, high-

productivity weekends. One additional day with unusually high PM2.5 concentration in the

first half of the week causes an increase in weekend work by 2.1%. These forms of adaptation

likely explain why the effects on output quantity and quality in our setting are small relative

to previous studies. At the same time, they suggest an additional welfare cost of air pollution

in this setting not captured by changes in output due to forgone leisure time on the weekend

and potential negative impacts on work-life balance.

While we use data on a sample of software developers who use GitHub as part of their

professional work, we believe that the findings are externally valid to workers in many other

high-paying occupations which offer flexible schedules and discretion in task choice, and re-

quire similar skills, e.g., problem-solving skills, attention to detail, programming, and team-

work. This applies to many high-skill workers, including business analysts or researchers.

Furthermore, the fact that our data comprises developers across more than 30 countries sug-

gests that the effects we identify and quantify in this study are not specific to a certain firm or

country context but apply more generally. Based on this, we can derive estimates of the mon-

etary benefits in terms of productivity gains among knowledge workers from reducing PM2.5

concentration permanently by one unit. Extrapolating to all U.S. workers in the occupation

group łComputer and Mathematical Workers” and to all ICT professionals in the EU suggests

annual benefits of $580m (US) and $980m (EU), respectively.57

Hence, our findings have important policy implications. When deciding about limit values

57Our 2SLS estimates for the effect of PM2.5 concentration on commits and PRs, paired with the estimates of the
monetary value of these outcomes, imply that a one unit decrease in PM2.5 increases daily output value by $0.344
per developer. Employment in łComputer and Mathematical Workers” in the US in 2021 was 4,654,750 (Bureau
of Labor Statistics, 2022). Per year the total estimated gain in output value in this group is thus $0.344/worker
and day × 4,654,750 workers × 365 days = $580m, if we assume that the effect of a permanent reduction in PM2.5

is given by the sum of the daily effects. We compute the value for the EU analogously, based on an employment
figure of 7,843,000 ICT professionals in 2020 (Cedefop, 2022).
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on air pollutants, regulators should take the growing evidence on the economic benefits of

pollution reductions in the form of productivity gains into account. Importantly, we find that

adverse effects of PM2.5 on output are large at concentrations below the regulatory standards

in force in the European Union and the US. Hence, even in areas with relatively good air

quality, further improvements will likely generate additional benefits. While we find slightly

smaller marginal effects in high pollution locations, the fact that PM2.5 concentration is often

an order of magnitude larger in developing countries like India and Bangladesh compared to

the US might be an important barrier to growth for the software industries in these countries.

Our findings on how software developers adjust work patterns also have interesting impli-

cations for the organization of work within firms: Highlighting the difficulty of certain tasks,

as done by the use of issue labels on GitHub, and granting flexibility in working hours, might

help workers to better adapt to idiosyncratic productivity shocks and mitigate the total impact

on team or firm performance.
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R. Villarreal-Calderón, andW. Reed (2007): łPediatric Respiratory and Systemic Effects

of Chronic Air Pollution Exposure: Nose, Lung, Heart, and Brain Pathology,” Toxicologic

Pathology, 35, 154–162.

Cedefop (2022): łEmployed population by occupation and sector,” https://www.cedefop.euro

pa.eu/en/tools/skills-intelligence/employed-population-occupation-and-sector?year=2020

&country=EU&occupation=#1, accessed: 2022-11-07.

Chang, T., J. Graff Zivin, T. Gross, and M. Neidell (2016): łParticulate Pollution and the

Productivity of Pear Packers,” American Economic Journal: Economic Policy, 8, 141–169.

Chang, T. Y., J. Graff Zivin, T. Gross, and M. Neidell (2019): łThe Effect of Pollution on

Worker Productivity: Evidence from Call Center Workers in China,” American Economic

Journal: Applied Economics, 11, 151–172.

Colmer, J., D. Lin, S. Liu, and J. Shimshack (2021): łWhy are pollution damages lower in de-

veloped countries? Insights from high-Income, high-particulate matter Hong Kong,” Journal

of Health Economics, 79, 102511.

53

https://www.bls.gov/oes/current/oes_nat.htm
https://www.bls.gov/oes/current/oes_nat.htm
https://www.cedefop.europa.eu/en/tools/skills-intelligence/employed-population-occupation-and-sector?year=2020&country=EU&occupation=#1
https://www.cedefop.europa.eu/en/tools/skills-intelligence/employed-population-occupation-and-sector?year=2020&country=EU&occupation=#1
https://www.cedefop.europa.eu/en/tools/skills-intelligence/employed-population-occupation-and-sector?year=2020&country=EU&occupation=#1


Currie, J., L. Davis, M. Greenstone, and R. Walker (2015): łEnvironmental Health Risks

and Housing Values: Evidence from 1,600 Toxic Plant Openings and Closings,” American

Economic Review, 105, 678–709.

Currie, J. and M. Neidell (2005): łAir Pollution and Infant Health: What CanWe Learn from

California’s Recent Experience?” The Quarterly Journal of Economics, 120, 1003–1030.

Delgado-Saborit, J. M., V. Guercio, A. M. Gowers, G. Shaddick, N. C. Fox, and S. Love

(2021): łA critical review of the epidemiological evidence of effects of air pollution on de-

mentia, cognitive function and cognitive decline in adult population,” Science of The Total

Environment, 757, 143734.

Deng, G., Z. Li, Z.Wang, J. Gao, Z. Xu, J. Li, andZ.Wang (2017): łIndoor/outdoor relationship

of PM2.5 concentration in typical buildings with and without air cleaning in Beijing,” Indoor

and Built Environment, 26, 60–68.

Deryugina, T., G. Heutel, N. H. Miller, D. Molitor, and J. Reif (2019): łThe Mortality

and Medical Costs of Air Pollution: Evidence from Changes in Wind Direction,” American

Economic Review, 109, 4178–4219.

Donald, S. G. and K. Lang (2007): łInference with Difference-in-Differences and Other Panel

Data,” Review of Economics and Statistics, 89, 221–233.

Ebenstein, A., V. Lavy, and S. Roth (2016): łThe Long-Run Economic Consequences of High-

Stakes Examinations: Evidence from Transitory Variation in Pollution,” American Economic

Journal: Applied Economics, 8, 36–65.

Fu, S., V. B. Viard, and P. Zhang (2021): łAir Pollution and Manufacturing Firm Productivity:

Nationwide Estimates for China,”The Economic Journal, 131, 3241–3273.

Graff Zivin, J. and M. Neidell (2012): łThe Impact of Pollution on Worker Productivity,”

American Economic Review, 102, 3652–3673.

——— (2014): łTemperature and the Allocation of Time: Implications for Climate Change,”

Journal of Labor Economics, 32, 1–26.

He, J., H. Liu, and A. Salvo (2019): łSevere Air Pollution and Labor Productivity: Evidence

from Industrial Towns in China,” American Economic Journal: Applied Economics.

Heyes, A., N. Rivers, and B. Schaufele (2019): łPollution and Politician Productivity: The

Effect of PM on MPs,” Land Economics, 95, 157–173.

54



Hoek, G., G. Kos, R. Harrison, J. de Hartog, K. Meliefste, H. ten Brink, K. Katsouyanni,

A. Karakatsani, M. Lianou, A. Kotronarou, I. Kavouras, J. Pekkanen, M. Vallius,

M. Kulmala, A. Puustinen, S. Thomas, C. Meddings, J. Ayres, J. van Wijnen, and

K. Hameri (2008): łIndoor–outdoor relationships of particle number and mass in four Eu-

ropean cities,” Atmospheric Environment, 42, 156–169.

Hoffmann, B. and J. P. Rud (2022): łExposure or Income? The Unequal Effects of Pollution

on Daily Labor Supply,” Working paper, Inter-American Development Bank.

Hsiang, S., P. Oliva, and R. Walker (2019): łThe Distribution of Environmental Damages,”

Review of Environmental Economics and Policy, 13, 83–103.

Huang, J., N. Xu, and H. Yu (2020): łPollution and Performance: Do Investors Make Worse

Trades on Hazy Days?” Management Science, 66, 4455–4476.

Isen, A., M. Rossin-Slater, and W. R. Walker (2017): łEvery Breath You Take—Every Dollar

You’ll Make: The Long-Term Consequences of the Clean Air Act of 1970,” Journal of Political

Economy, 125, 848–902.

Jans, J., P. Johansson, and J. P. Nilsson (2018): łEconomic status, air quality, and child health:

Evidence from inversion episodes,” Journal of Health Economics, 61, 220–232.

Kahn, M. E. and P. Li (2020): łAir pollution lowers high skill public sector worker productivity

in China,” Environmental Research Letters, 15, 084003.

Karagulian, F., C. A. Belis, C. F. C. Dora, A.M. Prüss-Ustün, S. Bonjour, H. Adair-Rohani,

and M. Amann (2015): łContributions to cities’ ambient particulate matter (PM): A sys-

tematic review of local source contributions at global level,” Atmospheric Environment, 120,

475–483.

Kaur, S., S. Mullainathan, S. Oh, and F. Schilbach (2021): łDo Financial Concerns Make

Workers Less Productive?” Working Paper 28338, National Bureau of Economic Research.

Kelly, F. J. and J. C. Fussell (2015): łAir pollution and public health: emerging hazards and

improved understanding of risk,” Environmental Geochemistry and Health, 37, 631 – 649.

Krebs, B. and S. Luechinger (2021): łAir Pollution, Cognitive Performance, and the Role of

Task Proficiency,” Working Paper 3947149, SSRN.
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Appendix

A Additional Tables

Table A.1: Characteristics of High-Skill Occupations and Software Development

Freedom to Make Structured versus Work With Work
Decisions Unstructured Work Group or Team

All high-skill Software All high-skill Software All high-skill Software
occupations developers occupations develop. occupations develop.

1 0.4 0 0.6 0 1.79 0
2 2.6 3.1 2.3 2.4 4.4 5.9
3 10.5 29.1 11.3 28.1 11.0 2.7
4 35.6 38.2 39.8 45.0 30.5 9.2
5 50.9 29.6 46.0 24.6 52.4 82.3

Note: Based on data from O*NET Database Version 25.0. Work Contexts Table. All high-skill occupations refers to occupations in Job
Zones 4 and 5. Software developers refers to occupation 15-1132.00 (łSoftware Developers, Applications”). Categories: 1 = not important at
all/no freedom; 2 = Fairly important/very little freedom; 3 = Important/Limited freedom; 4= Very Important/Some freedom; 5 = Extremely
important / A lot of freedom

Table A.2: Labels Indicating Easy Issues

good first issues good first bug good-first
documentation polish cleanup
simple easy small
trivial minor help wanted

junior job newcomer starter
beginner newbie novice
low hanging low-hanging

Note: If a label contains any of these terms, the issue is classified as łeasy”. Bolt text indicates GitHub default labels.
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Table A.3: Description of Outcome Variables

Domain Concept Variable Details

Output quantity Total output Actions Sum of number of commits,
quantity comments on issues, PRs and commits,

PRs opened, PRs closed, issues opened,
closed and reopened

Coding activity Commits Number of commits
Interactive activity Comments Sum of number of comments

written on issues, PRs and commits

Output Quality PR Success rate Share PRs merged PRs opened that got merged/all PRs opened
Deficient commits Share commits reverted Commits that got reverted/all commits

Task choice Easy tasks among Share easy issue (#easy issues opened + #easy issues closed +
issue events events issues #comments written on easy issues)/(#issues

opened + #issues closed + #comments
written on issues)

Average PR complexity Lines added per PR Average number of lines of code added in
PRs opened, closed and commented on

Files changed per PR Average number of code files changed in
PRs opened, closed and commented on

Working hours Evening activity Time last action Minute of final action of the day
Share of actions Actions made after 6 pm/Total actions
after 6 pm

Note: The Table displays information on the outcome variables we use, how they are constructed, and what they measure.
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Table A.4: Sources of Air Quality Data

Geographic Area Data Source

United States U.S. Environmental Protection Agency (EPA)

Canada Canadian National Air Pollution Surveillance (NAPS) Program

Mexico City Gobierno de la Ciudad de México

Europe European Environment Agency (EEA)

Russia, Ukraine, Copernicus Atmosphere Monitoring Service (CAMS)
Belarus, Turkey,
Israel

China National Environmental Monitoring Centre

Mumbai US Embassies (AirNow.gov)
Hyderabad
Chennai
New Delhi
Dhaka

Bengaluru Central Pollution Control Board (CPCB)

Japan National Institute for Environmental Studies

Hong Kong Hong Kong Environmental Protection Department

Singapore National Environment Agency

South Korea Air Korea

Taiwan Environmental Protection Administration

Australia New South Wales Department of Planning and Environment
Victorian Government open data portal
Queensland Government open data portal
South Australian Government Data Directory

New Zealand Stats NZ Tatauranga Aotearoa

Note: Data sources for data on PM2.5. Airbase, the EEA’s database on air pollution, contains monitor data for 33 countries,
including all EU members, as well as further EEAmember and cooperating countries, e.g., Switzerland, Norway and Serbia.

Table A.5: Distribution of developer-by-date observations across geographic regions 𝑅

Region 𝑅 Observations Share

Oceania 273,246 1.9
Northern America 7,244,272 50.6
Northern Europe 1,809,844 12.6
Western Europe 2,312,377 16.1
Southern Europe 333,597 2.3
Eastern Europe 725,664 5.1
Asia 1,628,930 11.4

Note: The table shows the distribution of observations in the developer × date panel described in section 3.2 across geo-
graphic regions 𝑅.
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Table A.6: Effect of PM2.5 on Quantity of Issue and Pull Request Actions

PRs closed PRs opened Issues closed Issues opened

(1) (2) (3) (4)

Panel A.

PM2.5 −0.00011 −0.00018∗∗ 0.00004 0.00009
(0.00012) (0.00008) (0.00009) (0.00006)

First Stage F-Stat. 102.1 102.1 102.1 102.1
% change in Y -0.1 -1.2 0.03 0.1

Panel B.

✶{PM2.5 > 𝑄0.75} −0.0049∗ −0.0064∗∗∗ 0.0005 −0.0023
(0.0029) (0.0023) (0.0029) (0.0024)

First Stage F-Stat. 80.5 80.5 80.5 80.5
% change in Y -2.9 -4.2 0.4 2.2

Mean Dep. Var. 0.17 0.15 0.12 0.11
Observations 353,445 353,445 353,445 353,445

Note: The table presents IV estimates of the parameter 𝛽 in equation (1). In Panel A, the regressor of interest is PM2.5 concentration
measured in µg/m3. In Panel B, a binary variable is used instead, which takes a value of one if city×day PM2.5 concentration exceeds the
city-specific 75th percentile. The first stage specification is given in equation (2). Covariates include eight bins for mean daily temperature,
third-order polynomials in wind speed, precipitation and relative humidity, indicators for heavy wildfire smoke and holidays, as well as city,
day-of-week, and year-by-month fixed effects. Day-of-week and year-by-month fixed effects and the temperature controls can vary across
world regions 𝑅. Regressions are weighted by the number of active workers in a city during the current month. Standard errors clustered at
the city level are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.7: OLS Results for WorkQuantity (main sample)

Actions Commits Comments Actions Commits Comments

(1) (2) (3) (4) (5) (6)

Panel A.

PM2.5 −.00024 −.0002 −.00001 −.0006∗ −.0003 −.0002∗

(.0003) (.0002) (.0001) (.0003) (.0002) (.0001)

Panel B.

✶{PM2.5 > 𝑄0.75} −.0158∗ −.0096∗∗ −.0026 −.0264∗∗ −.0131∗∗ −.0054
(.0084) (.0041) (.0036) (.0115) (.0051) (.0049)

Observations 353,445 353,445 353,445 353,445 353,445 353,445
City FE ✓ ✓ ✓

Region×Day-of-Week FE ✓ ✓ ✓

Region×Year-Month FE ✓ ✓ ✓

Region×Date FE ✓ ✓ ✓

City×Month FE ✓ ✓ ✓

Note: The table presents OLS estimates of the parameter 𝛽 in equation (1), where the dependent variables are displayed in the upper part of
the table. Parameters are estimated on the main sample including 193 cities. The regressor of interest is PM2.5 concentration in µ𝑔/𝑚3 in
Panel A, and an indicator for PM2.5 concentration exceeding the city-specific 75th percentile in Panel B. Covariates include eight bins for
mean daily temperature, third-order polynomials in wind speed, precipitation and relative humidity, indicators for heavy wildfire smoke
and holidays. The temperature controls can vary across world regions 𝑅. Included fixed effects are displayed in the bottom part of the table.
Regressions are weighted by the number of active workers in a city during the current month. Standard errors clustered at the city level are
reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.8: OLS Results for WorkQuantity (extended sample)

Actions Commits Comments Actions Commits Comments

(1) (2) (3) (4) (5) (6)

Panel A.

PM2.5 −.0004∗∗∗ −.0002∗∗ −.0002∗∗ −.0004∗∗ −.0002 −.0001∗∗∗

(.0001) (.0001) (.0001) (.0002) (.0001) (.00004)

Panel B.

✶{PM2.5 > 𝑄0.75} −.0160∗∗ −.0087∗∗ −.0036 −.0234∗∗ −.0119∗∗ −.0049
(.0078) (.0039) (.0032) (0.0102) (.0046) (.0042)

Observations 398,687 398,687 398,687 398,687 398,687 398,687
City FE ✓ ✓ ✓

Region×Day-of-Week FE ✓ ✓ ✓

Region×Year-Month FE ✓ ✓ ✓

Region×Date FE ✓ ✓ ✓

City×Month FE ✓ ✓ ✓

Note: The table presents OLS estimates of the parameter 𝛽 in equation (1), where the dependent variables are displayed in the upper part of
the table. Parameters are estimated on the extended sample including 220 cities. The regressor of interest is PM2.5 concentration in µ𝑔/𝑚3

in Panel A, and an indicator for PM2.5 concentration exceeding the city-specific 75th percentile in Panel B. Covariates include eight bins for
mean daily temperature, third-order polynomials in wind speed, precipitation and relative humidity, indicators for heavy wildfire smoke
and holidays. The temperature controls can vary across world regions 𝑅. Included fixed effects are displayed in the bottom part of the table.
Regressions are weighted by the number of active workers in a city during the current month. Standard errors clustered at the city level are
reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.9: Reduced Form

Actions Commits Comments

(1) (2) (3)

High-Pollution −0.0192∗∗ −0.0111∗∗∗ −0.0036
Wind Direction (0.0087) (0.0040) (0.0038)

[0.029] [0.006] [0.350]

Observations 367,472 367,472 367,472

First Stage Effect on PM2.5 3.683∗∗∗ (0.456)

Note: The Table displays OLS estimates of the outcomes displayed in the upper part of the table on an indicator variable for wind
blowing towards a city from the direction (60° angle) that has the largest positive effect on local PM2.5 concentration. Standard
errors clustered at the city level are reported in parentheses. P-values are presented in squared brackets. All regressions include covari-
ates as described in Table 2 and are weighted by the number of active workers in a city during the current month. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.10: Effect of PM2.5 on PRs opened and closed with GHArchive and GHTorrent data

PRs opened (GHA) PRs closed (GHA) PRs opened (GHT) PRs closed (GHT)

(1) (2) (3) (4)

Panel A.

PM2.5 −0.00029∗∗ −0.00007 −0.00016∗ −0.00011
(0.00014) (0.00013) (0.00009) (0.00013)
[0.036] [0.581] [0.067] [0.378]

First Stage F-Stat. 89 89 89 89

Panel B.

✶{PM2.5 > 𝑄0.75} −0.00668∗ −0.00458 −0.00701∗∗∗ −0.00586∗∗

(0.00377) (0.00297) (0.00239) (0.00297)
[0.078] [0.124] [0.004] [0.050]

First Stage F-Stat. 69 69 69 69

Observations 298,566 298,566 298,566 298,566

Note: The table presents IV estimates of the parameter 𝛽 in equation (1), where the outcome is the number of pull requests (PRs) opened
or closed, respectively. This is measured based on GHArchive data in columns (1) to (2) and GHTorrent data in column (3) to (4). The
regressor of interest is PM2.5 concentration in µ𝑔/𝑚3 in Panel A, and an indicator for PM2.5 concentration exceeding the city-specific
75th percentile in Panel B. The first stage specification is given in equation (2). Covariates include eight bins for mean daily temperature,
third-order polynomials in wind speed, precipitation and relative humidity, indicators for heavy wildfire smoke and holidays, as well as city,
day-of-week, and year-by-month fixed effects. Day-of-week and year-by-month fixed effects and the temperature controls can vary across
world regions 𝑅. The sample period is 2015 to May 2019. Regressions are weighted by the number of active workers in a city during the
current month. Standard errors clustered at the city level are reported in parentheses. P-values are reported in brackets. ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01
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Table A.11: Placebo Test: Effect of PM2.5 Friday to Sunday on Work Activity Wednesday to
Thursday

Actions Commits Comments

(1) (2) (3) (4) (5) (6)

Panel A.

PM2.5 0.0065 0.0055 0.0045 0.0028 0.0006 0.0017
(0.0092) (0.0086) (0.0039) (0.0041) (0.0035) (0.0034)

Panel B.

High PM2.5 Days 0.0401 −0.0082 0.0293 −0.0020 0.0034 −0.0007
(0.0888) (0.0795) (0.0364) (0.0352) (0.0346) (0.0316)

Observations 1,997,123 1,321,642 1,997,123 1,321,642 1,997,123 1,321,642
Weeks all only low PM all only low PM all only low PM

weekends weekends weekends

Note: The table presents IV estimates of the parameter 𝛽 in a placebo version of equation 4. Outcomes are the sum of all actions, commits
and comments made between Wednesday and Thursday, the placebo weekend. In Panel A, the regressor of interest is average PM2.5

concentration between Friday and Sunday of the week before. In Panel B, the count of of days on which the city×day PM2.5 concentration
exceeds the city-specific 75th percentile during this period is used instead. The first stage specification is given in equation 2. Regressions
control for developer and region-by-year-by-quarter fixed effects, the number of public holidays during the workweek, and the leads of
the instrumental variables for both the placebo weekend and the period from Monday to Tuesday. Further covariates are the number of
days with heavy wildfire smoke, and third-order polynomials in average wind speed, precipitation, and relative humidity during both the
placebo weekend and the exposure period between Friday and Sunday. Temperature controls are included in the form of eight bin variables
for the placebo exposure period, and in the form of a third order polynomial for the placebo weekend, and are allowed to vary across re-
gions 𝑅. Standard errors clustered at the city level are reported in parentheses. P-values are reported in brackets. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.12: Robustness: First Stage Specification

Share Easy Lines added Files changed
Actions Commits Comments Issue Events per PR per PR

(1) (2) (3) (4) (5) (6)

Panel A.

PM2.5 −0.0018∗ −0.0020∗∗∗ 0.0001 0.0001∗ −0.0019∗∗ −0.0012∗∗∗

(0.0010) (0.0007) (0.0005) (0.0001) (0.0009) (0.0004)

First Stage F-Stat. 62 62 62 52 38 38

Panel B.

✶{PM2.5 > 𝑄0.75} −0.0629∗∗ −0.0661∗∗∗ 0.0059 0.0031∗∗ −0.0469∗∗ −0.0285∗∗∗

(0.0290) (0.0128) (0.0182) (0.0016) (0.0201) (0.0100)

First Stage F-Stat. 49 49 49 41 41 28

IV-Specification Three wind direction bins
Clustering Hierarchical Clustering Algorithm
Observations 353,445 353,445 353,445 250,376 164,883 164,883

Panel C.

PM2.5 −0.0030∗∗∗ −0.0024∗∗∗ −0.0005 0.0001∗∗ −0.0012 −0.0008∗∗

(0.0011) (0.0006) (0.0006) (0.0001) (0.0008) (0.0004)

First Stage F-Stat. 102 102 102 86 62 62

Panel D.

✶{PM2.5 > 𝑄0.75} −0.1023∗∗∗ −0.0739∗∗∗ −0.0160 0.0029∗∗ −0.0347∗ −0.0201∗∗

(0.0268) (0.0144) (0.0178) (0.0014) (0.0177) (0.0095)

First Stage F-Stat. 81 81 81 66 46 46

IV-Specification sin(𝜃 ), sin( 𝜃2 )
Clustering K-means Clustering Algorithm
Observations 353,445 353,445 353,445 250,376 164,883 164,883

Note: The table presents IV estimates of the parameter 𝛽 in Equation (1). In Panels A and C, the regressor of interest is PM2.5 concentration
in µg/𝑚3. In Panel B and D, an indicator for PM2.5 concentration exceeding the city-specific 75th percentile is used instead. Relative to
specifications underlying results in Table 2, the first stage model is changed: In Panels A and B, instruments are three indicators for wind
direction falling in specific bins, each covering 90° of the wind rose. In Panels C and D, the first stage specification is as in Equation (2),
but we form city-groups 𝑔 using k-means clustering instead of hierarchical clustering. Covariates as described in Table 2. Regressions are
weighted by the number of active workers in a city during the current month. Standard errors clustered at the city level are reported in
parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.13: Robustness: Second Stage Specification

Share Easy Lines added Files changed

Actions Commits Comments Issue Events per PR per PR

(1) (2) (3) (4) (5) (6)

Panel A. Inv. Hyperbolic Sine Transformation

PM2.5 −0.0005∗∗ −0.0005∗∗ −0.0001
(0.0002) (0.0002) (0.0001)

First Stage F-Stat. 102 102 102

Panel B. Inv. Hyperbolic Sine Transformation

✶{PM2.5 > 𝑄0.75} −0.0206∗∗∗ −0.0159∗∗∗ −0.0082∗∗

(0.0060) (0.0043) (0.0039)

First Stage F-Stat. 80 80 80

Panel C. log(PM)

𝑙𝑜𝑔(PM2.5) −0.0656∗∗∗ −0.0444∗∗∗ −0.0141 0.0018∗∗ −0.0209∗∗ −0.0143∗∗∗

(0.0163) (0.0087) (0.0090) (0.0009) (0.0096) (0.0052)

First Stage F-Stat. 197 197 197 162 117 117

Observations 353,445 353,445 353,445 250,376 164,883 164,883

Note: The table presents IV estimates of the parameter 𝛽 in Equation (1). In Panel A, the regressor of interest is PM2.5 concentration
measured in µg/𝑚3. In Panel B, an indicator for PM2.5 concentration exceeding the city-specific 75th percentile is used instead. In Panel C,
the regressor is the logarithm of PM2.5 concentration. Inverse hyperbolic sine transformations are applied to outcomes in Panels A and B.
The first stage specification is given in Equation (2). Covariates as described in Table 2. Regressions are weighted by the number of active
workers in a city during the currentmonth. Standard errors clustered at the city level are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.14: Robustness: Clustering of Standard Errors

Share Easy Lines added Files changed

Actions Commits Comments Issue Events per PR per PR

(1) (2) (3) (4) (5) (6)

Panel A.

PM2.5 −0.0032∗∗∗ −0.0026∗∗∗ −0.0005 0.0001∗∗ −0.0013 −0.0010∗∗

(0.0012) (0.0007) (0.0006) (0.0001) (0.0008) (0.0004)
[0.009] [0.0003] [0.421] [0.031] [0.110] [0.031]

Panel B.

✶{PM2.5 > 𝑄0.75} −0.1104∗∗∗ −0.0801∗∗∗ −0.0169 0.0032∗∗ −0.0403∗∗ −0.0244∗∗

(0.0301) (0.0154) (0.0189) (0.0013) (0.0171) (0.0092)
[0.001] [0.000004] [0.379] [0.017] [0.023] [0.011]

Observations 353,445 353,445 353,445 250,376 164,883 164,883

Note: The Table presents IV estimates of the parameter 𝛽 in Equation (1). In Panels A, the regressor of interest is PM2.5 concentration
in µg/𝑚3. In Panel B, an indicator for PM2.5 concentration exceeding the city-specific 75th percentile is used instead. The first stage
specification is given in Equation (2). Standard errors clustered at the level of city-groups 𝑔 across which the effect of instruments in the
first stage are allowed to differ are reported in parentheses. P-values are presented in squared brackets. All regressions include covari-
ates as described in Table 2 and are weighted by the number of active workers in a city during the current month. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.15: Robustness to Changes in Weather controls (Output Quantity)

Actions Commits Comments Actions Commits Comments

(1) (2) (3) (4) (5) (6)

Panel A.

−0.0041∗∗∗ −0.0027∗∗∗ −0.0009∗∗ −0.1156∗∗∗ −0.0749∗∗∗ −0.0261∗∗

(0.0010) (0.0007) (0.0004) (0.0269) (0.0150) (0.0115)

First Stage F-Stat. 147 110
Weather Controls none

Panel B.

−0.0029∗∗∗ −0.0022∗∗∗ −0.0005 −0.1162∗∗∗ −0.0767∗∗∗ −0.0243
(0.0010) (0.0007) (0.0005) (0.0316) (0.0159) (0.0153)

First Stage F-Stat. 108 83
Weather Controls Quadratic functions of precipitation, wind speed, rel. humidity and cubic, continent-specific function of mean temperature

Panel C.

−0.0018 −0.0021∗∗ 0.0001 −0.0539 −0.0601∗∗∗ 0.0069
(0.0012) (0.0009) (0.0006) (0.0345) (0.0190) (0.0190)

First Stage F-Stat. 87 67
Weather Controls Continent specific bins for precipitation, wind speed, rel. humidity, minimum and maximum temperature

Observations 353,445 353,445 353,445 353,445 353,445 353,445

Note: The table presents IV estimates of the parameter 𝛽 in Equation (1). Dependent variables are denoted at the top of the table. In
Columns(1) to (3), the regressor of interest is PM2.5 concentration measured in µg/𝑚3. In Columns (4) to (6), an indicator for PM2.5

concentration exceeding the city-specific 75th percentile is used instead. Relative to specifications underlying results in Table 2, we change
the included covariates to control for weather conditions. We state the included variables at the bottom of each Panel. The first stage
specification is given in Equation (2). All regressions include fixed effects as described in Table 2 and are weighted by the number of active
workers in a city during the currentmonth. Standard errors clustered at the city level are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.16: Robustness to Changes in Fixed Effects (Output Quantity)

Actions Commits Comments Actions Commits Comments

(1) (2) (3) (4) (5) (6)

Panel A.

−0.0044∗∗∗ −0.0031∗∗∗ −0.0009 −0.1438∗∗∗ −0.0954∗∗∗ −0.0288
(0.0013) (0.0009) (0.0006) (0.0337) (0.0169) (0.0189)

First Stage F-Stat. 82 66
Fixed Effects city, region × day-of-week, region × week

Panel B.

−0.0045∗∗∗ −0.0034∗∗∗ −0.0008 −0.1323∗∗∗ −0.0995∗∗∗ −0.0170
(0.0014) (0.0009) (0.0007) (0.0399) (0.0207) (0.0215)

First Stage F-Stat. 84 62
Fixed Effects city, region × date

Panel C.

−0.0032∗∗ −0.0021∗∗∗ −0.0007 −0.1018∗∗∗ −0.0603∗∗∗ −0.0279∗∗

(0.0013) (0.0008) (0.0006) (0.0257) (0.0142) (0.0127)

First Stage F-Stat. 101 76
Fixed Effects city × month, region × day-of-week, region × year × month

Panel D.

−0.0048∗∗ −0.0028∗∗ −0.0013∗ −0.1311∗∗∗ −0.0711∗∗∗ −0.0403∗∗∗

(0.0019) (0.0011) (0.0008) (0.0319) (0.0181) (0.0139)

First Stage F-Stat. 78 61
Fixed Effects city × month, region × day-of-week, region × week

−0.0023∗ −0.0012∗ −0.0008 −0.0762∗∗∗ −0.0369∗∗∗ −0.0283∗

(0.0013) (0.0006) (0.0007) (0.0289) (0.0138) (0.0160)

First Stage F-Stat. 114 86
Fixed Effects region × day-of-week, city × year, city × month

Observations 353,445 353,445 353,445 353,445 353,445 353,445

Note: The table presents IV estimates of the parameter 𝛽 in Equation (1). Dependent variables are denoted at the top of the table. In
Columns(1) to (3), the regressor of interest is PM2.5 concentration measured in µg/𝑚3. In Columns (4) to (6), an indicator for PM2.5

concentration exceeding the city-specific 75th percentile is used instead. Relative to specifications underlying results in Table 2, we change
the included fixed effects. We state the included fixed effects at the bottom of each Panel. The first stage specification is given in Equation (2).
All regressions include control variables as described in Table 2 and are weighted by the number of active workers in a city during the
current month. Standard errors clustered at the city level are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.17: Robustness to Changes in Weather Controls (Task Complexity)

Share Easy Lines added Files changed Share Easy Lines added Files changed

Issue Events per PR per PR Issue Events per PR per PR

(1) (2) (3) (4) (5) (6)

Panel A.

0.0001∗ −0.0017∗∗ −0.0010∗∗∗ 0.0021∗ −0.0412∗∗ −0.0224∗∗∗

(0.0001) (0.0007) (0.0003) (0.0012) (0.0170) (0.0083)

First Stage F-Stat. 120 88 88 90 63 63
Weather Controls none

Panel B.

0.0001∗ −0.0014∗ −0.0010∗∗ 0.0027∗ −0.0374∗∗ −0.0244∗∗

(0.0001) (0.0008) (0.0004) (0.0014) (0.0184) (0.0096)

First Stage F-Stat. 90 66 66 68 47 47
Weather Controls Quadratic functions of precipitation, wind speed, rel. humidity and cubic, region-specific function of mean temperature

Panel C.

0.0002∗∗ −0.0012 −0.0009∗ 0.0036∗∗ −0.0416∗ −0.0251∗

(0.0001) (0.0010) (0.0005) (0.0016) (0.0222) (0.0131)

First Stage F-Stat. 72 52 52 55 38 38
Weather Controls Region-specific bins for precipitation, wind speed, rel. humidity, minimum and maximum temperature

Observations 250,376 164,883 164,883 250,376 164,883 164,883

Note: The table presents IV estimates of the parameter 𝛽 in Equation (1). Dependent variables are denoted at the top of the table. In
Columns(1) to (3), the regressor of interest is PM2.5 concentration measured in µg/𝑚3. In Columns (4) to (6), an indicator for PM2.5

concentration exceeding the city-specific 75th percentile is used instead. Relative to specifications underlying results in Table 2, we change
the included covariates to control for weather conditions. We state the included variables at the bottom of each Panel. The first stage
specification is given in Equation (2). All regressions include fixed effects as described in Table 2 and are weighted by the number of active
workers in a city during the currentmonth. Standard errors clustered at the city level are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.18: Robustness to Changes in Fixed Effects (Task Complexity)

Share Easy Lines added Files changed Share Easy Lines added Files changed

Issue Events per PR per PR Issue Events per PR per PR

(1) (2) (3) (4) (5) (6)

Panel A.

0.0002∗∗ −0.0011 −0.0009∗ 0.0039∗∗ −0.0368∗∗ −0.0231∗∗

(0.0001) (0.0009) (0.0004) (0.0016) (0.0185) (0.0112)

First Stage F-Stat. 70 50 50 54 38 38
Fixed Effects city, region × day-of-week, region × week

Panel B.

0.0002∗ −0.0007 −0.0006 0.0046∗∗∗ −0.0275 −0.0156
(0.0001) (0.0009) (0.0004) (0.0018) (0.0187) (0.0113)

First Stage F-Stat. 70 53 53 49 35 35
Fixed Effects city, region × date

Panel C.

0.0001∗∗ −0.0019∗∗ −0.0011∗∗ 0.0033∗∗ −0.0376∗∗ −0.0183∗∗

(0.0001) (0.0008) (0.0005) (0.0013) (0.0178) (0.0091)

First Stage F-Stat. 85 62 62 64 45 45
Fixed Effects city × month, region × day-of-week, region × year × month

Panel D.

0.0002∗∗ −0.0017∗∗ −0.0010∗ 0.0040∗∗∗ −0.0304∗ −0.0148
(0.0001) (0.0008) (0.0006) (0.0015) (0.0177) (0.0104)

First Stage F-Stat. 67 49 49 51 36 36
Fixed Effects city × month, region × day-of-week, region × week

Panel E.

0.0001∗∗ −0.0021∗∗ −0.0010∗ 0.0029∗∗ −0.0434∗∗ −0.0196∗

(0.0001) (0.0009) (0.0005) (0.0012) (0.0199) (0.0103)

First Stage F-Stat. 96 70 70 71 49 49
Fixed Effects region × day-of-week, city × year, city × month

Observations 250,376 164,883 164,883 250,376 164,883 164,883

Note: The table presents IV estimates of the parameter 𝛽 in Equation (1). In Columns(1) to (3), the regressor of interest is PM2.5 concentration
measured in µg/𝑚3. In Columns (4) to (6), an indicator for PM2.5 concentration exceeding the city-specific 75th percentile is used instead.
Relative to specifications underlying results in Table 2, we change the fixed effects. We state the included fixed effects at the bottom of each
Panel. The first stage specification is given in Equation (2). All regressions include control variables as described in Table 2 and are weighted
by the number of active workers in a city during the current month. Standard errors clustered at the city level are reported in parentheses.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.19: Effects of PM2.5 in the Extended Sample using Inversions as IV

Share Easy Lines added Files changed

Actions Commits Comments Issue Events per PR per PR

(1) (2) (3) (4) (5) (6)

Panel A.

PM2.5 −0.0032∗∗∗ −0.0017∗∗∗ −0.0009∗∗∗ 0.00004 −0.0023∗∗∗ −0.0009∗∗∗

(0.0009) (0.0006) (0.0003) (0.00003) (0.0005) (0.0003)

First Stage F-Stat. 300 300 300 301 231 231

Panel B.

✶{PM2.5 > 𝑄0.75} −0.1035∗∗ −0.0575∗∗∗ −0.0316 0.0001 −0.0383∗∗ −0.0199∗∗

(0.0470) (0.0196) (0.0217) (0.0012) (0.0173) (0.0092)

First Stage F-Stat. 440 440 440 385 292 292

Observations 398,687 398,687 398,687 281,985 187,935 187,935

Note: The Table presents IV estimates of the parameter 𝛽 in Equation (1). In Panels A, the regressor of interest is PM2.5 concentration in
µg/𝑚3. In Panel B, an indicator for PM2.5 concentration exceeding the city-specific 75th percentile is used instead. The excluded instruments
in the first stage are interactions between a measure of inversion strength as specified in 3 and dummies indicating the geographic region
a city is located in. Standard errors clustered at the city level are reported in parentheses. All regressions include covariates as described in
Table 2 and are weighted by the number of active workers in a city during the current month. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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B Additional Figures

Figure B.1: Skill Requirements in High-Skill Occupations and Software Development

Note: Based on data from O*NET Database Version 25.0. Skills Table. Light blue bars reflect average importance of the
respective skill across all high-skill occupations, i.e. occupations in Job Zones 4 and 5. Dark blue bars reflect importance
of the respective skill among software developers, i.e. occupation 15-1132.00 (łSoftware Developers, Applications”).
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Figure B.2: Illustration of first stage city groups 𝑔

Note: Maps show our sample cities. The color of and number on top of the city markers refers to the group 𝑔 we assign a
city to for the first stage estimation of the effect of wind direction on air pollution (see section 4, especially equation (2)).
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Figure B.3: First stage for all 50 city groups
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Notes: Plots present estimated coefficients from regressions of PM2.5 measured in µg/m3 on wind direction for each first
stage city group as depicted in B.2. Solid blue line: connects estimated coefficients on seven dummies for seven 45° bins of
wind direction. The omitted direction is north-north-west, (315°, 360°]. Dashed lines: 95% confidence intervals. Red line:
estimated relationship when wind direction is parameterized as the sine of wind direction in radians and wind direction in
radians divided by two. Plot titles denote one city from the respective group.
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Figure B.3: GDP per capita and average PM2.5 concentration

Note: The left plot shows the distribution of 2014 GDP per capita across city-groups 𝑔 separately for the high and low
pollution subsample used in the heteorgeneity analysis in Section 5. Blue: low pollution, black: high pollution.The right
plot depicts the distribution of average PM2.5 concentration separately for low and high income city-groups. Blue: high
income, black: low income.
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Figure B.4: PM2.5 and Awareness by Country

Note: Bars depict the share of respondents from the respective country stating that air pollution is a big problem in their
country, based on the Pew Research Center Science Survey (2020). Black dots reflect average PM2.5 concentration in the
cities within the respective country which are included in our data.
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C Gitcoin

This section provides additional details regarding the data collected from Gitcoin to assess the

monetary value of output produced on GitHub and to validate some of our productivity and

task complexity outcomes.

We collect data on 292 Gitcoin transactions via the Gitcoin API, including the type of the

posted issue (bug, documentation, improvement, feature, or other), the expected issue diffi-

culty as assessed by the issue funders (beginner, intermediate, or advanced), the URL to the

PR solving the issue and awarded the payment, the value of the payment in USD, and the

number of hours worked on the PR as stated by the PR author. The number of issues is rela-

tively low compared to the volume of our GitHub data because Gitcoin is much younger than

GitHub and only used by a small share of GitHub users. Using the URL of the PR, we combine

this with information on pull request size obtained via the GitHub API, i.e. the number of

commits it comprises, the number of lines of code added and deleted, and the number of files

changed. This is possible because all Gitcoin issues and PRs are created in public GitHub repos

and thus visible to us. In this context, a pull request reflects the complete work on a certain

issue. Commits can be interpreted as single work steps in completing this task.

Combining the data on the amount of coding work done and on the payment made we can

estimate themonetary value of output produced in public GitHub repos. The averagemonetary

value per commit ranges from $32 in the subsample of issues of difficulty level beginner to $679

among issues marked as advanced. In the full sample, it amounts to $112. The mean time input

per commit also exhibits a steep gradient with respect to difficulty: It is 1 hour at the beginner

level, but 5.3 hours at the advanced level.

To validate the use of the number of commits per day as one of our core measures of

developer productivity, we analyze how the number of commits in a PR correlates with the

payment awarded and the time spent on it in the Gitcoin sample.

Table C.1 depicts results from regressions of the payment awarded for a PR, 𝑙𝑜𝑔(𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑖),

on the number of commits it comprises, 𝑐𝑜𝑚𝑚𝑖𝑡𝑠𝑖 (columns 1-3), or the logarithm thereof

(columns 4-6). We run specifications without any controls (columns 1 and 4), with controls for

issue difficulty, issue type and the year of PR creation (columns 2 and 5), and alternatively with

repository fixed effects (columns 3 and 6). The omitted difficulty category is advanced. Across

specifications we find statistically significant positive effects, indicating that a higher number

of commits is associated with higher payments. In terms of magnitude, the results from the

regressions without any controls imply that one additional commit is associated with a 5.4%

increase in payment (column 1), or that a 10% increase in the number of commits is correlated

with a 3.5% rise in payment (column 4). When adding controls for issue difficulty and type, the

magnitude of the effect is reduced. This reduction implies that part of the increase in payments

in commits is driven by higher issue complexity. Even when using only variation across PRs
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submitted to the same repo, i.e., work on the same project, the positive relationship persists.

In Table C.2 we present results frommodels where the dependent variable isℎ𝑜𝑢𝑟𝑠𝑤𝑜𝑟𝑘𝑒𝑑𝑖 ,

the time input as reported by the PR author. We find that the time required to complete a task

increases in the number of commits, and more so for issues of higher difficulty.

To validate our proxies for PR complexity, we run the specifications from columns 4 to 6

of Table C.1 again, but add the number of files changed in the PR and the logarithm of lines of

code added as additional regressors. Results are presented in Table C.3. Holding the number

of commits constant, adding more lines of code and changing more files is associated with a

higher payment, suggesting that these variables indeed reflect task complexity.

Table C.1: Validity Check: Number of Commits and Gitcoin Payments

Dependent variable: 𝑙𝑜𝑔(payment𝑖)

(1) (2) (3) (4) (5) (6)

commits𝑖 0.054∗∗∗ 0.039∗∗∗ 0.034∗∗∗

(.010) (.009) (.010)

log(commits𝑖) 0.348∗∗∗ 0.264∗∗∗ 0.192∗∗∗

(.071) (.068) (.059)

✶{Difficulty𝑖 = Beginner} −2.399∗∗∗ −2.412∗∗∗

(.439) (.419)

✶{Difficulty𝑖 = Intermediate} −1.878∗∗∗ −1.851∗∗∗

(.415) (.405)

Year dummies ✓ ✓ ✓ ✓

Issue difficulty ✓ ✓

Issue type ✓ ✓

Repository fixed effects ✓ ✓

Observations 292 274 292 292 274 292

Note The table presents results from OLS regressions using data on the sample of Gitcoin pull requests. Observations are at the pull request
level. Dependent variable is the logarithm of the payment awarded to the PR author. Explanatory variables are the number of commits
(columns 1 to 3) or the logarithm thereof (columns 4 to 6). Columns 2 and 5 add dummies for the year the pull request was created, dummies
for issue difficulty, and dummies for issue type. Column 3 and 6 instead add dummies for the year the pull request was created and fixed
effects for the repository. Robust standard errors are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table C.2: Validity Check: Number of Commits and Hours Worked on a PR

hours worked𝑖

(1) (2) (3) (4)

commits𝑖 0.375∗∗∗ 0.939∗∗∗

(.132) (.341)

log(commits𝑖) 2.375∗∗∗ 10.346∗∗∗

(.648) (3.535)

× ✶{Difficulty𝑖 = Beginner} −0.882∗∗ −9.748∗∗∗

(.354) (3.574)

× ✶{Difficulty𝑖 = Intermediate} −0.667∗ −8.471∗∗

(.349) (3.560)

Observations 271 267 271 267

Note The table presents results from OLS regressions using data on the sample of Gitcoin pull requests. Observations are at the pull
request level. Dependent variable is the number of hours worked reported by the PR author. In colunm 1 the only explanatory variable is
the number of commits in the PR. Column 2 adds dummies for issue difficulty and interactions between the number of commits and the
difficulty dummies. The ommited difficulty category is advanced. In columns 3 and 4 report results from the same models except that the
number of commits is replaced by the logarithm thereof. Robust standard errors are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

82



Table C.3: Validity check: PR complexity and Gitcoin payments

𝑙𝑜𝑔(𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑖 )

(1) (2) (3) (4)

𝑙𝑜𝑔(𝑐𝑜𝑚𝑚𝑖𝑡𝑠𝑖) 0.143∗∗ 0.136∗∗ 0.070 0.145∗∗

(0.067) (0.068) (0.058) (0.056)

𝑓 𝑖𝑙𝑒𝑠 𝑐ℎ𝑎𝑛𝑔𝑒𝑑𝑖 0.005 0.007∗ 0.011∗∗∗ 0.004

(0.005) (0.004) (0.004) (0.004)

𝑙𝑜𝑔(𝑙𝑖𝑛𝑒𝑠 𝑎𝑑𝑑𝑒𝑑𝑖) 0.152∗∗∗ 0.112∗∗∗ 0.091∗∗∗ 0.150∗∗∗

(0.036) (0.035) (0.028) (0.033)

𝑒𝑎𝑠𝑦 𝑙𝑎𝑏𝑒𝑙𝑖 −0.348∗∗

(0.173)

Year dummies ✓ ✓ ✓ ✓

Issue difficulty dummies ✓

Issue type dummies ✓

Repository fixed effects ✓

Observations 292 274 292 270

Note The table presents results from OLS regressions using data on the sample of Gitcoin pull requests. Observations are at the pull request
level. Dependent variable is the logarithm of the payment awarded to the PR author. Explanatory variables are the number of commits and
the number of lines of code added in the PR (both in logs), the number of code files changed and dummies for the year the pull request was
created. Column 2 adds dummies for issue difficulty and issue type. Column 3 instead adds fixed effects for the repository. Column 4 instead
adds a dummy variable taking a value of one if the issue addressed by the PR carries a label that we classify as indicating an easy issue. The
number of lines of code added and of files changed in the PR are winsorized at the 1st and the 99th percentile. Robust standard errors are
reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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D Auxiliary Regressions

For estimating equation (1), measures of the output of each individual developer 𝑖 are aggre-

gated to the city-day level. Instead of forming simple averages, we take into account additional

information at the developer level. This is done by estimating auxiliary regression, a common

approach in this literature (e.g. Currie et al., 2015). In a first step, we estimate regressions for

outcome 𝑦 of developer 𝑖 living in city 𝑐 on day 𝑑 of the following kind.

𝑦𝑖,𝑐,𝑑 =𝜇𝑖 + x
′
𝑖,𝑑𝜋 +𝜓𝑐,𝑑 + 𝜀𝑖,𝑐,𝑑 (D.1)

Here, 𝑦𝑖,𝑐,𝑑 denotes one of the measures of developer output, task choice, or working hours.

The fixed effect 𝜇𝑖 captures time-invariant unobserved factors at the developer level. Including

these is important as the composition of developers changes over time. A developer’s expe-

rience is controlled for by x𝑖,𝑡 , a vector of indicators for time since registration on GitHub,

where each indicator represents a time span of three months. Additionally, equation (1) in-

cludes city-day fixed effects. Their estimates𝜓𝑐,𝑑 give the average outcome for a city-day after

controlling for experience and composition effects. These estimates replace the dependent

variable in equation (1).

This approach is computationally less costly and asymptotically equivalent to directly es-

timating the regressions at the individual developer level (Donald and Lang, 2007). We take

into account the sample variance by weighting all regressions by the number of underlying

developer observations in each city–day cell (cf. Currie and Neidell, 2005; Isen et al., 2017).
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