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Abstract

We develop a theory of collective brand reputation for markets in which product

quality is jointly determined by local and global players. In a repeated game of imperfect

public monitoring, we model collective branding as a pooling of quality signals generated

in different markets. Such pooling yields a beneficial informativeness effect for the

actions of a global player present in all markets, but also harmful free-riding by local,

market-specific players. The resulting tradeoff yields a theory of optimal brand size

and revenue sharing, applying to platform markets, franchising, licensing, umbrella

branding, and firms with team production.

Keywords: Collective branding, reputation, free riding, repeated games, imperfect

monitoring.
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1 Introduction

Most products are experience goods in that product quality is not observable prior to con-

sumption. When making their purchasing decisions, consumers therefore take into account

the long-lived reputation of a brand, formed through past consumption experiences, word of

mouth, internet reviews, and the like, and facilitated by trade-marks and logos. Managing

its brand reputation is therefore crucial to a firm’s success.1 Controlling quality at the brand

level is, however, challenging because it is a coarse measure that, in general, depends on

the collective decisions of different types of agents. For instance, platform brands such as

Amazon, Ebay, and Uber, or franchise brands such as McDonald’s and Burger King have

some control over consumers’ experience but, to a large extent, this experience also depends

on the individual sellers, drivers, and outlets, who ultimately service the consumer locally.2

Similarly, the quality of manufacturing goods such as cars or beers depends not only on the

decisions taken by the headquarter but also on those by local plant managers. A crucial

feature of brand reputation is, therefore, that it is a collective outcome of actions taken not

only by “global” players, who impact the quality of the entire line of products, but also

“local” players, each of whom affects quality of only a subset of products.

Collective branding effectively involves pooling the quality signals from the entire product

line. While this may make it easier to provide incentives to global players, it comes at the cost

of inducing free-riding behavior by local players. This raises a number of important questions.

In particular, under what conditions is a collective brand reputation optimal and when would

it be better to sell the different products under different brand names? For example, is it

better to sell six different products under a single, two, three, or six independent brand

names? More generally, what is the optimal size of the collective brand? Moreover, what

instruments can be used to mitigate free-riding incentives and how large are the remaining

inefficiencies?

To address these and related questions, we develop a framework to analyze collective

brand reputation. More specifically, we analyze an infinitely repeated hidden action game

of imperfect public monitoring. There are n markets. In each market, two players jointly

produce a good over an infinite number of periods. One of these players – the local player –

is active in only one market, whereas the other player – the global player – is active in all n

markets. The good is of high quality in a given market only if both players in that market

1Brand Finance, which produces annual rankings of companies based on brand/intangible value, reports
that, on average, the total intangible value of a global top ten company accounts for over 85 percent of such
a firm’s market value (https://www.visualcapitalist.com/intangible-assets-driver-company-value/).

2Nosko and Tadelis (2015) document such problems in platform markets. Blair and Lafontaine (2005)
highlight the franchisor’s problem of maintaining consistent quality across franchisees, and conclude that the
empirical evidence “seems consistent with the concept that free riding, or individual profit maximization by
opportunistic franchisees, is an issue in franchised chains” (p.137).
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exert effort. Neither effort nor quality are observable but, at the beginning of each period

and for each market, a noisy (binary) signal of last period’s quality is realized. Throughout,

we focus on (symmetric) Perfect Public Equilibria (PPE).

The n goods can either be sold under separate brand names or under a single, collective

brand name. Brand reputation is modeled according to a key tenet of marketing: consumers

identify quality with the reputation of the good’s brand.3 Under independent branding (when

the products in the various markets are sold under different brand names), behavior in each

market therefore depends only on the signal realizations in that market. By contrast, under

collective branding (when the products are all sold under the same brand name), the signal

realizations in the different markets all pertain to the same brand. As a result, behavior in

each market depends on the pooled quality signals from all markets rather than the individual

signals.

Under independent branding, we show that high quality provision can be sustained if the

discount factor is sufficiently large. In the best PPE, equilibrium play stochastically transits

to the worst PPE (where no effort is provided) after a bad signal realization. Optimal revenue

sharing takes the simple form of proportional rewards: each player’s optimal revenue share is

equal to the share of the total effort cost that needs to be borne by that player. The resulting

outcome is the same as if one player had to make both effort decisions, bearing all of the costs

in return for all of the revenue. However, because monitoring is imperfect (and consumers

are short-lived), the Folk Theorem does not obtain: the on-path breakdown probability is

bounded away from zero, no matter how large the discount factor.

Whether, compared to independent branding, collective branding reduces or increases

the inefficiency, depends on our model’s novel trade-off between the informativeness effect

of pooling signals across markets and the free-rider effect of making continuation values (of

local players) depend on signals that they cannot affect. It is instructive to isolate these

effects by first considering two polar cases.

In the polar case in which the global player bears all effort costs (so that local players

can be incentivized for free), collective branding is unambiguously beneficial. We obtain this

result by first showing that the outcome under independent branding can be replicated with

an appropriate choice of transition probabilities to the worst PPE, with that probability

being strictly increasing in the number of good signals. We then show that this outcome

can be improved upon, because the best PPE exhibits the following cut-off structure: There

exists a cutoff s̃ such that the transition occurs for sure if the number of good signals is below

s̃, and the transition does not occur at all if the number of good signals exceeds s̃.

The optimality of the cut-off structure results from the beneficial informativeness effect of

3See, for example, the textbook by Kotler (2003, p.420): “A brand is essentially a marketer’s promise to
deliver a specific set of features, benefits, and services consistently to the buyers.”
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a collective reputation: Even though signals are independent across markets and the global

player can choose in how many markets to shirk, pooling signals and punishing only if a

sufficiently large number of them is bad, reduces the on-path breakdown probability, thereby

decreasing the inefficiency associated with imperfect monitoring. In this polar case, the

equilibrium value is therefore increasing in the collective brand size n: it is optimal to sell all

products under a single brand rather than multiple ones. Moreover, as long as the discount

factor is above the critical level for sustaining high effort under perfect monitoring, efficiency

obtains in the limit as n becomes large.

In the other polar case in which the local players bear all effort costs (so that the global

player can be incentivized for free), collective branding is unambiguously harmful. This

is due to the free-rider effect which arises because, under collective branding, each local

player’s continuation value depends on signal realizations from other markets that he cannot

influence. We show that, in this case, the outcome under independent branding can, at best,

be replicated, and that this replication is only possible if the on-path punishment probability

is small, requiring a sufficiently large discount factor.

Turning to the generic case in which each type of player bears some of the effort costs,

proportional rewards (which are optimal under independent branding and in both polar cases

under collective branding) fail to mitigate the free-rider effect: under proportional rewards,

the best outcome in terms of joint value is in fact identical to that in the polar case in which

the local players bear all effort costs.

We subsequently show that, in the generic case, optimal revenue sharing involves giv-

ing a more-than-proportionate share of the revenue to the local players, thereby mitigating

the free-rider effect. For sufficiently large discount factors, the best PPE under collective

branding allows sustaining a lower on-path breakdown probability than the best PPE under

independent branding. There is, however, a finite upper bound on the brand size that allows

sustaining effort, and so the optimal brand size is finite. As the discount factor becomes

large, this optimal finite brand size increases without bound. In the limit as both the dis-

count factor and the brand size become large, the inefficiency from imperfect monitoring

does, however, not vanish. The remaining inefficiency is equal to the share of the effort cost

borne by the local players multiplied by the inefficiency under independent branding. Hence,

with optimal revenue sharing, it is as if, in that limit, one achieves the best of both worlds:

collective branding for the global player and independent branding for the local players.

Related literature. The unique feature of our paper is to study collective reputation in

the presence of both global and local players.4 The key tradeoff underlying our results is

between the informativeness effect (which is beneficial in the presence of a global player) and

4See Bar-Isaac and Tadelis (2008) for a survey of the literature on seller reputation.
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a free-rider effect (which is detrimental in the presence of local players). While the economics

literature has studied variants of these two effects in isolation, our paper is the first to study

their interactions and economic implications.

Studying cooperation in a repeated prisoner’s dilemma game with imperfect monitoring,

Matsushima (2001) was, to our knowledge, the first to identify the beneficial informativeness

effect that underlies our paper. Cabral (2009) shows that this informativeness effect may

render umbrella branding optimal, while Cai and Obara (2009) study it as a driver of hori-

zontal integration. These papers effectively only consider global players, thereby abstracting

from free riding on a collective reputation.

By contrast, Tirole (1996), Fishman et al. (2018), Neeman et al. (2019) study free riding

problems associated with a collective reputation in settings with only local players.5 These

papers however do not consider our beneficial informativeness effect of a collective reputation,

and therefore address different economic forces. Considering a repeated matching environ-

ment with overlapping generations, Tirole (1996) shows that a collective reputation may lead

to a persistent stigmatization of new generations due to shirking by some earlier generation.

In his framework, there are no inherent benefits from a collective reputation. In a two-period

model with persistent investment and different types of firms, Fishman et al. (2018) study

free-riding on a collective brand reputation, but with the benefit that the collective brand has

the assumed ability to select its members based on their investment decisions and/or types.

Neeman et al. (2019) point out that a collective reputation may serve as a commitment

device. Trading off this effect against the free-rider effect, they therefore study a different

trade-off from ours.

Focusing on brand management, our study is related to the literature on co-branding,

brand extension, and umbrella branding (e.g., Kotler, 2003). With respect to this extensive

literature, our contribution is to study potential free-riding problems which, in our view, are

endemic to such settings.6 While most work in this literature focuses on reputation models

with hidden information (e.g., Wernerfelt (1988), Choi (1998), Cabral (2000), Miklos-Thal

(2012), Moorthy (2012)), our work is more closely related to studies that analyze umbrella

branding in a moral hazard framework. Building on Klein and Lefler (1981), Andersson

(2002) shows that in a repeated game of moral hazard but perfect monitoring, a single brand

name that pools the reputation across independent markets is helpful only if markets display

asymmetries. Hakenes and Peitz (2008) and Cabral (2009) highlight that, with imperfect

monitoring, pooling reputation can be beneficial even when markets are symmetric.

Moreover, our paper contributes to the literature on the management of moral hazard in

5Winfree and McCluskey (2005) and Fleckinger (2014) also study collective reputation, but in a framework
in which consumers observe the product’s (collective) quality at the time of purchase.

6See Castriota and Delmastro (2012) for an empirical study of the importance of collective reputation in
wine markets.
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team production, pioneered by Holmström (1982). In our setup, there are two types of team

production: physical team production within a market and reputational team production

across markets. Since the focus of our analysis is on the reputational team production

problem, we assume that the market-specific effort choices of the local and global players are

perfectly complementary so that these players can fully resolve their physical team production

problem.

Our results also provide insights into the classical quality management problem in fran-

chising and licensing. In franchising (licensing), we can view the franchisor (licensor) as a

global player, while the outlets (licensees) are local players. Practitioners and legal scholars

have pointed out the importance of free-riding problems in these contexts. For instance, Had-

field (p.949, 1990) notes that the individual “franchisee is inclined to make decisions about

how much effort to put into the business based on the profits that will accrue directly to

her in her own outlet,” whereas “customers make judgments about the quality of the entire

franchise system based on their experience at an outlet”.7 Similarly, Klein and Saft (p.349ff,

1985) remark that the “franchise arrangements create an incentive for franchisees to shirk on

quality,” further pointing out that “the individual franchisee directly benefits from the sales

of the low quality product, and the other franchisees share in the losses caused by decreased

future demand”.8 In the context of trademark licensing, Calboli (2007) explains that, legally,

“trademarks are protected only as conveyors of information about the products which they

identify and as symbols of commercial goodwill” (p.357) and points out the free-riding prob-

lem that licensees’ “lack of direct ownership of the mark could make them less interested in

the long-term success of the products” (p.360).

To our knowledge, our paper is the first to formally model, and rigorously analyze, this

classical problem.9 Our result that, without properly calibrating the revenue shares, a collec-

tive reputation destroys any benefits from pooling reputations confirms that due to free-riding

“the value of the trademark will suffer dramatically” (Hadfield, 1980). Yet, our results also

7A concrete example is the Burger King scandal in Germany in 2014. After an undercover report exposed
severe problems of poor hygiene in outlets in Cologne, Burger King tried to put the blame on the individual
outlets but German consumers associated the negative report with the Burger King brand as a whole rather
than its local franchisee in Cologne. Similarly, in Kentucky Fried Chicken Corp. v. Diversified Packaging
Corp., 549 F.2d 368, 380 (1977), the Court observed “A customer dissatisfied with one Kentucky Fried outlet
is unlikely to limit his or her adverse reaction to the particular outlet; instead, the adverse reaction will
likely be directed to all Kentucky Fried stores. The quality of a franchisee’s product thus undoubtedly affects
Kentucky Fried’s reputation and its future success.”

8In the context of licensing, the court in Siegel v. Chicken Delight, 448 F.2d 43, n.38 (1971) observed that
“the licensor owes an affirmative duty to the public to assure that in the hands of his licensees the trade-name
continues to represent that which it purports to represent.” Klein and Saft (p.349ff, 1985) interprets this view
as expressing “a legal obligation for quality maintenance in a system involving many producers operating
under a common trade name.”

9Extensively discussing the free-riding problem in franchising, Blair and Lafontaine (2005) capture the
bare essentials of this problem in a highly stylized model that abstracts from any reputational concerns.
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show that a franchisor can partially mitigate free-riding problems and thereby maintain the

trademark’s value by shifting revenue streams from himself to the franchisees. This reinforces

the insight of Bhattacharyya and Lafontaine (1995) that revenue sharing is crucial for con-

trolling double moral hazard problems in franchising in that free-riding problems associated

with a collective reputation drastically affect optimal revenue shares.

Plan of the paper. In the next section, we present the model. This is followed, in Section

3, by the equilibrium analysis of independent branding. In Section 4, we first study the polar

case of collective branding in which the burden of effort is borne entirely by the global player.

We then turn to the other polar case in which all of the burden of effort is borne by the local

player. The analysis of these polar cases is instructive for analyzing the generic case in which

local and global players share the effort cost. Section 5 addresses the comparative statics in

the brand size n and obtains results concerning the maximum implementable brand size, n̄,

the optimal brand size, n̂, and (in)efficiency results for limiting cases. We conclude in Section

6. We collect all proofs in Appendix A.10

2 The Model

We consider an infinitely repeated game of imperfect public monitoring in discrete time

t = 0, 1, . . .. There are n ≥ 2 symmetric markets, indexed by i = {1, . . . , n} with one long-

lived global player, G, and n long-lived local players, Li. For each period t, production in a

market i requires the market-specific binary input, etG,i ∈ {0, 1}, of the global player G and

the binary input, etL,i ∈ {0, 1}, of the market-specific local player Li. The good produced in

market i is sold to a (representative) market-specific short-lived consumer Ci.

Production technology. The quality qti of good i ∈ {1, . . . , n} in period t ∈ {0, 1, 2, ..}
is either high, 1, or low, 0, and depends on the contemporaneous effort choices of G and Li.

In particular, it is equal to one if and only if both G and Li put in effort for that good (i.e.,

etG,i = etL,i = 1), and zero otherwise. The aggregate cost of effort for producing high quality

in a specific market is c > 0, of which G incurs the share λG and Li incurs the remaining

share λL = 1 − λG. That is, λG represents the importance of the global player’s effort cost

relative to that of the local player, and the effort cost of G is etG,iλGc and that of Li is etL,iλLc.

Markets are symmetric in that these shares do not differ across markets.

10By applying the abstract methods of decomposability and self-generation developed in Abreu, Pearce,
and Stacchetti (1990), we study, in Appendix B, asymmetric PPE in the case of n = 2 markets, addressing
the robustness of our results to asymmetric equilibrium outcomes.
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Timing. The infinitely repeated game starts after the long term players set, for each good

i, the revenue shares πG and πL = 1 − πG that accrue to G and Li, respectively. At the

beginning of each period t ≥ 1, before effort choices are made, there is a binary signal

sti ∈ {0, 1}, providing noisy information about the good’s quality in the previous period.11

Without loss of generality, in period 0, the value of the signal is normalized to one: s0
i ≡ 1. As

we formalize below, the collective branding decision determines the (public) observability of

these signals. The realization of the market-specific signal sti depends on the previous period

as follows: if qt−1
i = 1, then sti = 1 with probability 1− α; similarly, if qt−1

i = 0, then sti = 0

with probability 1− β. The parameters α ∈ (0, 1) and β ∈ (0, 1− α), measure the noisiness

of the signal and represent the probabilities of type II and type I errors, respectively. Before

effort choices are made, there is also the realization of an independent public randomization

device rt ∈ [0, 1], uniformly distributed over the unit interval, and independent over time.12

After the effort choices have been made, the consumer in market i, Ci, decides whether to

buy good i (bti = 1) or not (bti = 0).

Payoffs. The consumer’s utility from consumption equals the good’s quality level. As we

focus on equilibria in which all long-lived players exert effort so that the consumer rationally

expects high quality, we fix the price of the good to 1.13 As agreed upon in an initial stage

prior to the repeated game, the global player G and local player Li receive shares πG and

πL = 1−πG of the revenue from selling good i. Assuming that signals sti are non-contractible,

these shares cannot condition on the signal realizations and, focusing on symmetric equilibria,

they are uniform across markets. We discuss the feasibility of more elaborate ways of revenue

sharing under different modeling assumptions in the conclusion.

A natural division of the revenue is to set a player’s reward share equal to his cost share,

(πG, πL) = (λG, λL). We refer to this sharing rule as proportional rewards. For the case in

which costly effort is needed from both the global and local players, λG, λL > 0, we define the

reward-to-cost-share ratio of player j as γj ≡ πj/λj. Proportional rewards then correspond

to γG = γL = 1, while the identities λL = 1 − λG and πL = 1 − πG imply the accounting

identity γG = πG/λG = (1− λLγL)/(1− λL).

Summarizing, the period-t profit of a long-lived player k ∈ {G,Li} in market i is equal to

btiπk − etk,iλkc.
11For notational convenience, we define s0i = 1.
12The public randomization device simplifies the exposition of our results; none of our results require the

existence of such a signal. Footnote 16 makes this explicit.
13In our formal modelling of the repeated game, we treat this price as fully exogenous. Equivalently, we

could have assumed—as is commonly done in the literature on umbrella branding—that the price is equal to
consumers’ willingness to pay for the good, e.g., because multiple (identical) consumers bid for the good in
a (second-price) auction.
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The long-lived players discount profits with factor δ ∈ (0, 1). The payoff of the (short-lived)

consumer in period t and market i is given by

(qti − 1)bti = (etG,ie
t
L,i − 1)bti.

We seek the perfect public equilibrium (PPE) that maximizes the joint value of G and

Li,

Vi ≡
∞∑
t=0

δt
[
bti − (etG,iλG + etL,iλL)c

]
,

and is symmetric in the sense that all n local players use identical strategies. Let V i and V i

denote the maximal and minimal values of Vi, respectively, that can be sustained in a PPE.

Public histories. We model the distinction between independent and collective branding

purely as differences in public information concerning the signals s. With independent brands,

the public signal in market i is the market-specific signal si together with the randomization

device r. Consequently, the public history, hti, in market i at time t is

hti = (sτi , r
τ )τ=0,...,t.

In contrast, the public signal under collective branding consists only of the aggregate

signal s̃τ =
∑

i s
τ
i together with the randomization device r.14 Consequently, the public

history, ht, in market i at time t is

ht = (s̃τ , rτ )τ=0,...,t,

where s̃0 ≡ n, and for τ > 0, s̃τ equals the number of positive realizations of the n noisy

quality signals, s̃τ =
∑

i s
τ
i .

We view this difference in public histories as capturing the basic idea in marketing that

consumers identify the quality of a good through its brand name alone. Indeed, the idea im-

plies that, under collective branding, consumers cannot discern information about the good’s

quality that is market specific.15 The public history can therefore only contain aggregate

signals of identically branded products. Our focus on perfect public equilibrium (PPE) then

implies that we study only behavior in which players condition their strategies on the coarse

brand-specific public history rather than any finer information. This also means that, under

14Rather than its sum, we may take the aggregated signal s̃τ as any symmetric and strictly increasing
function of the individual signals (sτ1 , . . . , s

τ
n).

15For example, consider a beer tasting website such as beeradvocate.com. Even though large beer brands
are often produced in several plants, including under license in foreign countries, the tasting notes on such
websites do not distinguish between them.
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independent branding, players’ strategies in market i are independent of the quality signals

in another market j 6= i.

To ensure that our analysis is non-trivial, we assume throughout that c < c ≡ (1 − α −
β)/(1−β). This assumption is necessary and sufficient for effort to be sustainable for a large

enough discount factor under independent branding.

3 Independent Branding

In this section, we analyze equilibrium outcomes when goods in the different markets are

branded independently. Since all markets are symmetric and independent, we fix some market

i and drop the market subscript for the remainder of this section. All our payoff results are

therefore in terms of “per market averages”. We sometimes use the superscript I for denoting

optimal solutions in this case of independent branding.

Worst PPE. Neither G nor L exerting any effort (etG = etL = 0) and short-lived consumers

not purchasing the good (bt = 0) in every period t after any history ht is a PPE. In this

PPE, both G and L receive their minmax payoff of zero. This minmax equilibrium outcome

represents the worst PPE outcome with the associated payoff of V I = 0.

Strategy profiles for best PPE. If the best PPE yields a strictly positive payoff, V
I
>

V I = 0, then it involves players exerting effort in equilibrium. Since effort is costly, such

an equilibrium must provide players with incentives to induce it. By Abreu, Pearce, and

Stacchetti (1990)’s bang-bang result for repeated games with imperfect public monitoring, it

is without loss to assume that a PPE takes on only extremal points of the equilibrium value

set. Because the most extreme punishments are the minmax payoffs of zero, the extremal

points that provide incentives for effort involve a probabilistic triggering of these minmax

payoffs that are induced by a market breakdown.

With independent branding, where there is only a binary public signal s on which players

can condition their behavior, the description of extremal points that provide incentives by

reverting to the minmax outcome is straightforward. They only involve a probability of mar-

ket breakdown, ρ0, in case that the signal s points to shirking, i.e., s = 0. More specifically, a

strategy profile σI(ρ0) sustaining effort through the use of extremal points has the following

structure: for ρ0 ∈ (0, 1], if the period-t history ht involves sτ = 0 and rτ ∈ [0, ρ0] for some

τ ≤ t, then etG = etL = 0 and bt = 0; otherwise, etG = etL = 1 and bt = 1.

The strategy profile σI(ρ0) implies that, in period 0, both G and L exert effort, and

the consumer purchases the good. This continues in all subsequent periods until the public

quality signal assumes the value of zero (falsely indicating that the quality in the previous

10



period was zero) and the realized value of the public randomization device is not larger than

ρ0; from then on, no effort will ever be exerted and the good is not purchased. That is, a

bad quality signal triggers a reversion to the worst PPE with probability ρ0.16

Payoffs and market breakdown probabilities. Playing the strategy profile σI(ρ0) yields

a long-lived player j ∈ {H,R} a payoff

Ṽj = πj − λjc+ δ(1− p0)Ṽj = λjV (p0, γj), with V (p0, γj) ≡
γj − c

1− δ(1− p0)
,

where γj ≡ πj/λj is the reward-to-cost-share ratio, and p0 ≡ αρ0 the expected probability

that, in any period after which effort was exerted and the consumer purchased the good, the

long-run players stop exerting effort and consumers stop purchasing the good. We refer to p0

as the on-path market breakdown probability when none of the players shirk. V (p0, γj) ≥ 0 if

and only if γj ≥ c. In this case, V (p0, γj) is decreasing in p0 and increasing in γj. Using the

identity γG = πG/λG = (1 − λLγL)/(1 − λL), it follows that the payoffs of both long-lived

players exceed the minmax payoff of zero if and only if γG ∈ [c, (1 − λLc)/(1 − λL)] and

γL ∈ [c, (1− λGc)/(1− λG)].

Incentive constraints. In equilibrium, every consumer receives a payoff of zero, and it is

straightforward to see that no consumer has an incentive to deviate from the above strategy

profile (which gives him just his minmax payoff of zero). To see whether G or L are better off

deviating, note first that the answer is trivially no once the reversion to the worst PPE has

been triggered. Consider now a one-shot deviation before such a reversion has been triggered:

j’s value from one-time shirking is equal to

Ṽ d
j = πj + δ(1− p1)Ṽj

= λj × [γj + δ(1− p1)V (p0, γj)] ,

where

p1 ≡ (1− β)ρ0

is the market breakdown probability in the period after shirking by one of the players.

The incentive constraint for j ∈ {G,L}, Ṽj ≥ Ṽ d
j , can be written as

δ(p1 − p0)V (p0, γj) ≥ c. (ICI
j )

16Instead of a probabilistic permanent transition to the worst PPE, an alternative strategy profile would
involve a deterministic transition to a finite punishment phase of length T , thus not requiring the existence
of a public randomization device. In the absence of integer constraints on T , such deterministic strategies
would support the same equilibrium outcome.
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The left-hand side represents the long-term loss from the one-shot deviation, induced by an

increase in the market breakdown probability from p0 to p1, whereas the right-hand side

represents the short-run gain, which equals the saved effort cost.

Characterizing the best PPE. In the best PPE, the punishment probability ρ0 maxi-

mizes aggregate surplus

ṼG + ṼL = λGV (αρ0, γG) + λLV (αρ0, γL) =
1− c

1− δ[1− αρ0]

subject to (ICI
G) and (ICI

L). As V (αρ0, γj) is decreasing in ρ0, this amounts to minimizing ρ0

subject to (ICI
G) and (ICI

L). Moreover, as (ICI
j ) is violated for ρ0 small (provided λj > 0),

the conditional punishment probability in the best PPE must be such that one of the two

incentive constraints holds with equality, and the other with a weak inequality. That is,

ρ0 =
(1− δ)c

δ [(1− α− β) minj γj − (1− β)c]
, (1)

provided the right-hand side is positive and not larger than one, which holds if and only if17

min
j
γj ≥

(1− βδ)c
δ(1− α− β)

. (2)

If (2) does not hold, then an equilibrium with e0
G = e0

L = 1 and b0 = 1 does not exist and,

given (γH , γL), any equilibrium gives both G and L their minmax payoff of zero.

The joint value ofG and L is maximized by γG = γL = 1, i.e., by ex ante agreeing that each

long-lived player’s reward share is proportional to his cost share: (πG, πL) = (λG, λL). Given

this optimal revenue sharing scheme, it follows from (1) that the conditional punishment

probability equals

ρI0 ≡
(1− δ)c

δ[1− α− β − (1− β)c]
. (3)

This probability is positive and not larger than one (meaning that σI(ρI0) does indeed form

an equilibrium) if and only if

δ ≥ c

1− α− β + βc
≡ δ̄I . (4)

Our parameter restriction at the end of Section 2, c < c, implies δ̄I < 1.

We summarize these results in the following proposition:

17It is straightforward to verify that if the r.h.s. of (1) is not larger than one it is also positive.
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Proposition 1. If δ ≥ δ̄I , the best PPE exhibits both long-lived players, G and L, exerting

effort, and the consumer purchasing the good, until the beginning of the punishment phase.

In this equilibrium, each long-lived player j ∈ {G,L} has a revenue share equal to its cost

share (i.e., γG = γL = 1); the on-path punishment probability is pI0 = αρI0; and the joint value

is equal to V
I

= V (pI0, 1) > 0 = V I .

Otherwise, if δ < δ̄I , any PPE involves both G and L shirking in every period, so that

V
I

= V I = 0.

In the best PPE, neither the on-path breakdown probability pI0 nor the joint value V
I

depend on the effort cost structure (λG, λL): By optimally sharing the revenue in proportion

to the effort cost, the cost structure becomes irrelevant.

The average per-period payoff vI ≡ (1− δ)V I
in the best PPE is therefore given by

vI =

0 if 0 < δ < δ̄I ,

1− c−
(

α
1−α−β

)
c if δ̄I ≤ δ < 1.

(5)

For δ ≥ δ̄I , the average payoff vI is independent of the discount factor, and strictly less

than the efficient payoff of (1 − c).18 In the limit as the probability of a “false negative”

(α) becomes small, this inefficiency vanishes: limα→0 v
I = 1− c. While this inefficiency also

decreases as the probability of a “false positive” decreases, it does not vanish in the limit as

β becomes small: limβ→0 v
I = 1− c/(1− α) < 1− c. Finally, note that the critical discount

factor δ̄I is positively related to both α and β, with lim(α+β)→0 δ̄
I = c.

Indeed, under perfect monitoring (α = β = 0), high quality provision in every period is

sustainable for δ ≥ c and yields a per-period equilibrium value of 1 − c. Hence, imperfect

monitoring exacerbates the implementation of high quality in two ways. First, for a discount

factor δ ∈ [c, δ̄I), high quality is not sustainable with imperfect monitoring whereas it would

be under perfect monitoring. Second, for δ ≥ δ̄I , high quality in the initial period is sus-

tainable both with perfect and imperfect monitoring, but the equilibrium value is lower with

imperfect monitoring, v̄I < 1− c, as high quality cannot be sustained forever.

It is also instructive to compare the equilibrium outcome with that under “vertical inte-

gration” where the same agent chooses etG and etL and, in return, gets all of the revenue from

selling the good. As (5) does not depend on λL, it is immediate that the values of the best and

worst PPEs under vertical integration coincide with those under vertical separation. This

confirms that, in our model, the physical team production problem can be solved costlessly.

18As is well-known, the folk theorem does not generally apply to symmetric PPE with short-run players.
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4 Collective Branding

In this section, we analyze equilibrium outcomes when the long-lived players sell the goods

in the n markets under one collective brand. In this case, the public history ht contains the

aggregated signals s̃τ =
∑

i s
τ
i of the previous periods τ ≤ t rather than the individual signals

sτi . Since the public signal s̃τ has n + 1 possible realizations rather than only two as in the

case of independent branding, the players’ strategies in a PPE with collective branding are

potentially more complex.

Worst PPE. Nevertheless, similar to the case of independent branding, there always exists

a PPE in which, irrespective of the public histories, all long-lived players exert no effort in

every period, and in each market consumers do not purchase the good. As this gives each

long-lived player its minmax payoff of zero, the joint value in the worst PPE under collective

branding is V C = 0, coinciding with the worst PPE outcome under independent branding,

V I = 0.

Poisson’s binomial distribution. In order to characterize the best equilibrium outcome,

note that under collective branding, the aggregated public signal s̃ describes the number of

markets in which the quality signal si indicated that quality was high. That is, s̃ has n + 1

possible realizations. The probability distribution of these aggregated signals s̃ depends on

the distribution of the underlying market-specific signals si.

If players exert effort in all n markets, the aggregated signal s̃ follows the standard bino-

mial distribution of n independent Bernoulli trials, each with the identical success probability

1 − α. However, if shirking occurs in some (but not all) markets, the distribution of s̃ does

not correspond to a standard binomial distribution, since the success probability in a market

without shirking is 1−α, whereas it is only β in a market where shirking occurs. In particu-

lar, if shirking takes place in k of the n markets, s̃ obtains from n trials of which n− k trials

have a success probability of 1− α, and k trials have a success probability of β.

Consequently, the distribution of s̃ is the convolution of the binomial distribution of k

trials with success probability β and the binomial distribution of n − k trials with success

probability 1−α.19 In particular, the distribution Pn(·|k) is the convolution of Pn−1(·|k) and

a signal from a market without shirking, as well as the convolution of Pn−1(·|k − 1) and a

signal from a market with shirking. Hence, Pn(s|k) exhibits the following recursive structure:

Pn(s|k) = (1−α)Pn−1(s−1|k)+αPn−1(s|k) = βPn−1(s−1|k−1)+(1−β)Pn−1(s|k−1). (6)

19Our analysis does not require the use of an explicit formula for Pn(s|k). However, for completeness, we

report here that, following Rukhin et al. (2009), Pn(s|k) can be written as Pn(s|k) =
∑k
i=0

(
k
i

)(
n−k
s−i
)
βi(1 −

β)k−i(1− α)s−iαn−k−s+i, using the convention that the binomial coefficient
(
k
i

)
is 0 for a negative integer i.
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Being a special case of “Poisson’s binomial distribution” (Wang, 1993), the probability

distribution Pn(·|k) is unimodal and log concave with expectation En(s|k) = k(1 − β) +

(n − k)α. A property, crucial for our analysis, is that Poisson’s extension of the binomial

distribution retains the monotone likelihood ratio property (MLRP). That is, for all s, k ∈
{1, . . . , n}, the following holds:

Pn(s|k)

Pn(s|k − 1)
<

Pn(s− 1|k)

Pn(s− 1|k − 1)
.

Since MLRP implies FOSD, this also means that the distributions Pn(·|k) are ordered in

the sense of first-order stochastic dominance (FOSD). The FOSD-relation reflects the simple

intuition that when shirking in one more market, it is less likely to see at least the same

number of successes as without this additional shirking. Yet, even though it is less likely to

see at least the same number of successes, the recursive structure (6) implies that it is more

likely to see at least one less success with the additional shirking.20 Hence, for our Poisson’s

binomial distribution the magnitude of FOSD is also limited: for all k = 0, . . . , n − 1 and

s = 1, . . . , n, it holds that

Pn(s̃ ≥ s|k + 1) ≤ Pn(s̃ ≥ s|k) ≤ Pn(s̃ ≥ s− 1|k + 1). (7)

The first inequality is FOSD, the second inequality describes the sense in which FOSD is

limited.

Collective-branding strategies. Similar to the analysis with independent branding, we

consider collective-branding strategy profiles σC(·) that are characterized by n + 1 punish-

ment probabilities, {ρs}ns=0, where s indicates the number of positive quality signals.21 In

particular, if the period-t history is such that either s̃τ = s and rτ ∈ [0, ρs] for some τ ≤ t,

then etG,1 = etG,2 = etL,1 = etL,2 = 0 and bt1 = bt2 = 0; otherwise, etG,1 = etG,2 = etL,1 = etL,2 = 1

and bt1 = bt2 = 1.

The strategy profile σC(·) implies that the repeated game starts with all long-lived players

exerting effort, and in each market the consumer purchasing the good. This continues in all

subsequent periods until the number of realized positive quality signals in some future period

t is s̃t and the realization of the public randomization device is less than ρs̃t , which then

triggers a reversion to the worst PPE.

20To see this, note that by (6) it holds, Pn(s̃ ≥ s− 1|k + 1) = βPn−1(s− 2|k) +
∑n−1
j=s−1 Pn−1(j|k) + (1−

β)Pn−1(n|k) and Pn(s̃ ≥ s|k) = (1−α)Pn−1(s− 1|k) +
∑n−1
j=s Pn−1(j|k) +αPn−1(n|k), where Pn−1(n|k) = 0.

Subtracting the second from the first yields Pn(s̃ ≥ s− 1|k+ 1)−Pn(s̃ ≥ s|k) = βPn−1(s− 2|k) +αPn−1(s−
1|k) ≥ 0.

21Since s̃ = n is indicative of no-shirking, it will always be optimal to have ρn = 0.
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Market breakdown probabilities. Conditional on all long-lived players having exerted

effort in the past, and consumers having purchased the goods, the strategy profile σC(·) in-

duces breakdown probabilities, both on-path as well as following a deviation. The breakdown

probability in the period after shirking in k markets is denoted pk, and given by

pk =
n∑
s=0

Pn(s|k)ρs. (8)

Incentive constraints. Averaging across the n markets, G’s average value, ṼG, when

players play the strategy profile σC(·) equals πG − λGc+ δ(1− p0)ṼG, implying

ṼG =
πG − λGc

1− δ(1− p0)
= λGV (p0, γG). (9)

The global player is free to choose different effort levels in different markets.22 Her

(average-per-market) value from shirking in k markets in the current period and subsequently

reverting to the collective branding strategy σC(·) is

Ṽ d,k
G = πG −

n− k
n

λGc+ δ[1− pk]ṼG, (10)

where the second term on the right-hand side represents the average-per-market effort cost

when shirking in k markets and exerting effort in the other n − k markets. We can rewrite

the incentive constraint, ṼG ≥ Ṽ d,k
G , as

δ(pk − p0)V (p0, γG) ≥ c · k
n
. (ICC,k

G )

Intuitively, the left-hand side represents the (average) long-term loss — the breakdown prob-

ability rising from p0 to pk — from the one-shot deviation, whereas the right-hand side

represents the average short-run gain — the (per-market-average) reduction in effort costs

— from that deviation.

Dropping the market subscript for notational convenience, local player L’s value, ṼL ,

when players play the strategy profile σC(·) equals πL − λLc+ δ(1− p0)ṼL, implying

ṼL =
πL − λLc

1− δ(1− p0)
= λLV (p0, γL). (11)

The local player’s value from the one-shot deviation to shirking in the current period and

22In the conclusion, we briefly discuss the case where G has to take the same action in all markets.
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subsequently reverting back to the collective branding strategy σC(·) is

Ṽ d
L = πL + δ(1− p1)ṼL. (12)

We can write the local player’s incentive-constraint, ṼL ≥ Ṽ d
L , as

δ(p1 − p0)V (p0, γL) ≥ c. (ICC
L )

Intuitively, the left-hand side represents the long-term loss — the breakdown probability

rising from p0 to p1 — from the one-shot deviation, whereas the right-hand side represents

the short-run gain — the reduction in effort costs — from that deviation.

Characterizing the best PPE. The best PPE is characterized by the vector of punish-

ment probabilities ρC = (ρC0 , . . . , ρ
C
n ) that maximizes aggregate surplus

nṼ d
G + nṼ d

L =
n(1− c)

1− δ(1− p0)
= nV (p0, 1) (13)

subject to the (n + 1) incentive constraints (ICC,k
G ) and (ICC

L ). Note that maximizing ag-

gregate surplus is equivalent to minimizing the on-path breakdown probability p0, which is

linear in the punishment probabilities ρs. Because we can also express the incentive con-

straint as constraints that are linear in the punishment probabilities ρs, characterizing the

best PPE under collective branding involves solving a linear programming problem with n+1

constraints. In particular, ρC is a solution to the linear program

Pn : min
(ρ0,...,ρn)

n∑
s=0

Pn(s|0)ρs

s.t.
n∑
s=0

[
Pn(s|k)− Pn(s|0)

k
− cPn(s|0)

n(γG − c)

]
ρs ≥

(1− δ)c
nδ(γG − c)

, ∀ k ∈ {1, . . . , n}

n∑
s=0

[
Pn(s|1)− Pn(s|0)− cPn(s|0)

γL − c

]
ρs ≥

(1− δ)c
δ(γL − c)

.

The next lemma is our main step towards a characterization of solutions to P .

Lemma 1. Suppose ρC is a solution to P. Then for ρC at least one constraint is binding

and there is an integer s̄ < n such that ρCs = 1 for all s < s̄ and ρCs = 0 for all s > s̄. The

solution implies p0 ≤ ... ≤ pn.

The lemma shows that, optimally, the punishment probabilities are concentrated in a

bang-bang fashion on the lowest values of the public aggregated signal s̃. In particular, there
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is a cutoff signal s̄ such that all realization of s̃ that lie below this threshold imply a market

breakdown with certainty, whereas realizations of s̃ above the threshold imply no market

breakdown whatsoever. Formally, the result follows from the MLRP property of Poisson’s

binomial distribution, which reflects the intuitive notion that low values of the public signal s̃

are less likely when agents put in effort. Intuitively, this property implies that concentrating

the punishment probabilities on the lowest values of s̃ provides the strongest incentives for

effort.

An algorithm. Lemma 1 allows the construction of an algorithm for finding a solution to

Pn. First, define s̄ as the smallest s̃ ∈ {0, . . . , n− 1} such that

s̃∑
s=0

∆G(k, s) ≥ (1− δ)c
nδ(γG − c)

, ∀k = 1, ..., n, (14)

and
s̃∑
s=0

∆L(1, s) ≥ (1− δ)c
δ(γL − c)

, (15)

where

∆G(k, s) ≡ Pn(s|k)− Pn(s|0)

k
− cPn(s|0)

n(γG − c)
and ∆L(k, s) ≡ Pn(s|k)− Pn(s|0)

k
− cPn(s|0)

γL − c
.

The variable s̄ is found algorithmically by starting with s̃ = 0 and increasing it successively

until either all of the n+ 1 inequalities associated with (14) and (15) hold, or s̃ = n. If this

procedure ends with s̃ = n, then s̄ does not exist, implying that the feasible set of Pn is

empty so that there is no equilibrium in which agents supply effort. If the procedure ends

with s̃ < n, then s̄ = s̃. In a next step, compute for k = 1, . . . , n,

ρkG ≡
1

∆G(k, s̄)

{
(1− δ)c
nδ(γG − c)

−
s̄−1∑
s=0

∆G(k, s)

}
; ρL ≡

1

∆L(1, s̄)

{
(1− δ)c
δ(γL − c)

−
s̄−1∑
s=0

∆L(1, s)

}
.

By construction, each ρkG and ρL lies in [0, 1]. Taking ρ̄ as the maximum over all ρkG and ρL,

it then follows from Lemma 1 that the solution ρC of program Pn exhibits ρCs = 1 for s < s̄,

ρCs̄ = ρ̄, and ρCs = 0 for s > s̄, with an attained objective of p0 =
∑s̄

s=0 Pn(s|0) + Pn(s̄|0)ρ̄.

The algorithm is useful for identifying the comparative statics of the threshold signal s̄

with respect to the discount factor δ. To see this, first note that the left-hand sides of the

n+ 1 inequalities associated with (14) and (15) are independent of δ, whereas the right-hand

sides decrease with δ over [0, 1] and grow arbitrarily large as δ approaches 0. This implies

that the threshold s̄ fails to exist when δ is small and when it does exist for some δ̂, it exists
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for all δ > δ̂ and, moreover, s̄ is decreasing in δ.

Defining

γ̄G ≡ c+
cα

n(1− α− β)
≤ γ̄L ≡ c+

cα

1− α− β
,

we collect and extend these insights in the following lemma.

Lemma 2. Suppose γG > γ̄G and γL > γ̄L. Then there is a critical discount factor δ̄C ∈ [0, 1)

such that the threshold value s̄ exists if and only if δ ≥ δ̄C. For δ > δ̄C, the cut-off signal

s̄ is decreasing in δ. In particular, there is a cutoff δ̄C0 < 1 such that for δ > δ̄C0 , we have

s̄ = 0 and, moreover, of the first n constraints in program Pn at most the constraint w.r.t.

to k = 1 is binding.

Collective vs. Independent Branding. In order to identify the effect of a collective

reputation, it is helpful to consider first two polar cases: The one in which only the global

player, G, has to incur costly effort (i.e., λG = 1), and the one in which only local players have

to incur costly effort (i.e., λL = 1). Below, we show that, in the first polar case, collective

branding permits sustaining a better reputation and a higher value in the best PPE than

independent branding. In the second case, by contrast, collective branding induces free-riding

on the other local players’ reputation and tends to reduce the maximum sustainable value in

the best PPE. In the generic case in which both the global and local players have to exert

costly effort, collective branding is beneficial only if each local player receives a revenue share

exceeding his cost share so as to mitigate the free-rider effect.

Global Effort Cost Only (λL = 0). In order to show that without any reputational free-

riding, collective branding is optimal, we first study the polar case in which the global player

incurs all effort costs, i.e., λG = 1. Since λG = 1 implies λL = 1− λG = 0, the local players’

effort in this polar case is costless so that they do not need any incentives to exert effort.

It is therefore optimal to give the entire revenue share of each good to G, implying that,

just as under independent branding, the proportional reward scheme, (πG, πL) = (λG, λL), is

optimal.

First consider the case ρI0 ≤ 1 so that under independent branding, the best PPE exhibits

V
I
> 0 and minimizes the on-path market breakdown probability, p0, with respect to the

punishment probability, ρ0, subject to the incentive constraint (ICI
G).

Given V
I
> 0, a first natural question to ask is whether collective branding can also attain

this value. If so, then we must have V
C ≥ V

I
> 0 so that the best PPE under collective

branding minimizes p0 with respect to ρ = (ρ1, . . . , ρn) subject to the n incentive constraints

(ICC,k
G ).

We next argue that collective branding can indeed attain the value V
I
> 0 and replicate

the outcome under independent branding. To see this, consider the following punishment
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probabilities under collective branding:

ρs = ρs(ρ
I
0) ≡ n− s

n
ρI0, s = 0, ..., n.

Since ρs(ρ
I
0) ≤ ρI0, it follows from V

I
> 0 that ρI0 ∈ [0, 1] and therefore ρs(ρ

I
0) ∈ [0, 1] for all

s = 0, ..., n. Moreover, the punishment probabilities ρs = ρs(ρ
I
0) lead to a market breakdown

after shirking in k markets of

pk =
n∑
s=0

Pn(s|k)ρs =
n∑
s=0

Pn(s|k)
n− s
n

ρI0 =
(n− E[s|k])

n
ρI0 =

(n− k)α + k(1− β)

n
ρI0.

In particular, the on-path breakdown probability p0 coincides with the one under independent

branding: p0 = αρI0. Moreover, for these punishment probabilities each (ICC,k
G ) is equivalent

to the incentive constraint (ICI
G):

n

k
· δ(pk − p0)V (p0, 1) ≥ c ⇔ δρI0(1− α− β)V (p0, 1) ≥ c.

Hence, by taking ρs = ρs(ρ
I
0) we can replicate the best PPE under independent branding.

However, since ρs(ρ
I
0) violates the optimal cutoff structure (except for the special case of

n = 2 and ρI0 = 1), Lemma 1 implies that we can strictly improve upon this outcome. It

follows that the best PPE yields a strictly higher payoff under collective branding. This leads

to the following result:

Proposition 2. Suppose λG = 1. Then the optimal rewards exhibit γ̂G = 1. Moreover,

if ρI0 ≤ 1, then collective branding is superior to independent branding and δ̄C ≤ δ̄I . This

superiority is strict except for the special case n = 2 and ρI0 = 1. If ρI0 > 1, then collective

branding is superior to independent branding and strictly so for n > 2 and ρI0 close to one.

The proposition identifies the beneficial informativeness effect of collective branding. It

shows that collective branding increases payoffs by concentrating market breakdown on events

with a sufficiently large number of bad quality signals. By pooling these signals and punishing

the global player (only) if a sufficiently large number of them is bad, the on-path breakdown

probability p0 can be reduced, thereby mitigating the inefficiency caused by imperfect moni-

toring. This informativeness effect is an implication of the natural MLR property of Poisson’s

binomial distribution: Lemma 1’s optimality result – showing that only punishment proba-

bilities that display a cutoff structure use the collective signal optimally – is based on that

property. We therefore conclude that collective branding is optimal, even though signals are

independent across markets and the global player has the flexibility to shirk in any number

of markets.
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Local Effort Cost Only (λL = 1). We next turn to the other polar case in which only

local players incur effort costs, i.e., λL = 1. As this implies λG = 1 − λL = 0, the global

player’s effort can be induced “for free” in that G does not need any incentives to exert effort.

Hence, it is optimal to give the entire revenue share of each good i to Li, implying once more

that the proportional reward scheme, (πG, πL) = (λG, λL), is optimal.

Similar to analyzing the previous polar case, we first consider the case ρI0 ≤ 1 so that

under independent branding, the best PPE exhibits V
I
> 0 and ρI0 minimizes the on-path

market breakdown probability, p0 = αρI0, subject to the incentive constraint (ICI
L).

Given V
I
> 0, we again ask the question whether collective branding can also attain this

value. If so, then we must have V
C ≥ V

I
> 0 so that the best PPE under collective branding

minimizes p0 with respect to ρ = (ρ0, . . . , ρn) subject to the incentive constraint (ICC
L ). More

precisely, ρC = (ρC0 , . . . , ρ
C
n ) now solves

PL : min
(ρ0,...,ρn)

n∑
s=0

Pn(s|0)ρs

s.t.
n∑
s=0

[
Pn(s|1)− Pn(s|0)− cPn(s|0)

1− c

]
ρs ≥

(1− δ)c
δ(1− c)

.

Problem PL is a relaxed version of Pn since it lacks the first n constraints. Noting that

Lemma 1 applies also with respect to the more relaxed problem PL, it follows that ρC displays

a cutoff structure with some cut-off signal s̄. The minimum cutoff is s̄ = 0. This is indeed

the optimal cutoff if and only if[
Pn(0|1)− Pn(0|0)− cPn(0|0)

1− c

]
≥ (1− δ)c
δ(1− c)

. (16)

In this case, ρCs = 0 for s > 0 and, using Pn(0|1) = αn−1(1− β) and Pn(0|0) = αn,

ρC0 = ρ̄L0 ≡
(1− δ)c

δαn−1[1− α− β − (1− β)c]
=

ρI0
αn−1

.

Hence, (16) is equivalent to ρI0 ≤ αn−1. It follows that, for ρI0 ≤ αn−1, the aggregate

surplus associated with the best PPE under collective branding matches the aggregate surplus

associated with the best PPE under independent branding so that we have V
C

= V
I
.

Note that if ρI0 > αn−1, then the best PPE with collective branding must be strictly

worse than with independent branding, since either collective branding can implement effort

only with punishment probabilities ρC0 = 1 and ρC1 > 0, which due to MLRP, yields a

larger breakdown probability p0 — implying V
I
> V

C
> 0, or collective branding cannot

implement high effort — implying V
I
> V

C
= 0. In either case, we have V

I
> V

C
, implying
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that collective branding does strictly worse. This also means that V
I

= 0 implies V
C

= 0 so

that the critical discount factor at which effort is sustainable with collective branding cannot

be smaller than the corresponding discount factor under independent branding, δ̄I ≤ δ̄C . We

collect these insights in the following proposition.

Proposition 3. Suppose λL = 1. Then, independent branding is superior to collective brand-

ing, i.e., V
I ≥ V

C
, and δ̄I ≤ δ̄C. This superiority is strict whenever ρI0 ∈ (αn−1, 1]. For

ρI0 ≤ αn−1 the superiority is weak in that V
I

= V
C

.

The proposition identifies the harmful free-rider effect of collective branding. To see this

effect more clearly, recall that – under both independent and collective branding – the local

player’s incentive constraint can be written as

δ

(
p1

p0

− 1

)
p0V (p0, γL) ≥ c,

where γL = 1 in the best PPE. Under independent branding, p1/p0 = (1 − β)/α > 1. By

contrast, under collective branding, we can exploit the recursive structure (6) to rewrite p0

and p1 associated with ρC = (1, . . . , 1, ρCs̄ , 0, . . . , 0) with a cutoff s̄ as follows:

p0 = α∆ +B; and p1 = (1− β)∆ +B,

where

∆ ≡ Pn−1(s̄− 1|0)(1− ρCs̄ ) + Pn−1(s̄|0)ρCs̄ > 0;

and

B ≡ Pn(s̃ ≤ s̄− 1|0) + Pn−1(s̄− 1|0)ρCs̄ ≥ 0.

Hence, under collective branding and for any ρC exhibiting a cutoff structure, the ratio of

punishment probabilities satisfies

p1

p0

=
(1− β)∆ +B

α∆ +B
≥ 1− β

α
, (17)

where the inequality is strict if and only if B = 0, or equivalently s = 0. That is, under

collective branding, a local player choosing to shirk does not increase the punishment prob-

ability by as much as he would under independent branding as he correctly anticipates the

other local players to put in effort (and thus likely to generate positive signals). Only in

the case in which, under collective branding, the transition to the worst PPE occurs only

if all signals are bad (s = 0) is the punishment probability ratio p1/p0 the same as under

independent branding.

At a more general level, under collective branding, the local player’s continuation payoff
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depends on the signals generated by other players. As he cannot affect those other signals,

collective branding can only hurt incentives. Perhaps surprisingly, however, collective brand-

ing does as well as independent branding if ρI0 ≤ αn−1. To understand this, note that –

under independent branding – the local player is punished only if he generates a bad signal,

in which case the transition depends on the realization of the public randomization device.

For ρI0 ≤ αn−1, the same on-path punishment probability can be generated under collective

branding by transiting to the worst PPE only if all n signals are bad. That is, only if the local

player himself as well as all the other n− 1 local players generate bad signals, implying that

s = 0 so that (17) holds with equality. From the viewpoint of the local player, the outcome

of the other signals is purely random and the probability that all of them are bad (given

that the other local players do not shirk) equals αn−1. In other words, the randomness of the

other n−1 signals under collective branding plays the same role as the public randomization

device under independent branding and therefore collective branding does not distort incen-

tives. By contrast, if ρI0 > αn−1, then to generate the same on-path punishment probability

under collective branding requires that the transition to the worst PPE may have to occur

even if at least one of the n signals is positive. That is, if ρI0 > αn−1, then s̄ > 0 so that the

inequality in (17) is strict. Since this means that, with some probability, a local player is

“punished” even after generating a positive signal, collective branding is strictly harmful for

incentives.

Figure 1 contrasts the two polar cases, displaying the comparative statics for the average

per period payoff vC and vI with respect to the discount factor δ for those cases. Panel

(a) depicts the case where only the global player needs to be incentivized (λG = 1). It

illustrates the result of Proposition 2 that collective branding is superior to independent

branding in general, and strictly so in two ways. First, in the case δ ≥ δ
I
, where (initial)

effort is sustainable with independent branding, collective branding can sustain it with a

strictly lower on-path market breakdown probability (except in the special case n = 2 and

ρI0 = 1). Second, in the case δ < δ
I
, where (initial) effort is not sustainable with independent

branding, collective branding can sustain it for δ smaller but close enough to δ̄I .

By contrast, Panel (b) illustrates the implied comparative statics for the other polar

case, where only the local players have to be incentivized (λL = 1). Defining δ̄L as the

value of δ at which ρI0 = αn−1, the values V
C

and V
I

coincide for δ ≥ δ̄L. As illustrated

in Panel (b), this implies that, in addition to vI , also the maximum average per period

payoff under collective branding, vC , is constant. For δ < δ̄L, we have V
C
< V

I
and, due

to continuity of vC for δ > δ̄C , the maximum average per-period payoff vC is therefore

strictly decreasing in the interval [δ̄C , δ̄L]. Moreover, in the interval [δ̄I , δ̄C ] high effort is only

sustainable for independent branding. Consequently, the blue curve vC lies always (weakly)

below the red curve vI – in stark contrast to Panel (a). In short, Panel (a) displays the
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vC,vI

δ

v̄I

δ̄C δ̄I δ̄G

(a) Case λG = 1: vC ≥ vI .

v̄I

vC,vI

δ

δ̄I δ̄C δ̄L

(b) Case λL = 1: vI ≥ vC .

Figure 1: Best PPE’s per-period values under independent vs. collective branding.

optimality of collective branding for the case λG = 1, whereas Panel (b) shows the optimality

of independent branding for the other polar case λL = 1.

The Generic Case (λG ∈ (0, 1)). We now turn to the generic case in which the global

and local players share the overall effort cost c according to the proportions λG ∈ (0, 1) and

λL = 1− λG.

In Section 3, we showed that – under independent branding – it is optimal to provide the

long-lived agents with proportional rewards: (πG, πL) = (λG, λL). Trivially, this was also the

case in the two polar cases of collective branding studied above.

It is therefore instructive to start our analysis of collective branding in the generic case

assuming such proportional rewards so that γG = γL = 1. It then follows that the incentive

constraints coincide with the two polar cases studied above. Under collective branding and

proportional rewards, the optimal on-path breakdown probability p0 is minimized subject to

δ(pk − p0)V (p0, 1)
n

k
≥ c, k = 1, ..., n; (ICCk

G )

δ(p1 − p0)V (p0, 1) ≥ c. (ICC
L )

Note however that by Lemma 1, we have pk−p0 ≥ p1−p0, which together with k ≤ n implies

that (ICCk
G ) follows from (ICC

L ). As a result, all (ICCk
G ) are redundant so that the optimal

on-path breakdown probability p0 is minimized subject to only (ICC
L ). This however implies

that, for proportional rewards γG = γL = 1, the intermediate case λG ∈ (0, 1) boils down

to the polar case with only local effort costs (λL = 1). As a result, Proposition 3 applies,

meaning that it extends to all λL ∈ (0, 1] and proportional rewards γL = 1:

Proposition 4. Suppose λL ∈ (0, 1]. Then collective branding is suboptimal with proportional

rewards (πG, πL) = (λG, λL), and strictly so for ρI0 ∈ (αn−1, 1].

This result demonstrates in an extreme sense the drawback of a collective reputation.
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As soon as explicit incentives for the local players’ effort are needed, independent branding

always outperforms collective branding with proportional rewards.

The proposition raises the question whether the long-lived agents can use the reward

structure as a tool to mitigate this extreme effect of a collective reputation. We will argue

that they can indeed do so; by carefully calibrating the revenue shares γG and γL, the long-

lived players can mitigate the local players’ free-riding problem.

To see this, recall that, in general, the incentive constraints depend on the revenue shares

γG and γL as follows:

δ(pk − p0)V (p0, γG)
n

k
≥ c, k = 1, ..., n; (ICCk

G (γG))

δ(p1 − p0)V (p0, γL) ≥ c. (ICC
L (γL))

Since V (p0, γL) is increasing in γL, an increase in γL relaxes the constraint (ICC
L ). Of course,

an increase in the local players’ revenue share γL is accompanied by a decrease in the global

player’s revenue share γG.23 Yet, for γL = γG = 1, each (ICCk
G ) holds strictly whenever

the constraint (ICC
L ) binds so that by continuity a small increase in γL ensures that the

corresponding small decrease in γG is such that each (ICCk
G ) is still satisfied, while (ICC

L ) is

relaxed. This reasoning suggests that, starting with proportional rewards, we can improve the

objective under collective branding by relaxing (ICC
L ) through increasing the local players’

reward γL. Defining

γ̃G ≡
1 + (n− 1)(1− λG)c

λG + (1− λG)n
< 1 and γ̃L ≡

n− (n− 1)λGc

λG + (1− λG)n
> 1,

the following lemma refines this intuition and determines the bounds on the optimal γG and

γL.

Lemma 3. Suppose λG ∈ (0, 1) and V
C
> 0. Then the optimal reward-to-cost-share ratios

γ̂G and γ̂L exhibit γ̂G ∈ [γ̃G, 1) and γ̂L ∈ (1, γ̃L]. In particular, (γ̂G, γ̂L) = (γ̃G, γ̃L) for

δ ∈ (δ̄C0 , 1).

Proposition 4 shows that, with proportional rewards, collective branding is never strictly

optimal when incentives are needed for inducing effort from local players. That is, with

proportional rewards, the minimum on-path breakdown probability that sustains high quality

is lower under independent branding than under collective branding. This however does not

automatically imply V
I ≥ V

C
, since Lemma 3 shows that, when incentives are needed

for inducing local players’ effort, proportional rewards are never optimal under collective

branding. In particular, the lemma leaves open the possibility that, for the optimal reward

23In particular, γG = πG/λG = (1− πL)/(1− λL) = (1− λLγL)/(1− λL).
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structure, the minimum on-path breakdown probability that sustains high quality is actually

lower under collective branding than under independent branding, implying V
C
> V

I
. The

next proposition shows that this is indeed the case for large discount factors—no matter how

small the global player’s share of the effort cost is, provided it is strictly positive.

Proposition 5. There exists a cutoff δ < 1 such that V
C
> V

I
for all δ ≥ δ and all λG > 0.

The previous results characterize properties of the best PPE without characterizing it

explicitly. More specifically, the best PPE has a value V
C
> 0 if and only if the following

program has a solution p̂0:

PC : min
(γG,γL,ρ0,...,ρn)

p0 =
n∑
s=0

Pn(s|0)ρs

s.t. δ(pk − p0)V (p0, γG)n/k ≥ c ∀k = 1, . . . , n; (ICCk
G (γG))

δ(p1 − p0)V (p0, γL) = c; (ICC
L (γL))

γL = (1− λGγG)/(1− λG), (18)

where (18) is the accounting identity that links γG and γL. We denote a solution to PC by

a triple (γ̂G, γ̂L, ρ̂) ∈ Rn+1. In the case in which PC admits a solution (γ̂G, γ̂L, ρ̂) with value

p̂0, it follows that

V
C

=
1− c

1− δ(1− p̂0)
> 0.

Writing out the program that determines the value V
C

allows us to obtain the following

comparative static result:

Proposition 6. Suppose that V
C
> 0. Then, the optimal reward-to-cost-share ratio γ̂L is

strictly increasing, and the induced value V
C

strictly decreasing, in the cost share λL.

The proposition confirms the intuition that we can interpret λL as a measure of the relative

magnitude of the free-rider effect. The larger is the share of the effort cost that needs to

be borne by the local players, the larger are those players’ incentives to take a free ride,

and therefore the larger is the reward-to-cost-share ratio γ̂L that the local players optimally

receive. While this mitigates the free-rider problem, the flip side is that this decreases the

reward-to-cost-share ratio γ̂G and therefore exacerbates the global player’s incentive problem

so that the resulting aggregate payoff is reduced.

5 Optimal Collective Brand Size

In the previous section, we have shown that, in the presence of local players, a careful

calibration of the revenue shares is essential for building a collective brand reputation. In
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this section, we identify a second essential tool for managing collective branding reputation:

the size of the collective brand. In particular, we show that the severity of the moral hazard

problem, measured by the parameter λL, determines how the sustainability of high quality

varies with brand size.

In this section, we thus analyze the comparative statics in the brand size n, obtaining

results on the maximum implementable brand size, n̄, and the optimal brand size, n̂. Our

main result reveals that, even when brand size is chosen optimally (without any additional

constraints), there remains an inefficiency in the limit as the discount factor becomes large.

Despite the usual intractability of Poisson’s binomial distributions (e.g., Biscarri et al., 2018),

the recursive structure (6) of the probability distribution Pn(·|k) enables us to express the

limiting inefficiency in closed form as a function only of (i) the corresponding limiting ineffi-

ciency in the polar case in which the local players bear all effort costs, and (ii) the effort cost

share λL of the local players.

To make clear the dependencies on the collective brand size n, we denote variables with a

superscript n throughout this section. For instance, V
n

now denotes the average per-market

value in the best equilibrium when the brand size is n.

Global Effort Cost Only. (λL = 0) We first consider the benchmark in which collective

reputation does not exhibit a free-rider problem. For this benchmark, we show that, for any

discount factor δ > c, we obtain efficiency in the limit as n goes to infinity, implying that both

the maximum implementable brand size, n̄, and the optimal brand size, n̂, are unbounded.

An intuition behind this efficiency results follows from the observation that with perfect

monitoring (α = β = 0) efficiency obtains if and only if δ ≥ c. Extending the brand size

mitigates the inefficiency induced by imperfect monitoring. This inefficiency vanishes in the

limit as n becomes large.24

Recall that this benchmark corresponds to the polar case λG = 1. For this case, the in-

centive constraint (ICn
L(γL)) is redundant so that the optimal pair (ρ̂n, γ̂nG) that characterizes

the best PPE exhibits

γ̂nG = 1 and ρ̂n = arg min
ρ
pn0 (ρ) s.t. (ICn;1

G (1)), . . . , (ICn;n
G (1)).

Proposition 7. Suppose λG = 1 and δ > c. Then the maximum implementable brand size,

n̄, and the optimal brand size, n̂, are unbounded, and efficiency obtains in the limit:

lim
n→∞

vn = 1− c.

In the appendix, we prove the proposition using the following steps. Based on a sand-

24In the literature on repeated games, this effect was noted by Matsushima (2001).
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wich argument, we first show that, in the limit, ρ̂n is of the deterministic form r̂n =

(1, . . . , 1, 0, . . . , 0). We next show that minimizing p0 with respect to such deterministic

cutoffs, only the two extreme constraints (IC1
G) and (ICn

G) need to be considered.25 In a

final step, we apply central limit arguments and Chebyshev’s inequality to show that, in the

limit as n goes to infinity, efficiency obtains for these deterministic cutoffs.

The Generic Case (λL ∈ (0, 1)). Proposition 7 implies that without a moral hazard

problem, efficiency obtains when expanding the collective reputation over an infinite number

of markets.

The next proposition shows that this is no longer true as soon as there is a slight moral

hazard problem concerning the local player’s effort. In this case, there is an upper bound on

the extent of collective branding.

Proposition 8. Suppose λL > 0. Then there is an upper bound n̄ ∈ N such that effort is

implementable under collective branding of size n only if n < n̄. Consequently, V
n
> 0 only

if n < n̄. Moreover, n̄ is increasing in δ.

Our final result returns to the main focus of our paper: identifying the inefficiencies of a

collective reputation due to free-riding by local players. Proposition 7 shows that if collective

reputation does not suffer from a free-riding problem, then, for any discount factor δ > c,

inefficiencies vanish as the collective brand size grows large. Our final proposition shows that

if there is a free-riding problem (λL > 0), then, even as the discount factor δ approaches 1,

the maximum per-period payoff vn is bounded away from efficiency.

Proposition 9. Suppose λL > 0. Then,

lim
δ→1

n̄ =∞; lim
δ→1

n̂ =∞; and v̄∞ ≡ lim
n→∞

lim
δ→1

vn = λG(1− c) + λLv̄
I < 1− c.

The proposition shows that, even in the limit, efficiency is not attained: the limiting

payoff, v̄∞, lies strictly below 1− c. Moreover, it reveals that we can decompose this limiting

payoff by expressing it as a convex combination of the efficient payoff, 1− c, and the (ineffi-

cient) payoff under independent branding, v̄I , with the weights corresponding to the effort

cost shares λG and λL.

This decomposability result indicates, that in the limit, it is as if we obtain the best of

both worlds: implementing collective branding for the global player, yielding the efficient

payoff 1 − c, and, at the same time, independent branding for the local players, with its

optimal but inefficient payoff of v̄I . The optimal calibration of the revenue shares is crucial

25Confirmed by simulations, we conjecture that this also holds with respect to an optimal non-deterministic
ρ̂n for finite n. The intractability of the Poisson’s binomial distribution however prevents us from proving
this analytically.
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for this decomposability. This does, however, not mean that the two incentive problems are

independent and do not interact; at all times incentive constraints of both types of players

are binding.

6 Conclusion

We have developed a theory of collective brand reputation in a repeated game of imperfect

public monitoring. A key novelty of our theory is the interaction between a global player

(who takes costly actions to impact the quality of the entire product line) and local players

(each of whom is able to affect the quality of only a single product). This makes the analysis

applicable to a large set of economic environments in which such moral hazard problems are

endemic, including platform markets, franchising, licensing, and team production.

While under independent branding, the quality signals relating to different products can

be disentangled and are treated separately, they are effectively pooled under collective brand-

ing. If all of the effort costs are borne by the global player, the informativeness effect implies

that collective branding is superior to independent branding. In that case, any inefficiency

arising from imperfect monitoring vanishes in the limit as the collective brand size becomes

large. By contrast, if all of the effort costs are borne by the local players, the free-rider effect

implies that collective branding is never superior to independent branding, and is strictly in-

ferior unless the discount factor is sufficiently large. In the generic case in which both types

of players bear some of the effort costs, a careful calibration of revenues shares mediates

the tradeoff between the beneficial informativeness effect and the harmful free-rider effect.

Under optimal revenue sharing, collective branding is superior to independent branding as

long as the share of the effort costs borne by the local players is sufficiently small or the

discount factor sufficiently large. As the discount factor becomes large, the optimal size of

the collective brand increases without bound. In the limit as both the discount factor and

the collective brand size become large, the remaining inefficiency is equal to the local players’

effort cost share multiplied by the inefficiency under independent branding. In that limit,

it is thus as if the best of both worlds could be achieved: collective branding for the global

player and independent branding for the local players.

Throughout the paper, we have assumed that the global player makes separate effort

choices for each product/market. This may be a reasonable assumption for some applications

(think of a franchisor’s delivery of beef to hamburger outlets) but perhaps less so for some

others (think of a headquarter’s advertising in national media). If, under collective branding,

the headquarter had to choose the same effort level in all markets, then only one aspect

would need to be changed in our analysis: the global player would no longer have n incentive

constraints but only a single one, namely (ICCn
G ). It follows immediately that the resulting
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value under collective branding is weakly larger – and strictly larger for sufficiently large

discount factors, than with separate effort decisions.26 It is straightforward to show, however,

that all of our propositions would continue to hold under that alternative assumption. In

particular, the comparative statics and limiting values remain valid.

We have also assumed that effort choices are private information. An exciting avenue

for future research consists in allowing for within-brand monitoring of effort choices. Such

an analysis would, however, require a solution concept beyond PPE and therefore a more

complex (and less well-understood) analytical framework. For instance, if the global player

were to observe signals of local players’ effort choices that are more informative than those

observed by consumers, the global player’s strategy would naturally depend on her private

history (at least for the equilibrium to improve upon the PPE outcome in the absence of

monitoring).

Because our analysis reveals the crucial role of revenue sharing, a further interesting

question is to identify alternative modeling assumptions under which players benefit from

more elaborate revenue sharing schemes than the ones we have analyzed. First, note that if

the signals were fully contractible so that revenue shares could directly condition on them,

then the players would be able to solve completely the moral hazard problem by using

budget breakers, along the lines of Holmström (1982). Suppose instead, as we assume in the

paper, that such direct conditioning on signal realizations is, due to their non-verifiability,

infeasible. Then the players may, following the logic of relational contracting (e.g., Levin,

2003), try to exploit the repeated game structure to implement conditional revenue sharing

implicitly through voluntary payments.27 However, under our assumption that signals are

fully uninformative about behavior of specific players (and, under collective branding, in

specific markets), such relational contracts cannot help alleviate the moral hazard problem.28

An open question though is whether this might be different if, under collective branding, all

players could not only observe the aggregate signal but also attribute the individual signals

to a specific local market. While such an assumption does not reflect our interpretation

of collective branding, we expect relational contracts that implement voluntary payments

from local markets with a bad signal to local markets with a good signal, to be sustainable

and alleviate the moral hazard problem. However, for such outcomes to be attainable in a

PPE, consumers must also be able to observe such voluntary transfers between producers in

different markets, which seems unlikely to hold in practice.

Moreover, we assumed that effort choices of the global and local players are binary and

perfectly complementary within a market. This assumption allowed us to focus on the

26Recall from our analysis that, in the best PPE, (ICC1
G ) is binding, and (ICCnG ) slack, for δ large.

27The relational contracting literature offers the insight that our focus on static revenue shares is without
loss.

28Technically, the condition of “pairwise identifiability” (Fudenberg et al., 1994) fails in our context.
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reputational team production problem across markets and abstract from the physical team

production problem within a market. In a richer production structure with continuous effort

choices that are imperfect complements, players must then, on the one hand, also solve the

physical team production problem, but have, on the other hand, more punishments abilities

to control reputational team production. We leave such an analysis for future research.

In our analysis, we have assumed that all markets are identical. Allowing for a market-

specific signal structure (αi, βi) would enable us to study a number of novel questions such as

which products to group together and sell under a common brand name, or how to optimally

design aggregate brand-level quality signals. However, such an extension would have to deal

with at least two analytical difficulties. First, this would require giving up the convenient

restriction to symmetric equilibria. Second, this would require dealing with more complex

Poisson’s binomial distributions.29

Another interesting topic for future work consists in studying optimal task assignment

within a collective brand. Suppose that production requires a continuum of tasks, indexed

by i ∈ [0, 1]. Let cG(i) and cL(i) denote the effort cost for the global and local player,

respectively, in performing task i. Suppose that ∆c(i) ≡ cG(i)−cL(i) is strictly decreasing in

i, with ∆c(ι̂) = 0 for some ι̂. First-best efficiency thus requires that tasks [0, ι̂) are performed

by local players, and tasks (ι̂, 1] by the global player. An implication of our analysis in Section

3 is that such “myopic” cost minimization is indeed optimal under independent branding.

Under collective branding, however, our results imply that the global player should optimally

take on more tasks as the joint value is decreasing in the share of the effort costs borne by the

local players.30 That is, optimal task assignment introduces a productive inefficiency under

collective branding to mediate the free-rider problem.

29As Poisson’s binomial distributions in general satisfy MLRP, we would expect the main insights of our
analysis to carry over to such an extension.

30In the context of platform markets, the “Fulfillment by Amazon” (FBA) program may be understood
through this lens. The FBA program, established in 2006, amounted to Amazon (as the global player) taking
over the tasks of storage, shipping and handling returns from individual merchants (the local players).
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Appendix A: Proofs

Proof of Proposition 1: Follows directly from the text. Q.E.D.

Proof of Lemma 1: First note that solving Pn disregarding all constraints, yields ρs = 0 for

all s, but this violates all constraints. Because the optimization problem is linear, it follows

that at least one of the constraints must be binding at an optimal solution.

Second, suppose to the contrary that ρC is optimal but such a s̄ does not exist. Then there

are l < h such that ρl < 1 and ρh > 0, with ρC satisfying all the constraints of Pn. Consider

changing ρC to ρ̂C by only lowering ρh by ∆ρ > 0 and raising ρl by ∆ρ · Pn(sh|0)/Pn(sl|0).

This change does not affect p0 =
∑n

s Pn(s|0)ρs. Therefore, the objective and the right-hand

side of all the constraints remain unchanged. The left-hand side of the constraints change by{
[Pn(sl|k)− Pn(sl|0)]

Pn(sh|0)

Pn(sl|0)
− [Pn(sh|k)− Pn(sh|0)]

}
∆ρ

k
.

After rewriting the term in curly brackets as{
Pn(sl|k)− Pn(sl|0)

Pn(sl|0)
− Pn(sh|k)− Pn(sh|0)

Pn(sh|0)

}
Pn(sh|0) =

{
Pn(sl|k)

Pn(sl|0)
− Pn(sh|k)

Pn(sh|0)

}
Pn(sh|0),

the MLRP of Poisson’s binomial distribution implies that the term is strictly positive so that

the left-hand side of each constraint strictly increases. As a result, ρ̂C must also be optimal,

since it attains the same objective value and all constraints are satisfied, even strictly so.

The latter however contradicts the first observation that for any solution to Pn at least one

constraint is binding.

To see the final claim of the lemma, note that given the cutoff structure, it follows that

pk =
∑n

s=0 Pn(s|k)ρs = Pn(s̃ < s̄|k) + Pn(s̄|k)ρs̄ = (1 − ρs̄)Pn(s̃ < s̄|k) + ρs̄Pn(s̃ ≤ s̄|k) ≤
(1 − ρs̄)Pn(s̃ < s̄|k + 1) + ρs̄Pn(s̃ ≤ s̄|k + 1) = Pn(s̃ < s̄|k + 1) + Pn(s̄|k + 1)ρs̄ = pk+1 for

all k = 0, . . . , n− 1, where the inequality follows from first-order stochastic dominance (i.e.,

equation (7)). Q.E.D.

Proof of Lemma 2: In order to derive the critical discount factor δ̄C , we first compute for

each of the constraints in (14) the minimum δ̄kG such that there is an s̃ that fulfills it. In

particular,

δ̄kG ≡
c

∆k
Gn(γG − c) + c

, where ∆k
G ≡ max

s̃

{
s̃∑
s=0

∆G(k, s)

}
. (19)

In order to see that γG > γ̄G is a sufficient and necessary condition for ∆k
G > 0 for all
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k = 1, . . . , n, note that ∆G(k, s) ≥ 0 only if ∆G(k, 0) ≥ 0, since

∆G(k, 0) < 0 ⇔ Pn(0|k)

Pn(0|0)
< 1 +

kc

n(γG − c)
⇒ Pn(s|k)

Pn(s|0)
< 1 +

kc

n(γG − c)
⇔ ∆G(k, s) < 0,

where “⇒” follows from MLRP. Hence, ∆k
G > 0 if and only if ∆G(k, 0) > 0, where the latter

is equivalent to

γG > c+
kc

n[((1− β)/α)k − 1]
.

Since the right hand side is decreasing in k,31 a sufficient and necessary condition for ∆k
G > 0

for all k = 1, . . . , n is γG > γ̄G.

Likewise, compute for the constraint (15) the maximum δ̄L such that there is an s̃ that

fulfills it. That is,

δ̄L ≡
c

∆L(γL − c) + c
, where ∆L ≡ max

s̃

{
s̃∑
s=0

∆L(1, s)

}
(20)

and a sufficient and necessary condition for ∆L > 0 is γL > γ̄L.

It then follows that δ̄C is the maximum over all δ̄kG and δ̄L.

As shown, γG > γ̄G and γL > γ̄L imply ∆G(k, 0) > 0 for all k = 1, . . . , n, and ∆L(1, 0) > 0.

Noting that the right-hand sides of (14) and (15) vanish when δ approaches 1, the algorithm

stops for s̃ = 0, for δ close enough to 1, namely for δ ≥ δ̄C0 , where

δ̄C0 ≡ max

{
max
k

{
c

c+ n(γG − c)∆G(k, 0)

}
,

c

c+ (γL − c)∆L(1, 0)

}
.

To see the last statement of the lemma, note that with s̄ = 0, (ICCk
G ) reduces to

nδ(Pn(0|k)− Pn(0|0))ρ0
V (p0, 1)

k
≥ c.

Because Pn(0|k) = [(1 − β)/α]kαn it follows from (1 − β)/α > 1 that Pn(0|k) is convex in

k. As a result, the left hand side of (ICCk
G ) is increasing in k while the right hand side is

independent of k. Hence, if the constraint holds for k = 1, it holds for all k > 1. Q.E.D.

Proof of Proposition 2: The replication result derived in the body text shows that, for

λG = 1 and ρI0 ≤ 1, collective branding is weakly superior to independent branding as

it can replicate the best PPE under independent branding. The fact that, except for the

special case of n = 2 and ρI0 = 1, the superiority is strict, follows from Lemma 1, since

31Its derivative is of the same sign as ψ(r, k) ≡ rk − 1− krk log r, where r ≡ (1− β)/α > 1. As ψ(1, k) = 0
and ∂ψ(r, k)/∂r = −k2rk−1 log r < 0 for r > 1, it follows that ψ(r, k) < 0.
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ρ = (ρ1(ρI0), . . . , ρn(ρI0)) violates the lemma’s characterization of a solution to Pn, except for

the special case of n = 2 and ρI0 = 1. If ρI0 > 1 then V
I

= 0 so that a (weak) superiority of

collective branding holds trivially since V
C ≥ 0. Whether the superiority is strict, depends

on whether the discount factor δ is larger than the critical discount factor δ̄C in Lemma 2.

In this respect, Proposition 2 implies that the critical discount factor δ̄C is smaller than the

critical discount factor under independent branding, δ̄I , and strictly so for any n > 2. Q.E.D.

Proof of Proposition 3: Follows directly from the text. Q.E.D.

Proof of Proposition 4: Follows directly from the text. Q.E.D.

Proof of Lemma 3: Suppose to the contrary that V
C
> 0 but γ̂L ≤ 1, implying γ̂G ≥ 1.

Then, as argued, the program of minimizing p0 w.r.t. ρC subject to all (ICCk
G ) and (ICC

L ) has

a solution ρC = (1, . . . , 1, ρs̄, 0, . . . , 0) such that (ICC
L ) binds, while all constraints (ICCk

G )

are slack. Since ∂V (p0, γL)/∂γL > 0, raising γL slightly results in all constraints being slack,

allowing to lower p0 by reducing ρs̄ (or if ρs̄ = 0 lowering s̄). This contradicts that γ̂L ≤ 1

is optimal. If γ̂L ≥ 1 but no (ICCk
G ) is binding, one can lower p0 by the same procedure,

whereas if (ICC
L ) is slack one can lower p0 through a similar procedure by raising γG. We

conclude that γ̂G < 1 < γ̂L and are such that (ICC
L ) and at least one (ICCk

G ) is binding.

Lemma 2 shows that for δ ∈ (δ̄C0 , 1), the binding constraint must be (ICC1
G ). In this case,

(γ̂L, γ̂G) are such that both (ICC1
G ) and (ICC

L ) hold with equality, implying

δ(p1 − p0)V (p0, γ̂G)n = c = δ(p1 − p0)V (p0, γ̂L) ⇔ n(γ̂G − c) = γ̂L − c.

Combining the latter equation with the identity γL = (1 − λGγG)/(1 − λG) yields γ̂G = γ̃G

and γ̂L = γ̃L. Note that for δ < δ̄C0 the constraint (ICC1
G ) may be slack at the optimum.

Hence, in general, we have

δ(p1 − p0)V (p0, γ̂G)n ≥ c = δ(p1 − p0)V (p0, γ̂L) ⇔ n(γ̂G − c) ≥ γ̂L − c.

Combining this latter inequality with our previous finding that γ̂G < 1 < γ̂L yields the result

γ̂G ∈ [γ̃G, 1) and γ̂L ∈ (1, γ̃L]. Q.E.D.

Proof of Proposition 5: By Proposition 3, collective branding with proportional rewards

can attain the value V
I
, whenever ρI0 ≤ αn−1. Lemma 3 then implies that V

C
> V

I
, since

it shows that proportional rewards are strictly suboptimal, meaning that collective branding

can attain a value exceeding V
I
. The result then follows from the observation that ρI0 ≤ αn−1
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if and only if δ ≥ δ̄, where

δ̄ =
c

c+ αn−1(1− α− β − (1− β)c)
.

Q.E.D.

Proof of Proposition 6: Suppose the model’s parameters are such that V
C
> 0, implying

that there is an optimal triple (γ̂G, γ̂L, ρ̂) to PC . In particular, for this triple (γ̂G, γ̂L, ρ̂),

the constraint (ICC
L (γ̂L)) as well as at least one constraint (ICCk

G (γ̂G)) are binding. Now

consider an increase in the parameter λG, while keeping γG constant at γ̂G. These changes

imply a decrease in λL together with an increase in πG. From γL = (1− λGγG)/(1− λG), it

however follows that ∂γL/∂λG > 0 so that the overall effect on γL is positive. Hence, (ICC
L )

is relaxed, implying that we can, in fact, also increase γG slightly above γ̂G, thereby relaxing

all constraints so that ρ̂ together with the raised γG and γL lead to the same p0 but with all

constraints satisfied with strict inequality. By Lemma 3, the triple is suboptimal, meaning

there is a different triple leading to a strictly lower p0, implying a strictly larger V
C

. Q.E.D.

Proof of Proposition 7: Let rs ∈ Rn+1 denote deterministic cutoffs ρ of the form (1, . . . , 1, 0, . . . , 0).

That is, rs is an (n+ 1)-dimensional vector with the first s entries being 1 and the remaining

n + 1 − s entries being 0. Denote by Rn = {r0, r1, . . . , rn+1} ⊂ Rn+1 the set of all rs for a

given n.

Given n and γnG = 1, recall that we have

ρ̂n = arg min
ρ
p0(ρ) s.t. (ICn;1

G (1)), . . . , (ICn;n
G (1)).

In addition to this minimization problem, consider for a given n and γnG = 1 the problems

ρ̃n = arg min
ρ
p0(ρ) s.t. (ICn;1

G (1)) and (ICn;n
G (1));

r̂n = arg min
rs∈Rn

p0(rs) s.t. (ICn;1
G (1)), . . . , (ICn;n

G (1));

r̃n = arg min
rs∈Rn

p0(rs) s.t. (ICn;1
G (1)) and (ICn;n

G (1)).

Because the first problem is less stringent than the minimization problem underlying ρ̂n,

whereas the second is more stringent, it follows

p0(ρ̃n) ≤ p0(ρ̂n) ≤ p0(r̂n).
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Moreover, if ρ̃n has the cutoff at s̄, then r̃n = rs̄+1 so that

p0(r̃n)− p0(ρ̃n) = Pn{s̄|0}(1− ρ̃ns̄ ).

Since limn→∞ Pn{s̄|0} = 0, it follows

lim
n→∞

p0(ρ̃n) = lim
n→∞

p0(r̃n). (21)

Because the minimization problem associated with r̃n is a relaxed version of the mini-

mization problem associated with r̂n, it holds p0(r̂n) ≥ p0(r̃n). The next lemma shows that,

in fact, p0(r̂n) = p0(r̃n).

Lemma 4. The minimizer r̂n minimizes p0 subject to only the incentive constraints (ICn;1
G (1))

and (ICn;n
G (1)).

Proof. The statement is trivially satisfied for n = 2, so suppose n > 2. Rewriting (ICn;k
G (1))

as
pnk − pn0

k
≥ c

δnV (p0, 1)
(22)

shows that if pk is convex in k, in the sense that the incremental differences

pnk+2 − pnk+1 − (pnk+1 − pnk) (23)

are positive, then the left hand side of (22) is increasing in k so that (ICn;1
G (1)) implies all

other constraints and, hence, at most (ICn;1
G (1)) can be binding. If, in contrast, pk is concave

in k, then the left hand side is decreasing in k so that (ICn;n
G (1)) implies all other constraints

and, hence, at most (ICn;n
G (1)) can be binding.

We next argue that, for any rs̄ ∈ Rn, the curvature of pk(r
s̄) w.r.t. k, i.e., the sign of (23),

depends on the cutoff s̄. To see this, note first that the recursive structure (6) of Pn(s|k)

implies that the incremental differences (23) rewrites as:

pnk+2 − pnk+1 − (pnk+1 − pnk) =
s̄∑
s=0

[Pn(s|k + 2) + Pn(s|k)− 2Pn(s|k + 1)]

=(1− α− β)2{[Pn−2(s̄|k)− Pn−2(s̄− 1|k)].} (24)

The single peakedness of Pn−2(.|k) implies that Pn−2(s|k) is increasing in s for all s smaller

than the mode, mk, of Pn−2(.|k) and decreasing in s for all s larger than mk. Since mk is

decreasing in k, mk lies in between the modes of the binomial distributions B(n− 2, β) and

B(n− 2, (1− α)), i.e., mk ∈ [m0,mn−2] with m0 = b(n− 1)βc and mn−2 = b(n− 1)(1− α)c,
where bxc is the greatest integer less than or equal to x. Therefore, if s̄ ≤ m0, then (24) is
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positive for all k and, hence, the incremental differences are positive for all k, implying pk is

convex. Similarly, if s̄− 1 > mn−2, then (24) is negative for all k and, hence, the incremental

differences are negative for all k, implying pk is concave. For s̄ ∈ [m0,mn−2 + 1], the sign

of (24) may depend on k. The single peakedness of Pn−2(.|k) together with the decreasing

mode mk implies however that (24) can switch sign at most once as k increases and only from

positive to negative. If so, there is a k̄ such that pk is convex for all k ≤ k̄ and concave for all

k ≥ k̄. This means that for k ≤ k̄, (ICn;1
G (1)) implies (ICn;k

G (1)), and for k ≥ k̄, (ICn;n
G (1))

implies (ICn;k
G (1)).

A direct corollary of Lemma 4 is that

pn0 (ρ̃n) ≤ pn0 (ρ̂n) ≤ pn0 (r̂n) = pn0 (r̃n).

Since this string of inequalities holds for all n, it holds also in the limit, implying that

lim
n→∞

pn0 (ρ̃n) ≤ lim
n→∞

pn0 (ρ̂n) ≤ lim
n→∞

pn0 (r̂n) = lim
n→∞

pn0 (r̃n).

By (21) and a sandwich theorem, it then follows that

lim
n→∞

pn0 (ρ̃n) = lim
n→∞

pn0 (ρ̂n) = lim
n→∞

pn0 (r̂n) = lim
n→∞

pn0 (r̃n).

The next lemma shows that, for large enough n, we can pick deterministic cutoffs such

that p0 is arbitrarily close to zero, while the constraints are all slack, provided that δ > c.

Lemma 5. Suppose δ > c so that ε̄ ≡ (δ − c)/δ > 0. Then, for all ε ∈ (0, ε̄)

∃n̄ ∈ N : ∀n > n̄, ∃s̄(n) ≤ n : pn0 (rs̄(n)) < ε and (ICn;1
G (1)) and (ICn;n

G (1)) are slack.

Proof. Fix ε > 0 and let

K =
c

δV (ε, 1)(1− α− β)
.

Denote the pdf of the normal distribution N (µ, σ2) with mean µ = n(1 − α) and variance

σ2 = nα(1− α) by

ϕn(s) =
1√

2πnα(1− α)
e−

1
2

(s−n(1−α))2

nα(1−α) .

Then there is an ñ1 such that for all n > ñ1, the equation

ϕn(s̃(n)) =
K

(1− ε)n
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has the solution s̃(n) = µ− σh(n) < (1− α)n− 1 with

h(n) ≡

√
ln

(
n

2πα(1− α)K2/(1− ε)2

)
.

By noting that limn→∞ h(n) =∞, Chebyshev’s inequality implies that there is an ñ2(> ñ1)

such that for all n > ñ2 it holds

Φn(s̃(n)) ≡ Pr{s ≤ s̃(n)} =

∫ s̃(n)

−∞
ϕn(s)ds < ε/2.

Since the binomial distribution B(n, (1− α)) converges in distribution to N (µ, σ2), there is

an ñ3(> ñ2) such that for any n > ñ3

|Pn{s ≤ s̄(n)|0} − Φn(s̃(n))| < ε/2,

where s̄(n) = ds̃(n)e is the smallest integer greater than s̃(n). Hence, for any n > ñ3

pn0 (rs̄(n)) = Pn{s ≤ s̄(n)|0} < Φn(s̃(n)) + ε/2 < ε.

It remains to be shown that rs̄(n) satisfies (ICn;1
G (1)) and (ICn;n

G (1)) with slackness.

The constraint (ICn;1
G (1)) for rs̄(n) rewrites as

Pn−1(s̄(n)|0) ≥ 1

n

c

δV (p0(rs̄(n)), 1)(1− α− β)
.

Since V (pn0 , 1) is strictly decreasing in pn0 and pn0 (rs̄(n)) < ε, the inequality holds strictly if

Pn−1(s̄(n)|0) ≥ K/n.

The de Moivre-Laplace theorem implies there is an ñ4(> ñ3) such that for all n > ñ4

1− ε < Pn−1(s̄(n)|0)

ϕn(s̄(n))
< 1 + ε.

Hence, for n > ñ4 it holds

Pn−1(s̄(n)|0) > (1− ε)ϕn(s̄(n)) ≥ (1− ε)ϕn(s̃(n)) = K/n,

where the second inequality follows since, s̄(n) ≤ ds̃(n)e ≤ d(1− α)n− 1e ≤ (1− α)n. This

shows that rs̄(n) satisfies (ICn;1
G ) with slackness for all n > ñ4.
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Recall (ICn;n
G ) for rs̄(n) rewrites as

pnn(rs̄(n))− pn0 (rs̄(n)) ≥ c

δV (p0(rs̄(n)), 1)
.

Since limn→∞ s̃(n)/n = (1−α) > β, it follows by the law of large numbers that for any ε̃ > 0,

there is an ñ5(> ñ4) so that for all n > ñ5, we have

pnn(rs̄(n)) =

s̄(n)∑
s=0

Pn(s|n) > 1− ε̃.

In particular, for ε̃ ∈ (0, (δ − c− δε)/(δ(1− c))), it follows

pnn(rs̄(n))− pn0 (rs̄(n)) > 1− ε̃− ε > c(1− δ + δε)

δ(1− c)
=

c

δV (ε, 1)
>

c

δV (pn0 (rs̄(n)), 1)
.

This confirms that (ICn;n
G (1)) for rs̄(n) holds with slackness for all n > ñ5. Taking n̄ = ñ5

completes the lemma.

Noting that pn0 arbitrarily close to 0 means that the average per period payoffs, vn, is

arbitrarily close to 1− c, then yields the Proposition. Q.E.D.

Proof of Proposition 8: If λL > 0 and V
n
> 0, then there is a triple (γ̂nG, γ̂

n
L, ρ̂

n) where

ρ̂n = (1, . . . , 1, ρs̄n , 0, . . . , 0) ∈ Rn+1 with s̄n ∈ {0, . . . , n − 1} such that incentive constraint

(ICC
L (γ̂nL)) is satisfied. That is,

pn1 (ρ̂n)− pn0 (ρ̂n) ≥ c

δV (pn0 (ρ̂n), γ̂nL)
. (25)

Because pn0 (ρ̂n) ≥ 0 and γ̂nL ≤ 1/λL, we have

V (pn0 (ρ̂n), γ̂nL) =
γ̂nL − c

1− δ(1− pn0 (ρ̂n))
≤ 1/λL − c

1− δ
,

so that the right-hand side of (25) is larger than some lower bound that is strictly larger than

zero and independent of n.

We next argue that the left-hand side, pn1 − pn0 , of (25) goes to zero as n grows arbitrarily

large. To see this, apply the recursive structure (6) to obtain

pn1 (ρ̂n)− pn0 (ρ̂n) = (1− α− β)[Pn−1(s̄n − 1|0)(1− ρ̂s̄n) + Pn−1(s̄n|0)ρ̂s̄n ]. (26)

Since Pn−1(.|0) is a binomial distribution of n − 1 trials with success probability 1 − α, the

individual probability Pn−1(s|0) goes to zero for any s as n grows arbitrarily large. Equation
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(26) then implies that pn1 (ρ̂n)−pn0 (ρ̂n) goes to zero as n grows arbitrarily large, which implies

that there exists an n̂ such that (25) is violated for all n > n̂. Consequently, there is an

upper bound on n such that Pn has a solution. Since n is an integer, there is actually a lower

upper bound n̄ such that Pn has a solution if and only if n < n̄. Note that if for parameters

(α, β, c, δ, λL, n) the program Pn has a solution then it also has a solution when δ increases,

implying that n̄ is increasing in δ. Q.E.D.

Proof of Proposition 9: We first prove the second statement (which implies the first

statement) by showing that for any n, there is a δ̄(n) such that for all δ that exceed δ̄(n), it

holds n̂ > n. To see this, fix n and take γL = γ̃nL. Lemma 2 implies that for δ > δ̄n0 , we have:

ρ̂n0 < 1, ρ̂ni = 0 for all i = 1, . . . , n, (ICn;1
G (γ̃nG)) holds with equality while all other (ICn;k

G (γ̃nG))

are slack. Moreover, by Lemma 3, γ̂L = γ̃nL so that (ICn
L(γ̃nL)) holds with equality for ρ̂n.

Using this latter equality yields that for any δ > δ̄n0 we have

ρ̂n0 =
c/δ − c

(Pn(0|1)− Pn(0|0))(γ̃nL − c)− Pn(0|0)c
=

c/δ − c
αn−1[(1− α− β)(γ̃nL − c)− αc]

. (27)

Note that the right-hand side converges to zero as δ goes to one. Hence, given n, we can find

a δ̄(n) < 1 so that for all δ > δ̄(n), we have ρ̂n0 < α.

We next argue that for all δ > δ̄(n), we must have n 6= n̂, because, already for brand size

n + 1, we can, given δ, find a ρn+1 that yields a strictly lower pn+1
0 . To see this, consider

ρn+1 = (ρ̂n0/α, 0, . . . , 0) and γL = γ̃n+1
L . It follows that

pn+1
0 (ρn+1) = Pn+1(0|0)ρ̂n0/α = αn+1ρ̂n0/α = αnρ̂n0 = Pn(0|0)ρ̂n0 = pn0 (ρ̂n)

and

pn+1
1 (ρn+1) = Pn+1(0|1)ρ̂n0/α = αn(1− β)ρ̂n0/α = αn−1(1− β)ρ̂n0 = Pn(0|1)ρ̂n0 = pn1 (ρ̂n).

Hence,

[pn+1
1 (ρn+1)− pn+1

0 (ρn+1)]γ̃n+1
L − pn+1

0 (ρn+1)c = [pn1 (ρ̂n)− pn0 (ρ̂n)]γ̃n+1
L − pn0 (ρ̂n)c

> [pn1 (ρ̂n)− pn0 (ρ̂n)]γ̃nL − pn0 (ρ̂n)c = c/δ − c,

where the inequality holds because γ̃n+1
L > γ̃nL. This implies that (ICn+1

L (γ̃n+1
L )) is slack. As

γL = γ̃n+1
L , the left-hand sides of (ICn+1

L (γ̃n+1
L )) and (ICn+1;1

G (γ̃nG)) are equal to each other,

implying that (ICn+1;1
G (γ̃nG)) and, thus, all the other (ICn+1;k

G (γ̃nG)) are slack as well. For

the optimal ρ̂n+1 it therefore holds pn+1
0 (ρ̂n+1) < pn0 (ρ̂n). For δ > δ̄(n), brand size n + 1 is

therefore superior to brand size n. Since this argument holds for any n, it follows that n̂

cannot be finite and limδ→1 n̂ =∞.
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To see the final statement of the proposition, first fix n and γL = γ̃nL, and pick a δ

arbitrarily close to 1, then, as discussed above, ρ̂n is such that ρ̂n0 equals (27) and ρ̂ni = 0 for

all i = 1, . . . , n. The average per-period value can therefore be written as

vn =
(1− δ)(1− c)
1− δ + δαnρ̂n0

=
(1− c)

1 + cα
(1−α−β)(γ̃nL−c)−αc

= (1− c)− αc(1− λL + λLn)

(1− α− β)n
.

Hence,

lim
n→∞

vn = 1− c− λL
αc

1− α− β
.

Q.E.D.
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Appendix B

In this appendix, we apply the abstract methods of decomposability and self-generation

developed in Abreu, Pearce, and Stacchetti (1990) for the case of two markets, n = 2, under

collective branding. In particular, we focus on the implementation of equilibrium outcomes

in which players choose the cooperative actions b1 = eG,1 = eL,1 = b2 = eG,2 = eL,2 = 1

in the first period of the repeated game, both for symmetric and asymmetric perfect public

equilibrium outcomes.

For fixed revenue shares πG = 1 − πL, the infinitely repeated game with imperfect mon-

itoring has 5 players – the two local players, the global player, and the two consumers.

We will refer to local player 1 as player 1, local player 2 as player 2, the global player as

player 3, consumer 1 as player 4, and consumer 2 as player 5. Players 1, 2, and 3 are

long-lived players, whereas the consumers, player 4 and 5, are short-lived. Except for the

global player, all players have a binary action set, A1 = A2 = A4 = A5 = {0, 1}. The

global player, as player 3, has an action set containing four actions that we can express as

binary numbers, denoting in which of the two markets the global player picks effort: i.e.,

A3 = {eG1eG2}eG1,eG2∈{0,1} = {00, 10, 01, 11}. Expressing player 3’s action as a binary num-

ber, we can represent a pure action profile a as an element from {0, 1}6 and the set of pure

action profiles contains 26 = 64 elements.

Because in equilibrium the short-lived players play myopic best replies, the set of feasible

pure action profiles in the stage game of the overall repeated game is smaller. As explained

in the main text, a consumer in market i buys if and only if the local and global player

exert effort in market i. As a result, the set of feasible pure action profiles, B, contains

24 = 16 elements and for any feasible pure action profile consumers obtain a payoff of zero.

Restricting attention to the set of feasible pure action profiles allows us to focus on the

long-lived players, 1, 2, and 3, while ensuring equilibrium behavior of the short-run players.

Concerning the long-lived players, the feasible action profile a = (eL1, eL2, eG1, eG2, b1, b2) ∈ B

yields the following stage payoffs to the three (long-lived) players:

u1(a) = aC1πL − λLeL1c; u2(a) = aC2πL − λLeL2c; u3(a) = (b1 + b2)πG − λG(eG1 + eG2)c.

Note that, restricted to the feasible pure action profiles in B, each player can guarantee

himself at least a zero payoff by not exerting any effort. Moreover, by not exerting any effort,

any pair of players can ensure that the other player gets at most a zero payoff. Hence, the

minmax-payoff of each player is zero.

The observable signals are the aggregated quality reports s = s1 + s2 ∈ {0, 1, 2} and

the uniformly distributed public correlation device r ∈ [0, 1]. Given the action profile a, the

perfect complementarity of efforts imply that the probability of signal si ∈ {0, 1} in market
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i is

P{si = 1|a} = (1− α)aiai+2 + β(1− aiai+2),

where ai is the i−th element of the action profile a = (eL1, eL2, eG1, eG2, b1, b2) ∈ B. Following

Mailath and Samuelson (2006,p.253), we combine the signal s and r into one continuous signal

y by defining

y = s1 + s2 + r ∈ Y ≡ [0, 3].

We denote the density of this continuous signal over the support Y by ρ(y|a). Since the

distribution of r is uniform, the density ρ(y|a) is the step function:

ρ(y|a) =


P{s = 0|a} , if y ∈ [0, 1)

P{s = 1|a} , if y ∈ [1, 2)

P{s = 2|a} , if y ∈ [2, 3].

Following Abreu, Pearce, and Stacchetti (1990), we define an action profile a ∈ B as

enforceable on W ⊂ R3
+ if there exists a (Lebesgue measurable) mapping γ : Y → W such

that for any i = 1, 2, 3,

Vi(a, γ) ≡ (1− δ)ui(a) + δ

∫ 3

0

γi(y)ρ(y|a)dy

≥ (1− δ)ui(a′i, a−i) + δ

∫ 3

0

γi(y)ρ(y|a′i, a−i)dy for all a′i ∈ Ai.

Note that, given the density ρ(y|a), it holds for any a ∈ B which is enforceable on W
that∫ 3

0

γi(y)ρ(y|a)dy =
2∑
j=0

∫ j+1

j

γi(y)ρ(y|a)dy =
2∑
j=0

P{s = j|a}
∫ j+1

j

γi(y)dy =
2∑
j=0

P{s = j|a}wj,

where wj =
∫ j+1

j
γi(y)dy lies in the convex hull ofW . Consequently, the definition of enforce-

ability in our framework is equivalent to saying that an action profile a ∈ B is enforceable

on W ∈ R3
+ if there exists a triple w1, w2, w3 in the convex hull of W such that

Vi(a, γ) ≡ (1− δ)ui(a) + δ

2∑
j=0

P{s = j|a}wj

≥ (1− δ)ui(a′i, a−i) + δ

2∑
j=0

P{s = j|a′i, a−i}wj for all a′i ∈ Ai. (28)

The perfect complementarity in the effort levels implies that any action profile for which,
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in some market, effort is only supplied by one player is not enforceable. As a result, only the

following 4 action profiles of the 16 feasible action profile in B are enforceable:

(0, 0, 00, 0, 0); (1, 0, 10, 1, 0); (0, 1, 01, 0, 1); (1, 1, 11, 1, 1);

with associated enforceable payoff vectors 0

0

0

 ;

 uL

0

uG

 ;

 0

uL

uG

 ;

 uL

uL

2uG

 ,

where uL = πL − λLc and uG = πG − λGc.
Abreu, Pearce, and Stacchetti (1990) show that the set of equilibrium payoffs, E(δ), is a

subset of the convex hull of the enforceable payoff vectors. Because these payoff vectors lie

on a two dimensional plane within R3, we can express any point w ∈ R3 in the convex hull

of these four points by a unique pair of scalars (µ1, µ2) ∈ [0, 1]2 such that

w = ŵ(µ1, µ2) ≡ µ1

 uL

0

uG

+ µ2

 0

uL

uG

 .

Hence, the convex hull is the set Ŵ ≡ {ŵ(µ1, µ2)|µ1, µ2 ∈ [0, 1]} and the aggregate payoff

associated with any point ŵ(µ1, µ2) is V (µ1, µ2) = (µ1 + µ2)(uL + uG). As a result, the

equilibrium payoff that maximizes aggregate payoffs is attained by a solution (µ∗1, µ
∗
2) of the

following program:

P : max
µ1,µ2

V (µ1, µ2) s.t. ŵ(µ1, µ2) ∈ E(δ).

Apart from the fact that E(δ) ⊂ Ŵ , the presence of the correlation device r implies

that the set E(δ) is convex. Moreover, since the two markets are symmetric, E(δ) exhibits

the symmetry that w(µ1, µ2) ∈ E(δ) implies w(µ2, µ1) ∈ E(δ). From the convexity and this

symmetry of E(δ), it follows that there is a symmetric solution µ∗1 = µ∗2 = µ∗ to problem P
with an associated payoff vector w∗ that is symmetric in the sense that w∗ = ŵ(µ, µ) for some

µ ∈ [0, 1]. Note also that for any w = (w1, w2, w3) ∈ E(δ) we have w = ŵ(w1/uL, w2/uL) so

that be defining

M(δ) ≡ {(w1/uL, w2/uL)|(w1, w2, w3) ∈ E(δ)},

we obtain an equivalent representation of E(δ) in terms of pairs (µ1, µ2).

Implementation of a11 ≡ (1, 1, 1, 1, 1, 1) in the first period. We next study an equilib-

rium in which a11 is the aggregate-payoff-maximizing strategy profile. We first argue that,
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in this case, the action profile a11 ≡ (1, 1, 1, 1, 1, 1) in the first period must also lead to a

symmetric equilibrium payoff w ∈ E(δ). To see this, note first that for the action profile

a11 to be implementable in equilibrium it has to be enforceable on E(δ). The convexity of

E(δ) implies it is equal to its convex hull so that the requirement is that we have to find

three equilibrium payoffs w1, w2, w3 ∈ E(δ) such that (28) holds for each long-lived player.

Since any equilibrium value w ∈ E(δ) corresponds to a (unique) pair (µ1, µ2) ∈ [0, 1] such

that w = ŵ(µ1, µ2), finding three equilibrium values is equivalent to finding three pairs

µ0 = (µ0
1, µ

0
2), µ1 = (µ1

1, µ
1
2), µ2 = (µ2

1, µ
2
2) in M(δ) such that (28) holds for each long-lived

player with wj = ŵ(µj).

With respect to player 1, (28) is

(1− δ)uL + δ

2∑
j=0

P{s = j|a11}ŵ1(µj) ≥ (1− δ)(uL + λLc) + δ

2∑
j=0

P{s = j|0, a11
−1}ŵ1(µj).(29)

With respect to player 2, (28) is

(1− δ)uL + δ
2∑
j=0

P{s = j|a11}ŵ2(µj) ≥ (1− δ)(uL + λLc) + δ
2∑
j=0

P{s = j|0, a11
−2}ŵ2(µj).

With respect to player 3, (28) leads to three conditions of which, due to P{s = j|01, a11
−3} =

P{s = j|10, a11
−3}, the latter two coincide:

(1− δ)2uG + δ
2∑
j=0

P{s = j|a11}ŵ3(µj) ≥ (1− δ)2(uG + λGc) + δ
2∑
j=0

P{s = j|00, a11
−3}ŵ3(µj),

(1− δ)2uG + δ
2∑
j=0

P{s = j|a11}ŵ3(µj) ≥ (1− δ)(2uG + λGc) + δ
2∑
j=0

P{s = j|10, a−3}ŵ3(µj),

(1− δ)2uG + δ

2∑
j=0

P{s = j|a11}ŵ3(µj) ≥ (1− δ)(2uG + λGc) + δ

2∑
j=0

P{s = j|01, a11
−3}ŵ3(µj).

Combining and rewriting these conditions, we get local player 1’s incentive constraint

1− δ
δ

λLc

(1− α− β)uL
≤ −αµ0

1 + (2α− 1)µ1
1 + (1− α)µ2

1; (30)

local player 2’s incentive constraint

1− δ
δ

λLc

(1− α− β)uL
≤ −αµ0

2 + (2α− 1)µ1
2 + (1− α)µ2

2; (31)
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the global player’s incentive constraint not to shirk in both markets:

2(1− δ)
δ

λGc

(1− α− β)uG
≤ −(1−β+α)(µ0

1+µ0
2)+2(α−β)(µ1

1+µ1
2)+(1−α+β)(µ2

1+µ2
2); (32)

and the global player’s incentive constraint not to shirk in only one market:

1− δ
δ

λGc

(1− α− β)uG
≤ −α(µ0

1 + µ0
2) + (2α− 1)(µ1

1 + µ1
2) + (1− α)(µ2

1 + µ2
2). (33)

The action profile a11 is implementable if a triple of pairs µ̄ = (µ̄0, µ̄1, µ̄2) in M(δ) exist that

together satisfy the constraints (30), (31), (32), (33). In this case, implementing a11 in the

first period with continuation payoffs ŵ0(µ0), ŵ1(µ1), ŵ2(µ2) yields an aggregate payoff of

V (µ0, µ1, µ2) = (uG+uL)[2(1−δ)+δ{α2(µ0
1+µ0

2)+2α(1−α)(µ1
1+µ1

2)+(1−α)2(µ2
1+µ2

2)}] (34)

Hence, the triple of pairs, µ̄ = (µ̄0, µ̄1, µ̄2), that maximizes aggregate payoffs from an equilib-

rium strategy that implements a11 in the first period is a solution to the following program

P(a11) : max
µ=(µ0,µ1,µ2)∈M(δ)

V (µ) s.t. (30), (31), (32), (33).

If a solution to P(a11) exists, then there is one that is symmetric in the sense that

(µ̄0
1, µ̄

1
1, µ̄

2
1) = (µ̄0

2, µ̄
1
2, µ̄

2
2), because for any asymmetric solution µ̄ its symmetric average µ̃

with µ̃i1 = µ̃i1 = (µ̄i1 + µ̄i2)/2 has the same objective value V , lies in M(δ) (due to the

convexity of E(δ)), and also satisfies all constraints (since the original µ̄ does so).

Using this observation, program P(a11) simplifies to finding three scalars (µa, µb, µc) with

(µa, µa), (µb, µb), (µc, µc) ∈M(δ) that maximize

W = (uG + uL)[2(1− δ) + 2δ{α2µa + 2α(1− α)µb + (1− α)2µc}] s.t. (35)

1− δ
δ

λLc

(1− α− β)uL
≤ −αµa + (2α− 1)µb + (1− α)µc; (36)

1− δ
δ

λGc

(1− α− β)uG
≤ −(1− β + α)µa + 2(α− β)µb + (1− α + β)µc; (37)

1− δ
δ

λGc

2(1− α− β)uG
≤ −αµa + (2α− 1)µb + (1− α)µc. (38)

Implementation of a10 ≡ (1, 0, 1, 0, 1, 0) in the first period We next study the imple-

mentability and optimality of the asymmetric action profile a10 ≡ (1, 0, 1, 0, 1, 0) in the first

period. If the equilibrium that maximizes aggregate payoffs is such that it implements the

asymmetric action a10 ≡ (1, 0, 1, 0, 1, 0) in the first period, then the equilibrium attains the
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value V ∗ = V (µ∗1 + µ∗2) = (uG + uL)(µ∗1 + µ∗2). Moreover, it requires that the action a10 is en-

forceable in E(δ). Hence, there must be three pairs µ0 = (µ0
1, µ

0
2), µ1 = (µ1

1, µ
1
2), µ2 = (µ2

1, µ
2
2)

in M(δ) such that (28) holds for a = a10 for each long-lived player with wj = ŵ(µj). That is

for player 1, we have

(1− δ)uL + δ
2∑
j=0

P{s = j|a10}ŵ(µj) ≥ (1− δ)(uL + λLc) + δ

2∑
j=0

P{s = j|0, a10
−1}ŵ(µj). (39)

For player 2, we have

(1− δ)0 + δ

2∑
j=0

P{s = j|a10}ŵ(µj) ≥ −(1− δ)λLc+ δ

2∑
j=0

P{s = j|1, a10
−2}ŵ(µj). (40)

Since P{s = j|a10} = P{s = j|1, a10
−1} for all j = 0, 1, 2, constraint (40) is satisfied for any

triple µ0, µ1, µ2. For player 3, we have

(1− δ)uG + δ
2∑
j=0

P{s = j|a10}ŵ(µj) ≥ (1− δ)(uG + λGc) + δ
2∑
j=0

P{s = j|00, a10
−3}ŵ(µj), (41)

(1− δ)uG + δ
2∑
j=0

P{s = j|a10}ŵ(µj) ≥ (1− δ)(uG − λGc) + δ
2∑
j=0

P{s = j|11, a10
−3}ŵ(µj), (42)

(1− δ)uG + δ
2∑
j=0

P{s = j|a10}ŵ(µj) ≥ (1− δ)uG + δ
2∑
j=0

P{s = j|01, a10
−3}ŵ(µj). (43)

The second inequality (42) holds for any triple (µ0, µ1, µ2), since P{s = j|a10} = P{s =

j|11, a10
−3} for each j = 0, 1, 2. Moreover, (41) implies (43), since P{s = j|00, a10

−3} = P{s =

j|01, a10
−3} for each j = 0, 1, 2. Hence, a10 is enforceable on E(δ) if and only if we find a triple

(µ0, µ1, µ2) in M(δ) such that (39) and (41) hold.

Rewriting (39) yields the retailer’s incentive constraint

1− δ
δ

λLc

(1− α− β)uL
≤ −(1− β)µ0

1 + (1− 2β)µ1
1 + βµ2

1. (44)

Rewriting (41) yields the global player’s incentive constraint

1− δ
δ

λGc

(1− α− β)uG
≤ −(1− β)(µ0

1 + µ0
2) + (1− 2β)(µ1

1 + µ1
2) + β(µ2

1 + µ2
2). (45)

The aggregate payoff associated with the strategy profile a10 that is enforceable on E(δ) by
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(µ0, µ1, µ2) is

W (µ0, µ1, µ2) = (uG+uL)[(1−δ)+δ{(1−β)α(µ0
1+µ0

2)+[(1−β)(1−α)+αβ](µ1
1+µ1

2)+(1−α)β(µ2
1+µ2

2)}]

It follows that the equilibrium with the maximum aggregate payoffs that implements

the asymmetric action a10 in the first period is a solution (µ̂0, µ̂1, µ̂2) to the following linear

program:

P10 : max
µ0,µ1,µ2∈M(δ)

W (µ0, µ1, µ2) s.t. (44), (45).

Denote the value of this program as Ŵ 10 = W (µ̂0, µ̂1, µ̂2).

If the equilibrium that maximizes aggregate payoffs is such that it implements the asym-

metric action a10 in the first period then it holds Ŵ 10 = V ∗.

Comparison of a11 and a10. We first show that for δ small, the action profile a11 is optimal

whenever it is implementable.

Lemma 6. Suppose δ ≤ 1/2 and a11 is implementable. Then implementing a11 is optimal.

Proof. If a10 is not implementable in that no combination (µ̂0, µ̂1, µ̂2) in M(δ) exists that

satisfies (44) and (45), then the result follows trivially, since the only other implementable

action profile a00 = (0, 0, 0, 0, 0, 0), which yields aggregate payoffs of 0, which is weakly less

than any aggregates payoffs from a a triple of pairs µ̄ = (µ̄0, µ̄1, µ̄2) in M(δ) that implements

profile a11.

So suppose a10 is implementable. We next demonstrate that for δ ≤ 1/2, the aggregate

payoffs associated with any triple (µ̂0, µ̂1, µ̂2) in M(δ) that implements a10, the aggregate

payoffs are less than 2(uG + uL)(1 − δ), a lower bound on the payoffs of implementing a11

when it is implementable. To show this, consider the relaxed version of program P10 in

which we disregard (44). Denoting this relaxed program as P̃10 and its value as W̃ 10, it

follows W̃ 10 ≥ Ŵ 10. The relaxed program has constraint (45) binding, since disregarding

this constraint yields a solution with µ0
1 + µ0

2 = µ1
1 + µ1

2 = µ2
1 + µ2

2 which violates (45).

A binding (45) implies

(1− β)(µ0
1 + µ0

2) = (1− 2β)(µ1
1 + µ1

2) + β(µ2
1 + µ2

2)− 1− δ
δ

λGc

(1− α− β)uG
. (46)

Substituting out the expression (µ0
1 + µ0

2), program P̃10 rewrites as

max
µ1,µ2∈M(δ)

(uG + uL)

{
1− δ + δ

[
(1− β)(µ1

1 + µ1
2) + β(µ2

1 + µ2
2)− α1− δ

δ

λGc

(1− α− β)uG

]}
.
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The solution to this exhibits µ1
1 + µ1

2 = µ1
1 + µ1

2 = µ∗1 + µ∗2 and, hence,32

W̃ 10 ≤ (uG + uL)

{
1− δ + δ

[
(µ∗1 + µ∗2)− α1− δ

δ

λGc

(1− α− β)uG

]}
Hence, W̃ 10 ≥ V ∗ implies

(uG + uL)

{
1− δ + δ

[
(µ∗1 + µ∗2)− α1− δ

δ

λGc

(1− α− β)uG

]}
≥ (uG + uL)(µ∗1 + µ∗2)

so that

µ∗1 + µ∗2 ≤ 1− α λGc

(1− α− β)uG

Hence, if the equilibrium that maximizes aggregate payoffs is such that it implements the

asymmetric action a10 ≡ (1, 0, 1, 0, 1, 0) in the first period, then we have µ∗1 + µ∗2 ≤ 1. As a

consequence, the maximum aggregate payoffs in E(δ) is smaller than (uG + uL), which for

δ ≤ 1/2 is smaller than 2(uG + uL)(1− δ), a lower bound on the payoffs of implementing a11

when it is implementable.

32The inequality is due to the fact that the right hand value is only attained if after substituting µ1
1 +µ1

2 =
µ1
1 + µ1

2 = µ∗1 + µ∗2 into (46) yields a µ0 ∈ E(δ), otherwise the value W̃ 10 is smaller than the RHS.
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