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Abstract

This paper studies the design of voting mechanisms in a setting with more than

two alternatives and voters who have generalized single-peaked preferences derived

from median spaces as introduced in [Nehring and Puppe, 2007b]. This class of

preferences is considerably larger than the well-known class of preferences that are

single-peaked on a line. I characterize the voting rules that maximize the ex-ante

utilitarian welfare among all social choice functions satisfying strategy-proofness,

anonymity, and surjectivity. The optimal mechanism takes the form of voting by

properties, that is, the social choice is determined through a collection of binary

votes on subsets of alternatives involving qualified majority requirements that re-

flect the characteristics of these subsets of alternatives. This general optimality

result is applied to the design of voting mechanisms for the provision of two costly

public goods subject to the constraint that the provided level of one good is weakly

higher than the provided level of the other good. Keywords: Voting; Generalized

Single-Peaked Preferences; Mechanism Design
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1 Introduction

In this paper, I characterize the optimal utilitarian voting mechanisms, meaning, the vot-

ing rules that maximize the ex-ante utilitarian welfare, among all social choice functions

satisfying strategy-proofness, anonymity, and surjectivity. The setting features more than

two alternatives and the voters have generalized single-peaked preferences derived from

median spaces as introduced in [Nehring and Puppe, 2007b], henceforth [NP, 2007b].

This class of preferences is much larger than the well-known class of preferences that are

single-peaked on a line. For instance, the following collective decision-making problems

are covered: Collective choice when preferences are single-peaked with respect to trees

as introduced in [Demange, 1982], and voting on hypercubes, that is, voting on multiple

binary decisions as studied in [Barberà et al., 1991]. As part of section 2 on the related

literature, I discuss more comprehensively which kind of collective decision-making prob-

lems are captured by my analysis.

[NP, 2007b] extend previous work in strategy-proof social choice like the seminal contri-

bution of [Moulin, 1980], who considers single-peaked preferences on a line, to generalized

single-peaked domains. I build on [NP, 2007b]’s characterization of strategy-proof social

choice functions. [Gershkov et al., 2017] study the stated optimality question for prefer-

ences which are single-peaked on a line.1 For these preferences, they derive the utilitarian

mechanism, and they show that, in this case, the optimal voting rule takes the form of a

successive procedure with weakly decreasing thresholds that depend on the intensities of

preferences. The present paper extends the work of [Gershkov et al., 2017] to a consider-

ably larger class of preferences.

The motivation for studying optimal voting mechanisms on generalized single-peaked do-

mains while deviating from single-peaked preferences on a line is twofold: On the one

hand, from a practical point of view, [Benoit and Laver, 2006] analyze the dimensionality

of policy spaces arising in reality and find that, in many countries, the diversity in the

positions of political parties with regard to various policy issues cannot be accurately

captured by a single dimension of political conflict (see chapter 5 of their book).2 There-

fore, the empirical evidence from [Benoit and Laver, 2006] suggests that there is need

to deviate from single-peaked preferences on a line in order to better understand how

to take collective decisions whenever the alternatives relate to more than one dimension

of political conflict. Considering generalized single-peaked preferences makes it possible

to account for the multidimensionality of politics in a number of ways. Furthermore,

[Kleiner and Moldovanu, 2020] argue that in some real-world voting problems from the

German as well as the British parliament preferences were single-peaked on a tree. On

the other hand, from a theoretical perspective, it seems to be natural to move away from

1To be more precise, they assume that preferences are single-crossing and single-peaked on a line.
2Their comprehensive empirical analysis covering 47 countries is based on expert surveys that were

mostly conducted in 2003. In terms of methods, they employ statistical techniques of data reduction.
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single-peaked preferences on a line and to study optimal voting mechanisms for larger

classes of preferences that, nevertheless, admit well-behaved strategy-proof social choice

functions.

The characterization of optimal mechanisms for preference domains that are general-

ized single-peaked with respect to a median space essentially involves the following three

assumptions: First, voters have private types that are distributed independently and

identically across the voters. Second, the utility function that is common to all voters

satisfies an additive separability condition, constituting a natural constraint in settings,

where alternatives might be multidimensional. This condition is vacuously met in the

special case of single-peaked preferences on trees. Third, I impose a constraint on the type

distribution and the utility function that might be, very loosely speaking, interpreted as

a concavity restriction on the preference intensities. This restriction is vacuously satisfied

in the special case of hypercubes.

The utilitarian mechanism takes the form of voting by properties, that is, the social

choice is determined through a collection of binary votes on subsets of alternatives and

the involved qualified majority requirements reflect the characteristics of these subsets

of alternatives. The characterization of optimal mechanisms for preference domains that

are generalized single-peaked with respect to a median space constitutes the main result

of this paper. To illustrate this finding, before introducing the general model, I discuss

an application to the design of voting mechanisms for the provision of two costly public

goods α and β subject to the constraint that the provided level of α is weakly higher than

the provided level of β. For example, if α and β represent expansions of the rail and the

road network respectively, this constraint might reflect the fight against climate change.

Therefore, to get a more concrete idea how optimal mechanisms look like, I directly refer

to section 3. Also, when developing the general result, I repeatedly revisit this application

in order to illustrate the concepts and assumptions I employ in the general analysis in a

less abstract setting.

The structure of this paper is as follows: In the following section 2, I discuss the related

literature, and, in section 3, I present the public goods application. Next, in section 4, I

introduce the general model, and, in section 5, I review the characterization of strategy-

proof social choice functions from [NP, 2007b]. Then, in section 6, I present my general

optimality finding. The following section 7 discusses the two special cases of trees and

hypercubes. The final section 8 concludes. The proofs are contained in the Appendix.

2 Literature

The present paper relates to work on social choice and mechanism design and it con-

tributes, specifically, to the literature on the evaluation of the utilitarian efficiency of

voting rules. This literature starts with [Rae, 1969], who focuses on binary decisions.
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More recent contributions that also consider binary decisions include [Nehring, 2004],

[Schmitz and Tröger, 2012], and [Drexl and Kleiner, 2018].

When moving away from the binary setting and allowing for more than two alternatives,

the Gibbard-Satterthwaite-Theorem ([Gibbard, 1973], [Satterthwaite, 1975]) implies that

restrictions on the preference domain have to be imposed, since otherwise, dictatorship

arises.3

[NP, 2007b] offer a characterization of strategy-proof social choice functions for all rich

generalized single-peaked domains. Among many other preference structures, the un-

restricted domain as well as domains that give rise to median spaces constitute gener-

alized single-peaked domains.4 Their results reveal that the latter preference domain

admits a large class of well-behaved strategy-proof social choice functions, circumvent-

ing the Gibbard-Satterthwaite-Theorem. This is the reason why I consider generalized

single-peaked domains derived from median spaces. Again, I make use of [NP, 2007b]’s

characterization of strategy-proof social choice functions for these preference structures.

Furthermore, [Nehring and Puppe, 2005] as well as [Nehring and Puppe, 2007a] also treat

strategy-proof social choice on generalized single-peaked domains, albeit having each a

somewhat different emphasis. The difference between these contributions and my work

is that these authors characterize incentive-compatible mechanisms, whereas I maximize

welfare over incentive-compatible mechanisms.

The preference domains from the literature discussed below are all instances of general-

ized single-peaked domains derived from median spaces (see [NP, 2007b]).5 I refer to [NP,

2007b] for an overview and a classification of median spaces, revealing that, in addition

to those from the literature discussed below, many more collective choice problems are

instances of generalized single-peaked domains giving rise to median spaces. Subject to

my assumptions on the preference distribution, my optimality analysis covers all these

preference domains. In that way, I unify and generalize previous results in the mecha-

nism design literature. To the best of my knowledge, the optimization over strategy-proof

mechanisms on generalized single-peaked domains giving rise to median spaces while re-

lying on the utilitarian principle is novel. This is the main contribution of this paper.

One strand of the literature investigates hypercubes or coupled binary decisions, meaning,

voters face a collection of binary decisions. In terms of strategy-proof social choice, [Bar-

berà et al., 1991] provide a characterization of strategy-proof and onto mechanisms when

preferences are separable or additively separable across the binary issues. When it comes

to mechanism design, [Jackson and Sonnenschein, 2007] offer a mechanism that is based

3In a setting with more than two alternatives, [Apesteguia et al., 2011] evaluate voting rules according
to different normative standards. Since these authors assume voters to be non-strategic, they do not
need to restrict the set of preferences.

4[NP, 2007b] generalize previous work by [Barberà et al., 1997].
5Related contributions that also allow for more than two alternatives, but do not fit in the subsequent

classification include [Börgers and Postl, 2009], and [Kim, 2017].
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on the idea of budgeting. For sufficiently many decisions, their mechanism is approxi-

mately Bayesian incentive-compatible as well as nearly ex-ante Pareto efficient. Other

voting rules in the context of Bayesian mechanism design where voters report cardinal

utility information include qualitative voting studied in [Hortala-Vallve, 2012] as well as

storable votes due to [Casella, 2005]. In contrast to [Jackson and Sonnenschein, 2007],

[Hortala-Vallve, 2010] considers finitely many decision problems as well as strategy-proof

mechanisms. Allowing for random mechanisms, he finds that ex-ante Pareto efficiency

cannot be attained and, moreover, in the presence of strategy-proofness, there is no unan-

imous mechanism which is sensitive to preference intensities.

Another branch of the literature considers preferences which are single-peaked on a line.

[Moulin, 1980] characterizes in his seminal contribution peaks-only and strategy-proof

social choice functions for the full domain of preferences which are single-peaked on a

line. His elegant characterization involves min-max rules or generalized median mecha-

nisms when restricting attention to anonymous social choice functions. Again, [Gershkov

et al., 2017] characterize the utilitarian mechanism when preferences are single-crossing

and single-peaked on a line. In contrast to their work, I allow for a much larger class

of preferences, going beyond single-peaked preferences on a line. In terms of the proof

argument for my optimality result, I expand on their insights, but the much larger class

of preferences requires additional proof arguments as well as different assumptions. Fur-

ther, similar to [Gershkov et al., 2017], [Gersbach, 2017] also emphasizes the importance

of flexible majority rules. Moreover, [Kleiner and Moldovanu, 2017] analyze dynamic,

binary, and sequential voting procedures. They identify conditions on the voting pro-

cedures under which the induced dynamic games possess an ex-post perfect equilibrium

in which voters behave sincerely. Moreover, they illustrate their theoretical findings by

means of several empirical case studies involving collective decisions from different par-

liaments.

Building on preferences which are single-peaked on a line, products of lines, the cou-

pling of unidimensional decisions or, as [Barberà et al., 1993] put it, multidimensional

single-peaked preferences have also received attention in the literature. Removing the

peaks-only assumption in [Moulin, 1980], [Border and Jordan, 1983] as well as [Barberà

et al., 1993] provide characterizations of strategy-proof social choice functions for the

stated class of voting problems. Despite considering each somewhat different preferences,

the main conclusion following from these contributions is that any strategy-proof social

choice function is peaks-only and it can be decomposed into unidimensional functions

such that each dimension is treated in a separate way. In other words, any strategy-proof

social choice function is composed of a collection of the mechanisms that [Moulin, 1980]

identified for the unidimensional case. Finally, regarding mechanism design, [Gershkov

et al., 2019] consider a spatial voting environment, but they keep the voting procedure

fixed in the sense that, essentially, the collective choice in each coordinate of the mul-
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tidimensional setting is determined via simple majority voting. They show that the

redefinition of the involved issues or, in other words, the rotation of the initial coordinate

axes leads, generally, to improvements in terms of welfare.

While extending single-peaked preferences on a line in a somewhat different direction

compared to products of lines, but maintaining the general idea of single-peakedness,

[Demange, 1982] investigates preferences which are single-peaked on trees. She estab-

lishes that these domains ensure the existence of a Condorcet winner. However, when it

comes to aggregation theory instead of voting, the majority relation need not be tran-

sitive. Moreover, [Kleiner and Moldovanu, 2020] study dynamic, binary, and sequential

voting procedures in the context of single-peaked preferences on trees. They derive con-

ditions on the voting procedures such that voting sincerely constitutes an ex-post perfect

equilibrium and the Condorcet winner is implemented in this equilibrium. Also, again,

they apply their theoretical findings to real-world voting problems from the German and

the British parliament.

3 Public Goods Provision

The main purpose of this section is to illustrate the general optimality result presented

in Theorem 2 below by means of an application to the design of voting mechanisms for

the provision of two public goods subject to a constraint, but this application is also of

interest in itself. Again, when developing the general optimality result subsequently, I

repeatedly go back to this application in order to illustrate the concepts and assumptions

I employ in the general analysis in a less abstract setting.

Suppose that there are two public goods α and β, and that, for each public good, there

are three possible levels {1, 2, 3}. Further, assume that there is an exogenously given

constraint imposing that the provided level of α has to be weakly higher than the provided

level of β.6 Again, for instance, if α and β represent expansions of the rail and the

road network respectively, this constraint might reflect the fight against climate change.

Therefore, the set of alternatives A amounts to

A := {(kα, kβ) ∈ {1, 2, 3} × {1, 2, 3} : kα ≥ kβ}.

Moreover, there is a finite set of voters N := {1, ..., n} with n ≥ 2. The subsequent

specification of types and utilities suitably extends the linear utility model contained in

[Gershkov et al., 2017] from one to two public goods. The voters’ types are governed by

the two-dimensional random variable T := X × Y . The support of the type distribution

6Similar applications appear in [Barberà et al., 1997], [Nehring and Puppe, 2005], [Nehring and
Puppe, 2007a], [Block, 2010], and [Block de Priego, 2014]. However, these authors are not concerned
about welfare maximization, but they focus on characterizing strategy-proof social choice functions.
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S is given by the right triangle

S := {(x, y) ∈ R2 : l ≤ x ≤ u, l ≤ y ≤ u, y ≤ x}

for some 0 ≤ l < u < ∞. In particular, note that the set S is convex. Denote by G and

g the cdf and density of the bivariate distribution of T and let GX and gX as well as GY

and gY be the marginal cdfs and densities corresponding to the random variables X and

Y respectively. Types are distributed independently and identically across voters, and

each voter is privately informed about his or her type realization. Now, a voter having

type realization (x, y) ∈ S receives utility

u(kα,kβ)(x, y) := Gkα · x− ckα +Gkβ · y − ckβ

from alternative (kα, kβ) ∈ A. The involved parameters satisfy c1 < c2 < c3 and 0 ≤ G1 <

G2 < G3, and they are common knowledge. In words, utilities are additively separable

across the two public goods, the realizations of X and Y capture the valuation of public

good α and β respectively, the valuation for α is always weakly higher than the value for

β, the function Gk with k ∈ {1, 2, 3} translates public good level indices into utilities,

and the function ck with k ∈ {1, 2, 3} represents the cost function. Take any public good

γ ∈ {α, β} and consider two public good levels k,m ∈ {1, 2, 3} with k > m: The cutoff

zm,k :=
ck − cm

Gk −Gm

describes the valuation corresponding to the public good γ at which a voter is indifferent

between providing level k and m of the good γ for any fixed level of the other public

good. Note that these cutoffs are homogenous across the two public goods because the

functions Gk and ck are assumed to be homogenous across the two goods. Suppose that

the cutoffs involving neighboring public good levels are ordered, that is, suppose that

z0,1 := l < z1,2 < z2,3 < u =: z3,4.

This is a mild assumption on the involved parameters:7 For example, it is satisfied if

the function Gk is linear in k and the cost function ck is convex in k. It implies that

any alternative is the most preferred or peak alternative for some types. In particular,

the most preferred alternative of a voter constitutes (pα, pβ) ∈ A if and only if the type

realization (x, y) ∈ S satisfies x ∈ [z(pα−1,pα), z(pα,pα+1)] and y ∈ [z(pβ−1,pβ), z(pβ ,pβ+1)].

Finally, following [Nehring and Puppe, 2007a] and [NP, 2007b], observe that any type

realization induces an ordinal preference relation that is generalized single-peaked with

respect to a median space. Specifically, the requirement of single-peakedness amounts

7[Gershkov et al., 2017] impose an analogous condition on the cutoffs.
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here to the following condition: There exists an alternative (pα, pβ) ∈ A, which is the

most preferred alternative, such that for all alternatives (kα, kβ), (mα,mβ) ∈ A with

(kα, kβ) ̸= (mα,mβ) it holds that whenever (kα, kβ) lies on a shortest path in the graph

shown in Figure 1 connecting (pα, pβ) and (mα,mβ), the voter must prefer (kα, kβ) over

(mα,mβ). For instance, suppose that a voter’s most preferred alternative is (2, 2). Then,

(1, 1) (2, 1) (3, 1)

(2, 2) (3, 2)

(3, 3)

Figure 1: Public Goods Provision

single-peakedness requires, among other things, that this voter must prefer (2, 1) and

(3, 2) over (3, 1), but it does not impose whether (2, 1) is preferred to (3, 2) or the other

way around. The specification of the support of the type distribution as well as the

restriction on the cutoffs involving neighboring public good levels ensure that every type

realization generates an ordinal preference relation that is generalized single-peaked in

the described sense.

In the following, I present the direct mechanism that maximizes the utilitarian welfare

among all strategy-proof, anonymous, and surjective mechanisms for the outlined setting.8

In order to apply the general optimality result in Theorem 2 below, I impose three

regularity assumptions on the type distribution. Specifically, assume that both marginal

densities gX and gY are log-concave and that GX ≥lr GY , where ≥lr denotes the likelihood

ratio order. For instance, it can be verified that the three assumptions are met if the

joint distribution G is the uniform distribution.9

The structure of the optimal mechanism can be described by means of four majority

quotas qα(1), qα(2), qβ(1), and qβ(2), that is, four natural numbers weakly between 1 and

n. Consider any public good γ ∈ {α, β} and public good level k ∈ {1, 2}: If there are

at least qγ(k) voters with most preferred alternatives sharing the feature that the public

8There is an issue concerning the set of ordinal preferences generated by the utility representation
introduced above: This set of ordinal preferences does not satisfy [NP, 2007b]’s richness condition on the
preference domain. Therefore, the strategy-proof social choice functions they identify are strategy-proof
for the outlined setting, but there might be other strategy-proof direct mechanisms in addition to those
identified in their paper. However, [NP, 2007b]’s proof goes nevertheless through in the present setting,
that is, there are no such other strategy-proof social choice functions. The argument for this claim is
available on request from the author.

9Note that if the joint density g is log-concave, the marginal densities gX and gY must be log-concave
as well (see [Prékopa, 1973]).
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good level of γ is weakly smaller than k, the social choice features the same property, that

is, the provided level of γ is at most k. Otherwise, the provided level of γ is strictly larger

than k. In other words, for every public good γ ∈ {α, β} and each level k ∈ {1, 2}, there is
a binary vote between the following two subsets of alternatives: Alternatives sharing the

feature that the public good level of γ is weakly smaller versus strictly larger than k. It

follows from [Nehring and Puppe, 2007a] and [NP, 2007b] that, in the present setting, any

strategy-proof, anonymous, and surjective social choice function takes this form subject

to some constraints on the majority quotas. Now, under the regularity assumptions on

the type distribution stated above, the described collection of binary votes on subsets of

alternatives involving the majority quotas

q∗α(k) := ⌈ n

1 + E[zk,k+1−X|X≤zk,k+1]
E[X−zk,k+1|X≥zk,k+1]

⌉

and

q∗β(k) := ⌈ n

1 + E[zk,k+1−Y |Y≤zk,k+1]
E[Y−zk,k+1|Y≥zk,k+1]

⌉,

where k ∈ {1, 2}, implements the welfare-maximizing mechanism among all social choice

functions satisfying strategy-proofness, anonymity, and surjectivity.10 The two main

features of the optimal majority quotas are as follows: First, for both public goods, the

associated quotas are decreasing in the public good level that determines the respective

partition of the set of alternatives into two subsets, i.e., q∗α(1) ≥ q∗α(2) and q∗β(1) ≥ q∗β(2).
11

Second, the majority quotas corresponding to public good α are higher than the quotas

linked to public good β, i.e., q∗α(k) ≥ q∗β(k) for all k ∈ {1, 2}.12 The designer faces a

Bayesian inference problem, that is, he or she has to make inferences about the voters’

preference intensities based on their vote choices in the described collection of binary

votes. The optimal majority quotas that are shaped by ratios of preference intensities

show how this inference problem is resolved. For concreteness, consider for example the

the welfare-maximizing quota q∗α(2): Rearranging the equation determining this quota

while ignoring the integer problem yields

q∗α(2)

n
E[X|X ≤ z2,3] +

n− q∗α(2)

n
E[X|X ≥ z2,3] = z2,3.

Say that the designer is pivotal if there are exactly q∗α(2) out of the n voters having most

preferred alternatives that share the feature that the public good level of α is weakly

10In particular, this collection of binary votes represents a proper social choice function in the sense
that it yields a unique alternative for all profiles of type realizations.

11This feature is also present in [Gershkov et al., 2017].
12Recall that the exogenously given constraint imposes that the provided level of α has to be weakly

higher than the provided level of β.
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smaller than 2, meaning, there are exactly q∗α(2) voters with most preferred alternatives

from the set {(1, 1), (2, 1), (2, 2)}. Then, the quota q∗α(2) is calibrated such that, con-

ditional on being pivotal, the designer infers that the type component X governing the

valuation for public good α equals the cutoff z2,3, that is, the value at which a voter is

indifferent between providing level 2 and 3 of α for any fixed level of β.13 Furthermore,

when rewriting the equation above once more, I obtain that, for all kβ ∈ {1, 2}, it holds

q∗α(2)

n
E[u(2,kβ)(X, Y )|X ≤ z2,3] +

n− q∗α(2)

n
E[u(2,kβ)(X, Y )|X ≥ z2,3]

=
q∗α(2)

n
E[u(3,kβ)(X, Y )|X ≤ z2,3] +

n− q∗α(2)

n
E[u(3,kβ)(X, Y )|X ≥ z2,3].

In words, this equation means that, conditional on being pivotal, the designer is indifferent

between any two alternatives such that the provided level of α is 2 versus 3, that is, it

differs by exactly one, but the provided level of β is the same in both alternatives. In

other words, the designer is indifferent between alternatives (2, 1) and (3, 1) as well as

between (2, 2) and (3, 2). This characteristic of optimal quotas is not special to this public

goods application, but it turns out that a generalization of it holds for all median spaces.

Having presented the public goods application, in the following section, I introduce the

general model.

4 Model

There is a finite set of voters N := {1, ..., n} with n ≥ 2 and a finite set of alternatives A

with |A| ≥ 2. Following [NP, 2007b], the set of alternatives is endowed with a property

space structure. Elements of A are distinguished by properties which are described by

H ⊆ P(A), whereH ̸= ∅, and P(A) denotes the power set of A. EachH ∈ H captures the

property shared by all elements in H ⊆ A, but violated by all alternatives in Hc := A\H.

In other words, properties are subsets of the set of alternatives A. The set of properties

H satisfies the regularity conditions

H ∈ H ⇒ H ̸= ∅ (non-triviality),

H ∈ H ⇒ Hc ∈ H (closedness under negation), and

∀k,m ∈ A, k ̸= m : ∃H ∈ H : k ∈ H ∧m /∈ H (separation).

Given some alternative k ∈ A, let Hk be the set of all properties shared by alternative k,

meaning, define Hk := {H ∈ H : k ∈ H}. Due to separation, it holds that ∩H∈Hk
H =

{k}. Further, each pair (H,Hc) involving some property and its complement forms an

13This aspect which holds because utilities are affine in types appears also in [Gershkov et al., 2017]’s
linear utility model.
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issue, and the tuple (A,H) is called property space. The property space (A,H) induces a

ternary relation on A, denoted by BH, in the following way: For all (a, b, c) ∈ A×A×A,

(a, b, c) ∈ BH :⇔ [∀H ∈ H : {a, c} ⊆ H ⇒ b ∈ H].

The relation BH is called betweenness relation. This means that some alternative b is

between the alternatives a and c if and only if all properties that are jointly shared by a

and c are also shared by b.

Moreover, I suppose that any property space constitutes a median space as introduced

in [NP, 2007b].14 This requires that the betweenness relation BH satisfies the following

constraint: For any a, b, c ∈ A, there exists some alternative m = m(a, b, c) ∈ A, called

the median, such that

{(a,m, b), (a,m, c), (b,m, c)} ⊆ BH.

Take any set that is composed of three alternatives. The restriction of being a median

space demands that there must be some alternative having the feature that it is between

all pairs of alternatives that can be formed from the given set of three alternatives.

Based on these concepts, I introduce preferences. Following [NP, 2007b], an ordinal

preference relation ≻ is said to be generalized single-peaked with respect to the under-

lying betweenness relation BH if it satisfies the following condition: There exists some

alternative p ∈ A such that, for all k,m ∈ A with k ̸= m, it holds

(p, k,m) ∈ BH ⇒ k ≻ m.

Intuitively, a generalized single-peaked preference relation is characterized by two main

ingredients. On the one hand, the alternative p describes the peak of that preference

relation. On the other hand, the constraint formalizing the generalized notion of single-

peakedness requires that any alternative k distinct from m which is between the peak

p and alternative m according to the betweenness relation BH must be preferred to m.

Let PH denote the set of all preference relations that are generalized single-peaked with

respect to BH.

Public Goods Provision. Go back to the public goods application. Let APublic Goods

be the set of alternatives for this application.15 While following [Nehring and Puppe,

14Again, this assumption ensures that there is a rich class of non-degenerate incentive-compatible
social choice functions.

15Recall that the set of alternatives is given by {(kα, kβ) ∈ {1, 2, 3} × {1, 2, 3} : kα ≥ kβ}.
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2007a], consider, for all k ∈ {1, 2}, the properties

Hα
≤k := {(mα,mβ) ∈ APublic Goods : mα ≤ k}

Hα
≥k+1 := {(mα,mβ) ∈ APublic Goods : mα ≥ k + 1}

as well as

Hβ
≤k := {(mα,mβ) ∈ APublic Goods : mβ ≤ k}

Hβ
≥k+1 := {(mα,mβ) ∈ APublic Goods : mβ ≥ k + 1}.

Denote by HPublic Goods the collection of these properties. Observe that the betweenness

relation BHPublic Goods
induced by the property space (APublic Goods,HPublic Goods) satisfies

the following condition: Alternative b is between alternatives a and c, meaning, (a, b, c) ∈
BHPublic Goods

if and only if b lies on a shortest path connecting a and c in the graph

shown in Figure 1. Therefore, for this public goods application, the general definition

of a generalized single-peaked preference relation introduced here exactly reduces to the

definition based on the graphic notion of betweenness given in section 3. Moreover, it can

be inferred from Figure 1 that the property space (APublic Goods,HPublic Goods) constitutes

a median space.

Since I rely on the utilitarian principle as far as the objective criterion of the designer

is concerned, I have to introduce a utility representation of ordinal preferences. Voters

have types that are governed by the random variable T . Each voter is privately informed

about his or her type realization. The distribution of T has full support on some non-

empty set S ̸= ∅. All subsequent expectations are taken with respect to this distribution.

Throughout the paper, I suppose that types are distributed independently and identically

across voters.

Assumption 1. The types T are distributed independently and identically across voters.

Now, uk(t) denotes the utility that a voter with type realization t ∈ S receives if

alternative k ∈ A is implemented. I impose several constraints on the utility function

and the type distribution. First, utilities are bounded, meaning, there exists some bound

B ∈ R such that, for all type realizations t ∈ S and for every alternative k ∈ A,

|uk(t)| < B. Second, I exclude indifferences, that is, for almost all type realizations t ∈ S

and for every pair of distinct alternatives k,m ∈ A with k ̸= m, it holds uk(t) ̸= um(t).

Third, of course, utilities must be consistent with generalized single-peakedness, that is,

for almost all type realizations t ∈ S, there exists a generalized single-peaked preference

relation ≻∈ PH such that, for every pair of distinct alternatives k,m ∈ A with k ̸= m,

it holds k ≻ m ⇔ uk(t) > um(t). Fourth, I assume that the richness condition on

the preference domain from [NP, 2007b] is satisfied. This means that the following two

12



restrictions are met: First, for all k,m ∈ A such that {k,m} = {l ∈ A : (k, l,m) ∈ BH},
there exists a set of type realizations Z ⊂ S arising with positive probability Pr(Z) > 0

such that, for every element in this set t ∈ Z, it holds uk(t) > um(t) > ul(t) for all

l ∈ A \ {k,m}. Second, for all p, k,m ∈ A such that k /∈ {l ∈ A : (p, l,m) ∈ BH}, there
exists a set of type realizations Z ⊂ S arising with positive probability Pr(Z) > 0 such

that, for every element in this set t ∈ Z, it holds um(t) > uk(t) and up(t) > ul(t) for all

l ∈ A \ {p}.16

Finally, the designer maximizes the voter’s ex-ante utilitarian welfare over all social choice

functions that are strategy-proof, anonymous, and surjective. The timing is as follows:

1. The designer announces and commits to some strategy-proof, anonymous, and sur-

jective direct mechanism.

2. The voters observe their type realizations and report them to the designer.

3. The designer implements an alternative according to the announced mechanism.

5 Incentive Compatibility

In this section, for completeness, I review the characterization of strategy-proof, anony-

mous, and surjective social choice functions for generalized single-peaked domains giving

rise to median spaces due to [NP, 2007b].

First of all, I assume that the set of feasible mechanisms coincides with the set all pos-

sibly indirect deterministic mechanisms Γ = (M, ...,M, f) inducing a game that admits

a symmetric17 dominant-strategy equilibrium, where M is the voters’ finite message set

and f : Mn → A is the outcome function. Also, I suppose that the mechanisms Γ are

anonymous18 and surjective.19 Now, invoking a revelation principle in terms of payoffs

due to [Jarman and Meisner, 2017] implies the following aspect: For each such anony-

mous and surjective mechanism Γ, there exists a direct mechanism Γ′ = (S, ..., S, f) that

is dominant-strategy incentive-compatible, anonymous, and surjective, and the utilitar-

ian welfare under Γ′ is weakly higher than under Γ. In this sense, within the class of

deterministic mechanisms, it is without loss to restrict attention to direct mechanisms.

However, the designer might be able to improve upon these deterministic mechanisms

when allowing for stochastic mechanisms. There are two main reasons why I exclude

16The important point here is that there are no strategy-proof, anonymous, and surjective social
choice functions apart from those identified in [NP, 2007b]’s characterization. In this sense, the utility
representation of the public goods application is covered as well.

17Note that the voters are ex-ante identical.
18A mechanism Γ is anonymous if, for all (m1, ...,mn) ∈ Mn, f(m1, ...,mn) = f(mσ(1), ...,mσ(n)),

where σ is an arbitrary permutation of the set of voters N .
19Amechanism Γ is surjective if, for all k ∈ A, there exists (m1, ...,mn) ∈ Mn such that f(m1, ...,mn) =

k.
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random mechanisms: First, random voting mechanisms are rarely used in practice.20

Therefore, from a pragmatic point of view, it seems to be justified to focus on determin-

istic mechanisms. Second, to the best of my knowledge, it is not known how stochastic

strategy-proof voting mechanisms look like when preferences are generalized single-peaked

and, hence, there is a tractability issue when incorporating probabilistic mechanisms.21

From now on, I restrict attention to deterministic direct mechanisms that are anonymous,

surjective, and dominant-strategy incentive-compatible or, in other words, strategy-proof.

A direct mechanism or, equivalently, a social choice function f is a mapping assigning to

each type profile an alternative from the set A. In formal terms, this mapping amounts

to f : Sn → A. In the following, I recall some well-known properties of social choice

functions.

Definition 1. A social choice function f is strategy-proof if it holds, for all i ∈ N and

for all ti, t
′
i ∈ S and t−i ∈ Sn−1, that

uf(ti,t−i)(ti) ≥ uf(t′i,t−i)(ti).

In words, strategy-proofness requires that all voters have a weakly dominant strategy

to truthfully reveal their types. Further, observe that strategy-proofness implies the

following aspect: Consider any voter i ∈ N and take two type realizations ti, t
′
i ∈ S

inducing the same ordinal preference relation. Then, a strategy-proof direct mechanism

f must treat both types in the same way, that is, for any type realizations of the other

voters t−i ∈ Sn−1, it must hold that f(ti, t−i) = f(t′i, t−i).

Definition 2. A social choice function f is anonymous if it holds, for all (t1, ..., tn) ∈ Sn,

that f(t1, ..., tn) = f(tσ(1), ..., tσ(n)), where σ is an arbitrary permutation of the set of voters

N .

Intuitively, anonymity imposes that mechanisms treat all voters equally. To put it

differently, anonymity ensures that mechanisms respect the democratic principle of “one

person, one vote”.

Definition 3. A social choice function f is surjective if, for all k ∈ A, there exists

(t1, ..., tn) ∈ Sn such that f(t1, ..., tn) = k.

The requirement that social choice functions are surjective represents a mild condition

ensuring that no alternative is a priori excluded from the set of outcomes.

20This observation may have several reasons: The designer might not have access to a credible random-
ization device. Moreover, in a stochastic mechanism, voters with the same type profile realization are
not treated equally after the uncertainty is resolved. However, there is experimental evidence suggesting
that people not only care about being treated equally before the uncertainty is resolved, but also about
being treated in the same way after the resolution of the uncertainty (see the experimental papers [Brock
et al., 2013] and [Cappelen et al., 2013]).

21Attempting to characterize these stochastic mechanisms is beyond the scope of this paper.
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[NP, 2007b] show that strategy-proof and surjective social choice functions must be peaks-

only, meaning, the outcome of any strategy-proof and surjective social choice function

depends only on the voters’ most preferred alternatives. Therefore, in the following, with

abuse of notation, social choice functions are simply mappings f : An → A assigning

to every profile of most preferred or peak alternatives (p1, ..., pn) ∈ An some winning

alternative from the set A.

In order to be able to state [NP, 2007b]’s characterization result, I need the following

supplementary definitions from their paper. To begin with, introduce the notion of a

family of quotas relative to some property space (A,H).

Definition 4. [NP, 2007b]

Given some property space (A,H), a family of quotas {qH : H ∈ H} is a function that

assigns an integer-valued quota 1 ≤ qH ≤ n to each property H ∈ H such that, for all

H ∈ H, the associated quotas satisfy qH + qHc = n+ 1.

Take any property H ∈ H. The associated absolute quota, threshold or majority

requirement qH describes the minimal number of votes that are needed in order to ensure

that some alternative sharing property H is winning. Furthermore, the condition qH +

qHc = n + 1 reflects that whenever the quota qH linked to property H is reached, the

quota associated with the complementary propertyHc cannot be attained, and vice versa.

Moreover, exactly one of these two quotas is always achieved.

On the basis of the definition of families of quotas, consider the following class of functions

which is termed anonymous voting by properties. These functions are central for the

ensuing characterization result.

Definition 5. [NP, 2007b]

Given some property space (A,H) and associated family of quotas {qH : H ∈ H}, voting
by properties is the function f{qH :H∈H} : An → P(A) such that, for all profiles of peak

alternatives p = (p1, ..., pn) ∈ An, it holds that

k ∈ f{qH :H∈H}(p) :⇔ [∀H ∈ Hk : |{i ∈ N : pi ∈ H}| ≥ qH ].

Intuitively, under voting by properties, the social choice is determined through a

collection of binary votes on subsets of alternatives involving qualified majority require-

ments. In more detail, it works as follows: Take some family of quotas {qH : H ∈ H}. For
any issue (H,Hc), it is collectively decided according to the quotas qH and qHc whether

the winning alternative is supposed to share property H or its complement Hc. These

binary decisions yield a collection of properties that the winning alternative is supposed

to share. However, it has to be ensured that this set of, loosely speaking, winning proper-

ties is consistent in the sense that the intersection of these properties is not empty, but it

contains exactly one alternative which, then, constitutes the winning alternative. Thus,
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in general, the considered mapping need not represent a proper social choice function.

However, as the following result reveals, under some conditions on the family of quotas,

the stated mapping forms a social choice function.

I state [NP, 2007b]’s characterization of strategy-proof, anonymous, and surjective social

choice functions.

Theorem 1. [NP, 2007b]

A social choice function f is strategy-proof, anonymous, and surjective if and only if it

is voting by properties f{qH :H∈H} : An → A with a family of quotas {qH : H ∈ H} such

that, for all properties H,K ∈ H, it holds

H ⊆ K ⇒ qH ≥ qK .

Theorem 1 implies that, when searching for the optimal mechanism among all social

choice functions satisfying strategy-proofness, anonymity, and surjectivity, it is sufficient

to optimize over the set of quotas {qH : H ∈ H} related to voting by properties while

respecting the collection of inequalities stated in Theorem 1. I tackle this problem in the

subsequent section.

Public Goods Provision. Before that, go again back to the public goods application.

Recall that I described in section 3 strategy-proof, anonymous, and surjective social choice

functions in terms of a collection of binary votes that are determined by the four majority

quotas qα(1), qα(2), qβ(1), and qβ(2) subject to some constraints on these majority quotas

that I did not specify there explicitly. Now, any such collection of binary votes coincides

with a voting by properties mechanism, and the stated constraints are the restrictions

from Theorem 1. To see this, for all k ∈ {1, 2}, set

qHα
≤k

:= qα(k), and qHα
≥k+1

:= n+ 1− qα(k)

as well as

qHβ
≤k

:= qβ(k), and qHβ
≥k+1

:= n+ 1− qβ(k).

6 Welfare Maximization

In this section, I characterize the welfare-maximizing mechanism among all social choice

functions satisfying strategy-proofness, anonymity, and surjectivity, constituting the main

result of this paper.

By Theorem 1, it is sufficient to find the optimal quotas related to voting by properties.

Also, the existence of a solution is ensured since a bounded function is maximized over a

finite set of elements. The structure of the proof of the main theorem below is as follows:
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First, consider some optimal mechanism and derive necessary conditions for optimality

by means of studying the implications of alterations of this optimal mechanism. Second,

argue that these necessary conditions are also sufficient for optimality and conclude that

they determine a unique optimal mechanism.22

When deriving the discussed necessary conditions for optimality, it turns out that I

have to compare the welfare induced by the following two sets of alternatives: For every

property H ∈ H, define the sets of alternatives

AH := H ∩ [∩{M :M⊂H}M
c],

and

AHc := Hc ∩ [∩{M :M⊂Hc}M
c].

Alternatives contained in the set AH share property H, but these alternatives violate all

properties that are subsets of H. Likewise, alternatives from the set AHc satisfy property

Hc, but properties that are subsets of Hc are violated. In Lemma 1, I establish that the

sets AH and AHc have a particular tuple structure.

Lemma 1. empty

Consider any property H ∈ H. The sets AH and AHc satisfy AH ̸= ∅ and AHc ̸= ∅.
Moreover, all elements in both sets can be uniquely matched into tuples having the form

(k,m) with k ∈ AHc and m ∈ AH such that k and m are separated only by property H,

meaning, {H} = {K ∈ H : k /∈ K ∧m ∈ K}.

The proof of Lemma 1 employs a characterization of median spaces in terms of the

involved properties instead of relying on the induced betweenness relation due to [NP,

2007b]. Let ZH denote the set of tuples implied by Lemma 1. It is clear that |AH | = |AHc|,
but, in general, it does not hold that |AH | = |AHc| = 1.

Public Goods Provision. Revisit again the public goods application. For instance,

consider the property Hβ
≤1. In this case, I have that {M : M ⊂ Hβ

≤1} = {Hα
≤1}. Hence,

the set AHβ
≤1

amounts to

AHβ
≤1

= {(2, 1), (3, 1)}.

Similarly, the set AHβ
≥2

satisfies

AHβ
≥2

= {(2, 2), (3, 2)}.

22Conceptually, [Gershkov et al., 2017] employ a similar proof strategy.
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In particular, it holds that |AHβ
≤1
| = |AHβ

≥2
| ≠ 1. Moreover, the set of tuples ZHβ

≤1
is given

by

ZHβ
≤1

= {((2, 2), (2, 1)), ((3, 2), (3, 1))}.

This is precisely the tuple structure established in Lemma 1: Alternatives (2, 2) and (2, 1)

as well as (3, 2) and (3, 1) are each separated only by property Hβ
≤1. Further, this tuple

structure is unique for the following reason: When matching (2, 2) and (3, 1) as well as

(3, 2) and (2, 1), the matched alternatives are each separated by more properties than

just Hβ
≤1, meaning, {Hβ

≤1} ⊂ {K ∈ H : (2, 2) /∈ K ∧ (3, 1) ∈ K} and {Hβ
≤1} ⊂ {K ∈

H : (3, 2) /∈ K ∧ (2, 1) ∈ K}, violating the condition that the matched alternatives are

each separated only by property Hβ
≤1. More generally, for the public goods application,

it can be verified that two alternatives form a tuple (k,m) with k ∈ AHc and m ∈ AH

such that k and m are separated only by property H if and only if, for one public good,

the provided level is the same in k and m, and, for the other good, the levels differ by

exactly one.

The tuple structure established in Lemma 1 implies that the comparison of the wel-

fare generated by the sets AH and AHc reduces to contrasting a collection of pairs of

alternatives such that the elements within each pair are separated by one property only.

Furthermore, in order to characterize the optimal quotas in a separable way, I have to

make sure that the welfare gains and losses involved in the welfare comparison within the

discussed tuples do not depend on the tuple under consideration, but that they are the

same across all tuples. The purpose of Assumption 2 on the utility function is to ensure

exactly that.

Assumption 2. empty

Consider any property H ∈ H. For any two tuples of alternatives (k,m) and (k′,m′) with

k, k′ ∈ AHc and m,m′ ∈ AH such that k and m as well as k′ and m′ are each separated only

by property H, that is, {H} = {K ∈ H : k /∈ K∧m ∈ K} = {K ∈ H : k′ /∈ K∧m′ ∈ K},
and, for all type realizations t ∈ S, the utility function satisfies

uk(t)− um(t) = uk′(t)− um′
(t).

Following a related discussion in [NP, 2007b], Assumption 2 represents essentially an

additive separability restriction on the utility function, making it a natural assumption

in contexts, where alternatives might be multidimensional. Moreover, this assumption is

vacuously met in the special case of trees that I discuss in section 7.

Public Goods Provision. Go back to the public goods application. Clearly, Assump-

tion 2 is satisfied in the public goods application because the utility function is additively
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separable across the two public goods. For example, consider again the set of tuples

ZHβ
≤1

= {((2, 2), (2, 1)), ((3, 2), (3, 1))}. In this case, for all type realizations (x, y) ∈ S, it

holds that

u(2,2)(x, y)− u(2,1)(x, y) = u(3,2)(x, y)− u(3,1)(x, y) = G2 · y − c2 −G1 · y + c1.

Finally, Assumption 3 takes care of the fact that the alterations of some optimal

mechanism that build the basis for the derivation of necessary conditions for optimality

need not be feasible due to the constraints on the family of quotas appearing in Theorem

1. Essentially, it implies that the discussed necessary conditions remain valid even if the

considered alterations are not feasible.

Assumption 3. empty

Consider two arbitrary properties H,K ∈ H satisfying H ⊆ K. For any two tuples of

alternatives (k,m) and (j, l) with k ∈ AHc and m ∈ AH as well as j ∈ AKc and l ∈ AK

such that k and m are separated only by property H as well as j and l are separated only by

property K, that is, {H} = {L ∈ H : k /∈ L∧m ∈ L} and {K} = {L ∈ H : j /∈ L∧l ∈ L},
the following inequality holds:

δH :=
E[uk − um|uk > um]

E[uk − um|uk > um] + E[um − uk|um > uk]

≥ E[uj − ul|uj > ul]

E[uj − ul|uj > ul] + E[ul − uj|ul > uj]
=: δK .

Note that in the presence of Assumption 2, for any two tuples of alternatives (k,m)

and (k′,m′) with k, k′ ∈ AHc and m,m′ ∈ AH such that k and m as well as k′ and m′ are

each separated only by property H, it holds that

δH =
E[uk − um|uk > um]

E[uk − um|uk > um] + E[um − uk|um > uk]

=
E[uk′ − um′ |uk′ > um′

]

E[uk′ − um′|uk′ > um′ ] + E[um′ − uk′ |um′ > uk′ ]
.

Therefore, the notation δH is justified because δH does not depend on the considered

tuple of alternatives that are separated only by property H.

Moreover, observe that the following requirement constitutes a sufficient condition for

Assumption 3: For all H,K ∈ H such that H ⊆ K or, equivalently, Kc ⊆ Hc, it holds

that

E[um − uk|um > uk] ≤ E[ul − uj|ul > uj], and

E[uk − um|uk > um] ≥ E[uj − ul|uj > ul],
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where k ∈ AHc and m ∈ AH as well as j ∈ AKc and l ∈ AK such that k and m are

separated only by property H as well as j and l are separated only by property K. Taking

into account a connected discussion in [NP, 2007b], very loosely speaking, Assumption

3 might be interpreted as a concavity restriction on the preference intensities in the

following sense: In expectation, the utility decreases more when moving from alternative

l to j in comparison with m to k as well as when moving from k to m in comparison with

j to l. Further, this assumption is vacuously satisfied in the special case of hypercubes

that I discuss in section 7.

Public Goods Provision. Consider again the public goods application. In this case,

for all k ∈ {1, 2}, it can be verified that the considered ratios simplify to the following

expressions:

δHα
≤k

=
1

1 + E[zk,k+1−X|X≤zk,k+1]
E[X−zk,k+1|X≥zk,k+1]

, and δHα
≥k+1

= 1− qHα
≤k

as well as

δHβ
≤k

=
1

1 + E[zk,k+1−Y |Y≤zk,k+1]
E[Y−zk,k+1|Y≥zk,k+1]

, and δHβ
≥k+1

= 1− qHβ
≤k
.

Now, the interrelations between properties in the sense that one property is a subset of

another property that are relevant for Assumption 3 are as follows:23 First, for any public

good γ ∈ {α, β}, Hγ
≤1 ⊂ Hγ

≤2. Hence, Assumption 3 requires that δHγ
≤1

≥ δHγ
≤2
. However,

this aspect implied by the regularity condition imposed in section 3 that the marginal

densities gX and gY are log-concave.24 Second, for any public good level k ∈ {1, 2},
Hα

≤k ⊂ Hβ
≤k. Thus, Assumption 3 demands that δHα

≤k
≥ δHβ

≤k
. In section 3, I assumed

that GX ≥lr GY .
25 This condition is sufficient for δHα

≤k
≥ δHβ

≤k
.26 Overall, the regularity

conditions on the type distribution from section 3 ensure that Assumption 3 is satisfied in

the public goods application. This suggests that, at least in the public goods application,

Assumption 3 constitutes a rather mild constraint.

Having presented the required assumptions as well as some preliminary steps for the

analysis, I state the main result of this paper, that is, I provide a characterization of

the welfare-maximizing mechanism among all strategy-proof, anonymous, and surjective

social choice functions.

23The conditions associated with all other interrelations of properties are automatically satisfied if the
constraints related to the discussed relevant interrelations are met.

24To see this, recall that a random variable satisfies the decreasing mean residual life property as well
as the increasing mean inactivity time property if its density is log-concave (see [Bagnoli and Bergstrom,
2005]).

25Again, the order ≥lr denotes the likelihood ratio order.
26The reason is that, if GX ≥lr GY , the same ordering holds in terms of the hazard as well as reversed

hazard rate ordering, implying the claim (see [Shaked and Shanthikumar, 2007]).
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Theorem 2. empty

Suppose that Assumptions 1, 2 and 3 hold.

The optimal mechanism among all strategy-proof, anonymous, and surjective social choice

functions takes the form of voting by properties with quotas

q∗H = ⌈nδH⌉ for all H ∈ H.

While taking into account that mechanisms have to be dominant-strategy incentive-

compatible, Theorem 2 characterizes the optimal utilitarian mechanism for generalized

single-peaked domains derived from median spaces. In particular, Theorem 2 provides

closed-form expressions for the welfare-maximizing quotas related to voting by properties.

The intuition behind the optimal quotas q∗H = ⌈nδH⌉ is as follows: Take any tuple of

alternatives (k,m) with k ∈ AHc and m ∈ AH such that k and m are separated only

by property H. Now, first of all, observe that the quota q∗H is shaped by the ratio of

preference intensities

E[um − uk|um > uk]

E[uk − um|uk > um]
,

reflecting the utilitarian objective of the designer. Also, regarding comparative statics,

the quota q∗H decreases in the discussed ratio of preference intensities. For the purpose

of a more detailed understanding, ignore the aspect that quotas must be integer-valued.

Plugging in the term for δH and rearranging yields

q∗H
n
E[uk|um > uk] +

n− q∗H
n

E[uk|uk > um]

=
q∗H
n
E[um|um > uk] +

n− q∗H
n

E[um|uk > um].

This expression shows how the designer’s Bayesian inference problem is resolved: The

optimal quota q∗H is calibrated such that the designer is indifferent between implementing

alternatives k and m conditional on being pivotal, that is, conditional on the event that

exactly q∗H out of the n voters prefer alternative m over alternative k. The latter event

coincides with the event that there are exactly q∗H voters whose most preferred alternatives

share property H.27 Consequently, the optimal quota q∗H is set such that the designer is

indifferent between any pair of alternatives separated only by property H conditional on

being there exactly q∗H voters with peaks from the set H.

Public Goods Provision. Revisit the public goods application, and recall the following

two aspects: First, again, in the public goods application, two alternatives form a tuple

(k,m) with k ∈ AHc and m ∈ AH such that k and m are separated only by property H if

27This point follows from generalized single-peakedness (see [NP, 2007b]).
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and only if, for one public good, the provided level is the same in k and m, and, for the

other good, the levels in k and m differ by exactly one. Second, as discussed in section

3, the optimal quotas in the public goods application are calibrated in the following way:

Conditional on being pivotal, the designer is indifferent between any two alternatives such

that the provided level of one good is the same in both alternatives, but the levels of the

other good differ by exactly one. This discussion shows how the indifference property of

the optimal quotas in the public goods application described in section 3 generalizes to

all median spaces.

Let me outline the proof of Theorem 2. Again, the proof builds on the corresponding

proof in [Gershkov et al., 2017], but the much larger class of preferences requires additional

arguments as well as different assumptions. In section 7, in the context of trees, I discuss

how Theorem 2 extends the main result in [Gershkov et al., 2017].

To begin with, by Theorem 1, it is sufficient to optimize over the set of quotas related

to voting by properties.28 Furthermore, again, due to Theorem 1, for all H,K ∈ H, the

optimal quotas must satisfy

H ⊆ K ⇒ qH ≥ qK .

Consider some property H ∈ H as well as the associated quota q∗H which is supposed

to be part of an optimal mechanism. To simplify the exposition, I divide the proof of

Theorem 2 into two lemmata.

Lemma 2. empty

Suppose that Assumptions 1 and 2 hold. Consider any property H ∈ H.

(i) If H ′ ⊂ H ⇒ q∗H′ > q∗H for all H ′ ∈ H such that ∄H ′′ ∈ H : H ′ ⊂ H ′′ ⊂ H, the

inequality

q∗H ≥ n · δH

constitutes a necessary condition for optimality.

(ii) If H ⊂ H ′ ⇒ q∗H > q∗H′ for all H ′ ∈ H such that ∄H ′′ ∈ H : H ⊂ H ′′ ⊂ H ′, any

optimal mechanism meets the inequality

q∗H ≤ n · δH + 1.

Suppose that increasing q∗H by 1 is feasible, meaning, this alteration does not violate

the inequalities from Theorem 1. This change matters only if there are q∗H voters having

some peak from the set H and n − q∗H voters with peaks from the set Hc. In this case,

28Again, since a bounded function is maximized over a finite set of elements, the existence of a solution
is ensured.

22



since q∗L ≤ q∗H for all H ⊂ L, the properties {L : H ⊂ L} or, equivalently, {Lc : L ⊂ Hc}
are accepted whenever there are such properties. Additionally, since increasing q∗H by 1

is feasible, I must have that q∗M > q∗H for all M ⊂ H. Thus, the properties {M : M ⊂ H}
are rejected or, equivalently, the properties {M c : M ⊂ H} are winning whenever there

are such properties. Putting these aspects together and using the introduced notation, if

the quota is q∗H , some element of the set AH ̸= ∅ is the winning alternative. However, if

the quota amounts to q∗H+1, some element of the set AHc ̸= ∅ is selected. Since q∗H is part

of an optimal mechanism, the modification of this quota should weakly decrease welfare.

In other words, the expected welfare induced by alternatives from the set AH must be

weakly higher compared to the welfare generated by alternatives from the set AHc . This

observation translates into a condition which is necessary for optimality whenever the

considered change in the optimal quota q∗H is feasible. Exploiting the tuple structure

derived in Lemma 1, the comparison of the expected welfare induced by the two sets

of alternatives reduces to contrasting a collection of tuples of alternatives such that the

elements within each tuple are separated only by property H. Now, imposing Assumption

2 implies, as discussed above, that these within-tuple welfare comparisons are not sensitive

to the tuple under consideration. This aspect simplifies the involved expressions and leads

to the inequality appearing in part (i) of Lemma 2.

Studying the effect of a decrease of q∗H by 1 yields via an analogous argument the inequality

appearing in part (ii) of Lemma 2. This inequality is necessary for optimality as long as

the considered decrease in the optimal quota q∗H is feasible.

The second step of the proof of Theorem 2 is summarized in Lemma 3.

Lemma 3. empty

Suppose that Assumptions 1, 2 and 3 hold. Consider any properties H ′, H ∈ H such that

H ′ ⊂ H and ∄H ′′ ∈ H : H ′ ⊂ H ′′ ⊂ H.

If q∗H′ = q∗H , any optimal mechanism nevertheless satisfies

q∗H ≥ n · δH

as well as

q∗H′ ≤ n · δH′ + 1.

The two alterations of the quota q∗H that is part of an optimal mechanism considered

above might not be feasible. Lemma 3 addresses this issue. Making use of Assumption

3, I show that the two inequalities derived in Lemma 2 still hold even if these alterations

are not feasible.

Finally, it turns out that these inequalities are not only necessary, but also sufficient for

optimality, and they determine the generically unique optimal mechanism featuring the
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quotas appearing in Theorem 2.

7 Applications

In this section, I apply the general characterization of welfare-maximizing mechanisms

developed in Theorem 2 to the special cases of trees and hypercubes. In these settings

Assumption 2 and Assumption 3 are vacuously met respectively. [NP, 2007b] identify

trees and hypercubes as distinguished instances of median spaces.29 The purpose of this

section is to present these two instances of median spaces as in both settings one of the

three assumptions in Theorem 2 is vacuously met.

7.1 Trees

To begin with, I consider the special case of single-peaked preferences on trees as intro-

duced in [Demange, 1982]. Take any tree (A,E), that is, take any undirected graph that

is connected and acyclic. The set of alternatives A coincides with the set of nodes and

the set E captures the set of edges corresponding to the tree. In particular, the set E

satisfies E ⊆ {V ∈ P(A) : |V | = 2}. Following [Nehring and Puppe, 2007a], for any edge

V = {b, c} ∈ E, define the two properties

HV,k := {a ∈ A : “a lies in direction of k”} and

HV,m := {a ∈ A : “a lies in direction of m”}.30

Note that any property coincides with a set of nodes corresponding to a connected com-

ponent of the underlying tree. Also, the properties of the form (HV,k, HV,m) constitute

an issue. Let HTree denote the collection of all these properties. Further, observe that a

preference relation is single-peaked with respect to the underlying tree as defined in [De-

mange, 1982] if and only if it is generalized single-peaked with respect to the betweenness

relation BHTree
. The former definition reads as follows: There exists an alternative p ∈ A,

which is the most preferred or peak alternative, such that for all alternatives k,m ∈ A

with k ̸= m it holds that whenever k lies on the shortest path in the underlying tree

connecting p and m, the voter must prefer k over m.

To illustrate this class of property spaces more concretely, take the simplest tree that is

not a line: Suppose that there are four alternatives {1, 2, 3, 4} and take the tree that is

shown in Figure 2. In this case, the collection of properties HTree amounts to

29For any median space, [NP, 2007b] characterize the requirement of generalized single-peakedness
in terms of a separability and a convexity condition, and they argue that, on trees and hypercubes,
generalized single-peakedness reduces to convexity and separability respectively.

30More formally, following [Nehring and Puppe, 2007a], the property HV,k is composed of all alter-
natives a ∈ A such that k lies on the shortest path from a to m in the tree (A,E). Similarly, HV,m

comprises all alternatives a ∈ A such that m lies on the shortest path from a to k in the tree (A,E).
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1 2 3

4

Figure 2: Tree Example

H{2,4},2 = {1, 2, 3}, H{2,4},4 = {4},

H{1,2},1 = {1}, H{1,2},2 = {2, 3, 4}, and

H{2,3},2 = {1, 2, 4}, H{2,3},3 = {3}.

For instance, if some voter’s most preferred alternative is 1, generalized single-peakedness

requires here that alternative 2 is preferred over 3 and 4, but it does not impose whether

3 is preferred to 4 or the other way around.

Moreover, if preferences are single-peaked with respect to a tree (A,E), a voting by

properties mechanism can be intuitively described as “voting by edges”: Take any edge

of the tree (A,E), cut this edge yielding two subsets of alternatives or, more precisely,

two connected components of the tree. Then, perform a binary vote determining which of

the two connected components is winning. This binary vote yields one winning connected

component, that is, the social choice must be contained in the set of nodes associated with

the connected component that is winning. These binary voting decisions are conducted

for all edges yielding a collection of connected components that are winning. Eventually,

the final outcome is given by the intersection of the sets of nodes linked to the connected

components that are winning.31

Now, if preferences are single-peaked with respect to a tree (A,E), the following aspect

follows from [NP, 2007b]: Take any edge V = {k,m} ∈ E with k,m ∈ A. Any two

alternatives form a tuple (j, l) with j ∈ AHV,k
and l ∈ AHc

V,k
= AHV,m

such that j and l

are separated only by property HV,m if and only if j = k and l = m. This implies that,

for any property H ∈ HTree, the sets AH and AHc considered in section 6 are singletons,

i.e., |AH | = |AHc | = 1. Consequently, Assumption 2 is vacuously met on trees, and I have

the subsequent corollary of Theorem 2.

Corollary 1. empty

Consider the median space (A,HTree), and suppose that Assumptions 1 and 3 are satisfied.

The optimal mechanism among all strategy-proof, anonymous, and surjective social choice

31Of course, the quotas involved in the described binary votes on subsets of the set of alternatives have
to satisfy the restrictions from Theorem 1.
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functions takes the form of voting by properties with quotas

q∗H = ⌈nδH⌉ for all H ∈ HTree.

The general indifference property of the welfare-maximizing quotas discussed in sec-

tion 6 reduces here to the following feature: Take any edge V = {k,m} ∈ E with

k,m ∈ A. Then, the corresponding optimal quotas q∗HV,k
and q∗HV,m

are calibrated such

that, conditional on being pivotal, the designer is indifferent between the two graph neigh-

bors k and m in the tree tree (A,E).

Now, let me discuss how Corollary 1 extends the main result in [Gershkov et al., 2017].

For concreteness, without loss of generality, suppose that the set of alternatives amounts

to A := {1, ..., l} with l ≥ 2. Following [NP, 2007b], assume that, for all 1 ≤ k < l, the

properties are given by

H≤k := {m ∈ {1, ..., l} : m ≤ k} as well as

H≥k+1 := {m ∈ {1, ..., l} : m ≥ k + 1}.

Let HLine denote the set of all these properties. Note that this collection of properties

exactly coincides with HTree if the underlying tree (A,E) constitutes the line shown in

Figure 3. In particular, a preference relation is generalized single-peaked with respect to

1 2 ... l − 1 l

Figure 3: Line

the betweenness relation BHLine
if and only if it is in the classical sense single-peaked on a

line and, more precisely, it is single-peaked on a line with respect to the natural ordering

1 < 2 < ... < l − 1 < l.

Specializing Corollary 1 to the case of single-peaked preferences on a line, I immediately

obtain the following corollary.

Corollary 2. [Gershkov et al., 2017]

Consider the median space ({1, ..., l},HLine), and suppose that Assumptions 1 and 3 are

satisfied.

The optimal mechanism among all strategy-proof, anonymous, and surjective social choice

functions takes the form of voting by properties with quotas

q∗H = ⌈nδH⌉ for all H ∈ HLine.

Observe that Corollary 2 coincides with the main result in [Gershkov et al., 2017]:

Assumption 1 is assumption A in their paper, and Assumption 3 reduces exactly to
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assumption B in their work.32

7.2 Hypercubes

Having treated collective choice when preferences are single-peaked on trees, I continue

with the discussion of voting on hypercubes, that is, voting on multiple binary decisions

as studied in [Barberà et al., 1991]. To start, assume that the set of alternatives A is

given by A := {0, 1}l, where l ≥ 1 is a natural number. This means that there are l

binary decisions, each coordinate of an alternative corresponds to a binary decision, and,

without loss of generality, each binary decision amounts either to 0 or 1. Following [NP,

2007b], suppose that, for all 1 ≤ k ≤ l, the properties are given by

H0,k := {(m1, ...,ml) ∈ {0, 1}l : mk = 0}, and

H1,k := {(m1, ...,ml) ∈ {0, 1}l : mk = 1}.

Let HHypercube denote the collection of these properties. Moreover, it follows from [NP,

2007b] that the requirement of generalized single-peakedness reduces here to the restric-

tion of separable preferences imposed in [Barberà et al., 1991]. The latter requirement

reads as follows: For any 1 ≤ k ≤ l and all sequences m ∈ {0, 1}k−1 and m′ ∈ {0, 1}l−k, a

voter prefers alternative (0k−1, 1, 0l−k) over (0k−1, 0, 0l−k) if and only if he or she prefers

alternative (m, 1,m′) over (m, 0,m′).

Furthermore, it can be verified that, on hypercubes, there are no properties H,K ∈ H
that are interrelated in the sense that H ⊆ K. Therefore, the restrictions from Theorem

1 as well as Assumption 3 are vacuously met.33 Consequently, I obtain the following

corollary of Theorem 2.34

Corollary 3. empty

Consider the median space ({0, 1}l,HHypercube), and suppose that Assumptions 1 and 2

are satisfied.

The optimal mechanism among all strategy-proof, anonymous, and surjective social choice

32Unless there are at most three alternatives, i.e., unless l ≤ 3, there is the following caveat: Because
[Gershkov et al., 2017] assume that preferences are single-crossing and single-peaked, the set of ordinal
preferences induced by their utility representation does not satisfy [NP, 2007b]’s richness condition on the
preference domain. Hence, the strategy-proof social choice functions [NP, 2007b] identify are strategy-
proof in [Gershkov et al., 2017]’s setting, but there might be more strategy-proof direct mechanisms.
However, when combining results from [Moulin, 1980], [NP, 2007b], and [Saporiti, 2009], it can be inferred
that also in [Gershkov et al., 2017]’s model there are no other strategy-proof social choice functions apart
from those identified in [NP, 2007b]’s characterization.

33Similarly, in [Gershkov et al., 2017], their assumption B is vacuously satisfied if there are only two
alternatives.

34Corollary 3 can also be obtained by combining, on the one hand, the results from [NP, 2007b] or
[Barberà et al., 1991] and, on the other hand, the optimality findings for the two-alternatives case from,
for example, [Nehring, 2004] or [Drexl and Kleiner, 2018].
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functions takes the form of voting by properties with quotas

q∗H = ⌈nδH⌉ for all H ∈ HHypercube.

Here, any voting by properties social choice function amounts to performing qualified

majority voting separately for each binary decision. Also, it follows from [NP, 2007b]

that Assumption 2 is satisfied if and only if the voters’ utilities are additively separable

across the binary decisions, making it a natural assumption on hypercubes. Moreover, the

general indifference property of the welfare-maximizing quotas from section 6 simplifies

here to the following aspect: Take any 1 ≤ k ≤ l. Then, the associated optimal quotas

q∗H0,k
and q∗H1,k

are set such that, conditional on being pivotal, the designer is indifferent

between any two alternatives that differ only with respect to the outcome in the k-th

binary decision, that is, any two alternatives (m, 1,m′) and (m, 0,m′) with m ∈ {0, 1}k−1

and m′ ∈ {0, 1}l−k.

8 Conclusion

In this paper, I offered a welfare analysis of voting rules. Specifically, I derived the op-

timal utilitarian mechanism among all strategy-proof, anonymous, and surjective social

choice functions for generalized single-peaked domains giving rise to median spaces. The

optimal mechanism takes the form of voting by properties, meaning, the social choice

is determined through a collection of binary votes on subsets of alternatives involving

qualified majority requirements that incorporate the characteristics of these subsets of

alternatives. Consequently, on a qualitative level, my results emphasize the importance

of flexible and qualified majority requirements for utilitarian welfare in voting on a broad

scale. Moreover, my optimality analysis reveals that trees and hypercubes are distin-

guished instances of median spaces as in both settings one of the three assumptions of

the general characterization of welfare-maximizing mechanisms is vacuously met.
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Appendix

The proof of Lemma 1 employs a result from [NP, 2007b] that is stated as Lemma 1

below. In order to present this result, I need to introduce the notion of critical families of

properties from their paper. These sets are collections of properties having the following

characteristic.

Definition A.1. [NP, 2007b]

A set of properties F ⊆ H is a critical family of properties if

∩F̄∈F F̄ = ∅ and

∀F ∈ F : ∩F̄∈F :F̄ ̸=F F̄ ̸= ∅.

In words, a collection of properties constitutes a critical family of properties if the

intersection of all involved properties is empty, but these properties have a non-empty

intersection whenever an arbitrary single property of the collection is removed. Also,

note that any critical family of properties involves at least two elements. Based on this

definition, [NP, 2007b] obtain the following result about the size of critical families of

properties in median spaces.

Lemma A.1. [NP, 2007b]

If (A,H) constitutes a median space, all critical families of properties have length two.

Lemma 1 says that median spaces share the characteristic that there are no critical

families of properties involving more than two properties.

Proof of Lemma 1.

Take any property H ∈ H and consider the related sets AH and AHc as defined in the

main text.

Concerning the first aspect, consider the set AH . The argument for the set AHc is

analogous. Towards a contradiction, suppose that AH = ∅. If ∄M ∈ H : M ⊂ H, I have

that H ⊆ AH . Since H ̸= ∅, it follows that AH ̸= ∅. If ∃M ∈ H : M ⊂ H, AH = ∅ implies

H ∩ (∩M⊂HM
c) = ∅. In other words, the collection of properties {H} ∪ {M c : M ⊂ H}

is not consistent. However, this means that there must be some subset of the set of these

properties which constitutes a critical family of properties. If this critical family involves

at least three elements, the desired contradiction is derived since, due to Lemma 1, all

critical families have length two in a median space. In case this critical family involves

only two properties, there are two possibilities. On the one hand, if H is part of this

critical family, the other element must be some single property M c such that M ⊂ H.

However, the collection of these two properties cannot be inconsistent and, hence, not

critical since the intersection of H and M c must be non-empty. On the other hand, if H

is not part of the critical family, this family must be composed of two properties from the
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set {M c : M ⊂ H}, but both of them are by definition supersets of Hc which means that

they are consistent and, thus, not critical since Hc ̸= ∅. Therefore, in the two possible

cases, I derived the desired contradiction.

Regarding the second aspect, take any k ∈ AHc , and consider the following intersection

of properties:

Kk := (∩{K∈Hk:K ̸=Hc}K) ∩H.

Now, because of separation, the set Kk is either empty or it contains exactly one alterna-

tive, but it does not contain more than one alternative. I claim that Kk cannot be empty.

Towards a contradiction, assume that Kk is empty. This means that the collection of

properties (Hk \ {Hc})∪ {H} is not consistent. To begin with, if Hk \ {Hc} = ∅, the set
of properties (Hk \ {Hc}) ∪ {H} must be consistent since H ̸= ∅. Thus, subsequently,

assume that Hk \ {Hc} contains at least one property. (Hk \ {Hc}) ∪ {H} being in-

consistent implies that there must be some subset of this collection of properties which

constitutes a critical family of properties. Since all property spaces are median spaces,

due to Lemma 1, this critical family must involve exactly two properties. Again, there are

two possibilities. On the one hand, if H is part of this critical family, the other element

must be some single property K ∈ Hk \ {Hc} satisfying K ⊂ Hc. In particular, it must

hold that k ∈ K. However, by definition of AHc , because of K ⊂ Hc, I have k ∈ Kc.

This contradicts k ∈ K. On the other hand, if H is not part of the critical family, this

family must be composed of two properties from the set Hk \{Hc}, but, by construction,

the alternative k shares both of them which means that they are consistent and, thus,

not critical. Hence, in both possible cases, I obtain a contradiction. Therefore, I infer

that Kk is not empty, but it contains exactly one alternative. Denote this alternative by

m. Now, by construction, k and m are separated only by property H. Further, I obtain

that m ∈ AH for the following reason: If ∄M ∈ H : M ⊂ Hc, by definition of AH , I have

that Kk ∩AH = Kk ∩H = Kk. If ∃M ∈ H : M ⊂ Hc, again by definition of AH , it holds

that

Kk ∩ AH = Kk ∩H ∩ (∩{M :M⊂Hc}M
c) = Kk ∩H ∩ (∩{M :H⊂Mc}M

c) = Kk.

Consequently, I conclude that there exists some m ∈ AH such that k and m are separated

only by propertyH. Moreover, there cannot be another alternativem′ ∈ AH withm ̸= m′

such that k and m′ are also separated only by property H since this would contradict

separation. The argument for the other direction, meaning, starting with some m ∈ AH

and showing that there is some unique k ∈ AHc such that both alternatives are separated

only by property H works in the same way. This establishes the claimed unique tuple

structure.
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Proof of Lemma 2.

Take any property H ∈ H.

Assume that H ′ ⊂ H ⇒ q∗H′ > q∗H for all H ′ ∈ H such that ∄H ′′ ∈ H : H ′ ⊂ H ′′ ⊂ H.

Consider the quota q∗H being part of an optimal mechanism and suppose that it is in-

creased by 1, i.e. the quota linked to property H moves to q∗H + 1. In particular, as long

as q∗H ̸= n, the modified quota q∗H + 1 is still feasible because q∗H′ ≥ q∗H + 1 > q∗H for all

H ′ ∈ H such that ∄H ′′ ∈ H : H ′ ⊂ H ′′ ⊂ H.

This alteration matters only if there are q∗H voters having some peak from the set H and

n− q∗H voters with peaks from the set Hc. For simplicity, call this event “pivH”.

In this case, since q∗L ≤ q∗H for all H ⊂ L, the properties {L : H ⊂ L} or, equivalently,

{Lc : L ⊂ Hc} are accepted whenever there are such properties. Additionally, q∗H′ > q∗H
for all H ′ ∈ H such that ∄H ′′ ∈ H : H ′ ⊂ H ′′ ⊂ H implies that q∗M > q∗H for all

M ⊂ H. Thus, the properties {M : M ⊂ H} are rejected or, equivalently, the properties

{M c : M ⊂ H} are winning whenever there are such properties. Putting these aspects

together and using the notation introduced in the main text, if the quota is q∗H , some

element of the set AH ̸= ∅ is the winning alternative. However, if the quota amounts to

q∗H + 1, some element of the set AHc ̸= ∅ is selected.

Therefore, for both quotas, employing Assumption 1, the expected welfare conditional

on the event where the alteration of q∗H matters, i.e., the expected welfare conditional on

the event “pivH”, can be expressed in the following way: If the quota is q∗H , the resulting

welfare amounts to∑
l∈AH

Pr(l wins|pivH) · {n · E[ul(T )|pivH ∧ l wins]}.

In contrast, if the quota is q∗H + 1, the induced welfare satisfies∑
j∈AHc

Pr(j wins|pivH) · {n · E[uj(T )|pivH ∧ j wins]}.

Because q∗H is part of an optimal mechanism, it must be that the former expression is

weakly higher than the latter term. This necessary condition for optimality translates

into the inequality ∑
l∈AH

Pr(l wins|pivH)E[ul(T )|pivH ∧ l wins] ≥∑
j∈AHc

Pr(j wins|pivH)E[uj(T )|pivH ∧ j wins].

Now, consider the tuple structure derived in Lemma 1 and, with abuse of notation,

suppose that (j, l) constitutes a tuple of alternatives such that j and l are separated

only by property H. This means that the events “l wins ∧ pivH” and “j wins ∧ pivH”
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must coincide, meaning, they refer to the same set of type realizations. This is true for

the following reason: The event “j wins ∧ pivH” means that the properties Hj \Hc are

winning and the number of voters having peaks from the set H amounts to q∗H . The

event “l wins ∧ pivH” means that the properties Hl \H are winning and the number of

voters having peaks from the set H is q∗H . However, since j and l are separated only by

property H, it holds that Hj \Hc = Hl \H. Therefore, the events “j wins ∧ pivH” and

“l wins ∧ pivH” coincide. Call this event “j/l win ∧ pivH”. In particular, I have that

Pr(j/l win|pivH) = Pr(l wins|pivH) = Pr(j wins|pivH).

Therefore, the inequality above can be rewritten as follows:∑
(j,l)∈ZH

Pr(j/l win|pivH){E[ul(T )− uj(T )|j/l win ∧ pivH ]} ≥ 0.

Now, take any pair of alternatives (k,m) with k ∈ AHc and m ∈ AH such that k and m

are separated only by property H. Due to Assumption 2, it holds that

uk(t)− um(t) = ul(t)− uj(t)

for all tuples of alternatives (j, l) ∈ ZH and for all type realizations t ∈ S. Thus, the

previous inequality can be written as∑
(j,l)∈ZH

Pr(j/l win|pivH){E[um(T )− uk(T )|j/l win ∧ pivH ]} ≥ 0.

Next, by the law of total expectation, I obtain that

E[um(T )− uk(T )|pivH ] ≥ 0.

Moreover, applying again the law of total expectations, this inequality can be written in

the following way:

Pr(“peak ∈ H”|pivH)E[um(T )− uk(T )|“peak ∈ H” ∧ pivH ]

+Pr(“peak ∈ Hc”|pivH)E[um(T )− uk(T )|“peak ∈ Hc” ∧ pivH ] ≥ 0,

where “peak ∈ H” and “peak ∈ Hc” refer to the events that an arbitrary voter’s most-

preferred alternative or peak shares property H and Hc respectively. While using the

definition of the event “pivH”, Assumption 1 implies that the probabilities involved in
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the inequality satisfy

Pr(“peak ∈ H”|pivH) =
q∗H
n

and

Pr(“peak ∈ Hc”|pivH) =
n− q∗H

n
.

Also, Assumption 1 yields

E[um(T )− uk(T )|“peak ∈ H” ∧ pivH ] = E[um(T )− uk(T )|“peak ∈ H”] and

E[um(T )− uk(T )|“peak ∈ Hc” ∧ pivH ] = E[um(T )− uk(T )|“peak ∈ Hc”].

Further, it follows from generalized single-peakedness that the events “peak ∈ H” and

“peak ∈ Hc” are equivalent to the events “um(T ) > uk(T )” and “uk(T ) > um(T )”

respectively (see Fact 2.1 in [NP, 2007b]). Taking these three aspects together, the

inequality above simplifies to

q∗H
n
E[um(T )− uk(T )|um(T ) > uk(T )] +

n− q∗H
n

E[um(T )− uk(T )|uk(T ) > um(T )] ≥ 0.

Hence, rearranging yields

q∗H ≥ n · δH

while I use the notation introduced in the main text. In addition, if q∗H = n, the derived

inequality still holds since δH ∈ (0, 1). This establishes the first claim of the lemma.

Turning to the second point of the lemma, suppose that H ⊂ H ′ ⇒ q∗H > q∗H′ for all

H ′ ∈ H such that ∄H ′′ ∈ H : H ⊂ H ′′ ⊂ H ′.

Consider again the quota q∗H related to an optimal mechanism and suppose that it is

decreased by 1, i.e. the quota q∗H moves to q∗H − 1. In particular, the altered quota is still

feasible as long as q∗H ̸= 1. This change matters only if there are q∗H − 1 voters with peak

alternatives from the set H and n− q∗H + 1 voters having peaks that share property Hc.

Following the steps employed in the reasoning above in an analogous way, it can be

verified that the inequality

q∗H ≤ n · δH + 1

constitutes a necessary condition for optimality. Additionally, observe that the derived

inequality also holds if q∗H = 1 since n · δH > 0.

Proof of Lemma 3.

Assume that there are properties H ′, H ∈ H with H ′ ⊂ H as well as ∄H ′′ ∈ H : H ′ ⊂
H ′′ ⊂ H and the quotas related to an optimal mechanism satisfy q∗H′ = q∗H .
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Define

Q :={K ∈ H : [(K ⊆ H ′ ∨H ⊆ K) ∧ q∗K = n] and

∄K ′ ∈ H : [K ⊂ K ′ ∧ (K ′ ⊆ H ′ ∨H ⊆ K ′) ∧ q∗K′ = n]}

and

R :={K ∈ H : [(K ⊆ H ′ ∨H ⊆ K) ∧ q∗K = 1] and

∄K ′ ∈ H : [K ′ ⊂ K ∧ (K ′ ⊆ H ′ ∨H ⊆ K ′) ∧ q∗K′ = 1]}.

In the following, I perform a case distinction:

1) Suppose that Q ≠ ∅ and R ≠ ∅.
1a) ∃Q̄ ∈ Q : H ⊆ Q̄

By definition of Q, it holds that q∗
Q̄
= n and, because H ⊆ Q̄, it follows that q∗H = n.

Thus, the inequality q∗H ≥ n · δH is met.

Moreover, I obtain H ⊆ Q for all Q ∈ Q since otherwise, Q ⊆ H ′ or, equivalently, Q ⊂ H

which would imply Q /∈ Q because q∗H = n.

Take some Q′ ∈ Q and consider the related set

S := {K ∈ H : Q′ ⊂ K and ∄K ′ ∈ H : Q′ ⊂ K ′ ⊂ K}

of properties.

If S = ∅, this means that there are no properties Q′′ ∈ H such that Q′ ⊂ Q′′. Conse-

quently, decreasing the quota q∗Q′ = n by 1 is feasible and, thus, Lemma 2 implies that

the inequality q∗Q′ ≤ n · δQ′ + 1 holds.

If S ≠ ∅, it must be that q∗S < q∗Q′ for all S ∈ S. Suppose not, meaning, there exists some

S ∈ S such that q∗S ≥ q∗Q′ . Since, by construction Q′ ⊂ S, I obtain q∗S = q∗Q′ = n. But,

then, it holds that H ⊆ Q′ ⊂ S and q∗S = n and, thus, it follows that Q′ /∈ Q which is

the desired contradiction.

Now, the aspect q∗S < q∗Q′ for all S ∈ S implies that decreasing the quota q∗Q′ by 1 is

feasible and, therefore, by Lemma 2, the inequality q∗Q′ ≤ n · δQ′ + 1 is met.

Hence, in both possible cases, the inequality q∗Q′ ≤ n · δQ′ + 1 is true. Furthermore,

q∗H′ = q∗H = n = q∗Q′ ≤ n · δQ′ + 1 ≤ n · δH′ + 1

by Assumption 3 since H ′ ⊂ H ⊆ Q′. Thus, the inequality q∗H′ ≤ n · δH′ + 1 holds.

1b) ∃R̄ ∈ R : R̄ ⊆ H ′

By definition of R, it holds q∗
R̄
= 1 and, since R̄ ⊆ H ′, I obtain q∗H′ = 1. Therefore, the

second inequality q∗H′ ≤ n · δH′ + 1 is true.
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Furthermore, I obtain R ⊆ H ′ for all R ∈ R because H ′ ⊂ H ⊆ R would imply R /∈ R
since q∗H′ = 1.

Take some R′ ∈ R and consider the related set

J := {K ∈ H : K ⊂ R′ and ∄K ′ ∈ H : K ⊂ K ′ ⊂ R′}

of properties.

If J = ∅, this means that there are no properties R′′ ∈ H satisfying R′′ ⊂ R′. Con-

sequently, increasing the quota q∗R′ = 1 by 1 must be feasible yielding the inequality

q∗R′ ≥ n · δR′ because of Lemma 2.

If J ̸= ∅, it must be that q∗J > q∗R′ for all J ∈ J . To see this point, suppose that the

contrary is true, meaning, there exists some J ∈ J such that q∗J ≤ q∗R′ . Thus, because of

J ⊂ R′, I obtain q∗J = q∗R′ = 1. However, since J ⊂ R′ ⊆ H ′ and q∗J = 1, the property R′

cannot be part of the set R which contradicts R′ ∈ R.

Employing the aspect q∗J > q∗R′ for all J ∈ J , I observe that increasing the quota q∗R′ by

1 is feasible and, therefore, by Lemma 2, the inequality q∗R′ ≥ n · δR′ holds.

Hence, in both possible scenarios, I obtain that the inequality q∗R′ ≥ n · δR′ is satisfied.

Consequently, since R′ ⊆ H ′ ⊂ H, Assumption 3 implies

1 = q∗H = q∗H′ = q∗R′ ≥ n · δR′ ≥ n · δH .

Therefore, the inequality q∗H ≥ n · δH is also true.

1c) ∀Q̄ ∈ Q : Q̄ ⊆ H ′ and ∀R̄ ∈ R : H ⊆ R̄

Define

O = {K ∈ H : [K ⊆ H ′ ∧ q∗K > q∗H ] and ∄K ′ ∈ H : [K ⊂ K ′ ⊆ H ′ ∧ q∗K′ > q∗H ]}

and

P = {K ∈ H : [H ⊆ K ∧ q∗K < q∗H ] and ∄K ′ ∈ H : [H ⊆ K ′ ⊂ K ∧ q∗K′ < q∗H ]}.

In particular, O ≠ ∅ as well as P ≠ ∅ since Q ≠ ∅ and R ≠ ∅.
Take some O ∈ O. By construction, I have q∗L = q∗H for all L ∈ H such that O ⊂ L ⊆ H ′.

Also, since Q ≠ ∅ and Q̄ ⊆ H ′ for all Q̄ ∈ Q, it must be that q∗H ̸= n.

Moreover, there exists some L′ ∈ H such that ∄L′′ ∈ H : O ⊂ L′′ ⊂ L′ ⊆ H ′. Consider

the set

I := {K ∈ H : K ⊂ L′ and ∄K ′ ∈ H : K ⊂ K ′ ⊂ L′}
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of properties. In particular, I have I ≠ ∅ because, by construction, O ∈ I.
If q∗I > q∗L′ for all I ∈ I, increasing qL′ by 1 is feasible and, therefore, by Lemma 2, the

inequality q∗L′ ≥ n · δL′ holds.

If there exists I ′ ∈ I such that q∗I′ ≤ q∗L′ , it follows that q∗I′ = q∗L′ = q∗H because I ′ ⊂
L′ ⊆ H ′. Now, employ the reasoning that I used to tackle L′ and apply it to I ′. Again,

there are two possibilities: Either increasing q∗I′ is feasible or there must be some property

I ′′ ∈ H such that I ′′ ⊂ I ′ ⊆ H ′ satisfying q∗I′′ = q∗L′ = q∗H . If necessary, since there are

finitely many properties, repeat this argument for a finite number of times. This yields

that there exist either some property I ′′′ ∈ H with I ′′′ ⊆ H ′ such that increasing q∗I′′′

satisfying q∗I′′′ = q∗L′ = q∗H is feasible or, otherwise, there must be some property I ′′′′ ∈ H
with I ′′′′ ⊆ H ′, q∗I′′′′ = q∗L′ = q∗H and ∄I ′′′′′ ∈ H : I ′′′′′ ⊂ I ′′′′. However, concerning the

latter case, increasing q∗I′′′′ by 1 is feasible.

Therefore, in any scenario, there must be some Ĩ ∈ H with Ĩ ⊆ L′ ⊆ H ′ ⊂ H such that

increasing qĨ by 1 is feasible and qĨ satisfies q∗
Ĩ
= q∗L′ = q∗H . Employing Lemma 2, this

means that the inequality q∗
Ĩ
≥ n · δĨ is met. But, then, since Ĩ ⊂ H, Assumption 3

implies

q∗H = q∗
Ĩ
≥ n · δĨ ≥ n · δH

and, thus, the inequality q∗H ≥ n · δH is met.

Consider some arbitrary P ∈ P . By construction, I have q∗M = q∗H′ for all M ∈ H such

that H ⊆ M ⊂ P . Further, since R ̸= ∅ and H ⊆ R̄ for all R̄ ∈ R, it must be that

q∗H′ ̸= 1.

Additionally, there exists some M ′ ∈ H such that ∄M ′′ ∈ H : H ⊆ M ′ ⊂ M ′′ ⊂ P . Focus

on the set

C := {K ∈ H : M ′ ⊂ K and ∄K ′ ∈ H : M ′ ⊂ K ′ ⊂ K}

of properties. In particular, I have C ̸= ∅ because, by construction, P ∈ C.
If q∗C < q∗M ′ for all C ∈ C, decreasing qM ′ by 1 is feasible and, therefore, due to Lemma 2,

the inequality q∗M ′ ≤ n · δM ′ + 1 holds.

If there exists C ′ ∈ C such that q∗C′ ≥ q∗M ′ , it follows that q∗C′ = q∗M ′ = q∗H′ because

H ⊆ M ′ ⊂ C ′. Now, employ the reasoning that I used to tackle M ′ and apply it to C ′.

Again, there are two possibilities: Either decreasing q∗C′ is feasible or there must be some

property C ′′ ∈ H such that H ⊆ C ′ ⊂ C ′′ satisfying q∗C′′ = q∗M ′ = q∗H′ . If necessary, since

there are finitely many properties, repeat this argument for a finite number of times. This

yields that there exist either some property C ′′′ ∈ H with H ⊆ C ′′′ such that increasing

q∗C′′′ satisfying q∗C′′′ = q∗M ′ = q∗H′ is feasible or, otherwise, there must be some property

C ′′′′ ∈ H with H ⊆ C ′′′′, q∗C′′′′ = q∗M ′ = q∗H′ and ∄C ′′′′′ ∈ H : C ′′′′ ⊂ C ′′′′′. However,
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concerning the latter case, decreasing q∗C′′′′ by 1 is feasible.

Therefore, in any scenario, there must be some C̃ ∈ H with H ′ ⊂ H ⊆ M ′ ⊆ C̃ such that

decreasing qC̃ by 1 is feasible and qC̃ satisfies q∗
C̃
= q∗M ′ = q∗H′ . Invoking Lemma 2, this

means that the inequality q∗
C̃
≤ n · δC̃ + 1 is met. But, then, since H ′ ⊂ C̃, Assumption

3 implies

q∗H′ = q∗
C̃
≤ n · δC̃ + 1 ≤ n · δH′ + 1

and, thus, the inequality q∗H′ ≤ n · δH′ + 1 is met.

In conclusion, as desired, despite q∗H′ = q∗H , both relevant inequalities are met at q∗H .

2) If Q = ∅ and R = ∅, the argument from case 1c applies.

3) Suppose that Q ≠ ∅, but R = ∅.
If ∃Q̄ ∈ Q : H ⊆ Q̄, the reasoning in case 1a yields the desired conclusion; in case Q ⊂ H

for all Q ∈ Q, take the argument from case 1c.

4) Suppose that R ≠ ∅, but Q = ∅.
In case H ⊂ R for all R ∈ R, replicate the steps in case 1c; if ∃R̄ ∈ Q : R̄ ⊆ H, the

argument from case 1b applies.

Taking all four cases together, this shows that the two relevant inequalities

q∗H ≥ n · δH and

q∗H′ ≤ n · δH′ + 1

determining q∗H as well as q∗H′ hold despite q∗H′ = q∗H . Therefore, overall, the claim in the

lemma follows.

Proof of Theorem 2.

It is sufficient to find the quotas related to voting by issues that are part of an optimal

mechanism. The existence of a solution is ensured since a bounded function is optimized

over a finite set of elements.

Recall, by Theorem 1, the optimal quotas must satisfy

H ⊆ K ⇒ q∗H ≥ q∗K

for all K ′, K ∈ H.

Consider some arbitrary property H ∈ H and the associated quota q∗H being part of an

optimal mechanism. Subsequently, I perform case distinctions.

1a) If ∀H ′ ∈ H with H ′ ⊂ H and ∄H ′′ ∈ H : H ′ ⊂ H ′′ ⊂ H, it holds that q∗H′ > q∗H , part

(i) of Lemma 2 yields that the inequality q∗H ≥ n · δH is met.

1b) If there is some H ′ ∈ H with H ′ ⊂ H and ∄H ′′ ∈ H : H ′ ⊂ H ′′ ⊂ H such that
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q∗H′ = q∗H , Lemma 3 implies that the inequality q∗H ≥ n · δH holds.

Therefore, no matter the shape of the optimal mechanism, the inequality q∗H ≥ n · δH
constitutes a necessary condition for optimality.

2a) If ∀H ′ ∈ H with H ⊂ H ′ and ∄H ′′ ∈ H : H ⊂ H ′′ ⊂ H ′, it holds q∗H > q∗H′ , part (ii)

of Lemma 2 yields that the inequality q∗H ≤ n · δH + 1 is true.

2b) If there is some H ′ ∈ H with H ⊂ H ′ and ∄H ′′ ∈ H : H ⊂ H ′′ ⊂ H ′ such that

q∗H = q∗H′ , Lemma 3 implies that the inequality q∗H ≤ n · δH + 1 is satisfied.

Thus, no matter the shape of the optimal mechanism, the inequality q∗H ≤ n · δH + 1 is

necessary for optimality.

Taking both inequalities together, since the quotas are integer-valued, the quotas q∗H
satisfying these inequalities are, generically, unique and they amount to q∗H = ⌈nδH⌉
with H ∈ H. Consequently, the equalities q∗H = ⌈nδH⌉ with H ∈ H are necessary for

optimality. Finally, it remains to be verified that these equalities are also sufficient for

optimality. The quotas determined by these equalities are feasible in the sense that they

constitute a family of quotas and that they meet the inequalities from Theorem 1. First,

note that, for all H ∈ H, since 0 < δH < 1, I have that 1 ≤ q∗H = ⌈nδH⌉ ≤ n. Second,

observe that, for any H ∈ H, it holds that q∗H + q∗Hc = n + 1. Thus, the discussed

quotas constitute a family of quotas. Also, it is immediate from Assumption 3 that these

quotas satisfy the inequalities from Theorem 1. Moreover, the quotas determined by the

equalities q∗H = ⌈nδH⌉ withH ∈ H must be optimal because, again, there exists a solution

and this solution has to meet these equalities. Consequently, the discussed equalities are

also sufficient for optimality, and the theorem follows.
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