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Susanne Goldlücke� Thomas Tröger�
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Abstract

We consider mechanisms for assigning an unpleasant task among a group
of agents with heterogenous abilities. We emphasize threshold rules: every
agent decides whether or not to “volunteer”; if the number of volunteers
exceeds a threshold number, the task is assigned to a random volunteer; if
the number is below the threshold, the task is assigned to a random non-
volunteer. We show that any non-extreme threshold rule allows for a sym-
metric equilibrium in which every ability type is strictly better off than in a
random assignment. This holds for arbitrarily high costs of performing the
task.

Within the class of binary-action mechanisms, some threshold rule is util-
itarian optimal.

The first-best can be approximated arbitrarily closely with a threshold
rule as the group size tends to infinity; that is, there exist threshold numbers
such that with probability arbitrarily close to 1 the task is performed by an
agent with an ability arbitrarily close to the highest possible ability. The
optimal threshold number goes to infinity as the group size tends to infinity.

1 Introduction

Volunteering, according to Wilson (2000), is “any activity in which time
is given freely to benefit another person, group or cause.” Implicit here
is the assumption that there is little or no remuneration for the activity.
Volunteering plays an important role in many different areas of any modern
economy. It concerns services as diverse as chairing a university department,
engaging in environmental activities such as bird counting, teaching the host
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Niemeyer, Georg Nöldeke, Andreas Roider, Ariel Rubinstein, Klaus Schmidt, Urs Schweizer, Alex
Smolin, Roland Strausz, Robert Sugden and many seminar participants for helpful comments and
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country’s language to a refugee, and providing company for terminally ill
patients in hospices.1 While many volunteering activities are informal, in
the UK the economic value of formal volunteering alone is estimated at £39
billion, according to the report by Low, Butt, Ellis, and Davis Smith (2007).

For many tasks, it is crucial to not just find any volunteer, but to find a
well-qualified volunteer. As humans, we are heterogenous with respect to our
abilities, whether the task is to lead a department, to spot a specimen of a
rare species in the field, to work with a refugee, or to talk to a dying person.
If a highly able person volunteers, everybody benefits.

Our paper focusses on the economic problem of assigning a task to the
most able person in a given group. No remuneration is possible. The task
cannot be delayed or avoided: one of the group members must perform the
task. Each agent is privately informed about her ability, which is defined as
the benefit that accrues to everybody if she performs the task. There is a
free-rider problem because performing the task is costly.

A simple task-assignment rule that naturally comes to mind consists in
asking every agent whether or not she “volunteers”. We imagine all agents be-
ing asked simultaneously; if at least one agent volunteers, the task is assigned
randomly among the volunteering agents; if no agent volunteers, the task is
assigned randomly among all agents. This any-volunteer rule can, however,
lead to rather poor volunteering incentives. In particular, if performing the
task is sufficiently costly, then the any-volunteer rule leads, in any symmetric
equilibrium, to a purely-random assignment because nobody will volunteer.

In this paper, we present alternative task-assignment rules. The seed for
our construction can be found in the writings of Thomas Schelling (Schelling,
2006). As a proposal in passing, he casts the idea of “volunteering if 20 others
do likewise” (p. 95). We may call this idea the multiple-volunteers principle.
Schelling’s half-sentence immediately raises many questions. What happens
if the threshold number of 20 is not reached? Does the multiple-volunteers
principle lead to a welfare improvement relative to the any-volunteer rule?
Can we use the multiple-volunteers idea to construct a mechanism that is
optimal in some sense? Which threshold number should be set? Our paper
elaborates on these questions.

We consider task assignment rules that are set by a social planner. Thus,
Schelling’s advice to declare one’s conditional willingness to volunteer is recast
as follows. The rule allows each agent a choice between two actions that we
call “volunteering” and “not volunteering”. If at least i∗ (e.g., i∗ = 20) agents
volunteer, then all volunteers participate in a uniform lottery that determines
the service provider. However, because the task cannot be avoided, a fully
specified task-assignment rule must go beyond Schelling’s advice: it must also
specify who performs the task if the threshold number of i∗ volunteers is not
reached. We stipulate that the task is then assigned randomly among the
non-volunteers by a uniform lottery. We generalize this construction slightly:
we allow that, if the number of volunteers is equal to the threshold i∗, then,
rather than assigning the task to a volunteer for sure, a lottery may be used
to decide whether the task is assigned to a volunteer or a non-volunteer. We

1The German association of hospices reports that most of the 120.000 individuals working un-
der their roof are volunteers who are not remunerated, see https://www.dhpv.de/themen hospiz-
palliativ ehrenamt.html.
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call any such mechanism a threshold rule.
Our main results advertise the class of threshold rules, by demonstrat-

ing three properties. First, in any threshold rule that is non-extreme in a
sense that will be defined,2 there exists an equilibrium such that every ability
type, including every non-volunteering type, is strictly better off than under
a purely-random assignment of the task. Thus, every type—even those with
very low abilities and those with very high abilities—has a strict incentive
to participate if the default is a purely-random assignment of the task. This
property holds for arbitrarily high costs of performing the task. Thus, the ex-
istence of an improvement over the purely-random assignment is a detail-free
conclusion.

Secondly, we show that, given the utilitarian welfare criterion, some thresh-
old rule is optimal among all binary-action rules. In other words, in order to
outperform the class of threshold rules, more complicated mechanisms with
at least three actions would be needed.

Third, the first-best can be approximated arbitrarily closely via an ap-
propriate sequence of threshold numbers as the group size tends to infinity.
That is, in a large population a threshold rule (in particular, a binary-action
rule) is always good enough.

While the utilitarian-optimal threshold number tends to infinity as the
population size tends to infinity, considerable welfare improvements are often
achieved already with very small threshold numbers. Consider, for instance, a
large population in which the average ability is equal to 1, the highest possible
ability is equal to 5, and the individual cost of taking on the task is equal
to 3. The following equilibrium outcomes can be computed. In equilibrium,
only agents with abilities close to 5 will volunteer, implying that the expected
ability of a volunteer is close to 5, and the expected ability of a non-volunteer
is close to 1. If a single volunteer is required (i.e., the any-volunteer rule is
used), then the task will be assigned to a volunteer with probability 45%;
if two volunteers are required, the task will be assigned to a volunteer with
probability 69%; if ten volunteers are required, the task will be assigned to a
volunteer with probability 89%.

Related literature

The allocation problem considered in our paper is a (very) special case of
a social-choice setting with informational and allocative externalities (Jehiel
and Moldovanu, 2001). However, in contrast to the focus in that literature,
we consider here mechanisms without monetary transfers and with only two
actions, while maintaining a continuum of types. In the absence of these re-
strictions, that is, with quasilinear preferences, arbitrary monetary transfers,
and arbitrary action spaces, the first best could be obtained in our setting by
simply asking all agents for their ability types, assigning the task to the high-
est type, and reimbursing the cost of performing the task, which is identical
across agents.3

2The set of non-extreme threshold rules includes any rule with a threshold number i∗ from 2
to n− 2, where n is the group size.

3The fact that the efficient allocation can thus be implemented renders our setting “non-
generic” from the point of view of Jehiel and Moldovanu.
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The earlier game-theoretic literature on volunteering assumes that agents
have identical abilities, but are heterogenous with respect to the opportunity
cost of providing the public good (i.e., performing the task) or, equivalently,
the personal benefit from consuming the public good. Moreover, in the lit-
erature it is usually allowed that the group of agents may fail to provide the
public good (i.e., the task can be avoided). Such a setting resembles the clas-
sic public-good provision problem with private values (Clarke, 1971; Groves,
1973), except that no monetary transfers are feasible. In a private-values
setting, incentives for volunteering arise from the threat that the public good
is not provided at all rather than, as in our setting, the threat that the public
good is provided in low quality.

Rather than taking a mechanism-design approach, the volunteering liter-
ature has focussed on two particular binary-action game rules. The coordi-
nated volunteer’s game assigns the task randomly among the volunteers if at
least one person volunteers, and otherwise avoids the task altogether. The
uncoordinated volunteer’s game is different in the sense that not just one,
but all volunteers pay the cost of performing the task. Olson (2009, first
edition: 1965) conjectured that if a volunteer’s game is played in a large pop-
ulation, then the probability that a volunteer is found will be smaller than
in a small population. The first equilibrium analysis of the (uncoordinated)
volunteer’s game is due to Diekmann (1985). The subsequent literature has
evaluated Olsen’s conjecture in various settings (Makris, 2009; Bergstrom,
2017; Nöldeke and Peña, 2020).

In between our paper’s assumption that the public good must be provided
and the opposite assumption that it can be avoided lies the possibility that
the provision can be delayed, leading to discounted costs and benefits. The
possibility of delay naturally leads to a war-of-attrition game in which each
agent waits, or engages in some other costly search process, until someone
agrees to provide the service. Within the heterogenous-cost setting, such a
game has been analyzed by Bliss and Nalebuff (1984).4 In equilibrium, it is
often the “right” person who volunteers first, e.g., the one who has the lowest
cost of providing the service, but it can also be the one who has the highest
cost of waiting, and substantial waiting costs may have to be incurred before
a volunteer is found.

2 Model

A task of public interest needs to be allocated among a group of agents
1, . . . , n, where n ≥ 2. Each agent is privately informed about her ability at
performing the task. Each agent’s ability type is independently distributed
on an interval [θ, θ] according to some strictly increasing and continuous cu-
mulative distribution function F .

In a binary mechanism, each player chooses between two actions, denoted
by “Y ” and “N”. Assuming anonymity, a binary mechanism is characterized

4See also Bilodeau and Slivinski (1996) for a related model with complete information. See
Klemperer and Bulow (1999) for a general approach to war-or-attrition games, and see LaCasse,
Ponsati, and Barham (2002) and Sahuguet (2006) for more special extensions.

4



by a list
p1, . . . , pn−1.

For all j = 1, . . . , n− 1, the number pj denotes the probability that the task
is assigned to a randomly selected Y -player; with probability 1 − pj , it is
assigned to a randomly selected N -player. If the number of Y -players is 0 or
n, the task is assigned randomly among all agents, that is, each agent gets
assigned the task with probability 1/n.

The purely-random-assignment mechanism (p1, . . . , pn−1) is given by pj =
j/n for all j. These probabilities imply that the task is always assigned with
equal probability to any agent, independently of the agents’ strategies.

Given any mechanism (p1, . . . , pn−1), a symmetric strategy profile is char-
acterized by a function σ that determines the strategy for each agent, where
σ(θ) denotes the probability that type θ ∈ [θ, θ] chooses Y .

The expected utility Ua(σ, θ) of any type θ taking action a, who anticipates
that the other agents will use the strategy σ, is denoted Ua(σ, θ).

The function σ is an equilibrium if the following implications hold for all
θ:

if σ(θ) > 0 then UY (σ, θ)− UN (σ, θ) ≥ 0,

if σ(θ) < 1 then UY (σ, θ)− UN (σ, θ) ≤ 0.

Mechanism-equilibrium combinations (p1, . . . , pn−1, σ) and (p′1, . . . , p
′
n−1, σ

′)
are equivalent if each type obtains the same expected utility in both combi-
nations.

Notation: selection-probability functions

Before continuing with the model description, we introduce four auxiliary
functions, hY , hN , qY and qN , and discuss their basic properties. These
functions will play a fundamental role throughout the paper. We call them
selection-probability functions.

Taking the point of view of an agent who has chosen an action (Y or
N), the functions qY and qN describe the probability of personally getting
assigned the task, and the functions hY and hN describe the probability that
anyone in the set of agents who take a particular action gets assigned the
task. For the most part, in our computations, binomial sums will remain
hidden behind the selection-probability functions.

The argument of the selection-probability functions is the ex-ante proba-
bility that a given agent chooses Y ,

y =

∫
σ(θ)dF (θ). (1)

For any y ∈ [0, 1], the probability that anyone of the Y -playing agents is
selected, conditional on the event that a given agent plays Y , is denoted

hY (y) =

n−1∑
j=0

Bn−1y (j)pj+1. (2)
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Here, y denotes every other (i.e., not the given) agent’s probability of playing
Y . Using the binomial distribution, Bn−1y (j) =

(
n−1
j

)
(1−y)n−1−jyj denotes5

the probability that, from the point of view of the given agent, j other agents
choose Y . We also use the notation pn = 1.

The probability that anyone of the Y -playing agents is selected, condi-
tional on the event that the given agent plays N , is denoted

hN (y) =

n−1∑
j=0

Bn−1y (j)pj , (3)

where we use the notation p0 = 0.
The probability that the given agent is selected if she chooses action a =

Y,N is denoted qa(y); i.e.,

qY (y) =

n−1∑
j=0

Bn−1y (j)
pj+1

j + 1
(4)

and

qN (y) =

n−1∑
j=0

Bn−1y (j)
1− pj
n− j

. (5)

Often we will omit the argument y from hY , hN , qY and qN .
For an illustration of the selection-probability functions in a special case,

consider the purely-random-assignment rule. Here, a computation that ap-
plies standard properties of the binomial distribution to the definitions (2)–(5)
shows that

hY (y) =
1 + y(n− 1)

n
, hN (y) =

y(n− 1)

n
, (6)

qY (y) =
1

n
, qN (y) =

1

n
.

To understand the numerators in the formulas for hY and hN , note that, from
the point of view of a given agent, the expected number of other Y -players is
equal to y(n− 1); by playing Y , the agent adds in herself (1+).

Next we establish several useful algebraic relations between the selection-
probability functions. These relations hold independently of the underlying
mechanism.6 A particularly simple formula is available for expressing qY and
qN in terms of hY and hN . To see this, suppose that all agents play Y with
probability y. Then the probability that the task is assigned to a Y -player can
be expressed in the form yhY +(1−y)hN . Alternatively, the same probability
can be expressed in the form nyqY because every Y -playing agent is selected
with the same probability:

nyqY = yhY + (1− y)hN . (7)

5We use the convention that 00 = 1.
6Note that the Bernstein polynomials y 7→ Bn−1

y (j) (j = 0, 1, . . . , n − 1) form a basis of the
vector space of polynomials of degree at most n − 1. Thus, from each of the four selection-
probability functions, the underlying mechanism (p1, . . . , pn−1) can be recovered, implying that
each of the four functions determines the other three functions.
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Similarly, the probability that an N -player is selected is given by

n(1− y)qN = y(1− hY ) + (1− y)(1− hN ). (8)

Adding up the equations (7) and (8) confirms the ex-ante probability that
any given agent is selected:

yqY + (1− y)qN =
1

n
. (9)

We state one other relation between the selection-probability functions; it
refers to the derivatives of qY and qN . The proof, which relies on standard
properties of Bernstein polynomials, is relegated to the Appendix.

Lemma 1. Consider any mechanism and any 0 < y < 1. Then

q′Y (y) =
hY − hN − qY

y
, (10)

q′N (y) =
hN − hY + qN

1− y
. (11)

To interpret (10), take the point of view of an agent who considers switch-
ing from playing N to playing Y . Here, hY − hN − qY equals the change in
the probability that a Y -player other than herself gets assigned the task. As
long as this change is positive, it holds that q′Y (y) > 0, that is, an increase
of y increases the probability that the agent herself gets assigned the task if
she plays Y ; similarly if the change is negative. An analogous interpretation
applies to (11).

Expected utilities

We assume the following preferences. Suppose the task is performed by an
agent of ability θ. Then every agent obtains the benefit θ. In addition, the
performing agent bears a cost c ≥ 0, where c is commonly known and inde-
pendent of the identity of the agent. Agents are expected-utility maximizers.

Consider a strategy σ and y defined via (1). Towards computing equilib-
ria, it is crucial to evaluate an agent’s expected-utility gain from playing Y
versus playing N , assuming that all other agents use the strategy σ. We will
establish a convenient expression for this utility gain. To this end, we express
the agents’ expected-utility functions in terms of the selection-probability
functions and conditional expected abilities. The conditional expected abil-
ity of an agent who chooses Y is denoted

EY =
1

y

∫
σ(θ)θdF (θ) if y > 0.

In other words, EY is the expected benefit that accrues to every agent if the
task is assigned to a Y -player.

The conditional expected ability of an agent who chooses N is denoted

EN =
1

1− y

∫
(1− σ(θ))θdF (θ) if y < 1.
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That is, EN is the expected benefit that accrues to every agent if the task is
assigned to an N -player.

Using this notation, the agents’ expected-utility functions are

UY (σ, θ) = (hY − qY )EY + qY · (θ − c) + (1− hY )EN , (12)

UN (σ, θ) = (1− hN − qN )EN + qN · (θ − c) + hNEY . (13)

The interpretation of these expressions is straightforward. Consider the ex-
pected utility (12) from playing Y : the first term captures the payoff that
arises from the event that the task is performed by a Y -player other than
the agent herself, which happens with probability hY − qY ; the second term
captures the event that the agent is selected herself, which happens with
probability qY , yielding the utility θ − c; the third term captures the payoff
that arises from the event that the task is performed by an N -player. The
interpretation of the expression (13) for the expected utility from playing N
is analogous.

Combining the expressions (12) and (13) and cancelling terms, the utility
gain from playing Y versus playing N is

UY (σ, θ)− UN (σ, θ) = (qY − qN )(θ − c) (14)

+ (hY − hN − qY )EY + (hN − hY + qN )EN .

The three terms on the right-hand side reflect that an agent’s choice of action
affects three probabilities: to be selected herself (first term), the probability
that a Y -player other than herself is selected (second term), and the proba-
bility that an N -player other than herself is selected (third term).

The purely-random assignment is a natural benchmark for our analysis.
In the purely-random-assignment rule, every strategy is an equilibrium. To
see this formally, note that, from (6), the right-hand side of (14) equals 0
for all σ. Moreover, all equilibria are equivalent: using (12) and the law of
iterated expectations (that is, yEy + (1− y)EN = E[θ]),

Ua(σ, θ) = (1− 1

n
)E[θ] +

1

n
(θ − c) for all σ, all θ, and a = Y,N .

(15)

These purely-random-assignment payoffs in fact obtain not only if the random-
assignment rule is used. These payoffs obtain whenever the mechanism and
equilibrium are such that an agent’s probability of getting selected is inde-
pendent of her action.7

Remark 1. Any mechanism-equilibrium combination (p1, . . . , pn−1, σ) such
that qY (y) = 1/n = qN (y) (where y is given by (1)) is equivalent to a purely-
random assignment.

7The equilibrium assumption in Remark 1 is indispensible. If a (possibly non-equilibrium)
strategy leads to a y with the property qY (y) = 1

n
and qN (y) = 1

n
, it does not follow that hY (y)

and hN (y) are given as in the case of a purely-random assignment. For example, if n = 3,
(p1, p2) = (0, 1), and y = 1/2, then qY (y) = 1

n
= qN (y) and hY (y) = 3/4, whereas we would

obtain hY (y) = 2/3 from using the pure-random-assignment rule.
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Here is a sketch of the proof. The conclusion is straightforward if the
mechanism-equilibrium combination is such that all types prefer Y to N or
vice versa, or the conditional expected quality of the task is the same across
the two actions. Suppose now that some type is indifferent between the
actions N and Y , and the conditional expected quality of the task is not
the same across the two actions. Consider an agent who changes her action
from N to Y . By assumption, this change has no impact on the probability
of getting selected. Thus, the change increases the probability that a Y -
player other than herself is selected by the same amount as it decreases the
probability that an N -player other than herself is selected. Then a type who
is indifferent between the actions can exist only if the change of the agent’s
action does not actually increase (or decrease) the probability that Y -player
other than herself is selected. Thus, any type’s expected utility is as in a
purely-random assignment. The formal proof is relegated to the Appendix.

Threshold equilibria

We now introduce a special class of equilibria, threshold equilibria. Our
analysis will focus on this class. We show in Lemma 2 that this focus is
without loss of generality.

A strategy σ has the threshold form if there exists θ̂ ∈ [θ, θ] such that

σ(θ) = 0 for all θ < θ̂ and σ(θ) = 1 for all θ > θ̂. Ignoring probability-0
events, any strategy in threshold form is characterized by the playing-Y -
probability y = 1− F (θ̂). Whenever we deal with a threshold strategy y, we
will use the notation

EY (y) = E[θ | θ ≥ F−1(1− y)] and EN (y) = E[θ | θ ≤ F−1(1− y)]

for the expected ability of a Y -player and an N -player, respectively; we define
the continuous extensions EY (0) = θ and EN (1) = θ.

Similarly, we will use the notation Ua(y, θ) for the expected payoff of type
θ from taking action a = Y,N if all others use the strategy y. Given any
threshold strategy y,

EY (y) > EN (y). (16)

The strategies y = 0 and y = 1 imply that one action is chosen with proba-
bility 1, so that the purely-random-assignment payoffs obtain. In any equi-
librium y in which both actions are chosen with positive probability (i.e.,

0 < y < 1), the type θ̂ = F−1(1 − y) is indifferent between the two actions,
that is,

∆(y) = 0, where ∆(y) = UY (y, F−1(1− y))− UN (y, F−1(1− y)). (17)

Moreover, using (14) and the equilibrium condition, if 0 < y < 1 then an
agent’s switch from the action N to the action Y cannot reduce the proba-
bility that she gets selected,

qY (y) ≥ qN (y). (18)

Lemma 2 shows that focussing on threshold equilibria is without loss of gen-
erality, and the properties (17) and (18) can be maintained even if y = 0 or
y = 1.

9



Given the property (18), from now on we interpret the action Y as “vol-
unteering” and the action N as “non-volunteering”.

Lemma 2. For any mechanism-equilibrium combination, there exists an
equivalent mechanism-threshold-equilibrium combination, (p1, . . . , pn−1, y), such
that the properties (17) and (18) hold.

The intuition is that we can construct an equivalent mechanism-equilibrium
combination by switching the labels of the actions Y and N . The formal proof
is relegated to the Appendix.

For later use, we establish a simple property of those threshold equilibria
in which volunteering actually increases the probability of getting selected:
in such an equilibrium it cannot be true that all types volunteer.8

Remark 2. Any threshold equilibrium y with qY (y) > qN (y) satisfies y < 1.

The intuition behind this result is simple: if an agent expects that with
probability y = 1 somebody else will volunteer, then by volunteering herself
she will reduce the expected ability of the selected agent if she herself is
endowed with the lowest ability θ or an ability close to that. The formal
proof is relegated to the Appendix.

Because the inequality (18) and its strict version will occur frequently in
the subsequent analysis, it is useful to note that these inequalities can be
expressed in an alternative form if the strategy is such that some types do
not volunteer. The proof is straightforward from (9).

Remark 3. Consider any threshold strategy y < 1. Then the inequality (18)
holds if and only if qY (y) ≥ 1/n. The inequality qY (y) > qN (y) holds if and
only if qY (y) > 1/n.

The planner’s (binary-second-best) problem

We consider the utilitarian welfare objective. Given our focus on symmetric
equilibria, this objective is equivalent to maximizing any agent’s ex-ante ex-
pected utility. Because the task cannot be avoided, each agent pays the cost
c/n in any mechanism-equilibrium combination. Thus, the planner’s objec-
tive boils down to assigning the task such that the expected ability of the
selected agent is maximized.

Without loss of generality, we restrict the allowed mechanism-equilibrium
combinations in line with the result of Lemma 2. Given any strategy y, a
volunteer is selected with probability nyqY and a non-volunteer is selected
with probability n(1− y)qN . Thus, the expected ability of the selected agent
is

E = nyqY EY + n(1− y)qNEN . (19)

8The assumption qY (y) > qN (y) in Remark 2 cannot be replaced by the weaker condition
(18); this condition would leave open the possibility of a purely-random-assignment rule in which
y = 1 is in fact an equilibrium.
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Hence, the planner’s (binary-second-best) problem is to

max
p1...,pn−1,y

E

s.t. 0 ≤ pj ≤ 1 (j = 1, . . . , n− 1),

0 ≤ y ≤ 1,

∆(y) = 0,

qY (y)− qN (y) ≥ 0.

Using (9), we can alternatively write the objective purely in terms of qY , as

E = nyqY (EY − EN ) + EN . (20)

We will solve this problem in Section 3.2.

The binary-first-best problem

In this section, we solve, as a benchmark, the problem of a planner who is
not restricted by equilibrium constraints. Secondly, we show how the cost of
performing the task creates a conflict between the solution to the first-best
problem and the equilibrium condition. Finally, we characterize the large-
population limit of the binary-first-best solution.

The planner’s binary-first-best problem is as follows:

max
p1...,pn−1,y

E

s.t. 0 ≤ pj ≤ 1 (j = 1, . . . , n− 1),

0 ≤ y ≤ 1.

The interpretation is that, by setting any y, the planner has the power to make
the types in [F−1(1− y), θ] play Y and to make the types in [θ, F−1(1− y)]
play N .

The binary-first-best problem maintains the restriction to binary mecha-
nisms and threshold strategies. The standard first best, in contrast, is defined
without these restrictions. The solution to the standard first-best problem
is to always assign the task to the agent with the highest ability among all
agents. Given that a continuum of types exist, this solution can obviously
not be reached exactly with a binary mechanism.

The mechanism

(p1 . . . , pn−1) = (1, . . . , 1)

is called the any-volunteer rule.

Proposition 1. The solution to the binary-first-best problem involves using
the any-volunteer rule. Denoting by yb∗ the volunteering rate in a solution,
we have 0 < yb∗ < 1 and dE/dy|y=yb∗ = 0.

Proof. Given any 0 < y < 1, (16) together with (20) shows that the optimal
mechanism maximizes qY (y). Thus, from (4) the any-volunteer rule is the
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unique optimal mechanism if 0 < y < 1. Moreover, the any-volunteer rule is
an optimal mechanism if y = 0 or y = 1. Consequently, a binary-first-best
optimal y = yb∗ is found by solving the problem

max
y
E s.t. 0 ≤ y ≤ 1,

where E is evaluated specifically for the case of the any-volunteer rule (p1 . . . ,
pn−1) = (1, . . . , 1).

In the case of the any-volunteer rule, (2) and (3) imply that, for all y,

hY (y) = 1 and hN (y) = 1− (1− y)n−1. (21)

Thus, (7) implies that

qY (y) =
1

ny
(1− (1− y)n) if y > 0. (22)

Also, (5) implies that

qN (y) =
1

n
Bn−1y (0) =

1

n
(1− y)n−1. (23)

Thus, using (19), in the case of the any-volunteer mechanism,

E = (1− (1− y)n)EY + (1− y)nEN .

The first-order effect of increasing y is

dE
dy

= n(1− y)n−1 (EY − EN ) + (1− (1− y)n)
dEY
dy

+ (1− y)n
dEN
dy

,

where

dEY
dy

=
d

dy

(
1

y

∫ θ

F−1(1−y)
θdF (θ)

)
=

F−1(1− y)− EY
y

(24)

and

dEN
dy

=
d

dy

(
1

1− y

∫ F−1(1−y)

θ

θdF (θ)

)
=

EN − F−1(1− y)

1− y
. (25)

Clearly, any binary-first-best yb∗ satisfies 0 < yb∗ < 1 because otherwise the
purely-random assignment would obtain. To confirm, one can verify that
dE/dy|y=1 = θ − E[θ] < 0 and dE/dy|y=0 = (n − 1)(θ − E[θ]) > 0. This
completes the proof of Proposition 1.

In the proof above we have evaluated the welfare effect of marginally
increasing the volunteering rate y when the any-volunteer rule is used. If a
general binary-action rule is used, there is a surprisingly simple and useful
formula that connects this welfare effect to the marginal type’s utility gain
from playing Y versus playing N . This formula, stated in Lemma 3, captures
how the conflict between the planner’s welfare goal and an agent’s equilibrium
condition depends on the cost of performing the task.

12



Lemma 3. Consider any mechanism and any (not necessarily equilibrium)
threshold strategy y. Then

dE
dy

= n∆(y) + n(qY (y)− qN (y))c.

Proof. Applying the product differentiation rule to (19), we find

1

n

dE
dy

= qY EY − qNEN + y
dqY
dy

EY + (1− y)
dqN
dy

EN

+ yqY
dEY
dy

+ (1− y)qN
dEN
dy

. (26)

Plugging (24), (25), (10), and (11) into (26), we get

1

n

dE
dy

= (EY − EN )(hY − hN ) + qNEN − qY EY + F−1(1− y)(qY − qN ).

Using (14) and the definition of ∆(y) in (17), the claimed formula follows.

An immediate implication of Lemma 3 is that, if the cost of performing is
positive (c > 0) and an agent’s task-assignment probability is not independent
of her action (i.e., qY (y) > qN (y)), then at any equilibrium volunteering rate
y (i.e., ∆(y) = 0), the welfare is strictly increasing in the volunteering rate.
This free-rider problem vanishes if the volunteering cost is equal to 0.

Corollary 1. Assume c = 0. Then the any-volunteer rule, together with any
binary-first-best volunteering probability, solves the planner’s binary-second-
best problem.

Proof. If c = 0, then any binary-first-best volunteering probability y = yb∗

is an equilibrium in the any-volunteer rule. This is because dE
dy |y=yb∗ = 0 by

binary-first-best optimality, so that Lemma 3 implies ∆(yb∗) = 0. Moreover,
as shown above, any solution to the binary-first-best problem involves the
any-volunteer rule because 0 < yb∗ < 1.

The binary-first-best expected ability of the selected agent is

Eb∗ = nyb∗qy(yb∗)(EY (yb∗)− EN (yb∗)) + EN (yb∗).

Remark 4 states that, in the binary first-best in a large population, the indi-
vidual volunteering probability tends to 0, the probability that at least one
agent volunteers tends to 1, and the expected ability of the selected agent
tends to the highest possible ability. This follows from the fact that in a large
population, an agent with an ability close to the highest possible ability exists
with a probability close to 1. A detailed proof can be found in the Appendix.

Remark 4. As n→∞, yb∗ → 0, nyb∗qY (yb∗)→ 1, and Eb∗ → θ.

An immediate implication of Remark 4 is that the standard first-best is
approximated by the binary first best if the population is large.

13



Threshold rules

A mechanism (p1, . . . , pn−1) is called a threshold rule if there exists a number
i∗ (1 ≤ i∗ ≤ n − 1) such that pj = 1 for all j > i∗ and pj = 0 for all j < i∗.
Our main results will concern threshold rules.

The any-volunteer rule is a threshold rule; set i∗ = 1 and pi∗ = 1. More
generally, a threshold rule captures the idea of what we call the multiple-
volunteers principle. Each agent anticipates that playing Y puts her in a
lottery box together with the other Y -playing agents if altogether more than
i∗ players play Y , and releases her from the task if altogether fewer than i∗

players play Y . If the threshold number i∗ is reached exactly, the decision
whether or not she will be in the lottery box may itself be randomized (via
the probability pi∗). Stipulations are analogous if the agent plays N . If the
number of other agents who play Y equals i∗ − 1 or i∗, then the agent can
be pivotal, that is, her own action choice can have an impact on whether the
task is assigned via a lottery among the Y -players or via a lottery among the
N -players.

From a given agent’s point of view, the pivotality of her action choice may
be measured in terms of the difference between the selection probabilities
defined in (2) and (3). When applied to a threshold rule, this difference
simplifies to

hY (y)− hN (y) = Bn−1y (i∗)(1− pi∗) +Bn−1y (i∗ − 1)pi∗ . (27)

This difference will play an important in our analysis. In particular, a very
useful property is its quasiconcavity: as the volunteering rate increases, the
pivotality first increases and then decreases. More precisely, the following
holds.

Lemma 4. If n = 2, then the threshold rule with i∗ = 1 and pi
∗

= 1/2
satisfies hY (y)− hN (y) = 1/2 for all y ∈ [0, 1].

For any other threshold rule if n = 2, and for any threshold rule if n ≥ 3,

∃y∗m ∈ [0, 1] ∀y ∈ (0, 1) : (28)

(hY − hN )′(y) > 0 if y < y∗m, and (hY − hN )′(y) < 0 if y > y∗m.

Note that formula (28) is immediate from standard properties of binomial
probabilities if pi∗ = 1 or pi∗ = 0. The complete proof, in which we also
consider the “mixed” cases where 0 < pi∗ < 1, and the special case n = 2, is
relegated to the Appendix.

For later reference, we restate the other two selection-probability functions
as specialized for a threshold rule:

qY (y) =

n−1∑
j=i∗

Bn−1y (j)
1

j + 1
+Bn−1y (i∗ − 1)pi∗

1

i∗
(29)

and

qN (y) =

i∗−1∑
j=0

Bn−1y (j)
1

n− j
+Bn−1y (i∗)(1− pi∗)

1

n− i∗
. (30)
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3 Results

3.1 Improvement over the purely-random assignment

In this section, we define non-extreme threshold rules and show that any such
rule always has an equilibrium such that every type of agent is strictly better
off than in a purely-random assignment (Proposition 3). The any-volunteer
rule, in general, does not have this strict-improvement property (Proposition
4).

We begin by showing that any binary mechanism provides a weak improve-
ment compared to a purely-random assignment, and formulate conditions for
a strict improvement (Proposition 2). The weak-improvement property jus-
tifies our formulation of the designer’s problem without a participation con-
straint: if upon rejection of the planner’s rule a purely-random assignment
obtains, all types find it weakly optimal to participate in the rule.

Proposition 2. Consider any mechanism-threshold-equilibrium combination
(p1 . . . , pn−1, y). Then all types are at least as well off as in the purely-random
assignment. If 0 < y < 1 and qY (y) > 1/n, then all types are strictly better
off than in the purely-random assignment.

The proof of the “at-least-as-well” part follows from Remark 1. The proof
of the “strictly” part of Proposition 2 is as follows. Consider an equilibrium
y and consider any agent with a given type. Suppose that this type of the
agent deviates from the equilibrium by volunteering with probability y and
not volunteering with probability 1−y. Because the agent mimics the average
behavior of any other agent, she will be selected with probability 1/n; in
this event, her payoff is the same as in a purely-random assignment. In the
complementing event that the agent is not selected, her payoff is the same
as her ex-ante expected payoff when she follows the equilibrium strategy,
conditioning on the same event. This payoff equals the equilibrium expected
ability of the selected agent, which is higher than the expected ability in
a random assignment if qY > qN . The formal proof can be found in the
Appendix.

Proposition 2 does not answer the question whether or not a strict im-
provement over the purely-random assignment is possible at all. Proposition
3 gives an affirmative answer for all group sizes n > 2.

A threshold rule is called non-extreme if the assignment probability to
a volunteer is below pure randomness if there is a single volunteer (i.e.,
p1 < 1/n), and the assignment probability to a non-volunteer is below pure
randomness if there is a single non-volunteer (i.e., pn−1 > 1−1/n). This con-
dition is satisfied for all threshold rules with 2 ≤ i∗ ≤ n− 2. A non-extreme
threshold rule exists if and only if n > 2.

Proposition 3 shows that any non-extreme threshold rule has an equilib-
rium that satisfies the strict-improvement conditions stated in Proposition 2
and, thus, is not equivalent to a purely-random assignment.9 This conclusion

9Among the extreme threshold rules are the any-volunteer rule (where p1 = 1) and the all-
volunteer rule (where pn−1 = 0). These rules lead to fundamentally different incentives from the
non-extreme threshold rules. We discuss the any-volunteer rule at the end of this section. In
the all-volunteer rule, a threshold equilibrium with a positive level of volunteering does not exist
because qY (y) < 1/n for all y < 1.
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∆(y)
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qY (y)

hY (y)− hN (y)

y∗m

Figure 1: An example of a task assignment problem. There are n = 5 agents. The
ability of each agent is uniformly distributed on [0, 1]. The performance cost is c = 1. The
diagram shows several functions of the volunteering rate y, for the case of the threshold
rule that requires two volunteers (i.e., i∗ = 2 and pi∗ = 1). The function hY (y) − hN (y)
captures the impact of an agent’s switch from non-volunteering to volunteering on the
probability (computed from the switching agent’s point of view) that the task gets assigned
to a volunteer. The function qY (y) captures the probability an agent assigns to the event
of being selected if she volunteers. The function ∆(y) captures an agent’s payoff gain
from volunteering. The volunteering rate ŷ is an equilibrium that satisfies the strict-
improvement conditions stated in Proposition 2.

holds no matter how large the cost c is.

Proposition 3. For any non-extreme threshold rule, the set {y ∈ [0, 1] | ∆(y) =
0} is non-empty and its maximal element, ŷ, is an equilibrium with 0 < ŷ < 1
and qY (ŷ) > 1/n.

The main step towards proving Proposition 3 is Lemma 5. This result
concerns the impact of an agent’s switch from non-volunteering to volunteer-
ing on the probability hY − hN − qY that a volunteer other than herself gets
assigned the task. Suppose this impact is strictly positive if the volunteering
rate is small, is strictly negative if the volunteering rate is large, and the
quasiconcavity condition (28) is satisfied. The Lemma shows that there is
only one volunteering rate such that the impact equals 0, that is, the impact
function changes its sign only once.

Lemma 5. Consider any binary mechanism such that (28) holds. Assume
that

hY (y)− hN (y)− qY (y) > 0 for all y > 0 sufficiently close to 0, (31)

and hY (y)− hN (y)− qY (y) < 0 for all y < 1 sufficiently close to 1. (32)

Then there exists a unique ym1 ∈ (0, 1) such that

hY (ym1)− hN (ym1)− qY (ym1) = 0.

The proof of Lemma 5 can be found in the appendix. Here is a sketch.
We have to show that the functions qY and hY − hN intersect only once (cf.

16



Figure 1). By assumption (32), qY lies above hY − hN at y = 1. Because qY
lies below hY − hN at small values of y, and lies above at large values, there
is a maximal intersection point ym1. What we have to show is that another,
earlier, intersection point cannot exist. We prove this in two steps. First,
there exists no interval bounded by intersection points y1 and y1 such that
at the points in the interior of the interval qY lies above. Second, qY actually
lies below hY − hN at all points smaller than ym1. The crucial tool for both
steps is (10).

As for the first step, by construction of the supposed interval, hY − hN is
at most as steep as qY at the left boundary point y1, and is at least as steep

as qY at the right boundary point y1. Because both points are intersection
points, the function qY has a horizontal tangent at these points by (10).
Therefore, hY − hN must have a non-positive derivative at y1 and a non-

negative derivative at y1, contradicting the quasilinearity assumption (28).
Thus, the supposed interval cannot exist, showing that hY − hN is at least
as large as qY at all points to the left of ym1.

As for the second step, suppose that there exists an intersection point
smaller than ym1. At this point, by the first step, the functions hY −hN and
qY must have the same slope, which by (10) equals 0. Now using the quasilin-
earity assumption (28), this intersection point must be the point y∗m. Again
using (10), the function qY is strictly increasing on the interval [y∗m, ym1],
contradicting the fact that on this same interval the function hY − hN is
strictly decreasing by the quasilinearity assumption (28). This completes the
proof of Lemma 5.

The proof of Proposition 3 begins by showing that every non-extreme
threshold rule satisfies the assumptions of Lemma 5. By Lemma 4, (28)
holds. To get the intuition for why (31) is satisfied, consider a threshold
rule with pi∗ = 1. Concerning both functions, the pivotality hY (y) − hN (y)
and the individual assignment probability qY , the relevant event is that at
least i∗−1 other agents choose to volunteer. Conditioning on this event, and
considering a small volunteering rate y, it is then extremely likely that the
threshold i∗ is reached exactly, so that the agent is almost certainly pivotal,
but she herself gets assigned the task only with probability 1/i∗. Thus, for
all i∗ ≥ 2 the function hY (y) − hN (y) lies above the function qY if y is
small; in the case i∗ = 1 this argument breaks down and the non-extremeness
assumption becomes relevant.

To see why (32) is satisfied, consider any agent who believes that ev-
erybody else volunteers (y = 1). Then switching her action from non-
volunteering to volunteering changes the probability that a volunteer is se-
lected from pn−1 to 1. Thus, hY (1)−hN (1) = 1−pn−1, whereas the individual
assignment probability is qY (1) = 1/n, independently of the underlying rule.
Hence, (32) is immediate from the non-extremeness assumption.

Given that the conditions of Lemma 5 are satisfied, the next observation
is that qY (ym1) > 1/n; this follows because qY (1) = 1/n and qY is strictly
decreasing on the interval [ym1, 1] by (10). Lowering y further below ym1,
we reach a point y̌ < ym1 where qY (y̌) = 1/n (because qY (0) < 1/n by non-
extremeness). Note that qY lies strictly above 1/n on the open interval (y̌, 1).
Using Remark 3, qN (y̌) = 1/n. That is, at the point y̌, the agent’s action has
no impact on the probability that she gets assigned the task. On the other
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hand, Lemma 5 implies that hY − hN lies above qY at the point y̌. That
is, switching from non-volunteering to volunteering increases the probability
that the task gets assigned to a volunteer other than herself. Thus, the payoff
gain from switching is strictly positive at the point y̌. Finally, the payoff
gain is clearly strictly negative at the point where everybody else volunteers
(y = 1). Thus, the maximal point ŷ where the payoff gain equals 0, lies
strictly between y̌ and 1, implying that the strict-improvement conditions
stated in Proposition 2 are satisfied at this equilibrium. The formal proof of
Proposition 3 is relegated to the Appendix.

The following result is immediate from Proposition 2 and Proposition 3.

Corollary 2. Suppose that there are n ≥ 3 agents. Then the purely-random
assignment does not solve the binary second-best problem.

In the case n = 2, it is straightforward to verify that qY (y) − qN (y) =
p1 − 1/2 for all y ∈ [0, 1] and any mechanism p1 ∈ [0, 1], and (14) simplifies
to UY −UN = (p1− 1/2)(θ− c−E[θ]). Thus, a threshold equilibrium y with
0 < y < 1 and qY (y)− qN (y) > 0 (or, equivalently, qY (y) > 1/2) exists if and
only if p1 > 1/2 and c < θ−E[θ]. Thus, in the case n = 2 the purely-random
assignment is optimal if and only if c ≥ θ − E[θ].

We end this section with a discussion of the any-volunteer rule. We show
that there always exists an equilibrium in threshold form. If the cost is low,
then a strict improvement over the purely-random assignment is achieved in
equilibrium; if the cost is high, then the threshold will be such that nobody
volunteers and the purely-random assignment obtains. Thus, the incentives
in the any-volunteer rule differ fundamentally from the incentives in a non-
extreme threshold rule: a non-extreme threshold rule always allows for an
improvement over the purely-random assignment, while the any-volunteer
rule does not.

Proposition 4. If c < θ − E[θ], then the any-volunteer rule has a threshold
equilibrium y such that 0 < y < 1 and qY (y) > qN (y).

If c ≥ θ − E[θ], then the unique equilibrium of the any-volunteer rule is
y = 0, so that the purely-random allocation obtains. If c < θ−E[θ], then any
equilibrium y satisfies 0 < y < 1.

The reason the any-volunteer rule can lead to the breakdown of volunteer-
ing can be understood if we consider an agent of highest ability who believes
that nobody else will volunteer. Switching her action from non-volunteering
to volunteering raises the probability that she herself gets assigned the task
by 1 − 1/n. At the same time, the switch reduces, by the same amount,
the probability that a non-volunteer other than herself is selected. Thus, the
agent faces an equal-probability tradeoff between the payoff from volunteer-
ing herself, θ− c, and the payoff from letting somebody else do the job, E[θ].
Thus, she will not volunteer if the cost is high. This argument shows that in
case c ≥ θ − E[θ] there exists no equilibrium y 6= 0 in the vicinity of 0. To
provide a complete proof of Proposition 4, we must also exclude equilibria
y arbitrarily far away from 0. All the remaining steps can be found in the
Appendix.
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3.2 Optimality of a threshold rule

In this section, we show that the solution to the planner’s problem always
involves a threshold rule (Proposition 5). Towards proving this, it is useful
to know that the equilibrium condition can be relaxed so that it becomes an
inequality.

Lemma 6. Any solution to the binary second-best problem also solves the
relaxed problem in which the constraint ∆(y) = 0 is replaced by the inequality
∆(y) ≥ 0.

Proof. Let (p1, . . . , pn−1, y) be a solution to the relaxed problem. Suppose
first that qY (y) = qN (y). Then qY (y) = qN (y) = 1/n by (9), implying
E = E[θ] by the law of iterated expectations. Thus, the value at the optimum
of the relaxed problem equals the value at the optimum of the planner’s
problem. This implies the desired conclusion.

Now consider cases in which qY (y) > qN (y). Suppose that y = 1. Apply-
ing the equation (45) at θ = θ = F−1(1− y),

∆(y) = UY (y, F−1(1−y))−UN (y, F−1(1−y)) = (
1

n
−1+pn−1) (θ − c− E[θ])︸ ︷︷ ︸

<0

.

The right-hand side is < 0 because the constraint qY > qN implies 1
n − 1 +

pn−1 > 0, yielding a contradiction to the relaxed inequality constraint.
We conclude that y < 1. Suppose that ∆(y) > 0. Applying Lemma

3, dE/dy > 0. This is a contradiction to optimality because none of the
constraints on y is binding.

Proposition 5. Any solution to the planner’s problem involves a threshold
rule.

Proof of Proposition 5. Consider any solution (p1 . . . , pn−1, y).
If n = 2, then we have nothing to prove because any binary mechanism is

a threshold rule.
Assume that n ≥ 3. Corollary 2 implies that 0 < y < 1 because oth-

erwise (p1 . . . , pn−1, y) would be equivalent to a purely-random assignment.
Similarly, qY (y) > qN (y) because otherwise qY (y) = 1/n = qN (y) from (9),
implying purely-random-assigment payoffs by Remark 1.

By Lemma 6, (p1 . . . , pn−1, y) solves the relaxed problem.
Fixing y, the remaining relaxed maximization problem over (p1, . . . , pn−1)

is a linear problem. Hence the Lagrange conditions are necessary and suf-
ficient, without any qualification. Let λ ≥ 0 denote the Lagrange multi-
plier for the constraint UY (y, F−1(1 − y)) − UN (y, F−1(1 − y)) ≥ 0. Due to
qY (y) > qN (y), the Lagrange multiplier for the constraint qY (y)− qN (y) ≥ 0
equals 0.
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Let θ̂ = F−1(1− y). For all j = 1, . . . , n− 1, consider

ŝj =

(
n

j

)
yj(1− y)n−j (EY − EN )

+

(
n− 1

j − 1

)
yj−1(1− y)n−j

(
λ

(
j − 1

j
EY +

1

j
(θ̂ − c)− EN

))
−
(
n− 1

j

)
yj(1− y)n−1−j

(
λ

(
EY −

n− j − 1

n− j
EN −

1

n− j
(θ̂ − c)

))
.

The Lagrange conditions require:

if ŝj > 0, then pj = 1,
if ŝj < 0, then pj = 0.

(33)

Moreover,

if UY (y, θ̂) > UN (y, θ̂), then λ = 0. (34)

The sign of ŝj is preserved if instead of ŝj we consider the variable

sj =
ŝj(

n
j

)
yj−1(1− y)n−j−1

for all j.

Thus,

sj = y(1− y)(EY − EN ) + λ
j

n
(1− y)

(
j − 1

j
EY +

1

j
(θ̂ − c)− EN

)
−λn− j

n
y

(
EY −

n− j − 1

n− j
EN −

1

n− j
(θ̂ − c)

)
= y(1− y)(EY − EN ) + λ

1

n
(1− y)

(
(j − 1)EY + (θ̂ − c)− jEN

)
−λ 1

n
y
(

(n− j)EY − (n− j − 1)EN − (θ̂ − c)
)
. (35)

Consider the case that λ > 0.

sj = λ
1

n
(EY − EN )︸ ︷︷ ︸

>0

j + [terms independent of j].

If sj < 0 for all j, then (33) implies that (p1 . . . , pn−1) = (0, . . . , 0), a thresh-
old rule.

Otherwise let i∗ be the smallest integer such that sj ≥ 0. Then (33)
implies that (p1 . . . , pn−1) is an i∗-threshold rule.

It remains to consider the case λ = 0. Then (35) implies

sj = y(1− y)(EY − EN ).

That is, sj is independent of j and sj > 0, implying pj = 1 for all j, that is,
the solution entails the any-volunteer rule.

The remaining question is which threshold mechanism and threshold equi-
librium solves the planner’s problem. We have already seen (Corollary 1) that
the any-volunteer rule is uniquely optimal at c = 0. We will show below that
threshold rules with arbitrarily large i∗ can be optimal as the group size n
becomes large.
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3.3 Volunteering in a large population

In this section, we characterize equilibrium volunteering levels of threshold
rules when the population is large (Proposition 6) and demonstrate how the
first best can be approximated in a large population (Proposition 7). To
simplify the notation, we only consider “pure” threshold rules, that is, we
assume that pi∗ = 1, where i∗ ≥ 1 is the threshold.

Proposition 6 considers sequences of equilibria that are indexed by the
population size. We show that any pure i∗-threshold rule with a sufficiently
large threshold i∗ has a sequence of equilibria along which the expected num-
ber of volunteers remains bounded away from 0 as the population becomes
arbitrarily large; we derive a formula for the large-population limit of the
expected number of volunteers. Furthermore, we obtain a formula for the
limit probability that the task is assigned to a volunteer, which in turn yields
a formula for the limit expected-ability of the selected agent.

Proposition 6 considers thresholds i∗ so high that the inequality c/i∗ <
θ−E[θ] is satisfied.10 This inequality is crucial towards proving the existence
of equilibria with volunteering rates that stay bounded away from 0 as the
population grows large. To understand why, assume a large population and
consider an agent who believes that the marginally volunteering type among
the other agents is close to θ; the expected ability among the other volunteers
is then close to θ as well. Conditional on the event that the required number
of other volunteers i∗ − 1 is not reached, the agent is essentially indifferent
between volunteering or not because the population is large and most likely
she will not be selected. Now consider the event that the required number
of other volunteers i∗ − 1 is reached. Then, for a type close to θ, the benefit
from volunteering is approximately equal to the quality change from the job
being done at average quality (E[θ]) to the job being done at top quality
(θ). On the other hand, if the number of other volunteers is exactly equal to
i∗− 1, then the cost of volunteering is c/i∗ because the agent because will be
selected with probability 1/i∗.

A central role is played by the Poisson distribution. For any z > 0, let
Pois(z)(i) = zie−z/i! denote the probability of the realization i = 0, 1, . . .
according to the Poisson distribution with expectation z. The corresponding
hazard-rate function,11

hPois(z)(i) =
Pois(z)(i)∑∞
j=i Pois(z)(j)

=
1

i!
∑∞
j=i

zj−i

j!

, (36)

will be used in the characterization of equilibrium volunteering.

10Bergstrom and Leo (2015) obtain formulas similar to those in Proposition 6 in the case i∗ = 1,
in a setting without private information. They define the coordinated volunteer’s dilemma as
the game in which, similar to the any-volunteer mechanism, the task is performed by a randomly
selected volunteer if and only if at least one volunteer comes forward; if nobody volunteers, then
the task is not performed at all. The task has a commonly known benefit b to each agent; thus,
equilibria are in mixed strategies. Denoting by r∗ the large-population-limit probability that at
least one individual volunteers in equilibrium, formulas analogous to those in Proposition 6 hold
with i∗ = 1 and θ − E[θ] replaced by b.

11The denominator in this definition can also be written by using the upper incomplete gamma
function, which is given in terms of an integral instead of an infinite sum. The infinite sum is the
more useful representation for our analysis.
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Proposition 6. Consider the threshold rule with parameter i∗ ≥ 1 and
pi∗ = 1. Assume that c/i∗ < θ − E[θ]. Given any sequence of threshold
equilibria (ŷn) defined for all population sizes n ≥ i∗, let zn = nŷn denote the
corresponding expected number of volunteers.

There exists a sequence of equilibria such that lim infn zn > 0.
For any such sequence,

zn → z∗, where hPois(z∗)(i∗) =
c/i∗

θ − E[θ]
.

Let (rn) denote the sequence of equilibrium probabilities that the task is as-
signed to a volunteer, that is, rn = nŷnqY (ŷn) for all n ≥ i∗. Then

rn → r∗ ∈ (0, 1), where r∗ =

∞∑
j=i∗

Pois(z∗)(j).

The sequence of equilibrium levels of the expected ability of the selected agent
converges to r∗θ + (1− r∗)E[θ].

The intuition behind Proposition 6 is as follows (for proof details see the
Appendix). First, recall that the Poisson distribution is the limit of binomial
distributions as the number of draws grows large and the expected number of
successes stabilizes. For large n, the number of volunteers therefore approx-
imately follows a Poisson distribution. The intuition behind the formula for
z∗ stated in Proposition 6 is that for the marginally volunteering type (≈ θ̄ in
a large population), the benefit of volunteering must be equal to the cost of
volunteering. The benefit converges to the limit probability of being pivotal,

e−z
∗ (z∗)i

∗−1

(i∗ − 1)!
,

times the induced change in the quality of the job done, which converges to
θ − E[θ] for the marginal type. The cost of volunteering equals c times the
probability of being selected, assuming that other agents use the equilibrium
strategy. With a Poisson distributed number of volunteers with mean z∗, the
expected cost of volunteering is

ce−z
∗
∞∑

j=i∗−1

(z∗)j

j!(j + 1)
.

Setting this equal to the above formula for the benefit of volunteering yields
the formula for z∗ that is stated in the proposition. The formula for r∗ is
straightforward from the fact that the binomial distribution converges to the
Poisson distribution.

We remark that, because the function z 7→ hPois(z)(i) is strictly decreasing,
the expected number of volunteers, z∗, is strictly decreasing in the ratio
c/(θ − E[θ]). Moreover, because the function z 7→ hPois(z)(i) approaches the
value 1 as z → 0, z∗ is close to 0 if c/(θ − E[θ]) is close to i∗.

The following result shows that the first-best optimal assignment can be
approximated arbitrarily closely via an i∗-threshold rule if i∗ is chosen suffi-
ciently large and the population is sufficiently large. This result is important
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because it shows that binary mechanisms, although being very simple with
just two possible actions for each agent, are sufficient to approximate the
first best in a large population. The reason a binary mechanism may be good
enough is that the information to be extracted from the agents is binary
as well: each agent is essentially asked whether or not her type is close to
the highest feasible type. The nonobvious feature of the i∗-threshold rule
with large i∗ is that in equilibrium it becomes almost certain that at least i∗

volunteers will come forward if the population is sufficiently large.

Proposition 7. Consider r∗ as defined in Proposition 6. Then limi∗→∞ r∗ =
1.

Because the proof is relatively short and is best understood in algebraic
terms, we present it here.

Proof of Proposition 7. From Proposition 6,

hPois(z∗)(i∗) =
c/i∗

θ − E[θ]
.

Using the shortcut κ = c/(θ − E[θ]), the above equality can also be written
as

i∗Pois(z∗)(i∗) = κ

∞∑
j=i∗

Pois(z∗)(j)

or, using the definitions of Pois(z∗)(i∗) and of r∗,

i∗
e−z

∗
(z∗)i

∗

(i∗)!
= κr∗. (37)

We will use the following (Chernoff) bounds for tail probabilities as applied
to a Poisson random variable with mean z:

∞∑
j=i

Pois(z)(j) ≤ e−z(ez)i

ii
for all i ≥ z, (38)

i∑
j=0

Pois(z)(j) ≤ e−z(ez)i

ii
for all i ≤ z. (39)

To prove (38), let X denote a Poisson distributed random variable with mean
z. Then

E[

(
i

z

)X
] =

∞∑
k=0

(
i

z

)k
zke−z

k!
=

∞∑
k=0

ik

k!
e−z = ei−z.

Thus, (38) follows from the Markov inequality:

E[X ≥ i] = Pr[

(
i

z

)X
≥
(
i

z

)i
] ≤

E[
(
i
z

)X
](

i
z

)i = ei−z
(z
i

)i
.

The proof of (39) is analogous.
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We begin by showing that

z∗ ≥ i∗ for all sufficiently large i∗. (40)

Suppose that z∗ < i∗. Using (38) and the definition of r∗,

r∗ ≤ e−z
∗
(ez∗)i

∗

i∗i
∗ .

Using (37), we can substitute r∗ and obtain

i∗
e−z

∗
(z∗)i

∗

(i∗)!
≤ κ

e−z
∗
(ez∗)i

∗

i∗i
∗ .

After cancelling terms,

i∗i
∗+1

(i∗)!ei∗
≤ κ.

By Stirling’s formula, the left-hand side tends to infinity as i∗ →∞, yielding
a contradiction. This shows (40).

In particular,
√
i∗ − 1/z∗ → 0 as i∗ →∞. Because the right-hand side of

(37) is bounded by κ, it also follows that

e−z
∗
(z∗)i

∗−1√i∗ − 1

(i∗ − 1)!
→ 0.

By Stirling’s formula,

ei
∗−1−z∗(z∗)i

∗−1

(i∗ − 1)(i∗−1)
→ 0.

Thus, using (39) with i = i∗ − 1,

1− r∗ ≤ ei
∗−1−z∗(z∗)i

∗−1

(i∗ − 1)(i∗−1)
→ 0,

implying limi∗→∞ r∗ = 1.

Conclusion

If a task is to be assigned among a group of agents with heterogenous abilities,
the multiple-volunteers principle turns out to be a powerful tool for improving
welfare. Many possible extensions and variations of the model come to mind,
including heterogeneous costs, other preferences that may include altruism
or behavioral elements like regret aversion, tasks that can be avoided, a task
that is pleasant instead of being costly, or more complex mechanisms (e.g.,
sequential mechanisms). Moreover, volunteering for a lottery may be a way
to signal to the public that one’s own ability type is high. These extensions
are left for future research.
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4 Appendix

Proof of Lemma 1. Using the definition (4),

qY (y) =

n−1∑
j=0

(n− 1)!yj(1− y)n−(j+1)

(j + 1)!(n− (j + 1))!
pj+1

=
1

ny

n−1∑
j=0

Bny (j + 1)pj+1. (41)

Applying the quotient rule,

q′Y (y) =

∑n−1
j=0

(
d
dyB

n
y (j + 1)y −Bny (j + 1)

)
pj+1

ny2
.

Thus, using the following standard identity about the derivative of a Bernstein
polynomial,

d

dy
Bny (j) = n

(
Bn−1y (j − 1)−Bn−1y (j)

)
, (42)

and using again (41), we obtain

q′Y (y) =
n
∑n−1
j=0

(
Bn−1y (j)−Bn−1y (j + 1)

)
pj+1y − nyqY

ny2
.

Now (10) follows from the definitions (2) and (3). The proof of (11) is anal-
ogous.

Proof of Remark 1. Suppose first that UY (σ, θ) − UN (σ, θ) > 0 for all θ ∈
[θ, θ]. Then the equilibrium condition implies that all agents always play
Y , yielding a purely-random assignment, as was to be shown. The same
conclusion obtains if UY (σ, θ)− UN (σ, θ) < 0 for all θ ∈ [θ, θ].

The remaining possibility is that UY (σ, θ)−UN (σ, θ) changes its sign, that

is, there exists θ̂ ∈ [θ, θ] such that UY (σ, θ̂) − UN (σ, θ̂) = 0. Now using (14)

with θ = θ̂ and recalling that qY = qN = 1/n, it follows that

0 = (hY − hN −
1

n
)(EY − EN ).

In the case EY = EN , the law of iterated expectations implies that EY =
EN = E[θ]. Thus, equivalence holds because the right-hand sides of (12) and
(13) are equal to the right-hand side of (15).

In the case EY 6= EN , we conclude that hY − hN − 1
n = 0. On the other

hand, (7) implies that y = yhY + (1− y)hN . Solving the system of these two
equations leads to the formulas in (6). Plugging these into (12) yields that

UY (σ, θ) = y
n− 1

n
EY +

1

n
· (θ − c) + (1− y)

n− 1

n
EN

= (1− 1

n
)E[θ] +

1

n
(θ − c),

by the law of iterated expectations. Thus, the payoff from playing Y is the
same as in the random-assignment rule. The analogous statement for the
action N follows from a similar computation.
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Proof of Lemma 2. Consider any mechanism-equilibrium combination

(p′1, . . . , p
′
n−1, σ

′).

Analogously to (1), let y′ =
∫
σ′(θ)dF (θ) denote the probability that an agent

plays Y .
Any equilibrium with y′ = 0 or y′ = 1 yields the random-assignment allo-

cation. Thus, an equivalent mechanism-equilibrium combination in threshold
form is given by the purely-random-assignment rule together with any thresh-
old strategy y, that is, we can set (p1, . . . , pn−1, y) = (1/n, . . . , 1 − 1/n, y).
The desired conclusion holds due to (6) and (15).

Suppose that 0 < y′ < 1. Then there exists a type θ̂ ∈ (θ, θ) such that

UY (σ′, θ̂) = UN (σ′, θ̂). Thus, using (14),

UY (σ′, θ)− UN (σ′, θ) = (qY (y′)− qN (y′))(θ − θ̂). (43)

There are three cases, (i) qY (y′) > qN (y′), (ii) “<”, and (iii) “=”.
In case (i), (43) implies that the strategy σ′ is the threshold strategy y′.

Thus, we can set (p1, . . . , pn−1, y) = (p′1, . . . , p
′
n−1, y

′).
In case (ii), (43) implies that

σ′(θ) = 1 for all θ < θ̂,

σ′(θ) = 0 for all θ > θ̂.

We obtain an equivalent mechanism-equilibrium combination (p1, . . . , pn−1, σ)
by setting pj = 1 − p′n−j and σ(θ) = 1 − σ′(θ). Thus σ has the threshold
form, showing that the desired conclusion holds with y = 1− y′.

In case (iii), (9) implies that qY (y′) = 1/n = qN (y′). Thus, the conclusion
follows from Remark 1.

Proof of Remark 2. Given any mechanism (p1, . . . , pn−1), the threshold strat-
egy 1 leads to the following values of the conditional-expectation functions
and probability-selection functions:

EY (1) = E[θ], EN (1) = θ, hY (1) = 1, hN (1) = pn−1, qY (1) =
1

n
, qN (1) = 1−pn−1.

(44)
Plugging all of that into (14), we obtain

UY (1, θ)− UN (1, θ) = (
1

n
− 1 + pn−1) (θ − c− E[θ])︸ ︷︷ ︸

<0 for all θ ≈ θ.

(45)

Suppose that y = 1. By equilibrium, UY (1, θ) − UN (1, θ) ≥ 0 for all θ. But
the assumption qY (1) > qN (1) implies that 1

n − 1 + pn−1 > 0. This yields a
contradiction with (45).

Proof of Remark 4. There exists a sequence (yn) such that yn → 0 and (1−
yn)n → 0. For example, taking yn = 1/

√
n, it holds that (1 − yn)

√
n → 1/e

by definition of the Euler number e, and (1/e)
√
n → 0.

Using (22), we have nynqY (yn)→ 1.
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This together with EY → θ implies that E → θ. Because Eb∗ ≥ E by
optimality, we conclude that Eb∗ → θ.

This implies that yb∗ → 0 and nyb∗qY (yb∗)→ 1 because otherwise lim infnEY <
θ or lim infn ny

b∗qY (yb∗) < 1, implying lim infn Eb∗ < θ.

Proof of Lemma 4. Assume first that n = 2. Then i∗ = 1, and (27) implies
that hY − hN = y(1 − pi∗) + (1 − y)pi

∗
. Thus, (hY − hN )′(y) = 1 − 2pi

∗
.

If pi
∗

= 1/2, then the difference hY − hN is constant and equal to 1/2. If
pi
∗
< 1/2, then (hY − hN )′(y) > 0 for all y ∈ [0, 1], so that we can set

y∗m = 1. If pi
∗
> 1/2, then (hY − hN )′(y) < 0 for all y ∈ [0, 1], so that we

can set y∗m = 0.
Now assume that n ≥ 3. Suppose that i∗ = 1. Using (27), it is straight-

forward to verify that

(hY − hN )′(y) = (1− y)n−3(n− 1)l(y),

where we use the auxiliary function

l(y) = 1− 2pi
∗
− y(n(1− pi

∗
)− 1),

which is linear in y. If pi
∗ ≥ 1 − 1/n, then l(0) = 1 − 2pi

∗
< 0 and l(1) =

(n−2)(pi
∗−1) ≤ 0, implying that l(y) < 0 for all y ∈ [0, 1). Thus, (28) holds

with y∗m = 0. If pi
∗
< 1− 1/n, then l(y) is strictly decreasing in y, implying

(28).
The case i∗ = n− 1 is treated analogously to the case i∗ = 1.
Suppose that 1 < i∗ < n − 1. Using (27), it is straightforward to verify

that

(hY − hN )′(y) =
(n− 1)!yi

∗−2(1− y)n−2−i
∗

(i∗)!(n− i∗)!
l(y),

where we use the auxiliary function

l(y) = y(1− y)(1− 2pi
∗
)i∗(n− i∗)

− y2(1− pi
∗
)(n− i∗)(n− i∗ − 1) + (1− y)2pi

∗
i∗(i∗ − 1).

Note that l(0) = (i∗ − 1)i∗pi
∗
> 0 if pi

∗
> 0, and l′(0) = i∗(n − i∗) > 0 if

pi
∗

= 0, implying that

l(y) > 0 for all y > 0 that are sufficiently close to 0.

Similarly, l(1) = −(n − i∗)(n − i∗ − 1)(1 − pi∗) < 0 if pi
∗
< 1, and l′(1) =

i∗(n− i∗) > 0 if pi
∗

= 1, implying that

l(y) < 0 for all y < 1 that are sufficiently close to 1.

Thus, by the mean-value theorem, l(y∗m) = 0 for some y∗m ∈ (0, 1). More-
over, y∗m is unique because l is quadratic in y. Hence, for all y ∈ (0, 1),

l(y) > 0 if y < y∗m, and l(y) < 0 if y > y∗m,

showing (28).
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Proof of Proposition 2. If y = 0 or y = 1, then the random assignment ob-
viously obtains. In the case qY (y) = 1/n, (9) implies that qN (y) = 1/n, so
that the conclusion follows from Remark 1.

It remains to consider cases in which 0 < y < 1 and qY (y) > qN (y). Using
(9), qY > 1

n and qN < 1
n . Thus, nyqY > y and n(1− y)qN < (1− y). Hence,

(19) together with (16) implies

E > yEY + (1− y)EN = E[θ],

where the last equality relies on the law of iterated expectations.
Thus, using (12), (13), (7), and (8), and summarizing terms, for any type

θ,

yUY (y, θ) + (1− y)UN (y, θ) = (1− 1

n
)E +

1

n
(θ − c)

> (1− 1

n
)E[θ] +

1

n
(θ − c),

which is the agent’s payoff from random assignment. Therefore, also the
equilibrium payoff max{UY (y, θ), UN (y, θ)} is strictly larger than the payoff
from random assignment.

Proof of Lemma 5. Let

S = {y ∈ (0, 1) | qY (y) = (hY − hN )(y)}.

The set S is finite because qY and hY − hN are non-identical polynomials.
From (31), (32), and the intermediate-value theorem, the set S is non-empty.
Define

ym1 = maxS.

In particular, using (32), (hY − hN )(y) < qY (y) for all y > ym1.
Next we prove that

∀ 0 < y < ym1 : (hY − hN )(y) ≥ qY (y). (46)

Suppose (46) fails, that is, (hY − hN )(y1) < qY (y1) for some 0 < y1 < ym1.
From (31), the set S∩[0, y1] 6= ∅. Also S∩[y1, 1] 6= ∅ because this set contains
ym1. Thus, we can define

y1 = max
(
S ∩ [0, y1]

)
, y1 =

(
minS ∩ [y1, 1]

)
.

By construction,

∀y ∈ (y1, y1) : (hY − hN )(y) < qY (y).

Moreover, using (10),

q′Y (y1) = 0 and q′Y (y1) = 0.
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Using this together with the fact that (hY − hN )(y1) = qY (y1) from y1 ∈ S,

we obtain an upper bound for the derivative of hY − hN at y1, by taking the
limit from the right:

(hY − hN )′(y1) = lim
y↘y1

(hY − hN )(y)− (hY − hN )(y1)

y − y1

≤ lim
y↘y1

qY (y)− qY (y1)

y − y1
= q′Y (y1) = 0.

Similarly, we obtain a lower bound for the derivative at y1 by taking the limit
from the left and using that (hY − hN )(y1) = qY (y1):

((hY − hN ))′(y1) = lim
y↗y1

(hY − hN )(y)− (hY − hN )(y1)

y − y1

≥ lim
y↗y1

qY (y)− qY (y1)

y − y1
= q′Y (y1) = 0,

where the inequality was reversed because y − y1 < 0.

Using (28), the above upper bound implies that y1 ≥ y∗m, whereas the

lower bound implies that y1 ≤ y∗m, contradicting the fact that y1 < y1.
Now we can improve upon (46) by showing that

∀ 0 < y < ym1 : (hY − hN )(y) > qY (y). (47)

Suppose (46) fails, that is, (hY − hN )(y1) = qY (y1) for some 0 < y1 < ym1.
In particular, q′Y (y1) = 0 from (10).

Taking the limit from the right and using (46), we find that

((hY − hN ))′(y1) = lim
y↘y1

(hY − hN )(y)− (hY − hN )(y1)

y − y1

≥ lim
y↘y1

qY (y)− qY (y1)

y − y1
= q′Y (y1) = 0.

Similarly, taking the limit from the left,

((hY − hN ))′(y1) = lim
y↗y1

(hY − hN )(y)− (hY − hN )(y1)

y − y1

≤ lim
y↗y1

qY (y)− qY (y1)

y − y1
= q′Y (y1) = 0.

Thus, ((hY − hN ))′(y1) = 0, showing that y1 = y∗m by (28).
However, from (46) and (10), the function qY is strictly increasing on

[0, ym1], implying

(hY − hN )(ym1) = qY (ym1) > qY (y∗m) = (hY − hN )(y∗m),

contradicting the fact that (hY − hN ) is strictly decreasing on [y∗m, ym1] by
(28). Thus, (47) is true. This completes the proof.
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Proof of Proposition 3. We begin by verifying the assumptions of Lemma 5.
We have n ≥ 3 because otherwise no non-extreme threshold rule exists. By
Lemma 4, (28) holds.

Let i∗ be minimal such that pi∗ > 0. Using (27) and (29),

hY (y)−hN (y) =

(
n− 1

i∗ − 1

)
yi
∗−1pi∗+O(yi

∗
), qY (y) =

(
n− 1

i∗ − 1

)
yi
∗−1 pi∗

i∗
+O(yi

∗
),

Thus, (31) holds if i∗ ≥ 2. If i∗ = 1, then

hY (y)− hN (y) = p1 + (n− 1)y(1− p1)− (n− 1)yp1 +O(y2),

qY (y) = p1 + (n− 1)y
1

2
− (n− 1)yp1 +O(y2).

Thus, (31) follows from 1− p1 > 1− 1/n > 1/2.
Using (44) and the assumption pn−1 > 1− 1

n ,

hY (1)− hN (1)− qY (1) = 1− pn−1 −
1

n
< 0,

implying (32).
Thus, there exists ym1 as stated in Lemma 5. Because qY (0) = p1 ≤ 1/n,

we can define

y̌ = max{y ∈ (0, 1]|qY (y) ≤ 1/n}.

Using (44), qY (1) = 1/n. From (10) and Lemma 5, the function qY is strictly
increasing on [0, ym1] and is strictly decreasing on [ym1, 1]. Thus,

qY (y) > 1/n for all y ∈ (y̌, 1), (48)

implying y̌ < ym1, and Lemma 5 implies that

hY (y̌)− hN (y̌)− qY (y̌) > 0. (49)

Define θ̌ = F−1(1− y̌). From Remark 3, qN (y̌) = 1/n. Using (14) with y = y̌
and θ = θ̌,

∆(y̌) = (hY (y̌)− hN (y̌)− qY (y̌))︸ ︷︷ ︸
>0 by (49)

(EY − EN ) .︸ ︷︷ ︸
>0 by (16)

On the other hand, a straightforward computation using (44) shows that

∆(1) = (pn−1 − 1 +
1

n
)(θ − c− E[θ]) < 0.

Thus, ŷ as defined in the statement of the proposition satisfies y̌ < ŷ < 1.
Combining this with (48), all claims are proved.

Proof of Proposition 4. Consider the any-volunteer rule (p1, . . . , pn−1) = (1, . . . , 1).
For any volunteering rate y > 0, using (22) and (23),

qY (y)− qN (y) =
1

ny

(
1− (1− y)n − y(1− y)n−1

)
=

1

ny

(
1− (1− y)n−1

)
> 0.

30



Moreover qY (0) = 1 and qN (0) = 1
n . We conclude that qY (y) > qN (y) for

all 0 ≤ y ≤ 1. Thus, the right-hand side in (14) is strictly increasing in θ,
showing that any equilibrium has the threshold form.

Suppose that c < θ − E[θ]. If we had ∆(1) ≥ 0, then y = 1 would be an
equilibrium, contradicting Remark 2. Thus, ∆(1) < 0.

Now consider the volunteering rate y = 0. Note that EN (0) = E[θ]. Using
(21), hY (0)−hN (0) = 1. Recall qY (0) = 1 and qN (0) = 1

n . Thus, (14) implies

∆(0) = UY (0, θ)− UN (0, θ) = (1− 1

n
)(θ − c− E[θ]) > 0.

Thus, by the intermediate-value theorem, there exists 0 < y < 1 such that
∆(y) = 0.

Finally, suppose that c ≥ θ −E[θ] and that some 0 < y < 1 is an equilib-

rium. Let θ̂ < θ be such that 1−F (θ̂) = y. We will derive a contradiction to
the equilibrium condition (17).

Using (14),

∆(y) = UY (y, θ̂)− UN (y, θ̂)

= (hY − hN )(EY − EN )

+ qY (−EY + θ̂)− qN (−EN + θ̂)− c(qY − qN︸ ︷︷ ︸
>0

). (50)

Thus, using the assumption c ≥ θ − E[θ],

∆(y) ≤ (hY − hN )(EY − EN )

+ qY (E[θ]− EY + θ̂ − θ)− qN (E[θ]− EN + θ̂ − θ)
< (hY − hN )(EY − EN ) + qY (E[θ]− EY )− qN (E[θ]− EN ).

Using the law of iterated expectations (E[θ] = yEY + (1 − y)EN ), the in-
equality derived above can also be written as

∆(y) < (hY − hN )(EY − EN ) + qY · (1− y)(EN − EY )− qN · y(EY − EN )

=
1

ny
g(y)(EY − EN ),

where we use the auxiliary function

g(y) = (hY − hN )yn− qY · (1− y)yn− qN · y2n.

Due to (16), the desired contradiction ∆(y) < 0 to the equilibrium condition
(17) is obtained once we show that g(y) ≤ 0 for all y > 0.

Using (21), (22), and (23),

g(y) = (1− y)n−1yn− (1− (1− y)n) (1− y)− (1− y)n−1y2.

It is straightforward to verify that g(y) = 0 for all y if n = 2. Consider the
case n ≥ 3. Then one can verify that g(0) = 0, g(1) = 0, g′(0) = 0, g′(1) = 1,
and g′′(y) = (n − 2)(n − 1)(1 − y)n−3(ny − 1). Thus, g′′(y) < 0 if y < 1/n
and g′′(y) > 0 if y > 1/n. In particular, the function g′ is strictly decreasing
on the interval [0, 1/n] and is strictly increasing on the interval [0, 1/n]. This
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together with g′(0) = 0 and g′(1) = 1 shows that there exists a threshold
y̌ such that g′(y) < 0 if y < y̌ and g′(y) > 0 if y > y̌. In other words, g
is strictly decreasing on the interval [0, y̌] and is strictly increasing on the
interval [y̌, 1]. This together with the equations g(0) = 0 and g(1) = 0 show
that g(y) < 0 for all 0 < y < 1.

Proof of Proposition 6. Before presenting the proof, we provide a roadmap.
Step 0 recalls the Poisson approximation of the binomial distribution.

Using the assumption c/i∗ < θ − E[θ], Step 1 shows that there exists a
sequence of strategies along which the expected number of volunteers does not
vanish and the marginally volunteering type strictly prefers volunteering over
non-volunteering. Lowering the marginal type until she becomes indifferent
then yields a sequence of equilibria with non-vanishing expected numbers of
volunteers zn (this is Step 2).

In Step 3 we show that zn is bounded. Suppose otherwise, that is, zn →∞
on some subsequence. That is, the expected number of volunteers tends to
infinity. Given that only i∗ volunteers are needed, the probability that the
task is assigned to a non-volunteer falls to zero so fast along the subsequence
that the probability tends to 0 even if it is first telescoped by zn. On the other
hand, an agent expects that she is selected with a probability approximately
equal to 1/zn if she volunteers. Therefore, after telescoping payoffs by zn
and defining the marginal type θ̂n = F−1(1 − ŷn), type θ̂n’s limit payoff

difference between volunteering and non-volunteering is −Ey + θ̂n − c ≤ −c,
contradicting equilibrium.

Step 4 considers any large-population limit point z∗ of the sequence zn
(existence of a limit point follows from Step 3). We show that z∗ satisfies
the equation that is stated in the proposition. The left-hand-side is strictly
decreasing by (36), showing that the limit point is unique. Elementary prop-
erties of the Poisson distribution are useful: the probability Pois(z∗)(i∗ − 1)
differs by a factor of z∗/i∗ from the probability that there are exactly i∗ vol-
unteers; this probability differs by a factor of z∗/i∗ from the probability that
there are at least i∗ volunteers.

Step 5 establishes the formula for r∗.

Step 0. Consider any sequence of numbers (yn), yn ∈ [0, 1] and a number
z > 0 such that zn → z, where we use the shortcuts zn = nyn. Then

lim
n
Bn−1yn (j) =

zj

j!
e−z for j = 0, 1, . . . , n, (51)

and

lim
n

n−1∑
j=i∗−1

Bn−1yn (j)
1

j + 1
= e−z

∞∑
j=i∗−1

zj

(j + 1)!
. (52)

Formula (51) is the well-known Poisson limit theorem. To see (52), define
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Bn−1yn (j) = 0 for all j > n− 1 and note that

∞∑
j=i∗−1

zj

(j + 1)!
e−z

(51)
=

∞∑
j=i∗−1

lim
n
Bn−1yn (j)

1

j + 1

= lim
n

∞∑
j=i∗−1

Bn−1yn (j)
1

j + 1
= lim

n

n−1∑
j=i∗−1

Bn−1yn (j)
1

j + 1
.

This completes Step 0.

Now fix any number z such that

0 < z < ln

(
(θ − E[θ])i∗

c

)
. (53)

We will use the function ∆ defined in (17), as applied to the threshold rule
with parameter i∗ and pi∗ = 1.

Step 1. For all n, define y
n

= z/n. Then ∆(y
n
) > 0 for all sufficiently

large n.
We take the limit n→∞ in (17) with y = y

n
.

Because y
n
→ 0, only the type with the highest possible ability volunteers

in the large-population limit. Thus, EY → θ and EN → E[θ].
Applying (51) with j = i∗ − 1 to (27) with pi∗ = 1,

lim
n
hY (y

n
)− hN (y

n
) =

(z)i
∗−1

(i∗ − 1)!
e−z.

Applying (52) to (29) with pi∗ = 1,

lim
n
qY (y

n
) = e−z

∞∑
j=i∗−1

zj

(j + 1)!
.

Using (30),

qN (y
n
) ≤ 1

n− i∗
→ 0 as n→∞.

Thus, using (17) and cancelling terms,

lim
n

∆(y
n
) =

(z)i
∗−1

(i∗ − 1)!
e−z(θ − E[θ]) + e−z

∞∑
j=i∗−1

(z)j

(j + 1)!
(−c). (54)

Note that
∞∑

j=i∗−1

(z)j

(j + 1)!
≤

∞∑
j=i∗−1

(z)i
∗−1(z)j−i

∗+1

(i∗)!(j − i∗ + 1)!
=

(z)i
∗−1

(i∗)!
ez.

Thus, (54) implies

lim
n

∆(y
n
) ≥ (z)i

∗−1

(i∗ − 1)!
e−z(θ − E[θ]) +

(z)i
∗−1

(i∗)!
(−c)

=
(z)i

∗−1

(i∗ − 1)!

(
e−z(θ − E[θ])− c

i∗

)
> 0,
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where the last inequality follows from (53). This completes Step 1.

Step 2. For all sufficiently large n, there exists a threshold equilibrium yn
such that zn > z, where we define zn = nyn.

For all i∗ ≥ 2, because ∆(1) < 0, the desired claim follows from Step 1 and
Proposition 3, using the Intermediate Value Theorem. Consider i∗ = 1. It is
straightforward to verify that ∆(1) < 0 and qY (y) > qN (y) for all y ∈ (0, 1).
Thus, the desired claim is immediate from Step 1, using the Intermediate
Value Theorem.

Now consider any sequence of equilibria (yn) such that lim infn zn > 0.
Using (27), (29), and (30),

∆(y) =
(
Bn−1y (i∗)(1− pi∗) +Bn−1y (i∗ − 1)pi∗

)
(EY − EN )

+

∑
j≥i∗

Bn−1y (j)
1

j + 1
+Bn−1y (i∗ − 1)pi∗

1

i∗

 (−EY + F−1(1− y)− c)

−

 ∑
j≤i∗−1

Bn−1y (j)
1

n− j
+Bn−1y (i∗)(1− pi∗)

1

n− i∗

 (−EN + F−1(1− y)− c).

Setting pi∗ = 1, and multiplying the equilibrium condition ∆(yn) = 0 with
zn, we obtain

0 = znB
n−1
yn (i∗ − 1)(EY − EN )

+ zn
∑

j≥i∗−1

Bn−1yn (j)
1

j + 1
(−EY + F−1(1− yn)− c)

− zn
∑

j≤i∗−1

Bn−1yn (j)
1

n− j
(−EN + F−1(1− yn)− c). (55)

Step 3. The sequence (zn) is bounded.
Suppose otherwise, that is, along some subsequence, zn → ∞. Then,

along this subsequence,

Bnyn(j)→ 0 for all j = 0, 1, . . . . (56)

To see this, note that, due to elementary properties of the binomial distribu-
tion,

Bnyn(j) ≤ nj(yn)j(1− yn)n−j = (nyn)j(1− yn)n−j ,

implying
ln
(
Bnyn(j)

)
≤ j ln(nyn) + (n− j) ln(1− yn).

Hence, using the elementary inequalities ln(1− yn) ≤ −yn and yn ≤ 1,

ln
(
Bnyn(j)

)
≤ j ln(nyn)− (n− j)yn ≤ j ln(zn)− zn + j → −∞.

This implies (56).
From (56) it follows that

znB
n−1
yn (j)→ 0 for all j = 0, 1, . . . . (57)
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To see this, note that, by elementary properties of the binomial distribution,

nynB
n−1
yn (j) = (j + 1)Bnyn(j + 1). (58)

From (57) it follows that

zn

i∗−1∑
j=0

Bn−1yn (j)→ 0. (59)

Now we consider the limit n → ∞ in (55). From (57) and (59), the first
and third terms vanish, and in the second term the range of the sum can be
replaced by

∑
j≥0. Using (58),

lim
n
zn

n−1∑
j=0

Bn−1yn (j)
1

j + 1
= lim

n

n−1∑
j=0

Bnyn(j + 1) = 1− lim
n
Bnyn(0)

(56)
= 1.

Plugging this into (55) yields limn−EY +F−1(1− yn)− c = 0, contradicting
the fact that the average volunteer’s type must be larger than the marginal
volunteer’s type, EY > F−1(1− yn). This completes Step 3.

Step 4. Consider any limit point z∗ of (zn). Then hPois(z∗)(i∗) = c/i∗

θ−E[θ]
.

To see this, consider a subsequence znk
→ z∗ as k →∞. A computation

analogous to that leading to (54) implies

lim
k

∆(ynk
) =

(z∗)i
∗−1

(i∗ − 1)!
e−z

∗
(θ − E[θ]) + e−z

∗
∞∑

j=i∗−1

(z∗)j

(j + 1)!
(−c).

Applying the equilibrium condition ∆(ynk
) = 0,

0 =
(z∗)i

∗−1

(i∗ − 1)!
e−z

∗
(θ − E[θ]) +

∞∑
j=i∗−1

(z∗)j

(j + 1)!
e−z

∗
(−c).

After multiplying by z∗/i∗ and switching to the variable j′ = j + 1 in the
sum,

0 =
(z∗)i

∗

i∗!
e−z

∗
(θ − E[θ]) +

∞∑
j′=i∗

(z∗)j
′

j′!
e−z

∗
(−c/i∗).

Thus,

0 = Pois(z∗)(i∗)(θ − E[θ]) +

∞∑
j′=i∗

Pois(z∗)(j′)(−c/i∗).

This implies the claimed formula, completing the proof of Step 4.

From (36) one sees that, for any i, the function z 7→ hPois(z)(i) is strictly
decreasing. Thus, the limit point z∗ established in Step 3 is unique, showing
that the sequence (zn) converges to z∗.
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Step 5. The formula for r∗.
The probability that the task is assigned to a volunteer in equilibrium yn

is

rn =

n∑
j=i∗

Bnyn(j)
(58)
=

n∑
j=i∗

zn
j
Bn−1yn (j − 1)

Thus, using Step 0,

lim
n
rn = z∗

∞∑
j=i∗

(z∗)j−1

j!
e−z

∗
=

∞∑
j=i∗

(z∗)j

j!
e−z

∗

This completes the proof of the proposition.
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