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Abstract

A biased sender seeks to persuade a committee to vote for a proposal by providing public

information about its quality. Each voter has some private information about the proposal’s

quality. We characterize the sender-optimal disclosure policy under unanimity rule when the

sender can versus cannot ask voters for a report about their private information. The sender

can only profit from asking agents about their private signals when the private information is

sufficiently accurate. For all smaller accuracy levels, a sender who cannot elicit the private

information is equally well off.

Keywords: Voting; Bayesian Persuasion; Strategic Voting; Unanimity

1 Introduction

In voting or collective decision making, the persuasion of decision makers through a biased party

plays a crucial role. To which extent a biased party can persuade decision makers might depend

on how much decision-relevant knowledge they already possess. Consider for example a CEO who

tries to convince a board of directors to vote for a new proposal. While the CEO wishes to always

implement the proposal to improve short-term firm performance, directors only want to approve the

proposal if it increases long-term performance. If directors already have some private knowledge

about the long-term effects of the proposal, what is the most promising way to convince them to

vote for the proposal? This is the question of this paper.

In our model an information designer requires a unanimous approval of a group of voters to

implement a proposal. Depending on the proposal’s unknown binary quality, voters either like or

∗Preliminary and incomplete; please do not cite this version, and contact the authors for a

current version of the paper.
†Bobkova: Department of Economics, Rice University; email: nina.bobkova@rice.edu. Klein: Department of

Economics, Bonn University; email: s6safuch@uni-bonn.de. For insightful discussions and suggestions, we are very
thankful to Francesc Dilmé, Patrick Lahr, Stephan Lauermann, Martin Pollrich, Dezsö Szalay, Ina Taneva, Leeat
Yariv and seminar participants in Bonn. Funding by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) through CRC TR 224 (Project B02) is gratefully acknowledged.
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dislike the proposal. If the quality was known, all voters would agree on the optimal decision. In

contrast, the information designer is biased in that she always wants the proposal to be implemented,

irrespective of its quality. Each voter receives a private signal about the proposal having a high or

low quality and is, according to his private signal, either optimistic or pessimistic. The information

designer chooses a disclosure policy: she sends a public recommendation that is correlated with the

quality of the proposal. The term public means that the information designer cannot make different

recommendations to different voters. After having received the recommendation of the information

designer, each voter decides on whether to vote for or against the proposal based on his updated

belief. Although voters are aware of the information designer’s interest in the proposal, they might

nevertheless want to follow her recommendation. This is because the recommendation is based on

the true quality of the proposal.

The main contribution of this paper is to unveil the extent to which an information designer

can persuade informed voters by choosing the optimal disclosure policy. We characterize when the

private information of voters restricts the information designer in her scope for persuasion.

In our benchmark case we consider an omniscient information designer who can observe the

private signal realizations of all voters. We show that the omniscient information designer recom-

mends to vote for the proposal with probability one when the proposal is of high quality. In the

state where the proposal is of low quality, she uses a threshold policy: she recommends the proposal

with probability one for any number of optimists above a certain cutoff, and recommends the status

quo with certainty below the cutoff. The cutoff is such that a pessimistic voter is indifferent between

the proposal and the status quo after the recommendation to vote for the proposal.

Next, we consider an eliciting information designer who cannot observe the private information

of voters but can ask them for reports about their signal realizations. We show that the eliciting

information designer cannot implement the optimal disclosure policy from the omniscient benchmark

case and is always worse off compared to the omniscient information designer. This is caused by the

optimists having a profitable deviation through misreporting to be pessimists. As a consequence,

the eliciting information designer has to give sufficient incentives for truthful reporting by providing

voters with more information. This limits the scope of the information designer for persuasion. If

the probability of receiving the correct signal is below a lower threshold, the eliciting information

designer always recommends to vote for the proposal in the state where voters prefer the proposal.

In the state in which voters want to implement the status quo, the probability with which she

recommends the proposal is stochastic and decreasing in the accuracy of the private information of

voters. This optimal policy of the information designer is equivalent to maximizing the probability

of a pessimist to vote for the proposal. In contrast, if the probability of receiving the correct signal is
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above an upper threshold, the information designer’s optimal policy is to maximize the probability

of an optimist to vote for the proposal.

Finally, we consider a non-eliciting information designer who can neither observe the signal

realizations of voters nor ask voters for reports about their private information. If the probability

of receiving the correct signal is below the same lower threshold as in the eliciting case, the optimal

disclosure policy of an eliciting and of a non-eliciting information designer are equivalent. Thus, an

information designer cannot profit from the ability to ask voters for their private information if the

accuracy of voter’s private information is not sufficiently high.

We find that voters are better off in the presence of a biased information designer compared

to the situation in which they have to decide under unanimity rule only based on their private

exogenous information as in Feddersen and Pesendorfer (1998).

2 Related Literature

Our paper belongs to the rapidly growing literature on information design (see Rayo and Segal,

2010; Kamenica and Gentzkow, 2011). While in Kamenica and Gentzkow (2011) there is only one

agent that is uninformed, we consider persuasion of a committee of agents that is informed.

Amongst the vast emerging literature on information design, the two strands bearing most

resemblance to our paper are first, private information on the receiver’s side, and second, persuasion

of multiple receivers. Multiple papers extend information design to a setting with many receivers.

In these papers (Taneva, 2016; Bardhi and Guo, 2018; Alonso and Câmara, 2016; Wang, 2015; Chan

et al., 2016; Heese and Lauermann, 2017), agents are aware of the payoff types of each other. There

is no uncertainty about the committee constellation, and voters possess no private information

about the payoff-relevant state of the world. A crucial difference of these papers to our approach is

that in our model, the payoff type of each committee member bears information about the state of

the world and is private information. If the committee constellation was known, all voters in our

model would agree on the same election outcome.

Taneva (2016) extends the approach of a Bayes correlated equilibrium from Bergemann and

Morris (2016a) to a class of Bayesian Persuasion problems with multiple receivers. She fully charac-

terizes a binary-binary1 model with two receivers and shows that the optimal information structure

involves public signals or correlated private signals (not conditionally independent signals). Alonso

and Câmara (2016) analyze how a biased sender can influence an uninformed heterogeneous com-

1Binary states and binary actions.
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mittee of voters with a public signal, as in our model. They elicit the scope for persuasion under

different voting rules, and show when agents are worse off. Chan et al. (2016) consider persuad-

ing a heterogeneous committee under the restriction to minimal winning coalitions. Wang (2015)

compares private persuasion (under the restriction of conditionally independent signals) to public

persuasion in collective decision making. She shows, that public persuasion performs weakly better

and reveals less information than private persuasion. The closest related to our paper is Bardhi

and Guo (2018). They analyze persuasion of a heterogeneous committee, and study a unanimous

voting rule. They consider two persuasion regimes: general persuasion (conditional on everybody’s

payoff type), and individual persuasion (conditional only on own payoff type). Persuasion is private

in their model: each agent does not see the messages sent to voters, neither under general nor

under individual persuasion. They show that under unanimity, a restriction to a public or private

persuasion regime is without loss under some assumptions. Heese and Lauermann (2017) consider

persuasion of a heterogeneous committee of voters. They show that the information designer can

almost surely guarantee the implementation of her preferred outcome in the limit, as the size of the

committee grows sufficiently large.

Amongst the papers considering private information on the side of the receiver are Kolotilin

et al. (2017), Kolotilin (2018), Bergemann and Morris (2016b) and Bobkova (2017). Kolotilin et al.

(2017) study persuasion of one privately informed receiver, who is privately informed about his

payoff type. They show that eliciting persuasion is equivalent to non-eliciting persuasion under

some conditions2. Bergemann et al. (2018) consider a similar environment as Kolotilin et al. (2017)

but add monetary transfers, which we do not allow in our framework. Kolotilin (2018) considers

an information designer who tries to persuade an informed receiver. Persuasion is non-eliciting:

the information designer cannot ask the receiver for his type prior to her information disclosure.

Bobkova (2017) considers a stream of short-lived and privately informed buyers, that an information

designer (seller) seeks to persuade into buying her product. The seller is restricted in her ability

to construct experiments, and has to rely on the private information of previous receivers, that she

has to elicit truthfully.

To the best of our knowledge, our framework is the first to introduce private information into

persuasion of a group. We analyze the problem of an information designer when she first has to

squeeze the private information out of multiple agents before she can condition her disclosure policy

on it.

The idea of omniscient persuasion and private persuasion of one privately informed receiver can

be found in Bergemann and Morris (2016b). We extend their discussion by providing a comparison

2Kolotilin et al. (2017) refer to eliciting and non-eliciting persuasion as public versus private persuasion. See
Bergemann and Morris (2018) for a unified terminology, that we follow in this paper.
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of the cases in which the information designer is omniscient and in which the information designer

has to first elicit the private signals from multiple agents. A unified perspective of the existing

literature on Bayesian Persuasion and information design can be found in Bergemann and Morris

(2018).

Finally, our paper relates to the literature on information aggregation in strategic voting, fol-

lowing Austen-Smith and Banks (1996) and Feddersen and Pesendorfer (1998). Feddersen and

Pesendorfer (1998) show that when voters vote strategically, voting truthfully according to one’s

own private information is not an equilibrium. Voters condition their strategy on pivotality events,

and a unanimous voting rule is a ’uniquely bad’ voting rule: it implements the inferior inefficient

outcome with a higher probability than any other majority rule. In the model of Feddersen and

Pesendorfer (1998), voters have to make their decision based on their private exogenous information

only. In our model, we allow the designer to provide further correlated information to all agents,

conditional on the true state of the world.

The paper is organized as follows. First, we introduce our model in section 2. In Section 3.1,

we first analyze the benchmark case of an omniscient information designer and characterize her

optimal disclosure policy. In the subsequent section, we analyze information design with elicitation

and show that an eliciting information designer cannot implement the optimal disclosure policy from

the omniscient benchmark case. We characterize the optimal disclosure of an eliciting information

designer and establish two equivalence results. In section 3.3 we deal with the analysis of a non-

eliciting information and prove the equivalence of optimal disclosure policies of an eliciting and a

non-eliciting information designer if the accuracy of voters’ signals is below some threshold. The last

section 3.4 deals with restricted information design. Unlike the unrestricted information designer,

the restricted eliciting information designer can achieve the same expected payoff as in the omniscient

benchmark case.

3 Model

There are three voters which have to decide whether to vote for a proposal or for a status quo.

An information designer tries to influence voters to vote for the proposal. In the following we use

information designer and sender synonymously. When a voter i votes for the proposal we write

ai = 1, and ai = 0 for the status quo. When the outcome of the ballot is the proposal we write

a = 1, and a = 0 when the status quo is chosen. For example, under unanimity rule the outcome is

a = 1 if ai = 1 for all i.

Whether a voter likes or dislikes the proposal depends on an uncertain state of the world θ ∈
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{B,G}, where Pr(θ = G) = 1
2 . Voters have the following utility function:

ui(a, θ) =




1{θ=G} − 1

2 if a = 1

0 if a = 0

Hence, all voters agree on the optimal decision if the state was known: when θ = G all voters

want to implement the proposal, while when θ = B, all agree on the status quo. In contrast, the

sender always prefers the proposal over the status quo independent of the state of the world. The

sender’s utility function is given by uS(a) = a.

Each voter receives a private signal zi ∈ {b, g} that is correlated with the true state of the world

in the following way: Pr[zi = g|θ = G] = Pr[zi = b|θ = B] = p ∈ (12 , 1). A voter i with a signal

zi = g (referred to as a good signal) is more optimistic about the state of the world being θ = G

than a voter with signal zi = b (referred to as a bad signal). Likewise, a voter with bad signal zi = b

considers θ = B more likely.3

Denote the set of signal realizations by Z = {g, b}3 with a typical element z = (z1, z2, z3) ∈ Z.

Let k(z) be the number of g-signals in a typical signal realization z. By z−i ∈ Z−i we refer to the

signals of all voters except voter i, where Z−i is the set of all signal realizations except voter i’s

signal. In the following we use the shortcut k to refer to k(z) and k−i to refer to k(z−i).

4 Omniscient Information Design

We first analyze the benchmark case in which the sender is omniscient, i.e., observing each voter’s

private signal. The sender’s problem is then to choose a disclosure policy d : Θ × Z → △(R) with

public recommendations r ∈ R to maximize the probability of the event that all voters vote for the

proposal. We restrict the analysis to anonymous disclosure policies, which take only the number of

good and bad signals into account and not which voter has which signal.

Assumption 1. The sender’s disclosure policy is anonymous, i.e., the probability of sending any

recommendation is the same for all z, z′ with k(z) = k(z′).

This assumption allows us to restrict attention to disclosure policies which only condition on

the state of the world and on the number of good signal in the population.

The next assumption specifies how a voter behaves under indifference.4

3For notational convenience we will sometimes use gi and bi respectively as a short cut for voter i having received
signal zi = g and zi = b respectively.

4Note the difference to the sender-preferred equilibrium in Kamenica and Gentzkow (2011): they assumed that if
indifferent, their agent votes for the sender-preferred outcome, in our case the proposal. We are interested in partial
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Assumption 2. If a voter is indifferent between his actions, he follows the recommendation of the

sender.

The following proposition says that we can restrict the sender to only two recommendations

r ∈ {0̂, 1̂} without loss of generality for optimality. These two recommendations are direct voting

recommendations, 1̂ in favor of the proposal, and 0̂ in favor of the status quo.

Proposition 1. Under unanimity, it is without loss of generality to restrict the message space of

the omniscient sender to R = {0̂, 1̂}.

All omitted proofs are in the appendix. The disclosure policy of the sender is:

d : Θ× {0, 1, 2, 3} → △{0̂, 1̂}. (1)

That is, we are looking for a vector with 8 components {d[1̂|θ, k]}k∈{0,1,2,3},θ∈{B,G} ∈ [0, 1]8.

After the sender sends her recommendation, voters have to update their belief about θ and only

follow the sender’s recommendation if this yields a higher expected utility than disobeying.

Since the decision has to be made under unanimity, after recommendation 1̂ a voter is pivotal

with probability one and after recommendation 0̂ he is never pivotal. This is because in equilibrium

after r = 1̂ all voters follow the recommendation 1̂ which is why from the perspective of an individual

voter his vote determines the outcome. Similarly, a voter will never be pivotal after r = 0̂ because

all other voters already voted against the proposal which in turn makes one single vote irrelevant

under unanimity. As a consequence, a voter will always follow the recommendation 0̂ and follow

the recommendation 1̂ if his obedience constraint holds:

Pr(θ = G|1̂, zi) ≥
1

2
(OB1̂

zi)

⇔ Pr(θ = G|zi)
2∑

k−i=0

d[1̂|θ = G, k−i + k(zi)] Pr(k−i|θ = G)

≥ Pr(θ = B|zi)
2∑

k−i=0

d[1̂|θ = B, k−i + k(zi)] Pr(k−i|θ = B)

implementation, and such one-sided tie-breaking rule pro proposal would be with loss of generality in our setting. We
will see that in the optimum the sender sometimes wants voters to vote for the status quo if indifferent to achieve the
highest outcome. This is driven by pivotality considerations and does not arise in Kamenica and Gentzkow (2011).
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The omniscient sender’s maximization problem is then given by:

max
d

Pr(a = 1) = max
d

Pr(1̂) =
∑

θ∈{B,G}

3∑

k=0

d[1̂|θ, k] Pr(k|θ) Pr(θ)

s.t. 0 ≤ d[r|θ, k] ≤ 1, ∀r ∈ {0̂, 1̂}, θ ∈ {B,G}, k ∈ {0, 1, 2, 3} (2)

d[0̂|θ, k] + d[1̂|θ, k] = 1, ∀θ ∈ {B,G}, k ∈ {0, 1, 2, 3} (3)

Pr(θ = G|1̂, zi)−
1

2
≥ 0, ∀zi ∈ {b, g} (OB1̂

zi)

The following lemma states that for the sender it is always optimal to send the recommendation

to vote for the proposal when θ = G.

Lemma 1. In any optimal disclosure policy, d[1̂|θ = G, k] = 1 for all k.

To give some intuition for Lemma 1, notice that for θ = G voters agree on the proposal being

the more appropriate choice, independent of their private signal. Hence, the sender does not have

to convince voters so that she can simply send 1̂ for θ = G. Assume that the conjecture is false.

Then, the sender could increase the probability of implementing the proposal and at the same time

relax the voters’ obedience constraints by simply increasing d[1̂|θ = G, k] for those k for which

d[1̂|θ = G, k] 6= 1.

The probability of sending a recommendation 1̂ for the sender is:

Pr(1̂) =0.5Pr(1̂|θ = B) + 0.5Pr(1̂|θ = G)︸ ︷︷ ︸
=1

(4)

=0.5

3∑

k=0

d[1̂|k, θ = B] Pr(k|θ = B) + 0.5 (5)

Now, consider the obedience constraint for the g-type. It is easy to see that it is always satisfied

if Lemma 1 holds.

Lemma 2. The obedience constraint of the g-type is satisfied in any disclosure policy in which

d[1̂|θ = G, k] = 1 for all k.

Proof. The obedience constraint of the g-type is:

0.5p ≥ 0.5(1− p)
2∑

k−i=0

d[1̂|θ = B, k−i + 1]Pr(k−i|θ = B) (6)
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Note that due to feasibility of the disclosure policy, d[1̂|θ, k] ≤ 1 for all θ and all k. Thus,

2∑

k−i=0

d[1̂|θ = B, k−i + 1]︸ ︷︷ ︸
≤1

Pr(k−i|θ = B) (7)

≤
2∑

k−i=0

Pr(k−i|θ = B) = 1

Using this in the obedience constraint, we see that it is always satisfied as 0.5p ≥ 0.5(1− p) ≥
RHS always holds. �

The next lemma states the disclosure policy if all voters have a g-signal:

Lemma 3. In any optimal disclosure policy d, it holds that d[1̂|θ = B, k = 3] = 1.

Proof. The probability d[1̂|θ = B, k = 3] does not show up in the disclosure policy of the b-type,

as it only applies when all voters have a g-signal. Therefore, it has no effect on the obedience

of the b-type. For the g-type, by Lemma 2 the obedience constraint of the g-type holds in any

disclosure policy that sends recommendation 1̂ whenever the state is θ = G. Therefore, setting

d[1̂|θ = B, k = 3] increases the probability of the proposal being implemented without harming any

obedience constraints. �

Using the above findings, the maximization problem of the omniscient unrestricted designer

becomes:

max
d

1

2

3∑

k=0

d[1̂|θ = B, k] Pr(k|θ = B) +
1

2
Pr(k = 3|θ = B) +

1

2
(8)

d[0̂|θ, k] + d[1̂|θ, k] = 1, ∀θ ∈ {B,G}, k ∈ {0, 1, 2, 3} (9)

s.t. (1− p) ≥ p

2∑

k−i=0

d[1̂|θ = B, k−i)] Pr(k−i|θ = B) (OB1̂
b )

By using that pPr(k−i|θ = B) = Pr(k|θ = B)3−k
3 we can rewrite OB1̂

b :

(1− p) ≥ p
2∑

k−i=0

d[1̂|θ = B, k−i] Pr(k−i|θ = B)

(
2

k−i

)
(10)

⇔ (1− p) ≥
3∑

k=0

d[1̂|θ = B, k] Pr(k|θ = B)
3− k

3
. (11)
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Figure 1: optimal disclosure policy for p = 0.7.

Increasing d[1̂|θ = B, k] for any k ∈ {0, 1, 2} affects differently the obedience constraint and

objective function of the designer. While an increase in d[1̂|θ = B, k] for any particular k ∈ {0, 1, 2}
is weighted by the sender with Pr(k|θ = B), the b-type weights this increase with Pr(k|θ = B)3−k

3 .

In the terminology of the fractional knapsack5, this means that different k have different value-

weight ratios. As a consequence, it will matter for which k the sender will increase the probability

of sending recommendation 1̂ until the constraint binds. The next proposition states that the

optimal disclosure policy of the omniscient sender is a monotone threshold policy.

Proposition 2. The unique optimal disclosure policy of the omniscient sender is a monotone cutoff

policy with

d[1̂|θ = G, k] = 1 ∀k, d[1̂|θ = B, k]





= 1 if k > k̃,

∈ [0, 1] if k = k̃,

= 0 if k < k̃,

(12)

where k̃ is such that OB1̂
b binds.

Figure 1 shows the optimal policy of the omniscient sender for p = 0.7. If θ = G, she sends with

the certainty the recommendation 1̂ irrespective of the number of g-signals. If θ = B, the sender

uses a monotone cutoff policy, where she sends 1̂ with certainty whenever there are at least two

voters with a g-signal, mixes whenever there is one voter with a g-signal, and never sends 1̂ when

all have a b-signal.

5See appendix for the terminology.
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5 Eliciting Information Design

In the previous section the sender could construct any experiment on the true state of the world and

was able to see the private signal realizations of each voter. In this section we assume that the sender

cannot see the private information of the voters, but can elicit it in an incentive compatible way.

When the sender is eliciting, honesty constraints arise, and we have to check for double deviations:

if an agent misreports, does he have a profitable deviation? After misreporting, the agent should

not be strictly better of from any possible action after the misreport.

Each voter i sends a message to the sender, a report about his private signal realization: ẑi ∈
{ĝ, b̂}. The complete profile of reported signals is then given by ẑ ∈ Ẑ. We employ the same notation

as above, with the restriction, that now the sender conditions not on the number of g-signals in

the true signal realizations z, but on the number of ĝ-reports in the reported signal realization ẑ.

Hence, k(ẑ) denotes now the number of ĝ-reports in the reported signal realization ẑ.

As for the omniscient sender, only two signals suffice for the sender to achieve her highest

implementable payoff.

Proposition 3. Under unanimity, it is without loss of generality to restrict the message space of

the eliciting sender to R = {0̂, 1̂}.

The sender commits to a disclosure policy d : k ∈ {0, 1, 2, 3} → ∆{0̂, 1̂}. Let U(zi, ẑi, ai(0̂, zi), ai(1̂, zi))

be the expected utility of a voter with signal zi, who reports being type ẑi, and votes with prob-

ability ai(0̂, zi)) for the proposal after recommendation 0̂, and with probability ai(1̂, zi)) for the

proposal after recommendation 1̂.

We refer to a disclosure policy d of an eliciting sender as implementable if and only if it satisfies

the obedience and the honesty constraints.

The next observation establishes, that the omniscient sender is strictly better off than the

eliciting sender.

Observation 1. The optimal disclosure policy of the omniscient sender is not implementable when

the sender is eliciting.

It is straightforward that with the optimal disclosure policy in Proposition 2 the g-type will have

a profitable deviation from misreporting b̂ and following the recommendation. Let U(zi, ẑ
′
i, ai(0̂, zi), ai(1̂, zi))

be the expected utility of a voter with signal zi, who reports being type ẑ′i, and votes with prob-

ability ai(0̂, zi)) for the proposal after recommendation 0̂, and with probability ai(1̂, zi)) for the

11



proposal after recommendation 1̂. If the g-type is truthful and obedient, his expected utility is

U(gi, ĝi, 0, 1) =Pr(θ = G|gi)
1

2

−Pr(θ = B|gi)
1

2
Pr(k−i = 2|θ = B)

−Pr(θ = B|gi)
1

2

1∑

k−i=0

d[1̂|θ = B, k−i + 1]Pr(k−i|θ = B).

Consider the following deviation: misreport b̂ and follow the recommendation. Then, a g-type

prevent the event in which all voters have reported a g-signal, the state is θ = B and the sender

sends 1̂ with probability 1. In all other states, the misreporting does not matter for the disclosure

policy of the sender when θ = G because when θ = G the sender sends 1̂ with probability one for

all k ∈ {0, 1, 2, 3}. When θ = B, the g-type voter profits from misreporting since, d[1̂|θ = B, k]

is decreasing k. Hence, the misreporting g-type will receive recommendation 1̂ with a (weakly)

smaller probability than when being honest in the unfavorable state θ = B. This follows because

the disclosure policy is a cutoff policy: misreporting a g-signal gets a more ’favorable’ cutoff than

when reporting truthfully. The voter’s expected payoff when being dishonest is given by

U(gi, b̂i, 0, 1) =Pr(θ = G|g)1
2

−Pr(θ = B|gi)
1

2

2∑

k−i=0

d[1̂|θ = B, k−i] Pr(k−i|θ = B).

Message 1̂ is sent less frequently if θ = B, hence U(gi, b̂i, 0, 1) > U(gi, ĝi, 0, 1). The omniscient

sender is strictly better of than the eliciting sender under information design. This is in line with the

literature. Bergemann and Morris (2016b) show that the implementable set of equilibria is larger

for an omniscient than an eliciting sender in a bank run game with one sender and one receiver.

Similarly, Bobkova (2017) shows that an omniscient sender has a strictly higher probability of selling

a good to a buyer when the sender is omniscient than when she is eliciting.

Since an optimal disclosure policy of the omniscient sender is not implementable for the eliciting

sender, we need to solve his maximization problem by taking into account the honesty constraints.

The obedience constraint of the g-type after being truthful is
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U(gi, ĝi, 0, 1) = Pr(θ = G|gi)
2∑

k−i=0

d[1̂|θ = G, 1 + k−i] Pr(k−i|θ = G) (OB1̂
g)

− Pr(θ = B|gi)
2∑

k−i=0

d[1̂|θ = B, 1 + k−i] Pr(k−i|θ = B) ≥ 0 = U(gi, ĝi, 0, 0).

The obedience constraint of the b-type after being truthful is

U(bi, b̂i, 0, 1) = Pr(θ = G|bi)
2∑

k−i=0

d[1̂|θ = G, k−i] Pr(k−i|θ = G) (OB1̂
b )

− Pr(θ = B|bi)
2∑

k−i=0

d[1̂|θ = B, k−i] Pr(k−i|θ = B) ≥ 0 = U(bi, b̂i, 0, 0).

The honesty constraint of a g-type who is obedient is then given by

U(gi, ĝi, 0, 1) =
2∑

k−i=0

d[1̂|θ = G, 1 + k−i] Pr(k−i|θ = G)p (Hg)

− d[1̂|θ = B, 1 + k−i] Pr(k−i|θ = B)(1− p)

≥
2∑

k−i=0

d[1̂|θ = G, k−i] Pr(k−i|θ = G)p

− d[1̂|θ = B, k−i] Pr(k−i|θ = B)(1− p) = U(gi, b̂i, 0, 1).

The honesty constraint of a b-type who is obedient is then given by

U(bi, b̂i, 0, 1) =

2∑

k−i=0

d[1̂|θ = G, k−i] Pr(k−i|θ = G)(1− p) (Hb)

− d[1̂|θ = B, k−i] Pr(k−i|θ = B)p

≥
2∑

k−i=0

d[1̂|θ = G, k−i + 1]Pr(k−i|θ = G)(1− p)

− d[1̂|θ = B, k−i + 1]Pr(k−i|θ = B)p = U(bi, ĝi, 0, 1).

Note that after recommendation r = 0̂, a voter is never pivotal and hence it does not matter

whether he follows or disobeys the recommendation after misreporting. That is, U(zi, ẑi, 1, 1) =
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U(zi, ẑi, 0, 1). If a voter is not obedient after recommendation 1̂, i.e., ai(1̂, zi)) = 0, then his expected

utility is simply U(zi, ẑi, 0, 0) = U(zi, ẑi, 1, 0) = 0. This takes care of all double-deviations, since

the obedience constraints guarantee a non-negative payoff.

The maximization problem of the unrestricted eliciting sender is

max
d

∑

θ∈{B,G}

3∑

k=0

d[1̂|θ, k] Pr(k|θ) Pr(θ) (13)

s.t. 0 ≤ d[r|θ, k] ≤ 1, ∀r ∈ {0̂, 1̂}, θ ∈ {B,G}, k ∈ {0, 1, 2, 3} (14)

d[1̂|θ, k] + d[0̂|θ, k] = 1 ∀θ ∈ {B,G}, k ∈ {0, 1, 2, 3} (15)

U(gi, ĝi, 0, 1) ≥ U(gi, ĝi, 0, 0) = 0 (OB1̂
g)

U(bi, b̂i, 0, 1) ≥ U(bi, b̂i, 0, 0) = 0 (OB1̂
b )

U(gi, ĝi, 0, 1) ≥ U(gi, b̂i, 0, 1) (Hg)

U(bi, b̂i, 0, 1) ≥ U(bi, ĝi, 0, 1). (Hb)

Lemma 4. If OB1̂
b and Hg hold, then OB1̂

g is satisfied.

Next, we reformulate the Primal of the eliciting sender.

max
{d[1̂|θ,k]≥0} θ∈{B,G}

k∈{0,1,2,3}

∑

θ∈{B,G}

3∑

k=0

d[1̂|θ, k] Pr(k|θ) Pr(θ) (16)

s.t.
2∑

k=0

3− k

3
(d[1̂|θ = B, k] Pr(k|θ = B)− d[1̂|θ = G, k]) Pr(k|θ = G) ≤ 0, (OB1̂

b )

3∑

k=1

k

3
((d[1̂|θ = G, k − 1]− d[1̂|θ = G, k]) Pr(k|θ = G) (Hg)

− (d[1̂|θ = B, k − 1]− d[1̂|θ = B, k]) Pr(k|θ = B)) ≤ 0,

2∑

k=0

3− k

3
((d[1̂|θ = G, k + 1]− d[1̂|θ = G, k]) Pr(k|θ = G) (Hb)

− (d[1̂|θ = B, k + 1]− d[1̂|θ = B, k]) Pr(k|θ = B)) ≤ 0,

d[1̂|θ, k]− 1 ≤ 0 ∀θ ∈ {B,G}, k ∈ {0, 1, 2, 3}. (17)

Observation 2. The information designer’s maximization problem is equivalent to maximizing

14



1
2

(
Pr(1̂|b) + Pr(1̂|g)

)
.

After rewriting 1
2

(
Pr(1̂|b) + Pr(1̂|g)

)
into

3∑

k=0

(
d[1̂|θ = B, k] Pr(k|θ = B)

1

2
+ d[1̂|θ = G, k] Pr(k|θ = G)

1

2

)(
k

3
+

3− k

3

)

︸ ︷︷ ︸
=1

(18)

one can directly see that maximizing the ex-ante type is equivalent to the objective function of the

eliciting designer.

Proposition 4. The optimal disclosure policy of the eliciting information designer for p ≤ p is ∀k,

d[1̂|θ = G, k] = 1, d[1̂|θ = B, k] =
(1− p)

p
,

where p = 1√
2
.

The optimal disclosure policy of the eliciting sender for this interval of accuracy levels does not

condition on the information reported by voters. The eliciting sender send 1̂ in each state of the

world with a constant probability, i.e., independent of how many g-signals there were reported.

Figure 2 shows the optimal disclosure policy of the eliciting sender for p = 0.6.

Proposition 5. The optimal disclosure policy of the eliciting information designer for p ≤ p ≤ p is

d[1̂|θ = B, k] =





(1−p)
p (2p− 1) if k = 0

2(1− p) if k 6= 0

, d[1̂|θ = G, k] =





0 if k = 0

1 if k 6= 0,

(19)

where p = 1√
2

and p = 1+
√
13

6 .

In contrast to the previous proposition, for this intermediate interval of accuracy levels, the

sender starts to use the information reported by voters. That is, when the private information

of voters’ is more accurate, the sender conditions her disclosure policy on the number of reported

g-signals. Moreover, the eliciting sender’s optimal disclosure policy is monotone, i.e., she increases

the probability with which she sends the recommendation 1̂ when the number of reported g-signals

increases. Figure 3 shows the disclosure policy for p = 0.75. If θ = G, with at least one ĝ-report

the sender increases the probability of sending 1̂ from 0 to 1. Similarly, she sends 1̂ in θ = B more

often when there is at least one ĝ-report.
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Figure 2: optimal policy for p = 0.6.
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Figure 3: optimal policy for p = 0.75.
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Figure 3.4: optimal policy p = 0.9.

Proposition 6. The optimal disclosure policy of the eliciting information designer for p ≤ p < 1 is

d[1̂|θ = B, k] =





0 if k = 0,

(p− 1
2
)(3−p)

2(2p−1) if k = 1,

1 if k ∈ {2, 3},

d[1̂|θ = G, k] =





0 if k = 0,

(p− 1
2
)(p+2)

2(2p−1) if k = 1,

1 if k ∈ {2, 3},

for p = 1+
√
13

6 .

As for the previous interval of accuracy levels, the sender makes use of the information reported

by voters: she changes the probability with which she sends 1̂ depending on how many g-signals were

reported. Moreover, the sender uses a monotone disclosure policy. Figure 3.4 shows the optimal

disclosure policy of the eliciting sender for p = 0.9. Note the bang-bang structure of the optimal

disclosure policy: In both states of the world, the eliciting sender recommends 1̂ with certainty

whenever there are at least two ĝ-reports, she mixes between 0̂ and 1̂ when there is exactly one

ĝ-report, and never recommends 1̂ when there is no ĝ-report.
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Proposition 7. For p ≤ p, the information designer’s optimal disclosure policy is equivalent to

maximizing Pr(1̂|b).

Proposition 8. For p ≤ p < 1, the information designer’s optimal disclosure policy is equivalent

to maximizing Pr(1̂|g).

While Proposition 7 says that the information designer maximizes the probability of a b-type to

vote for the proposal if p ≤ p, Proposition 8 says that her optimal disclosure policy is equivalent to

maximizing the probability of a g-type to vote for the proposal if p ≥ p. Note that the expected

utility of the sender is strictly decreasing in the accuracy of the voters’ private signals, that is, the

more convinced the voters, the less scope for persuasion. This is depicted in Figure 5.

Figure 5: expected payoff of the eliciting sender.

6 Non-Eliciting Information Design

In this section the sender cannot ask voters for their private information. In this case the sender

is not able to condition her disclosure policy on the private signals or reports of the voters. The

following lemma restricts the sender’s message set.

Lemma 5. Under unanimity, it is without loss of generality for optimality to restrict the message

space of the non-eliciting sender to R = {0̂, 0̂1, 1̂}.

As before, obedient voters vote for the proposal after 1̂ and for the status quo after 0̂. After

0̂1, only g-type voters vote for the proposal, and the b-types reject the proposal. To give some

intuition for Lemma 3, observe that there exist only only three possible cases that can occur after

17



any recommendation: either both types weakly favor the proposal, only the g-type favors for the

proposal, or both types strictly dislike the proposal. A good-type never votes against the proposal

while a voter with a bad signal strictly prefers the proposal. This is because a voter with a g-

signal is more optimistic about θ = G than a b-type voter. As a consequence, the above three

recommendations are sufficient to capture all the possible cases that can occur.

The disclosure policy of a non-eliciting sender is:

d : Θ → ∆{0̂, 0̂1, 1̂}. (20)

The obedience constraints for each type of voter after 1̂ are given by:

Ui(gi, ai(1̂, gi) = 1) =
∑

θ∈{B,G}
d[1̂|θ] Pr(θ|gi)(1θ=G − 1

2
) ≥ 0 = Ui(gi, ai(1̂, gi) = 0)

Ui(bi, ai(1̂, bi) = 1) =
∑

θ∈{B,G}
d[1̂|θ] Pr(θ|bi)(1θ=G − 1

2
) ≥ 0 = Ui(bi, ai(1̂, bi) = 0)

The obedience constraints for each type of voter after 0̂1 are given by:

Ui(gi, ai(0̂1, gi) = 1) =
∑

θ∈{B,G}
d[0̂1|θ] Pr(k = 3|θ) Pr(θ)(1θ=G − 1

2
)

≥ 0 = Ui(gi, ai(1̂, gi) = 0),

Ui(bi, ai(0̂1, bi) = 1) =
∑

θ∈{B,G}
d[0̂1|θ] Pr(k = 2|θ) Pr(θ)(1θ=G − 1

2
)

≤ 0 = Ui(bi, ai(1̂, bi) = 0).

The sender’s maximization problem becomes
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max
d

∑

θ∈{B,G}
(d[1̂|θ] + d[0̂1|θ] Pr(k = 3|θ)) Pr(θ) (21)

s.t. 0 ≤ d[r|θ] ≤ 1, ∀r ∈ {0̂, 0̂1, 1̂}, θ ∈ {B,G} (22)

d[1̂|θ] + d[0̂1|θ] + d[0̂|θ] = 1 ∀θ ∈ {B,G} (23)

Ui(gi, ai(1̂, gi) = 1) ≥ Ui(gi, ai(1̂, gi) = 0) = 0 (OB1̂
g)

Ui(bi, ai(1̂, bi) = 1) ≥ Ui(bi, ai(1̂, bi) = 0) = 0 (OB1̂
b )

Ui(gi, ai(0̂1, gi) = 1) ≥ Ui(gi, ai(0̂1, gi) = 0) (OB0̂1
g )

Ui(bi, ai(0̂1, bi) = 1) ≤ Ui(bi, ai(0̂1, bi) = 0) (OB0̂1
b )

The next result shows the solution to the above problem of a non-eliciting information designer.

Proposition 9. The optimal disclosure policy of the non-eliciting sender for p ≤ p̃ is

d[1̂|θ = G] = 1, d[1̂|θ = B] =
1− p

p
,

d[0̂|θ = G] = 0, d[0̂|θ = B] =
2p− 1

p
.

The optimal disclosure policy of the non-eliciting sender for p ≥ p̃ is

d[1̂|θ = G] = 1− (2p− 1)(1− p)3

(p4 − (1− p)4)
, d[1̂|θ = B] = 1− (2p− 1)p3

p4 − (1− p)4

d[0̂1|θ = G] =
(2p− 1)(1− p)3

p4 − (1− p)4
, d[0̂1|θ = B] =

(2p− 1)p3

p4 − (1− p)4
,

where p̃ = 4

√
1
2 .

Note that for any p, the optimal disclosure policy of the designer never contains more than two

messages. When comparing the optimal disclosure policy of an eliciting and non-eliciting information

designer, it becomes apparent that they are equivalent for p ≤ p = 1√
2
. The eliciting information

designer has no advantage from asking voters about their private information when the accuracy of

signals is sufficiently small.
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Corollary 6. Let p = 1√
2
. For p ≤ p, the eliciting sender’s optimal disclosure policy is equivalent

to the non-eliciting sender’s optimal disclosure policy.

Figure 6: non-eliciting sender’s expected payoff.

7 Further Remarks

7.1 Eliciting Sender: Comparison to Feddersen and Pesendorfer (1998)

Next, consider the error probabilities of a wrong decision when θ = B (i.e., Pr(a = 1|θ = B)) and

implementing the status quo when θ = G (i.e., Pr(a = 0|θ = B)) under the optimal disclosure

policy d of the sender.

We compare the probabilities of making each type of error in our setting to the corresponding

probabilities of making each type of error in Feddersen and Pesendorfer (1998), where voters have

to act based on their private signals without any coordination device or sender, and the decision

rule is unanimity. Applied to our setting, the following is a Nash equilibrium in their model: a voter

with a g-signal always votes in favor of the reform, and a b-signal voter in favor of the reform with

probability
√
p
(
p+
√

p(1−p)−1
)

p
3
2−(1−p)

3
2

.

First, the probability of choosing the proposal when θ = B in our setting is bigger for all

p ∈ (12 , 1) (Figure 7). Second, the probability of choosing the status quo when θ = G in our setting

is smaller for all p ∈ (12 , 1) (Figure 8).

Taken together, while in Feddersen and Pesendorfer (1998) the proposal is more often imple-

mented when θ = B, in our setting the proposal is more often implemented when θ = G. A
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Figure 7: error probabilities if θ = B. Figure 8: error probabilities if θ = G.

manipulative information designer strictly decreases the probability of rejecting the proposal when

the proposal is efficient while increasing the probability of rejecting the status quo when the status

quo is efficient.

Overall, the ex-ante type (a voter whose private signal has not yet realized) receives a strictly

higher expected payoff in our model than in Feddersen and Pesendorfer (1998).

Proposition 10. Under unanimity, voters have a strictly higher expected utility with an eliciting

information designer than in a symmetric equilibrium as in Feddersen and Pesendorfer (1998).

Hence, even with a manipulative sender, voters are better off in expectations compared to the

situation in which they have to decide on their own under unanimity.

7.2 Omniscient Sender: One Agent with Multiple Signals

In this section we are comparing our previous results from Section 3.1 to the case where the omni-

scient sender faces only one voter which receives a signal s ∈ {0, 1, 2, 3}. One possible interpretation

for this setting is the following: Imagine voters could communicate with each other and exchange

their private signals before the information designer sends her public recommendation. In this case

every voter has exactly the same information, i.e., knows how many g-signals there are. As a conse-

quence, the sender’s problem is equivalent to persuading one representative voter that can possibly

have four different signals which correspond to the number of g-signals. Formally, the sender’s
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problem becomes

max
d

∑

θ∈{B,G}

3∑

k=0

d[1̂|θ, k] Pr(k|θ) Pr(θ) (24)

Pr(θ = G|1̂, s)− 1

2
≥ 0 ∀s ∈ {0, 1, 2, 3}. (OB1̂)

The obedience constraint of the representative voter can be rewritten into

Pr(θ = G|1̂, s)− 1

2
≥ 0 (25)

⇔ Pr(θ = G, 1̂, s)

Pr(1̂, s)
≥ 1

2
(26)

⇔ Pr(1̂|θ = G, s) Pr(θ = G, s)

Pr(1̂, s)
≥ 1

2
(27)

⇔ d[1̂|θ = G, k] Pr(k|θ = G) Pr(θ = G)

Pr(1̂, k)
≥ 1

2
(28)

⇔ d[1̂|θ = G, k] Pr(k|θ = G) ≥ d[1̂|θ = B, k] Pr(k|θ = B) (29)

In contrast to before, the omniscient sender who faces only one agent which has one out of four

signal realizations, has to take four obedience constraints into account, one for each s ∈ {0, 1, 2, 3}.
Due to the perfect alignment of interests of the sender and the representative voter in θ = G, the

omniscient sender will optimally send 1̂ in θ = G with certainty for each s ∈ {0, 1, 2, 3}. Simple

calculations show that the voter’s obedience constraint is slack if the omniscient sender also sends

1̂ with probability one for s ∈ {2, 3}. For s ∈ {0, 1} she will choose d[1̂|θ = B, k] such that the

obedience constraint just binds. That is

3p2(1− p) = d[1̂|θ = B, k = 1]3p(1− p)2 (30)

⇔ d[1̂|θ = B, k = 1] =
(1− p)

p
(31)

and

p3 = d[1̂|θ = B, k = 0](1− p)3 (32)

⇔ d[1̂|θ = B, k = 0] =
(1− p)3

p3
. (33)

Hence, when the omniscient sender faces only one representative voter who knows the number
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of g-signals, she optimally uses the following disclosure policy

d[1̂|θ = G, k] = 1 ∀k, d[1̂|θ = B, k] =





1 if k ∈ {2, 3}

(1−p)
p if k = 1

(1−p)3

p3
if k = 0.

(34)

The omniscient sender’s expected payoff in this case is given by 1
2+

1
2(2−2p). This is always lower

than the omniscient sender’s expected payoff facing three informed voters who cannot communicate.

Since the omniscient sender’s optimal disclosure policy in θ = G is exactly the same in both settings

and the total probability with which she sends 1̂ in θ = B is smaller when voters know the signals

of each other, voters are better off if they know each other’s signals.

8 Conclusion

We study a biased sender who tries to persuade three voters to vote for a proposal by sending public

recommendations. Voters receive some private signals about the quality of the proposal and only

want to approve the proposal if it is of high quality. We characterize the optimal disclosure policy

under unanimity rule of a 1. omniscient, 2. eliciting, and 3. non-eliciting sender. We find that

the eliciting sender can only profit from her ability to ask voters for their private signals when the

accuracy of their private information is sufficiently high. Whenever the accuracy level is below some

lower threshold the eliciting sender is just equally well of as the non-eliciting sender who cannot ask

voters for reports about their private signals.

We show that depending on the accuracy level of the private signals of voters the optimal

disclosure policy of the eliciting sender solves two other related maximization problems: For accuracy

levels below some lower threshold, the eliciting sender maximizes the probability that a pessimistic

voter votes for the proposal. For accuracy levels above some upper threshold, the eliciting sender

maximizes the probability of an optimistic voter approving the proposal. Voters are better off in the

presence of a biased informed designer than in a setting where they have to vote under unanimity

based on their private exogenous information only as in Feddersen and Pesendorfer (1998).

In this work we consider a sender who knows the true quality of the proposal. Extending the

analysis to a restricted sender who is uninformed about the true quality and can only send public

recommendations on the basis of the reports made by voters is a potential avenue for future research.
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A Appendix

A.1 Proof of Proposition 1

Proof. We show that given any outcome of disclosure policy d′, the sender can implement an out-

come equivalent policy d consisting of only two recommendations R = {0̂, 1̂}. Message 0̂ is the

recommendation to vote with probability 1 for the status quo irrespective of the private signal, and

1̂ is the recommendation to vote with probability 1 for proposal irrespective of the private signal.

Consider any arbitrary disclosure policy of the sender d′ : Θ×{0, . . . , 3} → ∆(R′), with R′ being

any arbitrary message set. Denote r′ ∈ R′ an element of the message space. Let a(r′, zi) be the

probability of a voter i with signal zi voting for the proposal after seeing recommendation r′ under

disclosure policy d′.6

Now consider a filtering d of the original information disclosure policy d′ of the following form.

d : R′ ×K → ∆[0̂, 1̂].

The new disclosure policy takes the realized message r′ in the original disclosure policy and the

number of g-signals k of the voters, and maps them into a binary voting recommendation. With

slight abuse of notation, denote by d(1̂|r′, k) the probability of sending recommendation 1̂ in favor

of the proposal.

Consider the following construction for the new disclosure policy d:

d(1̂|r′, k) = a(r′, g)ka(r′, b)3−k. (35)

It is immediate that this policy yields the same expected utility to the sender (if implementable),

as the probability with which she sends signal 1̂ corresponds to the probability with which her

preferred outcome would have been elected under the original disclosure policy d′.

Furthermore, this disclosure policy is designed to be proportional to the original probability of

being pivotal for both voter types. In particular, for zi = b and k ∈ {0, 1, 2}, we have Pr(piv|r, k−i =

k, b) = a(r′, g)ka(r′, b)2−k and hence,

d(1̂|r′, k) = a(r′, b) Pr(piv|r′, k−i = k).

Similarly, for zi = g and k ∈ {0, 1, 2}, we have Pr(piv|r, k−i = k, g) = a(r′, g)k−1a(r′, b)3−k and

6We assume that voters with the same signal react symmetrically to the same recommendation, ai(r
′, zi) =

aj(r
′, zj) if zi = zj . Hence, we drop index i.
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thus,

d(1̂|r′, k + 1) = a(r′, g) Pr(piv|r′, k−i = k).

It is left to show that the obedience constraints are also satisfied under the new disclosure policy

d′. After public recommendation 0̂ no voter is ever pivotal. It suffices to show, that both private

information types have an incentive to follow the recommendation 1̂ by voting for the proposal. The

obedience constraint of a voter with private signal zi is:

Pr(θ = G|1̂, zi, piv) ≥
1

2
∀zi ∈ {gi, bi} (36)

This can be rewritten into

Pr(θ = G|zi) Pr(1̂|θ = G, zi) Pr(piv|1̂, θ = G, zi)︸ ︷︷ ︸
=1

≥ Pr(θ = B|zi) Pr(1̂|θ = B, zi) Pr(piv|1̂, θ = B, zi)︸ ︷︷ ︸
=1

.

Thus, the two obedience constraints can be expressed as

pPr(1̂|θ = G, gi) ≥ (1− p) Pr(1̂|θ = B, gi), (OB1̂
g)

(1− p) Pr(1̂|θ = G, bi) ≥ pPr(1̂|θ = B, bi). (OB1̂
b )

We can invoke the construction of the new disclosure policy d from d′ to rewrite:

Pr(1̂|θ, gi) =
∑

r′∈R′

Pr(1̂, r′|θ, gi) (37)

=
∑

r′∈R′

2∑

k−i=0

Pr(1̂, r′, k−i|θ, gi) (38)

=
∑

r′∈R′

2∑

k−i=0

Pr(k−i|θ, gi) Pr(r′|k−i, θ, gi) Pr(1̂|r′, k−i, θ, gi) (39)

=
∑

r′∈R′

2∑

k−i=0

Pr(k−i|θ, gi) Pr(r′|k−i, θ, gi)d(1̂|r′, k = k−i + 1) (40)
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Analogously, for zi = b we have

Pr(1̂|θ, bi) =
∑

r′∈R′

2∑

k−i=0

Pr(k−i|θ, bi) Pr(r′|k−i, θ, bi)d(1̂|r′, k = k−i) (41)

We can use this to rewrite the obedience constraints under the new disclosure policy:

∑

r′∈R′

2∑

k−i=0

pPr(k−i|θ = G, gi) Pr(r
′|k−i, θ = G, gi)d(1̂|r′, k = k−i + 1)

≥
∑

r′∈R′

2∑

k−i=0

(1− p) Pr(k−i|θ = B, gi) Pr(r
′|k−i, θ = B, gi)d(1̂|r′, k = k−i + 1)

⇔
∑

r′∈R′

2∑

k−i=0

d(1̂|r′, k = k−i + 1)[pPr(k−i|θ = G, gi) Pr(r
′|k−i, θ = G, gi)

−(1− p) Pr(k−i|θ = B, gi) Pr(r
′|k−i, θ = B, gi)] ≥ 0. (OB1̂

g)

Using the construction of the new disclosure policy, we can rewrite

∑

r′∈R′

a(r′, gi)
2∑

k−i=0

Pr(piv|r, k−i, bi)[pPr(k−i|θ = G, gi) Pr(r
′|k−i, θ = G, gi)

−(1− p) Pr(k−i|θ = B, gi) Pr(r
′|k−i, θ = B, gi)] ≥ 0. (42)

Analoguously, for zi = b we have

∑

r′∈R′

a(r′, bi)
2∑

k−i=0

Pr(piv|r′, k−i, bi)[(1− p) Pr(k−i|θ = G, bi) Pr(r
′|k−i, θ = G, bi)

−pPr(k−i|θ = B, bi) Pr(r
′|k−i, θ = B, bi)] ≥ 0. (OB1̂

b )

Note that the original disclosure policy d′ is implementable, i.e. the obedience constraint holds

for each type zi ∈ {g, b} and each message r′ ∈ R′, when ai(r
′, zi) > 0. That is,
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2∑

k−i=0

Pr(piv|r′, k−i, θ = G)[pPr(k−i|θ = G, gi) Pr(r
′|k−i, θ = G, gi)

−(1− p) Pr(k−i|θ = B, gi) Pr(r
′|k−i, θ = B, gi)] ≥ 0. (OBr′

g )

2∑

k−i=0

Pr(piv|r′, k−i, θ = G)[(1− p) Pr(k−i|θ = G, bi) Pr(r
′|k−i, θ = G, bi)

−pPr(k−i|θ = B, bi) Pr(r
′|k−i, θ = B, bi)] ≥ 0. (OBr′

b )

The inner sums in the obedience constraints under the new disclosure policy d, OB1̂
b and OB1̂

g ,

correspond to the original obedience constraints, OBr′
g and OBr′

b , under the former disclosure policy

d′. This establishes that the filtering d satisfies both obedience constraints and yields the same payoff

to the designer.

�

A.2 Proof of Lemma 1

Proof. We prove this by contradiction. Assume that the disclosure policy d is optimal and that

there exists k′ such that d[1̂|θ = G, k′] 6= 1. Then, construct a new disclosure policy d′ that is equal

to the old disclosure policy d for all k 6= k′ and θ. For k = k′ and θ = G, it sends recommendation 1̂

with probability 1. That is d′[1̂|θ = B, k] = d[1̂|θ = B, k] ∀k′, d′[1̂|θ = G, k] = d[1̂|θ = G, k] ∀k′ 6= k

and d′[1̂|k′] = 1 6= d[1̂|k′]. Next we check whether the new disclosure policy d′ still fulfills the voters’

obedience constraints. Note that if the recommendation 0̂ was sent, no voter is ever pivotal, which

is why this doesn’t influence the obedience constraints. Sending the recommendation 1̂ for any k

when θ = G increases the left hand side of the voters’ obedience constraints and thus makes them

easier to satisfy. The new disclosure policy relaxed the voters’ obedience constraints and sends 1̂

with a strictly higher probability.

�

A.3 Proof of Proposition 2

Proof. The only part of above proposition that we have not proven is d[1̂|θ = B, k 6= 3]. In the fol-

lowing we will use the greedy algorithm (Dantzig, 1957) to solve this problem. We have a fractional
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knapsack problem of the following form:

Find 0 ≤ xk = d[1̂|θ = B, k] ≤ 1 for k ∈ {0, 1, 2} s.t.

1)
2∑

k=0

xkwk ≤ (1−p)
p holds and

2)
2∑

k=0

xkvk is maximized,

where wk = 3−k
3 Pr(k|θ = B) and vk = Pr(k|θ = B) · 1. We refer to wk as the weight and to vk as

the value of k.

Next we calculate the value-per-weight ratio ρk = vk
wk

for k ∈ {0, 1, 2}:

ρk =
Pr(k|θ = B)

3−k
3 Pr(k|θ = B)

=
3

3− k
(43)

Variable ρk is increasing in k. Hence, if we sort the k’s by decreasing ρk, we get the following

order 2, 1, 0. How much probability mass we can place on each k until the obedience constraint of

the b-signal voter is binding, will depend on the accuracy level of the voters’ private signals p.

�

A.4 Proof of Proposition 3

Proof. Consider the same filtering of the original disclosure policy d′ into d as in the proof of

Proposition 1:

d(1̂|r′, k) = a(r′, g)ka(r′, b)3−k.

It remains to be shown that this disclosure policy d satisfies the honesty constraints for each type.

The proof of optimality for the designer, and the validity of the obedience constraints were already

established in Proposition 1. We prove that the above filtering satisfies the honesty constraints of

the g-type. The argument for the b-type is accordingly, and therefore omitted.

Expected utility in equilibrium with d and d′. First, we show that the old disclosure policy

d′ and new disclosure policy d yields exactly the same expected utility to the g-type in equilibrium,
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when reporting truthfully. Let R be the message set of the designer with d′.7

EU(gi, ĝi; d
′) =

∑

r∈R

2∑

k−i=0

Pr(k−i|gi) Pr(r|gi, ĝi, k−i; d
′)ai(r, g)

k−i+1ai(r, b)
2−k−iq(r, gi, ĝi, k−i), (44)

where q(r, gi, ĝi, k−i) = E [θ|r, gi, ĝi, k−i] − 1
2 is the expected net utility from implementing the

proposal if a g-type voter reported truthfully, k−i others also have a g-signal and the designer sent

recommendation r. The factor ai(r, g)
k−i+1ai(r, b)

2−k−i accounts for the probability of being pivotal

(ai(r, g)
k−iai(r, b)

2−k−i) times the probability of the g-type voter i voting for the reform ai(r, g) in

equilibrium.

Next, consider the expected utility under the new disclosure policy d. Whenever the designer

sends recommendation 1̂ (which happens with probability ai(r, g)
k−i+1ai(r, b)

2−k−i if recommenda-

tion r would have been sent in d′) the reform is implemented.

EU(gi, ĝi; d) =
∑

r∈R

2∑

k−i=0

Pr(k−i|gi) Pr(r|gi, ĝi, k−i; d
′)d(1̂|r, k = k−i + 1)q(r, gi, ĝi, k−i)

=
∑

r∈R

2∑

k−i=0

Pr(k−i|gi) Pr(r|gi, ĝi, k−i; d
′)ai(r, g)

k−i+1ai(r, b)
2−k−iq(r, gi, ĝi, k−i). (45)

This coincides with the utility under the original disclosure policy in Equation 44, EU(gi, ĝi; d) =

EU(gi, ĝi; d
′).

Expected utility from misreporting in d′. Next, consider the utility of a g-voter who reports

b̂ in the original disclosure policy d′. To account for double deviations, we denote by ãi(r, gi, b̂i) his

action after observing r when reporting b̂.

EU(gi, b̂i; d
′) =

∑

r∈R
max

ãi(r,gi,b̂i)∈[0,1]
ãi(r, gi, b̂i)· (46)

2∑

k−i=0

Pr(k−i|gi) Pr(r|gi, b̂i, k−i; d
′)ai(r, g)

k−iai(r, b)
2−k−iq(r, gi, b̂i, k−i).

For simplicity of notation, denote by EU(r|gi, b̂i) the optimal utility after misreporting and

observing recommendation r. Note that EU(r|gi, b̂i) ≥ 0 for all r, as a voter can always derive zero

7For convenience of notation, we assume that R is finite.
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utility by voting against the reform. Hence,

EU(gi, b̂i; d
′) =

∑

r∈R
EU(r|gi, b̂i). (47)

Expected utility from misreporting in d. Finally, consider the expected utility after misre-

porting in the new disclosure policy d. The voter optimizes over his action ã(1̂, gi, b̂i) after recom-

mendation 1̂ after misreporting. For simplicity, we assume that the voter votes for the reform with

probability ã(1̂, gi, b̂i) after both recommendations 1̂ and 0̂, as his utility after recommendation 0̂

yields utility 0 irrespective of his action. The difference to d′ is that he might not know which r

lead to the recommendation 1̂.

EU(gi, b̂i; d) = max
ã(1̂,gi,b̂i)∈[0,1]

ã(1̂, gi, b̂i)·

∑

r∈R

2∑

k−i=0

Pr(k−i|gi) Pr(r|gi, b̂i, k−i; d
′) ai(r, g)

k−iai(r, b)
3−k−i

︸ ︷︷ ︸
=Pr(1̂|r,k=k−i)

q(r, gi, b̂i, k−i). (48)

If the voter knew which r of the original disclosure policy d′ led to recommendation 1̂, he would

be better off: he could adapt his voting decision ã(1̂, r, gi, ĝi) to each r (instead of choosing the same

ã(1̂, gi, ĝi) for all r that led to 1̂). Thus,

EU(gi, b̂i; d) ≤
∑

r∈R
max

ã(1̂,r,gi,b̂i)∈[0,1]
ã(1̂, r, gi, b̂i)·

2∑

k−i=0

Pr(k−i|gi) Pr(r|gi, b̂i, k−i; d
′) ai(r, g)

k−iai(r, b)
3−k−i

︸ ︷︷ ︸
=d(1̂|r,k=k−i)

q(r, gi, b̂i, k−i) (49)

=
∑

r∈R
ai(r, b) max

ã(1̂,r,gi,b̂i)∈[0,1]
ã(1̂, r, gi, b̂i)·

2∑

k−i=0

Pr(k−i|gi) Pr(r|gi, b̂i, k−i; d
′)ai(r, g)

k−iai(r, b)
2−k−iq(r, gi, b̂i, k−i), (50)

where the last inequality follows by putting the non-negative factor ai(r, b) outside the maximum.

But then note that the maximization problem point-wise after each r is exactly the same as in

Equation 46 for the original disclosure policy, EU(r|gi, b̂i), which is non-negative. Hence, the

optimal deviation utility is bounded above by
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EU(gi, b̂i; d) ≤
∑

r∈R
ai(r, b)︸ ︷︷ ︸
∈[0,1]

EU(r|gi, b̂i)︸ ︷︷ ︸
≥0

(51)

≤
∑

r∈R
EU(r|gi, b̂i) (52)

= EU(gi, b̂i; d
′). (53)

The payoff after a misreport and an optimal best response is weakly lower than in the original

disclosure policy. Note that the original disclosure policy d′ by assumption satisfied all constraints,

including the honesty constraint of the g-type. Hence, we established that the honesty constraint

of the g-type holds by proving

EU(gi, ĝi; d) = EU(gi, ĝi; d
′) ≥ EU(gi, b̂i; d

′) ≥ EU(gi, b̂i; d).

�

A.5 Proof of Lemma 4

Proof. First, we rewrite the honesty constraint of g-type to sum over k instead of k−i.

3∑

k=1

k

3
((d[1̂|θ = G, k − 1]− d[1̂|θ = G, k]) Pr(k|θ = G) (Hg)

− (d[1̂|θ = B, k − 1]− d[1̂|θ = B, k]) Pr(k|θ = B)) ≤ 0

⇔
3∑

k=1

k

3
(d[1̂|θ = B, k] Pr(k|θ = B)− d[1̂|θ = G, k]) Pr(k|θ = G)

︸ ︷︷ ︸
OB1̂

g

≤
3∑

k=1

k

3
(d[1̂|θ = B, k − 1] Pr(k|θ = B)− d[1̂|θ = G, k − 1] Pr(k|θ = G)

︸ ︷︷ ︸
∗

.

Observe that we have rewritten Hg such that the LHS of Hg is just OB1̂
g . We rewrite (∗), i.e.,

the RHS of Hg, into
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2∑

k=0

k + 1

3
(d[1̂|θ = B, k] Pr(k + 1|θ = B)− d[1̂|θ = G, k] Pr(k + 1|θ = G). (54)

Next, we subtract
2∑

k=0

3−k
3 (d[1̂|θ = B, k] Pr(k|θ = B)− d[1̂|θ = G, k]) Pr(k|θ = G) ≤ 0, which is

just OB(b) ≤ 0 rewritten, and get

2∑

k=0

(d[1̂|θ = B, k](
3− k

3
Pr(k + 1|θ = B)− k

3
Pr(k|θ = B)) (55)

− d[1̂|θ = G, k](
3− k

3
Pr(k + 1|θ = G)− k

3
Pr(k|θ = G)).

Rewriting yields

2∑

k=0

(d[1̂|θ = B, k]p2−k(1− p)k(1− 2p)− d[1̂|θ = G, k]pk(1− p)2−k(2p− 1) ≤ 0.

Thus, we have that for all k ≤ 2 the expression above is negative. Note that (∗) − OB1̂
b is the

sum of these negative terms and is thus also negative. Moreover, OB1̂
g ≤ 0 implies that (∗) ≤ 0.

Since OB1̂
g ≤ (∗) by equation (54), we have that OB1̂

g ≤ 0, which proves the lemma.

�

A.6 Proof of Proposition 4

Proof. First, we take the Dual of the Primal and get

min
λ
OB1̂

b

≥0, λHg≥0, λHb
≥0

{µθ, k ≥ 0}θ∈{B,G}, k∈{0,1,2,3}

3∑

k=0

µθ=B, k +
3∑

k=0

µθ=G, k (56)

s.t. p3−k(1− p)k
1

2

(
−
(
3

k

)
+ (λ

OB1̂
b

+ λHb
)

(
2

k

)
+ λHg

(
2

k − 1

))
(57)

− λHgp
2−k(1− p)k+1

(
2

k

)
− λHb

p4−k(1− p)k−1

(
2

k − 1

)

+ µθ=B, k ≥ 0 ∀k ∈ {0, 1, 2, 3}
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pk(1− p)3−k 1

2

(
−
(
3

k

)
− (λ

OB1̂
b

− λHb
)

(
2

k

)
− λHg

(
2

k − 1

))
(58)

+ λHgp
k+1(1− p)2−k

(
2

k

)
+ λHb

pk−1(1− p)4−k

(
2

k − 1

)

+ µθ=G, k ≥ 0 ∀k ∈ {0, 1, 2, 3}

Let {d[1̂|θ, k] ≥ 0}θ∈{B,G},k∈{0,1,2,3} be a feasible disclosure policy for the primal, and {~λ, ~µ}
feasible vector for the dual. Necessary and sufficient conditions for them to be optimal are

λ
OB1̂

b

·
(

2∑

k=0

(
2

k

)
(d[1̂|θ = B, k] Pr(k|θ = B)

1

2
− d[1̂|θ = G, k] Pr(k|θ = G)

1

2
)

)
= 0 (59)

λHg · (
3∑

k=1

(
2

k − 1

)
((d[1̂|θ = G, k − 1]− d[1̂|θ = G, k]) Pr(k|θ = G)

1

2
(60)

− (d[1̂|θ = B, k − 1]− d[1̂|θ = B, k]) Pr(k|θ = B)
1

2
)) = 0

λHb
· (

2∑

k=0

(
2

k

)
((d[1̂|θ = G, k + 1]− d[1̂|θ = G, k]) Pr(k|θ = G)

1

2
(61)

− (d[1̂|θ = B, k + 1]− d[1̂|θ = B, k]) Pr(k|θ = B)
1

2
)) = 0

µθ=B, k ·
(
d[1̂|θ = B, k]− 1

)
= 0 ∀k ∈ {0, 1, 2, 3} (62)

µθ=G, k ·
(
d[1̂|θ = G, k]− 1

)
= 0 ∀k ∈ {0, 1, 2, 3} (63)

d[1̂|θ = B, k] · (p3−k(1− p)k
(
−
(
3

k

)
+ (λ

OB1̂
b

+ λHb
)

(
2

k

)
+ λHg

(
2

k − 1

))
(64)

− λHgp
2−k(1− p)k+1

(
2

k

)
− λHb

p4−k(1− p)k−1

(
2

k − 1

)

+ µθ=B, k) = 0 ∀k ∈ {0, 1, 2, 3}
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d[1̂|θ = G, k] · (pk(1− p)3−k

(
−
(
3

k

)
− (λ

OB1̂
b

+ λHb
)

(
2

k

)
− λHg

(
2

k − 1

))
(65)

+ λHgp
k+1(1− p)2−k

(
2

k

)
+ λHb

pk−1(1− p)4−k

(
2

k − 1

)

+ µθ=G, k) = 0 ∀k ∈ {0, 1, 2, 3}.

The dual variables

{~λ, ~µ} =




λ
OB1̂

b

= 1
p

λHg = 1

λHb
= 0

µθ=B,k = 0 ∀k ∈ {0, . . . , 3}

µθ=G, k = pk−1(1− p)2−k ·
(
p(1− p)

((
3
k

)
+
(

2
k−1

))
+ (1− p− p2)

(
2
k

))

∀k ∈ {0, 1, 2, 3}




(66)

and the disclosure policy d[1̂|θ = G] = 1, d[1̂|θ = B] = (1−p)
p fulfill the above complementary

slackness conditions for all p ≤ 1√
2
.

After inserting d[1̂|θ = G] = 1 and d[1̂|θ = B] = 1−p
p in 59-61 and 62, one can easily see that the

terms in brackets are zero. Thus, we get that λ
OB1̂

b

≥ 0, λHg ≥ 0, λHb
≥ 0 and µθ=G,k ≥ 0 ∀ k ∈

{0, . . . , 3}. Since d[1̂|θ, k] > 0 ∀ θ ∈ {B,G}, k ∈ {0, 1, 2, 3}, the terms in brackets must be zero.

By using that

(
p3
(
−1 + λ

OB1̂
b

+ λHb

)
− λHgp

2(1− p) + µθ=B, k=0

)
= 0 and (67)

(
(1− p)3

(
−1 + λHg

)
− λHb

p(1− p)2 + µθ=B, k=3

)
= 0 (68)

we can solve for λ
OB1̂

b

= 1
2p and λHb

=
(1−p)(λHg−1)

p . For λHb
≥ 0 we need that λHg ≥ 1

2 . Choosing

λHg = 1
2 implies that λHb

= 0. Inserting these values for λ
OB1̂

b

, λHg and λHb
and solving for

µθ=G, k=0 yields µθ=G, k=0 = (1 − p)2
(
1−2p2

p

)
, which is ≥ 0 if and only if 0.5 < p ≤ 1√

2
. For
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k ∈ {1, 2} we get that

µθ=G, k = pk−1(1− p)2−k ·
(
p(1− p)(

(
3

k

)
+

(
2

k − 1

)
) + (1− p− p2)

(
2

k

))
≥ 0 (69)

for all p ≤ 1√
2
.

�

A.7 Proof of Proposition 5

Proof. The disclosure policy in Proposition 5 and the dual variables

{~λ, ~µ} =




λ
OB1̂

b

= 1
p

λHg = 1

λHb
= 0

µθ=B,k = 0 ∀k ∈ {0, . . . , 3}

µθ=G,k=0 = 0

µθ=G,k=1 = 2(1− p)(1 + p− 3p2)

µθ=G, k=2 = p(1− p)(5p+ 1)− p3

µθ=G, k=3 = 2p3




(70)

fulfill the above complementary slackness conditions for all p ≤ p.

�

A.8 Proof of Proposition 6

Proof. The disclosure policy in Proposition 6 and the dual variables
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{~λ, ~µ} =




λ
OB1̂

b

= 3(3p2−3p+1)
2(2p−1)

λHg = 3p(1−p)
2p−1

λHb
= 0

µθ=B,k = 0 ∀k ∈ {0, 1}

µθ=B,k=2 =
3p(1−p)2(3p(1+p)−1)

2(2p−1)

µθ=B,k=3 = (1− p)3
(
p(3p−1)−1

2p−1

)

µθ=G,k = 0 ∀k ∈ {0, 1}

µθ=G,k=2 =
3p2(1−p)(p(5−3p)−1)

2(2p−1)

µθ=G,k=3 = p3
(
p(5−3p)−1

2p−1

)




(71)

fulfill the above complementary slackness conditions for all p ≤ p < 1.

�

A.9 Proof of Proposition 7

Proof. We prove this proposition by the standard Primal-Dual-technique. The primal of the related

problem of maximizing Pr(1̂|b) is given by:

max
{d[1̂|θ,k]≥0} θ∈{B,G}

k∈{0,1,2,3}

3∑

k=0

(
d[1̂|θ = B, k] Pr(k|θ = B)

1

2
+ d[1̂|θ = G, k] Pr(k|θ = G)

1

2

)
3− k

3
(72)

s.t.
2∑

k=0

3− k

3
(d[1̂|θ = B, k] Pr(k|θ = B)− d[1̂|θ = G, k] Pr(k|θ = G)) ≤ 0 (OB1̂

b )

3∑

k=1

k

3
((d[1̂|θ = G, k − 1]− d[1̂|θ = G, k]) Pr(k|θ = G) (Hg)

− (d[1̂|θ = B, k − 1]− d[1̂|θ = B, k]) Pr(k|θ = B)) ≤ 0

2∑

k=0

3− k

3
((d[1̂|θ = G, k + 1]− d[1̂|θ = G, k]) Pr(k|θ = G) (Hb)

− (d[1̂|θ = B, k + 1]− d[1̂|θ = B, k]) Pr(k|θ = B)) ≤ 0

d[1̂|θ, k]− 1 ≤ 0 ∀θ ∈ {B,G}, k ∈ {0, 1, 2, 3} (73)
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Then, we take the Dual of the Primal and get:

min
λ
OB1̂

b

≥0, λHg≥0, λHb
≥0

{µθ, k ≥ 0}θ∈{B,G}, k∈{0,1,2,3}

3∑

k=0

µθ=B, k +

3∑

k=0

µθ=G, k (74)

s.t. p3−k(1− p)k
1

2

(
−3− k

3

(
3

k

)
+ (λ

OB1̂
b

+ λHb
)

(
2

k

)
+ λHg

(
2

k − 1

))
(75)

− λHgp
2−k(1− p)k+1

(
2

k

)
− λHb

p4−k(1− p)k−1

(
2

k − 1

)

+ µθ=B, k ≥ 0 ∀k ∈ {0, 1, 2, 3}

pk(1− p)3−k 1

2

(
−3− k

3

(
3

k

)
− (λ

OB1̂
b

− λHb
)

(
2

k

)
− λHg

(
2

k − 1

))
(76)

+ λHgp
k+1(1− p)2−k

(
2

k

)
+ λHb

pk−1(1− p)4−k

(
2

k − 1

)

+ µθ=G, k ≥ 0 ∀k ∈ {0, 1, 2, 3}.

Let {d[1̂|θ, k] ≥ 0}θ∈{B,G},k∈{0,1,2,3} be a feasible disclosure policy for the primal, and {~λ, ~µ}
feasible vector for the dual. Necessary and sufficient conditions for them to be optimal are

λ
OB1̂

b

·
(

2∑

k=0

3− k

3
(d[1̂|θ = B, k] Pr(k|θ = B)

1

2
− d[1̂|θ = G, k] Pr(k|θ = G)

1

2
)

)
= 0 (77)

λHg · (
3∑

k=1

k

3
((d[1̂|θ = G, k − 1]− d[1̂|θ = G, k]) Pr(k|θ = G)

1

2
(78)

− (d[1̂|θ = B, k − 1]− d[1̂|θ = B, k]) Pr(k|θ = B)
1

2
)) = 0

λHb
· (

2∑

k=0

3− k

3
((d[1̂|θ = G, k + 1]− d[1̂|θ = G, k]) Pr(k|θ = G)

1

2
(79)

− (d[1̂|θ = B, k + 1]− d[1̂|θ = B, k]) Pr(k|θ = B)
1

2
)) = 0

µθ=B, k ·
(
d[1̂|θ = B, k]− 1

)
= 0 ∀k ∈ {0, 1, 2, 3} (80)

µθ=G, k ·
(
d[1̂|θ = G, k]− 1

)
= 0 ∀k ∈ {0, 1, 2, 3} (81)

d[1̂|θ = B, k] · (p3−k(1− p)k
1

2

(
−3− k

3

(
3

k

)
+ (λ

OB1̂
b

+ λHb
)

(
2

k

)
+ λHg

(
2

k − 1

))
(82)
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− λHgp
2−k(1− p)k+1

(
2

k

)
− λHb

p4−k(1− p)k−1

(
2

k − 1

)

+ µθ=B, k) = 0 ∀k ∈ {0, 1, 2, 3}

d[1̂|θ = G, k] · (pk(1− p)3−k 1

2

(
−3− k

3

(
3

k

)
− (λ

OB1̂
b

+ λHb
)

(
2

k

)
− λHg

(
2

k − 1

))
(83)

+ λHgp
k+1(1− p)2−k

(
2

k

)
+ λHb

pk−1(1− p)4−k

(
2

k − 1

)

+ µθ=G, k) = 0 ∀k ∈ {0, 1, 2, 3}

The disclosure policy

d[1̂|θ = G] = 1, d[1̂|θ = B] =
(1− p)

p
(84)

and the dual variables

{~λ, ~µ} =




λ
OB1̂

b

= 1

λHg = 0

λHb
= 0

µθ=B,k = 0 ∀k ∈ {0, . . . , 3}

µθ=G,k=0 = 2(1− p)3

µθ=G, k = 4pk(1− p)3−k ∀k ∈ {1, 2}

µθ=G, k=3 = 0




(85)

fulfill the above complementary slackness conditions for all p ∈ (12 , 1].

�

A.10 Proof of Proposition 8

Proof. The primal of the related problem of maximizing Pr(1̂|g) is given by:
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max
{d[1̂|θ,k]≥0} θ∈{B,G}

k∈{0,1,2,3}

3∑

k=0

(
d[1̂|θ = B, k] Pr(k|θ = B)

1

2
+ d[1̂|θ = G, k] Pr(k|θ = G)

1

2

)
k

3
(86)

s.t.
2∑

k=0

3− k

3
(d[1̂|θ = B, k] Pr(k|θ = B)

1

2
− d[1̂|θ = G, k]) Pr(k|θ = G)

1

2
≤ 0 (OB1̂

b )

3∑

k=1

k

3
((d[1̂|θ = G, k − 1]− d[1̂|θ = G, k] Pr(k|θ = G)

1

2
) (Hg)

− (d[1̂|θ = B, k − 1]− d[1̂|θ = B, k]) Pr(k|θ = B)
1

2
)) ≤ 0

2∑

k=0

3− k

3
((d[1̂|θ = G, k + 1]− d[1̂|θ = G, k]) Pr(k|θ = G)

1

2
(Hb)

− (d[1̂|θ = B, k + 1]− d[1̂|θ = B, k]) Pr(k|θ = B)
1

2
) ≤ 0

d[1̂|θ, k]− 1 ≤ 0 ∀θ ∈ {B,G}, k ∈ {0, 1, 2, 3} (87)

Then, we take the Dual of the Primal and get

min
λ
OB1̂

b

≥0, λHg≥0, λHb
≥0

{µθ, k ≥ 0}θ∈{B,G}, k∈{0,1,2,3}

3∑

k=0

µθ=B, k +

3∑

k=0

µθ=G, k (88)

s.t. p3−k(1− p)k
1

2

(
−k

3

(
3

k

)
+ (λ

OB1̂
b

+ λHb
)

(
2

k

)
+ λHg

(
2

k − 1

))
(89)

− λHgp
2−k(1− p)k+1

(
2

k

)
− λHb

p4−k(1− p)k−1

(
2

k − 1

)

+ µθ=B, k ≥ 0 ∀k ∈ {0, 1, 2, 3}

pk(1− p)3−k 1

2

(
−k

3

(
3

k

)
− (λ

OB1̂
b

− λHb
)

(
2

k

)
− λHg

(
2

k − 1

))
(90)

+ λHgp
k+1(1− p)2−k

(
2

k

)
+ λHb

pk−1(1− p)4−k

(
2

k − 1

)

+ µθ=G, k ≥ 0 ∀k ∈ {0, 1, 2, 3}.

Let {d[1̂|θ, k] ≥ 0}θ∈{B,G},k∈{0,1,2,3} be a feasible disclosure policy for the primal, and {~λ, ~µ}
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feasible vector for the dual. Necessary and sufficient conditions for them to be optimal are

λ
OB1̂

b

·
(

2∑

k=0

3− k

3
(d[1̂|θ = B, k] Pr(k|θ = B)

1

2
− d[1̂|θ = G, k] Pr(k|θ = G)

1

2
)

)
= 0

λHg · (
3∑

k=1

k

3
((d[1̂|θ = G, k − 1]− d[1̂|θ = G, k]) Pr(k|θ = G)

1

2

− (d[1̂|θ = B, k − 1]− d[1̂|θ = B, k]) Pr(k|θ = B)
1

2
)) = 0

λHb
· (

2∑

k=0

3− k

3
((d[1̂|θ = G, k + 1]− d[1̂|θ = G, k]) Pr(k|θ = G)

1

2
(91)

− (d[1̂|θ = B, k + 1]− d[1̂|θ = B, k]) Pr(k|θ = B)
1

2
)) = 0

µθ=B, k ·
(
d[1̂|θ = B, k]− 1

)
= 0 ∀k ∈ {0, 1, 2, 3}

µθ=G, k ·
(
d[1̂|θ = G, k]− 1

)
= 0 ∀k ∈ {0, 1, 2, 3}

d[1̂|θ = B, k] · (p3−k(1− p)k
1

2

(
−k

3

(
3

k

)
+ (λ

OB1̂
b

+ λHb
)

(
2

k

)
+ λHg

(
2

k − 1

))

− λHgp
2−k(1− p)k+1

(
2

k

)
− λHb

p4−k(1− p)k−1

(
2

k − 1

)

+ µθ=B, k) = 0 ∀k ∈ {0, 1, 2, 3}

d[1̂|θ = G, k] · (pk(1− p)3−k 1

2

(
−k

3

(
3

k

)
− (λ

OB1̂
b

+ λHb
)

(
2

k

)
− λHg

(
2

k − 1

))

+ λHgp
k+1(1− p)2−k

(
2

k

)
+ λHb

pk−1(1− p)4−k

(
2

k − 1

)

+ µθ=G, k) = 0 ∀k ∈ {0, 1, 2, 3}.

The disclosure policy

d[1̂|θ = B, k] =





0 if k = 0

(p− 1
2
)(3−p)

2(2p−1) if k = 1

1 if k ∈ {2, 3}

, d[1̂|θ = G, k] =





0 if k = 0

(p− 1
2
)(3p2+5p−2)

2(6p2−5p+1)
if k = 1

1 if k ∈ {2, 3}.

(92)

and the dual variables
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{~λ, ~µ} =




λ
OB1̂

b

= 1+3p(p−1)
2(2p−1)

λHg = p(1−p)
2p−1

λHb
= 0

µθ=B,k = 0 ∀k ∈ {0, 1}

µθ=B,k=2 =
3p(1−p)23(p2+p−1)

2(2p−1)

µθ=B,k=3 = (1− p)3
(
p2+p−1
2p−1

)

µθ=G,k = 0 ∀k ∈ {0, 1}

µθ=G,k=2 =
3p2(1−p)(3p−p2−1)

2(2p−1)

µθ=G,k=3 = p3
(
3p−p2−1
2p−1

)




(93)

fulfill the above complementary slackness conditions for all p ≤ p < 1.

�

A.11 Proof of Lemma 5

Proof. Let the designer follow a disclosure policy d′, that sends messages r′ ∈ R′, and voters

responding optimally to this disclosure policy. Denote by ai(r
′, zi) the probability, that voter i with

private signal zi ∈ {g, b} votes 1̂ after receiving message r′.

The first step is to show, that the g-type is always weakly more optimistic than the b-type for

any signal that is sent with strictly positive probability in some state θ. The following formulation

makes use of the fact that Pr(r′|θ, zi) = Pr(r′|θ) and Pr(piv|r′, θ, zi) = Pr(piv|r′, θ), as the designer

cannot use or elicit the private information of the agents.

Lemma 7. Under any non-eliciting disclosure policy, in any equilibrium, the g-type is more opti-

mistic than the b-type: Pr(θ = G|r′, g, piv) ≥ Pr(θ = G|r′, b, piv).
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Proof.

Pr(θ = G|r′, g, piv)

=
Pr(θ = G|g) Pr(r′|θ = G) Pr(piv|r′, θ = G)

Pr(θ = G|g) Pr(r′|θ = G) Pr(piv|r′, θ = G) + Pr(θ = B|g) Pr(r′|θ = B) Pr(piv|r′, θ = B)

=
1
2
pPr(r′|θ = G) Pr(piv|r′, θ = G)

pPr(r′|θ = G) Pr(piv|r′, θ = G) + 1
2
(1− p) Pr(r′|θ = B) Pr(piv|r′, θ = B)

≥
1
2
(1− p) Pr(r′|θ = G) Pr(piv|r′, θ = G)

(1− p) Pr(r′|θ = G) Pr(piv|r′, θ = G) + 1
2
pPr(r′|θ = B) Pr(piv|r′, θ = B)

= Pr(θ = G|r′, b, piv)

�

Using Lemma 7, the following is a complete partition of the designer’s messages:

1. R′(0̂) := {r′ ∈ R′ : ai(r′, g) = ai(r
′, b) = 0}

2. R′(1̂) := {r′ ∈ R′ : ai(r′, g) > 0 ∧ ai(r
′, b) > 0}

3. R′(0̂1) := {r′ /∈ R′(0̂) ∪R′(1̂)}.

Consider the following alternative policy d, that takes the old disclosure policy d′ and maps it

into a message space R = {0̂, 0̂1, 1̂}, for all states θ ∈ {B,G}:

d(0̂|θ, r′) =





1 if r′ ∈ R′(0̂)

1− ai(r
′, g)n−1 if r′ ∈ R′(0̂1)

1− Pr(piv|r′, θ) if r′ ∈ R′(1̂)

0 otherwise.

(94)

d(0̂1|θ, r′) =




ai(r

′, g)n−1 if r′ ∈ R′(0̂1)

0 otherwise.
(95)

d(1̂|θ, r′) =




Pr(piv|θ, r′) if r′ ∈ R′(1̂)

0 otherwise.
(96)

Consider the following equilibrium under the new disclosure policy d:
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ai(r, b) =





0 if r = 0̂

0 if r = 0̂1

1 if r = 1̂

and ai(r, g) =





0 if r = 0̂

1 if r = 0̂1

1 if r = 1̂

(97)

First, we establish that the above policy together with the voting behavior in Equation 97 is

an equilibrium. Then, we show that the designer weakly prefers the disclosure policy d with the

restricted message set to the original disclosure policy d′.

Under the new disclosure policy d, after recommendation 0̂, no agent is ever pivotal; he therefore

has no profitable deviation from voting for the status quo.

After realization 1̂, each agent is pivotal with probability 1. The next lemma is useful in

establishing the obedience constraints of voters after realization 1̂.

Lemma 8. For r′ ∈ R′(1̂), we have Pr(θ = G|r′, 1̂, b) = Prd
′
(θ = G|r′, piv, b).

For r′ ∈ R′(0̂1) and zi ∈ {b, g}, we have Pr(θ = G|r′, piv, 0̂1, zi) = Prd
′
(θ = G|r′, piv, zi).

Proof. Simple calculation show for r′ ∈ R′(1̂):

Pr(θ = G|r′, 1̂, b) = Pr(θ = G|r′, b) Pr(1̂|r′, θ = G)

Pr(θ = G|r′, b) Pr(1̂|r′, θ = G) + Pr(θ = B|r′, b) Pr(1̂|r′, θ = B)
(98)

and

d′

Pr(θ = G|r′, piv, b) = Prd
′
(θ = G|r′, b) Prd′(piv|r′, θ = G)

Prd
′
(θ = G|r′, b) Prd′(piv|r′, θ = G) + Prd

′
(θ = B|r′, b) Prd′(piv|r′, θ = B)

(99)

The lemma follows by construction of the new disclosure policy d, where Pr( ˆ1|r′, θ = G) =

Pr(piv|r′, θ = G) and Pr( ˆ1|r′, θ = B) = Pr(piv|r′, θ = B).

Analogously, for r′ ∈ R′(0̂1):

d′

Pr(θ = G|r′, piv, b) = Prd
′
(θ = G|r′, b) Prd′(piv|r′, θ = G)

Prd
′
(θ = G|r′, b) Prd′(piv|r′, θ = G) + Prd

′
(θ = B|r′, b) Prd′(piv|r′, θ = B)

and

Pr(θ = G|r′, 1̂, b)

=
Pr(θ = G|r′, b) Pr(0̂1|r′, θ = G) Pr(piv|θ = G, 0̂1)

Pr(θ = G|r′, b) Pr(1̂|r′, θ = G) Pr(piv|θ = G, 0̂1) + Pr(θ = B|r′, b) Pr(1̂|r′, θ = B) Pr(piv|θ = B, 0̂1)
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Under the old disclosure policy, we have Prd
′
(piv|r′, θ = G) = pn−1ai(r

′, g)n−1. With the new disclo-

sure policy, we have Pr(0̂1|θ = G, r′)︸ ︷︷ ︸
=ai(r′,g)n−1

Pr(piv|θ = G, 0̂1)︸ ︷︷ ︸
=pn−1

, which is exactly equal to Prd
′
(piv|r′, θ = G).

By the same argument, we have Prd
′
(piv|r′, θ = B) = Pr(0̂1|θ = B, r′), which proves the lemma.

�

Lemma 9. For r′ ∈ R′(1̂), we have:
∑

r′∈R′(1̂) Pr(r
′|1̂, b) = 1. For r′ ∈ R′(0̂1), and zi ∈ {g, b}, we

have
∑

r′∈R′(1̂) Pr(r
′|1̂, piv, zi) = 1.

Proof. First, consider r′ ∈ R′(1̂).

∑

r′∈R′(1̂)

Pr(r′|1̂, b) =
∑

r′∈R′(1̂)

Pr(r′, 1̂|b)
Pr(1̂|b)

=

∑
r′∈R′(1̂) Pr(r

′, 1̂|b)
∑

r′∈R′(0̂)∨R′(0̂1)∨R′(1̂) Pr(1̂, r
′|b)

=

∑
r′∈R′(1̂) Pr(r

′, 1̂|b)
∑

r′∈R′(0̂) Pr(1̂, r
′|b)︸ ︷︷ ︸

=0

+
∑

r′∈R′(0̂1) Pr(1̂, r
′|b)︸ ︷︷ ︸

=0

+
∑

r′∈R′(1̂) Pr(1̂, r
′|b)

= 1

The last step follows, because 1̂ is only send with strictly positive probability if r′ ∈ R′(1̂).

Next, consider r′ ∈ R′(0̂1).

∑

r′∈R′(0̂1)

Pr(r′|0̂1, piv, zi) =
∑

r′∈R′(0̂1)

Pr(r′, piv|0̂1, zi)
Pr(piv|0̂1, zi)

=

=

∑
r′∈R′(0̂1) Pr(r

′, piv|0̂1, zi)
∑

r′∈R′(0̂) Pr(piv, r
′|0̂1, zi)︸ ︷︷ ︸

=0

+
∑

r′∈R′(0̂1) Pr(piv, r
′|0̂1, zi) +

∑
r′∈R′(1̂) Pr(piv, r

′|0̂1, zi)︸ ︷︷ ︸
=0

= 1.

The last step follows because 0̂1 is only send with strictly positive probability if r′ ∈ R′(0̂1).

�

The belief of each voter after 1̂ about the state being good, Pr(θ = G|1̂, zi), is a convex combi-

nation of the beliefs under the old disclosure policy {Pr(θ = G|r′, piv, zi)}r′∈R(1̂), as the following

calculation shows.
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Pr(θ = G|1̂, piv, b) = Pr(θ = G|1̂, b)

=
∑

r′∈R′(1̂)

Pr(r′|1̂, b) Pr(θ = G|r′, 1̂, b)

=Lemma 8
∑

r′∈R′(1̂)

Pr(r′|1̂, b)
d′

Pr(θ = G|r′, piv, b)︸ ︷︷ ︸
≥ 1

2

≥ 1

2
.

We have Prd
′
(θ = G|r′, piv, b) ≥ 1

2 , because ai(r
′, b) > 0 in the original equilibrium for d′: the

b-type (weakly) prefers the proposal to the status quo.

Because the g-type is more optimistic under any disclosure policy (Lemma 7), we also have

Pr(θ = G|1̂, g) ≥ Pr(θ = G|1̂, b) ≥ 1
2 . The g-type prefers the proposal to the status quo after

observing 1̂. Both voters have hence no profitable deviation from voting for the proposal.

Finally, consider a signal 0̂1. Using Lemma 7, as the g-type is always more optimistic than

the b-type, we have ai(r
′, b) = 0 and ai(r

′, g) > 0 for any recommendation r′ ∈ R′(0̂1). As both

voter types are pivotal with non-zero probability (by assumption, r’ is sent with strictly positive

probability), we have

Pr(θ = G|0̂1, piv, zi) =
∑

r′∈R′(0̂1)

Pr(r′|0̂1, piv, zi) Pr(θ = G|r′, 0̂1, piv, zi) (100)

=
∑

r′∈R′(0̂1)

Pr(r′|0̂1, piv, zi)
d′

Pr(θ = G|r′, piv, zi)︸ ︷︷ ︸
≥(≤) 1

2
if zi=g(=b)

(101)




≥ 1

2 if zi = g

≤ 1
2 if zi = b

(102)

Lemma 9 establishes, that the above is a convex combination; lemma 8 binds each summand

below 1
2 for zi = b, and above 1

2 for zi = g. Therefore, no voter has a profitable deviation: after 0̂1,

the g-type prefers the proposal, and the b-type the status quo.

The last remaining step is to show, that under the alternative constructed policy d′, the designer

is no worse off than under the disclosure policy d with an arbitrary message space. We prove this

by showing that under the new disclosure policy d, the implementation probability of the proposal

weakly increases for each r′.

Take r′ ∈ R′(0̂). Under both the old and the new disclosure policy, the proposal is implemented
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with zero probability.

Take r′ ∈ R′(0̂1). Under the old disclosure policy, the proposal was implemented with probability

pnai(r
′, g)n if θ = G, and (1− p)nai(r

′, g)n if θ = B. Under the new disclosure policy, the proposal

is being implemented with probability pnai(r
′, g)n−1 if θ = G, and (1 − p)nai(r

′, g)n−1 if θ = B.

The probabilities are higher under the new disclosure policy, because ai(r
′, g)n−1 ≥ ai(r

′, g)n.

Finally, take r′ ∈ R′(1̂). Under the old disclosure policy, the proposal was implemented

with probability Pr(piv|θ = G, r′)[pai(r′, g) + (1 − p)ai(r
′, b)] if θ = G, and with probability

Pr(piv|θ = B, r′)[pai(r′, b)+(1−p)ai(r
′, g)] if θ = B. Under the new disclosure policy, the proposal

is implemented with probability Pr(piv|θ, r′), which is weakly higher. �

A.12 Proof of Proposition 9

Proof. The primal of the sender’s problem is

max
{d[r|θ]≥0}

r∈{0̂1,1̂},θ∈{B,G}

∑

θ∈{B,G}
(d[1̂|θ] + d[0̂1|θ] Pr(k = 3|θ)) Pr(θ) (103)

s.t. d[1̂|θ] + d[0̂1|θ]− 1 ≤ 0 ∀θ ∈ {B,G} (104)

d[1̂|θ = B](1− p)− d[1̂|θ = G]p ≤ 0 (OB1̂
g)

d[1̂|θ = B]p− d[1̂|θ = G](1− p) ≤ 0 (OB1̂
b )

d[0̂1|θ = B](1− p)3 − d[0̂1|θ = G]p3 ≤ 0 (OB0̂1
g )

d[0̂1|θ = B]p(1− p)2 − d[0̂1|θ = G]p2(1− p) ≤ 0 (OB0̂1
g )

Next, we take the dual of the primal and get

min
λOBg(1̂)≥0, λOBb(1̂)≥0

λ
OBg(0̂1)

≥0, λ
OBb(0̂1)

≥0

µθ=B≥0, µθ=G≥0

µθ=B + µθ=G (105)

s.t. − 1

2
(1 + λOBg(1̂)p+ λOBb(1̂)(1− p)) + µθ=G ≥ 0 (106)
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− 1

2
(1 + λOBg(1̂)(1− p)− λOBb(1̂)p) + µθ=B ≥ 0 (107)

− 1

2
p2(p+ λOBg(0̂1)p− λOBb(0̂1)(1− p)) + µθ=G ≥ 0 (108)

− 1

2
(1− p)2((1− p)− λOBg(0̂1)(1− p) + λOBb(0̂1)p) + µθ=B ≥ 0 (109)

Let {d[r|θ] ≥ 0}r∈{0̂1,1̂} be a feasible disclosure policy for the primal, and {~λ, ~µ} feasible vector

for the dual. Necessary and sufficient conditions for the optimal are:

λOBg(1̂) ·
(
d[1̂|θ = B](1− p)− d[1̂|θ = G]p

)
= 0,

λOBb(1̂) ·
(
d[1̂|θ = B]p− d[1̂|θ = G](1− p)

)
= 0,

λOBg(0̂1) ·
(
d[0̂1|θ = B](1− p)3 − d[0̂1|θ = G]p3

)
= 0,

λOBb(0̂1) ·
(
d[0̂1|θ = B]p(1− p)2 − d[0̂1|θ = G]p2(1− p)

)
= 0,

µθ=B ·
(
d[1̂|θ = B] + d[0̂1|θ = B]− 1

)
= 0,

µθ=G ·
(
d[1̂|θ = G] + d[0̂1|θ = G]− 1

)
= 0,

d[1̂|θ = G] ·
(
−1

2
(1 + λOBg(1̂)p+ λOBb(1̂)(1− p)) + µθ=G

)
= 0,

d[1̂|θ = B] ·
(
−1

2
(1 + λOBg(1̂)(1− p)− λOBb(1̂)p) + µθ=B

)
= 0,

d[0̂1|θ = G] ·
(
−1

2
p2(p+ λOBg(0̂1)p− λOBb(0̂1)(1− p)) + µθ=G

)
= 0,

d[0̂1|θ = B] ·
(
−1

2
(1− p)2((1− p)− λOBg(0̂1)(1− p) + λOBb(0̂1)p) + µθ=B

)
= 0.

It can be easily checked by substitution that the disclosure policy
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{d[r|θ] ≥ 0}r∈{0̂1,1̂},θ∈{B,G} =





d[1̂|θ = G] = 1

d[1̂|θ = B] = (1−p)
p

d[0̂1|θ = G] = 0

d[0̂1|θ = B] = 0

(110)

and the dual variables

{~λ, ~µ} =




λOBg(1̂) = 0

λOBb(1̂) =
1
p

λOBg(0̂1) = 1 + λOBb(0̂1)
p

1−p

λOBb(0̂1) =
(2p4− 1

2
)(1−p)

p3(1−2p)

µθ=B = 0

µθ=G = 1
2p




(111)

fulfill the above complementary slackness conditions for all p ≤ 1
4√2

= p̃.

Analogously, for p > p̃, the disclosure policy from Proposition 10 and the duals

{~λ, ~µ} =




λOBg(1̂) = 0

λOBb(1̂) =
1
p − (1−p)3(2p4−1)

p(p4−(1−p)4)

λOBg(0̂1) = 1− 2p4−1
p4−(1−p)4

λOBb(0̂1) = 0

µθ=B =
1
2
(1−p)3(2p4−1)
p4−(1−p)4

µθ=G = 1
2

(
1
p − (1−p)4(2p4−1)

p(p4−(1−p)4)

)




(112)

fulfill the above complementary slackness conditions.

�
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A.13 Proof of Proposition 10

Proof. The error probabilities lG (probabilities of convicting the innocent) and lB (acquit the guilty)

of a wrong decision are found in Feddersen and Pesendorfer (1998). The expected utility of an

uninformed voter in Feddersen and Pesendorfer (1998) is

1

2
(1− lG − lB) =

1

4

(2p− 1)3
(
p3/2 + p

√
1− p−√

1− p
)2 . (113)

With a manipulative information designer the expected utility of a voter is

1

2
Pr(1̂|θ = G)

1

2
+

1

2
Pr(1̂|θ = B)

(
−1

2

)
. (114)

Next, we show that the optimal disclosure policy of the designer in each of the three intervals for p

yields a strictly higher utility to the voter.

Case 1: 1
2 < p ≤ 1√

2
. Using the optimal disclosure policy in Proposition 4, the utility of the ex

ante type is 1
41− 1

4
1−p
p = 1

4
2p−1
p . Comparing this with Equation 113 shows that the utility in case

1 is strictly higher for all p ∈ (12 , 1).

Case 2: 1√
2
< p ≤ 1+

√
13

6 . With the optimal disclosure policy in Proposition 5, Pr(1̂|θ = G) =

1− (1− p)3 and Pr(1̂|θ = B) = (p− 1)(p2− 2). A voter’s expected utility is 1
4(2p− 1)(2− p), which

can be again easily checked to be larger than Equation 113 for all p ∈ (12 , 1).

Case 3: 1+
√
13

6 ≤ p < 1. In this scenario, the probabilities of choosing the proposal are Pr(1̂|θ =

G) = 1
4p
(
3p3 − 8p2 + 3p+ 6

)
and Pr(1̂|θ = B) = 1

4(p − 1)
(
3p3 − p2 − 4p− 4

)
. This yields an

expected utility of 1
8 [(2p− 1)(p+ 1)(2− p)] . This is higher than the expected utility in Feddersen

and Pesendorfer (1998) in Equation 113. �
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