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Abstract

A decision maker faces an approval choice under uncertainty. An agent can gather informa-
tion through sequential testing. Players agree on the optimal choice under certainty, but the
decision maker has a higher approval standard than the agent. We compare the case where
testing is hidden and the agent can choose whether to disclose his findings to the case where
testing is observable. The agent can exploit the additional discretion under hidden testing to
his advantage if and only if the decision maker is sufficiently inclined to approve. Hidden test-
ing then yields a Pareto improvement over observable testing if the conflict between players is
larger than some threshold, but leaves the decision maker worse off and the agent better off if
the conflict is smaller than this threshold.
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1 Introduction

Pharmaceutical companies have recently come under scrutiny for selective reporting of clinical trial
outcomes.1 As a response to demands for greater transparency, several companies have pledged to
register trials and report their outcomes in open online databases (Goldacre et al. [2017]). At first
sight, it seems that such transparency would improve regulation because pharmaceutical companies
can no longer hide trials with unfavorable outcomes. However, companies may also strategically
respond by running fewer trials and this could mean that the regulator has to base his approval
decision on weaker evidence.

This paper analyzes how transparent information acquisition affects the likelihood of correct
approval decisions and welfare. A decision maker (DM, e.g. a regulator) has to take an approval
decision based on evidence gathered by an agent (e.g. a company). However, there is a conflict
of interest between the players: the DM is more averse to approving an unsafe product than the
agent, that is, the DM has a higher approval standard than the agent. The agent can sequentially
run costless tests up to some deadline at which point the DM chooses to approve or not. We first
consider a setting of observable testing, in which the agent’s findings are publicly observed. We
contrast this with a setting of hidden testing, in which the DM neither observes for how long the
agent has tested nor what the agent has found unless the agent chooses to disclose his findings.

One might expect that the DM is better off in equilibrium when testing is observable than
when testing is hidden. After all, when testing is hidden, the agent can strategically hide evidence
to influence the DM’s choice. Provided the DM initially favors approval, we show that the DM is
indeed worse off under hidden testing if the conflict between players is small. However, if the conflict
is large, then hidden testing yields a strict Pareto improvement over observable testing, that is, not
only the agent but also the DM is strictly better off under hidden than observable testing.

This Pareto improvement arises for the following reasons. When testing is observable, the DM
can react optimally to the evidence gathered, but the agent acquires evidence strategically. In
particular, the agent can manipulate the DM’s choice by stopping to test following certain findings
while continuing to test following others. We characterize the unique equilibrium and show under
which conditions the agent stops testing before the deadline even if further tests could be mutually
beneficial. In particular, when the conflict is large and the DM initially favors approval, the agent
stops testing before the deadline if running further tests has the downside that the DM may come
to favor rejection, even though the agent continues to favor approval.

When testing is hidden, the agent can strategically withhold results from the DM. If the DM
initially favors approval, it is indeed the case that the agent exploits this discretion to persuade the
DM to approve more often than is optimal from the DM’s perspective. However, since the agent
has more influence over the final approval choice than under observable testing, the agent has more
incentives to keep testing. Moreover, the agent reveals to the DM the findings of the additional

1For example, GlaxoSmithKline was accused of having withheld data that suggested that its antidepressant Paxil
was linked to suicidal behavior in teenagers (Rabin [2017]), and the Cochrane Review concluded that Roche withheld
trial data on its influenza drug Tamiflu to make the drug look more effective (Jefferson et al. [2014]). See also Avorn
[2006].
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tests run under hidden relative to observable testing if and only if these tests convince the agent
that rejection is optimal. Therefore, the additional tests trigger the DM to reject instead of approve
if and only if rejection is in both players’ interest, resulting in a mutual benefit.

By contrast, if the conflict of interest between players is small instead, the DM is worse off and
the agent better off under hidden than observable testing. The reason is that the agent becomes
equally informed under each regime, but under hidden testing, the agent’s selective disclosure can
still lead the DM to make suboptimal choices.

Our analysis can be applied to the context of postmarketing studies for medical drugs. These
studies investigate a drug’s safety or efficacy, or new indications of a drug after regulatory approval.2

Frequently, these studies are initiated by companies themselves, but they can also be requested by
the regulator as a condition of approval. However, companies often do not carry out the requested
studies or do not release all their findings (Glasser et al. [2007]), and it has been argued that
regulators lack the power to enforce compliance.3 In light of this, demands for compulsory trial
registration and reporting have been rising.

Our work predicts that registries help to improve regulatory decision making when the conflict
of interest is small, but cause adverse welfare effects for all parties when the conflict of interest is
large. In particular, without a trial registry, the company can run safety studies in private and
withdraw the product if it finds that the product does not meet its own safety standards.4 In
case the company does not withdraw the product, the regulator infers that at least the company’s
own safety standards are being met and, hence, the regulator will not see a reason to withdraw
the product. By contrast, with a trial registry, a company with a relatively low safety standard is
discouraged from performing such tests. The reason is that these tests could yield weak evidence
that the product is unsafe, sufficient for the regulator to take the product off the market but not
sufficient to fail the company’s safety standards. Therefore, the company does not run tests that
could uncover serious safety concerns, harming both itself and the regulator.

Our results can also be applied in the context of academic publishing. As various replication
studies produced findings at odds with those in the initial studies, e.g. Open Science Collaboration
[2015], calls for greater transparency in research increased, e.g. Nosek et al. [2018]. One suggestion
is to make registration of experiments and the use of result databases a condition for publication.
However, as our paper points out, when all experiments need to be documented, a researcher with
strong incentives to publish might be reluctant to further investigate a hypothesis that was supported
by his existing experiments.5 The reason is that these additional experiments could contradict his
earlier findings and shed some doubt on whether the hypothesis is true. This may not be sufficient
to deter the researcher from wanting to publish his findings, but the editor may no longer find the

2The studies prior to approval usually only collect evidence on certain patient groups and outside routine clinical
practice, e.g. see Smith et al. [2015].

3“The only thing the agency can do is take the drug off the market, which is a decision that often would not serve
the public health very well.”, Peter Lurie, deputy director of the Public Citizen’s Health Research Group, available
at: https://www.citizen.org/news/fda-report-highlights-poor-enforcement-of-post-marketing-follow-up/.

4The company may care about safety standards for liability reasons or to reputational concerns.
5The researcher may aim to advance science by supporting a hypothesis if and only if it is true, but be biased in

favor of supporting a hypothesis if this increases his chances of publishing.
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evidence convincing enough and reject the paper. If the researcher could experiment in private, he
would discover whether or not additional experiments strongly reject the hypothesis. In this event,
he will not seek publication, thereby reducing the likelihood that a false finding is published.

The paper is structured as follows. Section 2 outlines the model. Observable testing is analyzed
in Section 3, hidden testing in Section 4. The welfare comparison can be found in Section 5.
Extensions and robustness checks are in Section 6. A detailed comparison with the existing literature
can be found in Section 7. Section 8 concludes.

2 Model

Two players, a decision maker (she) and an agent (he), are uninformed about the state of the world
ω ∈ {ω0, ω1} and share a prior belief q0 = Pr (ω1) ∈ [0, 1]. Time is continuous and finite, t ∈ [0, T ].6

At time T , the decision maker (DM) chooses an action a ∈ {a0, a1} which affects the payoff of player
i as follows,7

ui (a, ω) ω0 ω1

a0
si

1−si 0

a1 0 1

where i ∈ {DM,A} and 0 < sA ≤ sDM < 1.8 In particular, at some belief q = Pr (ω1), player i has
a higher expected payoff from a1 than from a0 if and only if

Eωui (a0, ω) = (1− q) si
1− si

≤ q = Eωui (a1, ω)⇔ si ≤ q. (1)

Hence, if q < sA, both prefer a0, if sA ≤ q < sDM , the DM prefers a0 while the agent prefers a1

and if sDM ≤ q, both prefer a1. We refer to a1 as approval, a0 as rejection and to si as player i’s
approval standard.

When testing is observable, the agent runs publicly observable tests at no cost. When the agent
tests, a signal arrives at random according to an exponential distribution with state-dependent
arrival rate λω > 0. In particular, in state ω, over an interval [t, t+ dt), a signal θ = ω is observed
with probability λωdt, that is, the signal perfectly reveals the state. Let ht denote the history up to
time t and Ht the set of all such histories. The (common) posterior belief qt = Pr

(
ω1|ht

)
evolves

as follows. If the agent tests and a signal arrives over the interval [t, t+ dt), then the belief jumps
to 1 if θ = ω1 and jumps to 0 if θ = ω0. If the agent tests and no signal arrives, the evolution of

6The finite horizon represents the agent’s resource constraints and can be interpreted as a limiting case of an
infinite horizon with a convex cost of testing.

7This is without loss. Consider a general payoff function: ui (a0, ω0) = αi, ui (a0, ω1) = βi, ui (a1, ω0) = γi and
ui (a1, ω1) = δi, where αi, βi, γi, δi ∈ R and αi > γi and δi > βi. Then my results apply for si = αi−γi

(αi−γi)+(δi−βi)
.

8If we instead assumed 0 < sDM ≤ sA < 1, the results would be a mirror image of the results presented: the
labels of states ω ∈ {ω0, ω1} and actions a ∈ {a0, a1} would have to be switched.
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the posterior at time t is described by the following differential equation:9

dqt
dt

= − (λω1 − λω0) qt (1− qt) . (2)

We assume λω0 < λω1 which implies that the posterior belief drifts down when no signal arrives,
that is, no news is bad news. The agent’s strategy selects to stop or to continue testing at time
t conditional on ht for each t ∈ [0, T ]. The agent stops if he is indifferent between testing and
stopping. In addition, once the agent stops, he cannot test again.10 The DM’s strategy selects
an action choice a ∈ {a0, a1} at time T conditional on hT . Since all payoff-relevant information
contained in history ht can be summarized by belief qt for any t ∈ [0, T ], strategies can be thought
of as mapping posterior beliefs into action choices.

When testing is hidden, the agent privately chooses when to stop and privately observes the
arrival of signals.11 Further, the agent decides whether to disclose all his findings to the DM or to
remain silent. In particular, at time T , the agent’s disclosure strategy selects message m conditional
on hT , where the set of feasible messages is given by M

(
hT
)

=
{
∅, hT

}
. Then the DM’s strategy

selects an action choice a conditional on message m.
In either regime, the solution concept is a perfect Bayesian equilibrium. We impose the additional

requirement that, for any off-path history, players update their beliefs about the state according to
Bayes’ rule using the testing technology.12

We restrict attention to situations in which the two players disagree on the approval choice at
some feasible posterior belief.13 In particular, we assume the agent favors approval at the prior, i.e.
sA ≤ q0, and the DM favors rejection if testing until the deadline has not produced a signal, i.e.
q < sDM , where

q ≡ q0 exp (−λω1T )

q0 exp (−λω1T ) + (1− q0) exp (−λω0T )
. (3)

3 Observable Testing

When testing is observable, the players share a common posterior belief at any point in time.
The agent can influence the DM’s approval choice via controlling the flow of information: he can
strategically choose to stop testing at certain posterior beliefs but continue testing at others. The
agent may therefore stop testing if the DM is willing to approve. However, stopping leaves the
agent worse off in the event that further evidence would have led both the DM and the agent to
prefer rejection. In this section, we will characterize the unique equilibrium and show under which
condition the agent stops testing for strategic reasons.

9For details see Liptser and Shiryaev [2013].
10These assumptions are chosen to avoid a multiplicity of equilibria which are payoff-equivalent except in a knife-

edge case. More details are given in Sections 3 and 4.
11The key result remains unchanged if the DM could observe the time at which the agent stops. See also footnote

31 after the results.
12This means off-path beliefs satisfy “no-signaling-what-you-don’t-know” in the vein of Fudenberg and Tirole [1991].
13If the two players were to agree on the optimal action at all feasible posteriors, it is trivial that each player’s

payoff is the same under hidden and observable testing.
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Proposition 1. Under observable testing, an equilibrium exists and is unique. The equilibrium
strategies are as follows. The DM chooses a1 if and only if sDM ≤ qT . The agent stops at time t if
a signal has arrived by time t. If no signal has arrived by time t, then

1. for q0 < sDM , the agent keeps testing at time t for any t < T .

2. for q0 ≥ sDM , there exists a critical level of the agent’s approval standard sA (sDM , q0, T ) such
that

(a) if sA > sA, the agent keeps testing at time t for any t < T , and

(b) if sA ≤ sA, the agent keeps testing at time t for any t < t∗ and stops testing at t = t∗,
where

t∗ (sDM , q0) =
log
(

q0
1−q0

)
− log

(
sDM

1−sDM

)
λω1 − λω0

. (4)

The critical level sA ∈
(
0, q
)
defined for q0 ≥ sDM satisfies

log

(
sA

1− sA

)
= log

(
sDM

1− sDM

)
− λω1 (T − t∗ (sDM , q0)) . (5)

Proof. We start by showing that the agent’s strategy is the unique best reply.14 The agent always
stops testing the first time a signal arrives because any further testing does not influence the DM’s
belief and final action choice a. Suppose no signal arrived by time t.

Part 1.) We first show that the agent keeps testing at time t if 0 < qt < sDM for any t < T . Let
Vt (q, τ) denote the agent’s expected continuation value at time t and posterior q when he stops the
first time a signal arrives or at time τ . If τ = t, then given the DM’s strategy,

Vt (qt, t) = (1− qt)
sA

1− sA
. (6)

If instead τ = t′ > t, then given the DM’s strategy,

Vt
(
qt, t

′) = (1− qt)
sA

1− sA
Pr
(
qt′ < sDM |qt, τ = t′, ω0

)
+ qt Pr

(
qt′ ≥ sDM |qt, τ = t′, ω1

)
, (7)

where Pr (qt′ < sDM |qt, τ = t′, ω) is the probability that qt′ < sDM at time t′ conditional on the
belief being qt at time t, the agent stopping the first time a signal arrives or at time t′ and the state
being ω. The agent keeps testing at any time t if 0 < qt < sDM since

Vt
(
qt, t

′)− Vt (qt, t) > 0⇔ Pr (qt′ ≥ sDM |qt, τ = t′, ω1)

Pr (qt′ ≥ sDM |qt, τ = t′, ω0)

qt
1− qt

>
sA

1− sA

⇔ Pr (ω1|qt, τ = t′, qt′ ≥ sDM )

Pr (ω0|qt, τ = t′, qt′ ≥ sDM )
>

sA
1− sA

, (8)

14Recall that we assume that the agent stops if he is indifferent between testing and stopping and that once the
agent stops he cannot test again.
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where the second step follows by Bayes’ rule and the inequality is satisfied for any t′ > t since

Pr
(
ω1|qt, τ = t′, qt′ ≥ sDM

)
> Pr

(
ω1|qt, τ = t′, qt′ = sDM

)
= sDM ≥ sA, (9)

and x
1−x >

sA
1−sA if and only if x > sA for any x ∈ (0, 1). Then, given q0 < sDM , if no signal has

arrived by time t, 0 < qt < sDM for any t. Hence, if no signal has arrived by time t, the agent keeps
testing at any t < T .

Part 2.) Time t = t∗ is the time at which qt = sDM if no signal has arrived by time t since

sDM =
q0 exp (−λω1t∗)

q0 exp (−λω1t∗) + (1− q0) exp (−λω0t∗)
⇔ exp ((λω1 − λω0) t∗) =

q0

1− q0

1− sDM
sDM

⇔ (4)

We first show that the agent keeps testing at any time t < t∗. Suppose the agent stops testing
the first time a signal arrives or at time τ where τ ≤ t∗. If no signal has arrived by time τ , then
sDM ≤ qt < 1. Clearly,

Vt (q0, τ) = (1− q0)
sA

1− sA
(1− exp (−λω0τ)) + q0 (10)

increases in τ . Hence, when no signal has arrived, the agent keeps testing at any t < t∗. Next,
consider t = t∗, i.e. qt∗ = sDM . Suppose the agent stops the first time a signal arrives or at time τ
where τ > t∗. Clearly,

Vt∗ (sDM , τ) = (1− sDM )
sA

1− sA
+ sDM (1− exp (−λω1τ)) , (11)

increases in τ . Hence, if τ > t∗, then τ = T is optimal. Therefore, the agent stops at t∗ and receives
Vt∗ (sDM , t

∗) = sDM rather than choosing τ = T and receiving (11) if and only if

Vt∗ (sDM , t
∗)− Vt∗ (sDM , T ) ≥ 0⇔ log

(
sA

1− sA

)
≤ log

(
sDM

1− sDM

)
− λω1 (T − t∗) , (12)

i.e. the agent stops at t∗ if and only if sA ≤ sA using the definition of sA in (5). Clearly, sA > 0 for
sDM > 0 and finite T given (5). Further, sA < q since sA decreases in sDM given (4) and (5) and,
if sDM is at its lower bound, i.e. sDM = q, then sA = q.

The DM’s strategy is optimal given (1) independent of the agent’s strategy for qT 6= sDM .
Although the DM is indifferent between a1 and a0 at qT = sDM , there can be no equilibrium in
which the DM randomizes at qT = sDM . If the DM were to do so, the agent would strictly prefer
to stop the first time that the belief is equal to the lowest belief at which the DM chooses a1 with
probability 1 which is not well-defined.

In equilibrium, given the DM’s strategy, the agent anticipates that approval is chosen if and only
if the belief at the deadline exceeds the DM’s standard. If the DM is initially inclined to reject, i.e.
q0 < sDM , the agent has an upside but no downside from testing. The upside is that a signal may
arrive and, in this event, the DM takes an action in line with the agent’s interest. When no signal
arrives, the belief drifts down. In this event, the DM continues to favor rejection and, consequently,
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q

q0

T

sDM

q

t∗ (sDM , q0)
t

sA
1−sA

sDM
1−sDM

Stop testing

testing
Continue

t∗(sDM , q0) T

sA
1−sA

Figure 1: Left panel: The graph shows how the belief drifts down over time when no signal arrives.
Time t∗ (sDM , q0) is the time at which the belief reaches the DM’s standard. Right panel: The
graph divides levels of the agent’s standard sA into those for which the agent stops or continues
testing at time t if qt = sDM . If the agent’s standard is equal to the critical level sA, then the agent
is indifferent between testing and stopping if qt = sDM at time t∗ (sDM , q0).

the agent suffers no downside from testing.
By contrast, the agent has different concerns if the DM is initially inclined to approve, i.e.

q0 ≥ sDM . The agent has no downside from testing up until time t∗, at which point the belief has
drifted down to the DM’s standard if no signal has arrived. However, at time t∗, the agent’s decision
to test is pivotal to the DM’s choice even if no signal arrives. If the agent stops, the DM approves.
If the agent continues and no signal arrives until the deadline, the DM rejects instead.

Therefore, the agent faces a trade-off at time t∗ provided the agent still favors approval when no
signal has arrived by the deadline, i.e. provided sA < q.15 By stopping at time t∗, the agent ensures
that the DM approves, which is the agent’s favored choice at this point. By testing, the agent learns
if a signal θ = ω0 arrives which causes the DM to reject. In this event, the agent benefits from
having tested because, given the signal, the agent favors rejection. However, in the event that no
such signal arrives, the agent suffers from having tested because the DM rejects although the agent
favors approval.16 The downside from testing is stronger, the more the agent is inclined towards
approval, i.e. the lower the agent’s standard. The opportunity to wait for a signal θ = ω0 outweighs
the downside from a suboptimal choice in case no signal arrives if and only if sA ≤ sA.17 See also
Figure 1.

The equilibrium is unique given the assumption that the agent stops if he is indifferent between
stopping or testing. The agent is indifferent if a signal has arrived and further testing does not alter

15In the extreme case sA = 0, the agent has a downside but no strict upside from testing at time t∗. This extreme
case is closely related to Brocas and Carrillo [2007]’s framework when π = 0 and α < 1− β.

16Note that for the agent to face a downside from testing, the posterior belief needs to drift down in the absence
of a signal. If we instead assumed that the belief drifts up, i.e. no news is good news, the agent would always test
and the DM could never do strictly better when testing is hidden. For an analysis of a testing technology that allows
for the belief to drift up or down over time see Section 6.3.

17The equilibrium payoff would be the same if the agent chose at time t = 0 until which time t = k he will test
for k ∈ [0, T ].
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the DM’s approval choice. Otherwise, the agent is only indifferent if sA = sA and no signal has
arrived by time t∗. In this knife-edge case, the equilibrium is not unique but we restrict attention
to the equilibrium when the agent stops at t∗.

4 Hidden Testing

When testing is hidden, the agent can choose whether or not to disclose his findings. The agent’s
optimal disclosure depends on how the DM interprets no disclosure and, therefore, multiple equilib-
rium payoff profiles may exist. Our aim is to understand what happens when the agent exploits the
additional discretion under hidden testing to his advantage, that is, we want to characterize agent-
preferred equilibria. In the next section, we will then see under which conditions such strategic
disclosure by the agent can benefit the DM.

Proposition 2. Under hidden testing, an equilibrium always exists. There is a critical level of the
DM’s standard sDM (q0, T ) defined by

log

(
sDM

1− sDM

)
= log

(
q0

1− q0

)
+ λω0T, (13)

such that the following are features of an agent-preferred equilibrium,

1. for sA ≥ q or sDM > sDM ,

• the agent’s testing strategy is as described in Proposition 1, the agent always discloses,
i.e. m = hT for every hT ,

• the DM chooses a1 if and only if the agent discloses hT and the DM prefers a1 given hT ,

2. for sA < q and sDM ≤ sDM ,

• if no signal has arrived by time t, the agent keeps testing at time t for any t < T , the
agent discloses hT if and only if a signal θ = ω0 has arrived by time T ,

• the DM chooses a0 if and only if the agent discloses hT and the DM prefers a0 given hT .

Proof. Part 1) We first show that an equilibrium with these features exists for all parameter con-
figurations. The DM’s strategy is optimal since m = ∅ does not arise on the equilibrium path and
we can assign a belief such that Pr (ω1|m = ∅) < sDM . Further, the agent’s disclosure strategy is
optimal for any hT for the following reason. If Pr

(
ω1|hT

)
≥ sDM , then the DM chooses a1 given

m = hT and the agent prefers a1 since sDM ≥ sA. If Pr
(
ω1|hT

)
< sDM , both m = hT and m = ∅

lead to a0. Given m = hT for all hT , the agent’s optimal testing strategy is given by Proposition 1.
Next, we show that this is an agent-preferred equilibrium if sA ≥ q. Since q > sA, the agent

keeps testing at any t if and only if no signal has arrived by time t for t < T by Proposition 1.
Then m = hT leads to the agent’s favored action a for any feasible hT since Pr

(
ω1|hT

)
∈
{

0, q, 1
}

and 1 > sDM ≥ sA ≥ q > 0. Therefore, the agent achieves his first-best payoff and the equilibrium
must be agent-preferred.18

18The agent’s first-best payoff is the payoff the agent would achieve if he was also in control of taking action a.
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Finally, we show that this is an agent-preferred equilibrium if sA < q and sDM > sDM . We start
by showing that, in any equilibrium, the DM must choose a0 following m = ∅. Suppose the DM
chose a1 following m = ∅ with probability p ∈ (0, 1). Then, the agent’s optimal disclosure would be
to choose m = ∅ if and only if sA ≤ Pr

(
ω1|hT

)
< sDM . Given sDM > sDM > q0, the agent would

keep testing if no signal has arrived by time t for any t < T since stopping at time t would yield

Vt (qt, t) = (1− qt)
sA

1− sA
(1− p) + qtp. (14)

while testing until a signal arrives or τ = t′ > t would yield

Vt
(
qt, t

′) = (1− qt)
sA

1− sA
(1− exp (−λω0τ) + exp (−λω0τ) (1− p))

+ qt (1− exp (−λω1τ) + exp (−λω1τ) p) , (15)

and for any t′ > t,

Vt
(
qt, t

′) > Vt (qt, t)⇔ (1− qt)
sA

1− sA
p (1− exp (−λω0τ))+qt (1− p) (1− exp (−λω1τ)) > 0. (16)

But given the agent’s strategy, the DM’s consistent belief givenm = ∅ would satisfy Pr (ω1|m = ∅) =

q and the DM should choose a0 with probability 1 since q < sDM , leading to a contradiction.
Next, suppose the DM chose a1 following m = ∅ with probability 1. Then, the agent would

choose m = hT if signal θ = ω0 arrived and m = ∅ otherwise.19 The agent would keep testing at t if
and only if no signal has arrived by time t for t < T by (16) with p = 1. Given the agent’s strategy,
the DM’s consistent beliefs given m = ∅ would satisfy

Pr (ω1|m = ∅)
Pr (ω0|m = ∅)

=
q0

1− q0

1

exp (−λω0T )
⇔ log

(
Pr (ω1|m = ∅)
Pr (ω0|m = ∅)

)
= log

(
q0

1− q0

)
+ λω0T, (17)

and, hence, Pr (ω1|m = ∅) = sDM by (13). But then the DM should choose a0 given these beliefs
since sDM < sDM , leading to a contradiction. Given that the DM’s unique equilibrium strategy is
to choose a0 following m = ∅, the agent’s strategy in the equilibrium of Part 1 is his best reply and
the equilibrium is agent-preferred.

Part 2) The DM’s consistent beliefs given m = ∅ satisfy (17) and, hence, Pr (ω1|m = ∅) = sDM

by (13). Since sDM ≥ sDM , the DM optimally chooses a1 following m = ∅. In addition, the agent
has no reason to deviate because he achieves his first-best payoff. This implies that the equilibrium
is agent-preferred.

19If the agent chose m = ∅ if and only if no signal arrived, the DM’s consistent belief given m = ∅ would satisfy
Pr (ω1|m = ∅) = q, leading to a contradiction by the same reasoning as above.
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The proposition shows that the agent does not strictly benefit from withholding findings in case
the agent prefers rejection when no signal has arrived by the deadline, i.e. q ≤ sA. Recall that we
assume that the DM always prefers rejection in this event, i.e. q < sDM . Therefore, the agent can
wait for a signal until the deadline, disclose his findings and the DM will act in the agent’s interest
whatever the agent found.

Suppose the agent favors approval when no signal arrived by the deadline, i.e. q > sA. The
agent would ideally keep testing for as long as no signal has arrived and then recommend approval
if and only if he himself favors approval given the evidence. That is, the agent could withhold his
findings if he prefers approval and disclose his findings if he prefers rejection. If the agent favors
rejection, then the players’ interests are aligned and disclosing his findings will lead the DM to
reject. If the agent withholds his findings, the DM only infers that the agent favored approval and
how the DM optimally reacts to this inference depends on sDM .

If the DM is not sufficiently inclined towards approval, i.e. if sDM > sDM , then the fact that
the findings convinced the agent of approval is insufficient evidence in favor of state ω1 for the DM
to approve. In particular, in the event that the agent does not disclose, the DM’s posterior rises to
the critical level sDM but the DM optimally rejects at this posterior. Therefore, the DM requires
hard evidence to choose approval in equilibrium and the agent has no benefit from strategically
withholding information he has gathered. The agent effectively faces the same trade-offs as under
observable testing.

By contrast, if the DM is sufficiently inclined towards approval, i.e. sDM ≤ sDM , then the DM
is willing to approve based on the inference that the agent favors approval. In particular, although
the DM does not know if the evidence led the agent to form a posterior that lies above or below the
DM’s standard, the DM finds it optimal to choose approval conditional on no disclosure. Hence, the
agent’s recommendation is indeed followed by the DM and the agent achieves his first-best payoff.20

The following lemma describes equilibrium payoffs across all equilibria under hidden testing.

Proposition 3. Suppose testing is hidden.

1. If sA ≥ q or sDM > sDM , each player’s payoff in the equilibrium in Part 1 of Proposition 2 is
their unique equilibrium payoff.

2. If sA < q and sDM ≤ sDM , in any given equilibrium, each player’s payoff is either equal to
their payoff in the equilibrium in Part 1 or Part 2 of Proposition 2.

Proof. Part 1) The agent can always achieve at least the same payoff as in the equilibrium of Part
1 of Proposition 2 by following the testing strategy in Proposition 1 and reporting m = hT for any
hT .21 Since this equilibrium is agent-preferred by Part 1 of Proposition 2, this must be the agent’s

20If players’ payoffs were discounted by the delay in decision making, the agent would reveal signal θ = ω1 as soon
as it arrives to achieve approval sooner. In equilibrium, following m = ∅, the DM would then infer that no signal
arrived by the deadline and reject, leaving the agent to face the same trade-offs as under observable testing. However,
an equilibrium in which m = ∅ is followed by approval would continue to exist when evidence accrues incrementally.
See also footnote 34.

21Recall that we assume that the DM’s beliefs following m = hT must be consistent with the testing technology.
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unique equilibrium payoff. If the agent’s equilibrium payoff is unique, then the DM’s equilibrium
payoff must also be unique.

Part 2) First, if the DM chooses a0 following m = ∅ in equilibrium, the payoff profile must be
equal to the one the equilibrium in Part 1 of Proposition 2. This is because the agent’s optimal
disclosure must result in the DM choosing a1 if and only if sDM ≤ Pr

(
ω1|hT

)
, because then also

sA ≤ Pr
(
ω1|hT

)
and, otherwise, any message results in a0. Therefore, by Proposition 1, the agent’s

optimal testing strategy is unique and as described in Proposition 1.
Second, if the DM chooses a1 following m = ∅ in equilibrium, the payoff profile must be equal to

the one in the equilibrium in Part 2 of Proposition 2. This is because the agent’s optimal disclosure
must result in the DM choosing the agent’s preferred action for any hT because, if Pr

(
ω1|hT

)
< sA,

the agent reports m = hT and the DM chooses a0 and, otherwise, the agent reports m = ∅ and the
DM chooses a1. Therefore, by Proposition 2, the agent’s testing strategy is unique and as described
in Part 2 of Proposition 2.

Finally, no other equilibrium payoff would arise if the DM chose a1 following m = ∅ with some
probability p ∈ (0, 1). Suppose the DM chose a1 following m = ∅ with some probability p ∈ (0, 1).
Then the agent choosesm = ∅ if and only if no signal arrived by time T and sA ≤ Pr

(
ω1|hT

)
< sDM .

If q0 ≥ sDM , the agent keeps testing at time t if and only if no signal has arrived by time t for t < t∗

by Proposition 1. If q0 ≥ sDM and the agent optimally stops at time t∗, the equilibrium payoff is
as in Part 1 of Proposition 2. If q0 ≥ sDM and the agent does not stop at time t∗ or if q0 < sDM ,
the DM’s consistent beliefs given m = ∅ would lead her to choose a0 with probability 1 by the same
reasoning as in the proof of Part 1 of Proposition 2. With this we have exhausted all possibilities
for the DM’s action following m = ∅.

The agent can always guarantee himself at least the same payoff as under observable testing by
following the same testing strategy as under observable testing and then disclosing his findings. If
the DM is not sufficiently inclined to approve, i.e. sDM > sDM , or if the players both favor rejection
when no signal has arrived by the deadline, i.e. sA ≥ q, then this is also the highest payoff the
agent can achieve as shown by Proposition 2, implying that this is the unique equilibrium payoff.

Otherwise, i.e. if sA < q and sDM ≤ sDM , there are two possible profiles of equilibrium payoffs.
If the DM rejects following no disclosure in equilibrium, the agent achieves the same payoff as under
observable testing. If the DM accepts following no disclosure in equilibrium, the agent achieves his
first-best payoff as in Part 2 of Proposition 2. These are the only two possible equilibrium payoffs
because there cannot be an equilibrium in which the agent keeps testing if the belief is weakly
below the DM’s standard and the DM randomizes following no disclosure. This is because, if the
DM were to accept with a probability strictly between 0 and 1 following no disclosure, the agent
would withhold information only if no signal arrived by the deadline since sA < q but, in this event,
the DM would strictly prefer rejection since we assume q < sDM .22

22Proposition 3 would still apply if the agent chose at time t = 0 until which time t = k he would test for k ∈ [0, T ].
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5 Welfare Comparison

This section will compare players’ payoffs across hidden and observable testing and show under
which conditions both players are strictly better off under hidden testing. As the previous section
has shown, under hidden testing, the agent is never strictly worse off than under observable testing.
However, it is unclear how the DM’s payoff compares across regimes. Under observable testing, the
DM can react optimally to the information generated by the agent’s testing, but the agent may
not exhaust all testing opportunities even if no signal has arrived. Under hidden testing, the agent
exhausts all such testing opportunities but may strategically withhold findings which can hinder
the DM from reacting optimally to the information gathered. Therefore, the DM faces a trade-off
between hidden and observable testing.

Proposition 4. In an agent-preferred equilibrium under hidden testing,

1. if sA ≥ q or sDM > sDM , each player has the same payoff as under observable testing,

2. if sA < sA < q or q0 < sDM ≤ sDM , the agent has a strictly higher payoff and the DM a
strictly lower payoff than under observable testing,

3. if sA ≤ sA and sDM ≤ q0, each player has a strictly higher payoff than under observable
testing.23

Proof. Part 1) This is implied by Part 1 of Proposition 2.
Part 2 and 3), i.e. sA < q and sDM ≤ sDM . The agent must be strictly better off in the

agent-preferred equilibrium under hidden testing than under observable testing. This is because, by
Proposition 3, the agent’s payoff under hidden testing is either equal to the payoff under observable
testing or equal to the payoff in the equilibrium in Part 2 of Proposition 2. The equilibrium in Part
2 of Proposition 2 is agent-preferred by Proposition 2. Hence, the agent is strictly better off in the
agent-preferred equilibrium under hidden testing than under observable testing.

By Propositions 1 and 2, the DM’s payoff under hidden testing is the same as under observable
testing if a signal arrives in the interval [0, t∗]. Suppose no signal has arrived by t∗.

Since sDM ≤ sDM , under hidden testing, the DM chooses a0 if and only if θ = ω0 arrives over
time horizon (t∗, T ]. Therefore, the DM’s payoff under hidden testing is

sDM + (1− sDM ) (1− exp (−λω0 (T − t∗))) sDM
1− sDM

. (18)

If sA < sA or q0 < sDM , then, under observable testing, the agent keeps testing at time t if and
only if no signal has arrived by time t for t∗ ≤ t < T , and the DM chooses a1 if and only if θ = ω1

arrives over time horizon (t∗, T ]. Therefore, the DM’s payoff under observable testing is

sDM (1− exp (−λω1 (T − t∗))) + (1− sDM )
sDM

1− sDM
. (19)

23Note that sA < q and q0 < sDM so that three parts of Proposition 4 exhaust all possibilities.
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Figure 2: Payoff comparison between the agent-preferred equilibrium under hidden testing and the
equilibrium under observable testing for combinations of sDM and sA with sA ≤ sDM and q < sDM .

Hence, the DM’s payoff is strictly higher under observable than hidden testing since

(18) < (19)⇔ λω0 < λω1 . (20)

Otherwise, i.e. if sA ≤ sA and sDM ≤ q0, under observable testing, the agent stops at t = t∗

when no signal has arrived. Then qt∗ = sDM and the DM chooses a1. Therefore, the DM’s payoff
is strictly higher under hidden than observable testing since

sDM + (1− sDM ) (1− exp (−λω0 (T − t∗))) sDM
1− sDM

> sDM . (21)

The interesting payoff comparison is for the region in which the agent can strictly benefit from
withholding information under hidden testing, that is, when the DM is sufficiently inclined to
accept, i.e. sDM ≤ sDM , and players disagree on the optimal action when no signal has arrived by
the deadline, i.e. sA < q.24 See also Figure 2.

Then if the conflict between the two players is sufficiently small, i.e. sA < sA, or the DM
is initially inclined to reject, i.e. q0 < sDM , the agent keeps testing when no signal has arrived
under either regime.25 Therefore, under observable testing, the DM has access to all obtainable
information and can react optimally. Hidden testing is then worse for the DM since the agent’s
strategic manipulation leads her to approve in situations in which, knowing the full evidence, she
would have rejected.

Corollary 1. The agent-preferred equilibrium under hidden testing yields a strict Pareto improve-
ment over observable testing if and and only if sA ≤ sA and sDM ≤ q0.

24Recall that we assume throughout that q < sDM .
25Recall that, for the knife-edge case sA = sA, we assume that the agent stops at time t∗ under observable testing

if he is indifferent between testing and stopping. If we instead assumed that the agent keeps testing at time t∗ if
indifferent, the case sA = sA would be included in Part 2 instead of Part 3 of Proposition 4.
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However, if the conflict between players is instead large, i.e. sA ≤ sA, and the DM favors
approval at the prior, i.e. sDM ≤ q0, both can be strictly better off under hidden testing. Under
observable testing, the agent stops testing before the deadline even when no signal has arrived.
Indeed, in this situation, neither the DM nor the agent learns about whether a signal θ = ω0 would
have arrived in the time remaining until the deadline. This is a mutual loss since both players would
have preferred rejection in this event. By contrast, in an agent-preferred equilibrium under hidden
testing, the agent will learn about whether a signal θ = ω0 arrives in the time remaining and he
will disclose it truthfully. If no such signal arrives, the DM approves, just as she would have done
under observable testing. Therefore, both players benefit from hidden testing.26

Proposition 4 has focused on the agent-preferred equilibrium under hidden testing. When con-
sidering the full range of equilibrium payoffs under hidden testing, the payoff comparisons of Propo-
sition 4 hold in the weak sense.27 This implies that hidden testing offers a Pareto improvement in
a weak sense if and only if sA ≤ sA and sDM ≤ q0, that is, no player is strictly worse off in any
equilibrium under hidden testing than in the unique equilibrium under observable testing and there
exists at least one equilibrium under hidden testing in which each player is strictly better off than
under observable testing.28

6 Robustness and Extensions

The previous section has shown that both players can be better off under hidden than observable
testing. This section will show what would happen if the DM could choose some intermediate
regime in which the agent’s findings become public with some probability. Moreover, this section
will show that a strict Pareto improvement also exists if the agent can only disclose signals (but not
the absence of signals) or if the testing technology produces incremental evidence in favor of either
state. Proofs for this section can be found in the supplementary appendix.

6.1 Intermediate regime

The DM never observes the agent’s findings directly when testing is hidden, while the DM is
guaranteed to observe the agent’s findings when testing is observable. Could the DM benefit from
a regime with an intermediate degree of transparency? Suppose the agent acquires evidence in
private but, at time T , before the agent decides whether to disclose his findings, the DM observes
the history hT with probability p ∈ [0, 1], independent of the agent’s findings. If the DM does not
observe the history, the agent chooses whether or not to disclose it.29 For this exercise, we assume

26If the agent had state-independent preferences, i.e. sA ≤ 0, then the equilibrium payoff profile under hidden
testing would be unique and equal to the payoff profile under observable testing. The reason is that, if sDM ≤ q0,
the agent would not test at all under either regime as the DM chooses a1 without any tests. Moreover, if sDM > q0,
there is no equilibrium under hidden testing in which the DM chooses a1 following m = ∅ because, if the DM were
to choose a1 following m = ∅, the agent would not test and send m = ∅. Hence, the agent faces the same trade-offs
regarding testing under either regime.

27i.e. replace “strictly” with “weakly”.
28This follows from Part 2 of Proposition 3.
29Hence, p = 0 corresponds to hidden testing and p = 1 to observable testing.
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that the agent keeps testing if he is indifferent between testing and stopping.

Proposition 5. If sA < sA and sDM ≤ q0, the probability p∗ of observing hT that maximizes the
DM’s payoff in the Pareto-best equilibrium is given by

p∗ =
1− exp (−λω0 (T − t∗ (sDM , q0)))

exp (−λω1 (T − t∗ (sDM , q0)))
(

sDM
1−sDM

)(
1−sA
sA

)
− exp (−λω0 (T − t∗ (sDM , q0)))

(22)

where t∗ (sDM , q0) is defined by (4) and p∗ ∈ (0, 1). Given p = p∗, the agent’s payoff is equal to his
payoff under observable testing.

When a Pareto improvement from hidden testing exists, the agent acquires more information
under hidden testing because he can ensure that this additional information influences the DM’s
approval choice in line with his interests. However, to have an incentive to acquire more information,
the agent only needs to have this advantage with a probability just high enough to make him
indifferent between acquiring more information or not at time t∗. The larger is the conflict of
interest, the lower must be the probability p∗ with which the DM observes the evidence in order for
the agent to keep testing when no signal has arrived by time t∗.30

6.2 Disclosure

The Pareto improvement continues to exist if the agent could only disclose the arrival of a signal
but not the absence of arrival.31 To see this, note that, in the equilibrium described in Part 2
of Proposition 2, disclosure occurs if and only if a signal θ = ω0 arrives. The agent effectively
recommends an approval choice and the DM is willing to implement the recommended choice.
Therefore, the Pareto improvement would also exist if the agent could merely send a cheap talk
message or if the approval decision was delegated to the agent.32

6.3 Incremental evidence

We have assumed that signals fully reveal the state. Does a Pareto improvement also exist if the
testing technology generates only incremental evidence which can be either in favor of approval
or rejection?33 To show this, assume instead that testing generates a Brownian motion X with
state-dependent drift, that is, we assume X starts at X0 = 0 and evolves according to

dXt = µωdt+ dWt, (23)
30If sA ≥ sA or sDM > q0, the DM’s payoff is maximized by p∗ = 1 because the agent never stops testing under

observable testing when no signal has arrived and so the DM achieves her first-best payoff.
31Further, it is not crucial that the agent privately observes the time at which he stops testing. If it were publicly

observed, the agent could always test until the deadline and then follow the same disclosure strategy as outlined in
Part 2 of Proposition 2.

32If the agent were uncertain about sDM and believed Pr (sDM > sDM ) > 0, then he would prefer to disclose a
signal θ = ω1 and achieve approval for certain rather than not disclose and face a positive probability of rejection.
The agent would then face the same trade-offs as under observable testing. However, if the DM could send a cheap
talk message about whether or not sA ≤ sA and sDM ≤ q0, Corollary 1 would still apply.

33In the original model, testing generates either conclusive evidence when a signal arrives or incremental evidence
in favor of rejection when no signal arrives.
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where W is a standard Wiener process independent of ω and µ0 = −1 < 0 < 1 = µ1.
Then, under observable testing, the (common) posterior belief at time t, qt = Pr

(
ω1|ht

)
, de-

pends only on Xt. It is useful to track posterior beliefs using the posterior log-likelihood ratio Qt,
where Qt satisfies

Qt = log

(
qt

1− qt

)
= log

(
q0

1− q0

)
+ log

φ
(
Xt−t√

t

)
φ
(
Xt+t√

t

)
 = Q0 + 2Xt, (24)

and φ is the density of a standard normal distribution. When testing is hidden, disclosing hT is
equivalent to disclosing the endpoint of the path XT as the endpoint contains all payoff-relevant
information the agent has. We impose no restrictions on sA, sDM , q0 and T other than sA ≤ sDM .
All remaining assumptions stay unchanged from Section 2.

Proposition 6. Suppose testing generates a Brownian motion X. There exists a critical level of the
agent’s standard ŝA (sDM , T ) and a critical level of the DM’s standard ŝDM (q0, T, sA) such that the
agent-preferred equilibrium under hidden testing yields a strict Pareto improvement over observable
testing if sA ≤ ŝA and sDM ≤ ŝDM , where ŝA ∈ (0, sDM ) is defined by

log

(
ŝA

1− ŝA

)
= log

(
sDM

1− sDM

)
+ log

1−
√
T

φ
(√

T
)

+
√
TΦ

(√
T
)
 , (25)

and ŝDM ∈ (q0, 1) is defined by

log

(
ŝDM

1− ŝDM

)
= Q0 + log


1− Φ

(
1
2

(
log

(
sA

1−sA

)
−Q0

)
−T

√
T

)

1− Φ

(
1
2

(
log

(
sA

1−sA

)
−Q0

)
+T

√
T

)
 , (26)

where φ is the density and Φ the CDF of a standard Normal distribution. Moreover, for any q0 and
T , the region in which sA ≤ ŝA and sDM ≤ ŝDM is non-empty.

When testing is hidden, the agent-preferred equilibrium has a similar structure to the one in the
original model: the agent discloses if he prefers rejection and does not disclose if he prefers approval.
Conditional on the inference that the agent tested until the deadline and prefers approval, the DM
is willing to approve.34 Hence, the agent achieves his first-best payoff by strategically withholding
information. Unlike in the original model, the critical level ŝDM of the DM’s standard is a function
of the agent’s standard. This is because the agent’s belief at the deadline can take any value in

34Note that, even if players’ payoffs were subject to some discounting, there would exist an equilibrium under
hidden testing in which m = ∅ is followed by approval. At any time, the agent would face a trade-off between the
action being taken sooner and being based on better information. Hence, if the agent continued until the deadline
and reports m = ∅, the DM would infer that the agent did not find highly convincing evidence in favor of approval
or rejection earlier yet favors approval at the deadline. Based on this inference, the DM would approve if sDM is
sufficiently low.
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Figure 3: The graph shows the critical time t̂ for any given sA holding sDM fixed, i.e. for all t < t̂,
the agent keeps testing at time t and, for all t ≥ t̂, the agent continues testing at time t if and only
if qt < sDM .

(0, 1) and, therefore, the fact that the agent prefers approval is weaker evidence in favor of state ω1

if the agent is more inclined to approve.35

When testing is observable, the agent faces a trade-off between testing and stopping when the
belief is equal to the DM’s standard for the same reasons as in the original model. However, unlike
in the original model, this event can arise with positive probability at any point in time. If the
event qt = sDM arises shortly before the deadline, the agent’s testing within the remaining time is
relatively unlikely to move the belief below the agent’s standard but relatively likely to move the
belief above the agent’s but below the DM’s standard. Therefore, the downside of testing outweighs
the upside. By contrast, earlier on in the game, when there is more time remaining until the
deadline, the belief is more likely to drift towards the correct state and, therefore, it is less likely
that testing leads players to disagree on the optimal approval choice. We show that there exists
some critical time t̂ such that the agent prefers to keep testing in the event qt ≥ sDM if and only if
t < t̂. This critical time t̂ decreases as the conflict between players increases, that is, as the agent’s
standard drops. See also Figure 3.

Since the agent’s strategy under observable testing is much more complex than in the original
model, it is harder to compute distributions over final beliefs and, hence, equilibrium payoffs. How-
ever, to show that a Pareto improvement exists, it is sufficient to analyze a situation in which the
agent’s standard is low enough such that he would stop in the event qt = sDM under observable
testing irrespective of when it occurs. If q0 ≥ sDM , this implies that the belief never drops below
the DM’s standard and the DM approves with probability 1. Then hidden testing yields a Pareto
improvement for the same reason as in the original model: both players benefit from hidden testing
because the agent tests more under hidden testing and, if the additional tests lead to rejection being
chosen, then both players prefer rejection.

35Since a history for which the players disagree always arises with positive probability, such an agent-preferred
equilibrium exists for any sA.
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Unlike in the original model, there are parameter combinations for which a strict Pareto im-
provement exists even if the DM is initially inclined to reject, i.e. q0 < sDM . The reason is that,
when testing is observable, the agent stops testing if the belief rises to the DM’s standard. Recall
that this could never happen in the original model as the belief could jump up but not drift up. In
the event that the agent stops at qt = sDM for t < T , hidden testing yields a mutual advantage as
described above. However, with incremental evidence, hidden testing now also yields a disadvantage
for the DM in the event that the belief never reaches the DM’s standard over the time horizon [0, T ]

and lies above the agent’s standard at time T . In this event, the DM prefers rejection but only
rejects if testing is observable. As the proof shows, if the DM is willing to implement the agent’s
recommended choice under hidden testing, i.e. if sDM ≤ ŝDM , then the benefit of hidden testing
must outweigh the cost for the DM.

7 Related literature

Our work builds on the extensive literature on strategic information acquisition in sender-receiver
games. Existing work has shown that, when incentives are misaligned, the DM values commitment
to take ex-post suboptimal actions to improve information acquisition e.g. Szalay [2005], and, for
this reason, limiting transparency can be beneficial, e.g. Prat [2005]. In our paper, hidden testing
has features of a limited liability insurance issued by the DM to the agent, but the fact that the DM
benefits from hidden testing is in contrast with findings on limited liability insurance by Mackowiak
and Wiederholt [2012].

In a cheap talk context, Argenziano et al. [2016] study how different transparency regimes
and allocations of decision rights affect costly information acquisition. Deimen and Szalay [2019]
compare delegation and communication when the agent can acquire different types of information
and the degree of conflict arises endogenously.

Our focus is the verifiable disclosure of information. Unlike in optimal persuasion, e.g. Kamenica
and Gentzkow [2011], the agent in our setting faces a given testing technology and only has the
flexibility to continue or to stop acquiring information. Brocas and Carrillo [2007] also study how
an agent exerts influence via controlling the flow of information, but they assume the agent has
state-independent preferences and find that payoffs are equal across hidden and observable testing.
Other related work also assumes the agent’s preferences are state-independent. Henry and Ottaviani
[2019] and McClellan [2020] compare payoffs under different forms of commitment when an agent
controls a flow of public information, testing is costly and players’ payoffs are discounted. Che
et al. [2021] study persuasion when an agent chooses the directionality of public Poisson signals to
influence a DM over time.36 Assuming testing is hidden and costly, Felgenhauer and Schulte [2014]
study persuasion when the agent can selectively disclose individual signals.

That incentives to acquire costly information can be higher under voluntary rather than manda-
tory disclosure is shown by e.g. Matthews and Postlewaite [1985], Farrell [1985] and Shavell [1994].

36Nikandrova and Pancs [2018], Che and Mierendorff [2019] and Mayskaya [2019] also use a Poisson testing tech-
nology, but focus on optimal stopping by a single player.
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However, in our paper, the reason the agent acquires more information is not to avoid the skeptical
inference that he is hiding unfavorable outcomes.

Polinsky and Shavell [2012] also show that social welfare can be higher under voluntary rather
than mandatory disclosure in a model with transfers. They study a firm that can acquire costly
information about product harm to increase the gains from trade with consumers. The firm benefits
from additional information under both mandatory and voluntary disclosure but is willing to pay
a higher cost for information acquisition if disclosure is voluntary. By contrast, in our paper, the
agent acquires less information under observable than under hidden testing even though information
is costless. In addition, our paper shows that that social welfare can increase in the sense of a strict
Pareto improvement in a sender-receiver game with no transfers.

Previous work on sender-receiver games with no transfers produced different welfare results, in
particular, that hidden testing always benefits the DM but harms the agent. In particular, Henry
[2009] studies an agent whose ideal action choice differs from the DM’s ideal action by a constant
amount independent of the state. The agent commits to a quantity of costly research ex ante. If
his choice is hidden, the agent conducts more research to have a larger pool of signals to select from
but interestingly, this leaves the DM better informed since he can infer all signals due to unraveling
in the vein of Milgrom [1981] and Grossman [1981].

Moreover, Felgenhauer and Loerke [2017] study an agent who desires approval independent of the
state. The agent tests sequentially and can decide how informative each test will be. Surprisingly,
they find that the agent runs only a single test in any Pareto-undominated equilibrium, whether
testing is observable or hidden. However, if testing is hidden the agent runs a more informative test,
because this makes it credible that he will not run further tests even if the outcome is unfavorable.37

In these papers, when disclosure is voluntary, the agent would benefit from the power to commit
to disclosing all his findings as this would allow him to restore the outcome under observable testing.
In our paper, the agent has the option to credibly disclose all his findings, yet a situation can arise in
which the DM strictly benefits from hidden testing due to players having partially aligned interests.

In the context of medical trials, Dahm et al. [2009] find that a compulsory trial registry combined
with a voluntary results database implements full transparency, but deters investment in research
relative to a voluntary results database alone.38 Further, Dahm et al. [2018] show that stricter moni-
toring of firms’ reporting discourages information acquisition. They find that imperfect enforcement
of mandatory disclosure may be optimal, e.g. if, at some intermediate level of monitoring, firms run
trials but only some disclose negative findings, then, with stricter monitoring, some of these firms
may stop running trials at all. We find that intermediate transparency is optimal for the DM even
if tailored to a single agent. If the agent does not become sufficiently informed when transparency
is high, the DM should grant the agent just enough discretion to make the agent indifferent between

37Libgober [2020] shows that a receiver may be better off if the sender cannot verifiably disclose certain dimensions
of an experiment because it may lead the sender to choose a different experiment that is more desirable along observed
dimensions.

38Yoder [2020] studies incentives for research when tests are pre-registered and rewards can be conditioned on
either the distribution of test outcomes or the outcome realization. Gall and Maniadis [2019] analyze a tournament
between researchers with and without certain possibilities of inflating outcomes at a cost and find that preventing
researchers from selective reporting also discourages more severe questionable research practices such as fabrication.

19



supplying more information or not.
Despite the agent facing different incentives for information acquisition and disclosure, our results

share with Che and Kartik [2009] that the DM may be better informed when the agent is more
biased.39 Studying delegation to exogenously informed agents, Li and Suen [2004] find that more
biased agents are delegated to more often. Moreover, Di Tillio et al. [2017] show that various
welfare effects including a Pareto improvement can arise from manipulation of an RCT when the
agent is privately informed ex ante.40 Di Tillio et al. [2021] study more generally for which evidence
distributions a selected sample is more informative than a random sample. Their work shares with
this paper the feature that the agent’s selective disclosure is informative for the DM but, in our
paper, this is due to partially aligned interests rather than distributional properties.

8 Conclusion

This paper studies a DM facing an approval choice under uncertainty. An agent can acquire in-
formation through sequential testing, but the agent’s ideal approval standard lies below the DM’s.
How is welfare affected when testing is hidden and the agent chooses whether or not to disclose
his findings compared to when testing is observable? Our key contribution is to identify conditions
under which hidden testing yields a strict Pareto improvement over observable testing. Under these
conditions, when testing is observable, the agent does not exhaust all tests to become informed
even though he bears no direct costs for conducting these tests. The reason for stopping is that
additional information could lead the DM to change her action choice against the agent’s interest.
When testing is hidden, the agent can exploit the fact that their interests are partially aligned and
strategically withhold evidence such that the DM acts in the agent’s interest. However, due to this
additional discretion under hidden testing, the agent has a reason to become better informed and,
therefore, not only the DM but also the agent benefit from hidden testing.

While the current paper analyzes the interaction between an DM and an agent, there are other
interesting consequences of transparency when several decision makers use the evidence as a basis
for their choices or several agents supplying evidence. In particular, interesting externalities between
agents arise, e.g. if an agent with a higher standard than the DM is added to the game. Then the
agent with the higher standard would continue to supply evidence if the belief has dropped to the
DM’s standard, encouraging the agent with the lower standard to keep testing as well. These and
related questions can be explored in future research.

39See also Gerardi and Yariv [2008] and Dur and Swank [2005].
40Janssen [2018] studies a perfectly informed agent who tests sequentially to seek approval from the DM and finds

that the DM can never strictly benefit from hidden testing.
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A Supplementary Appendix

A.1 Proof of Proposition 5

Among all equilibria under hidden testing (p = 0), the agent-preferred equilibrium in Part 2 of
Proposition 2 achieves the Pareto-best payoff profile by Propositions 3 and 4. Fixing the strategy
profile to be as in Part 2 of Proposition 2, the DM’s payoff strictly increases in p:

∂

∂p

[
(1− q0)

sDM
1− sDM

[(1− exp (−λω0 (T ))) + p exp (−λω0 (T ))]

+q0 [(1− exp (−λω1 (T ))) + (1− p) exp (−λω1 (T ))]] > 0

⇔ (1− q0)
sDM

1− sDM
exp (−λω0 (T ))− q0 exp (−λω1 (T )) > 0

⇔ sDM
1− sDM

>
q0 exp (−λω1 (T ))

(1− q0) exp (−λω0 (T ))
⇔ sDM > q.

We next show that the strategy profile in Part 2 of Proposition 2 is an equilibrium if and only
if p ≤ p∗. Fixing the agent’s testing strategy and the DM’s strategy, the agent’s disclosure strategy
is optimal independent of p, since the agent’s disclosure matters only in the continuation game that
follows when the DM does not observe hT and exogenous disclosure is independent of the agent’s
findings. Further, given the agent’s strategy, the DM’s strategy is optimal independent of p.41

However, the agent’s testing strategy is not necessarily optimal if p > 0. In particular, if p > 0, the
agent faces a trade-off between testing and stopping if and only if t = t∗ by the same argument as in
the proof of Proposition 1. To find the highest level of p such that the agent test at t = t∗, suppose
no signal has arrived by time t∗, i.e. qt∗ = sDM . If the agent stops at time t∗, the DM chooses a1.
If not, the agent could disclose hT and the DM would choose a1. Hence, the agent’s continuation
value from stopping at t∗ is Vt∗ (sDM , t

∗) = sDM . If the agent keeps testing at time t∗, the agent
will keep testing at all t > t∗ if no signal arrived by time t, since he does so even if p = 1 by the
proof of Proposition 1. Hence, the agent’s continuation value from testing at t∗ is

Vt∗ (sDM , T ) = (1− p)
[
(1− sDM ) (1− exp (−λω0 (T − t∗))) sA

1− sA
+ sDM

]
+ p

[
(1− sDM )

sA
1− sA

+ sDM (1− exp (−λω1 (T − t∗)))
]
.

Therefore, the agent is indifferent between testing or not at time t∗ if and only if

Vt∗ (sDM , t
∗) = Vt∗ (sDM , T )

⇔ p∗ =
1− exp (−λω0 (T − t∗ (sDM , q0)))

exp (−λω1 (T − t∗ (sDM , q0)))
(

sDM
1−sDM

)(
1−sA
sA

)
− exp (−λω0 (T − t∗ (sDM , q0)))

.

If p > p∗, the agent stops testing at time t∗ when no signal has arrived. Proposition 4 shows
that the DM’s payoff is strictly higher if the agent tests at time t∗ and p = 0 than if the agent stops

41I.e. the DM reacts in the same way to disclosure of hT by the agent or by chance.
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at time t∗ even when p = 1. Therefore, the DM’s payoff is maximized at p = p∗.
If sA = sA, then p∗ = 1, p∗ decreases as sA decreases and limsA→0 p

∗ = 0 for any sDM , T, q0.
Hence, p∗ ∈ (0, 1).

A.2 Proof of Proposition 6

We derive Lemma A.1 on observable testing in subsection A.2.1 and Lemma A.2 on hidden testing
in subsection A.2.2. Based on these, we prove Proposition 6 in subsection A.2.3.

A.2.1 Observable Testing

Lemma A.1. Under observable testing, an equilibrium exists and is unique. The equilibrium strate-
gies are as follows. The DM chooses a1 if and only if sDM ≤ qT . There exists some critical time
t̂ (sA, sDM ) such that

1. for any t < t̂, the agent keeps testing at time t,

2. for t ≥ t̂, the agent keeps testing at time t if and only if qt < sDM .

The critical time t̂ is defined by t̂ = max {0, T −R} where R ∈ [0,∞) satisfies

log

1−
√
R

φ
(√

R
)

+
√
RΦ

(√
R
)
 = log

(
sA

1− sA

)
− log

(
sDM

1− sDM

)
, (27)

and φ is the density and Φ the CDF of a standard Normal distribution. The LHS of (27) strictly
decreases in R.

Proof. The DM’s strategy is optimal by the same arguments as in the proof of Proposition 1. We
show that the agent’s strategy is a best reply. First, the agent tests at time t if qt < sDM by the
same argument as in the proof of Proposition 1. Next, consider time t with qt > sDM and suppose
the agent tests until the first time τ that q = sDM . Therefore, qT ≥ sDM and Vt (qt, τ) = Vt (qt, t),
i.e. the agent cannot be strictly worse off by testing until time τ.

Finally, consider time t with qt = sDM . We start by showing that, for a given sA, there
exists a critical level of the time remaining R (sDM , sA) ∈ [0,∞) such that the agent stops if
and only if T − t ≤ R (sDM , sA). First, note that the continuation value of stopping at time
t, Vt (sDM , t), is independent of the time remaining. Second, the continuation value from using
the optimal stopping time, denoted by Vt (sDM , τ

∗), must satisfy Vt (sDM , τ
∗) ≥ Vt (sDM , t) by

optimality. Third, Vt (sDM , τ
∗) cannot strictly decrease as the time remaining increases because the

agent’s set of possible stopping times increases.42 The above implies that, if there exists t such that
Vt (sDM , τ

∗) = Vt (sDM , t), then for any t′ > t, Vt′ (sDM , τ∗) = Vt′ (sDM , t). To show that there

42To see why, suppose qt = sDM and suppose the deadline T increases to T ′ > T . If the deadline is at time T
and the agent optimally stops at some time τ ≤ T , then he can achieve the same payoff by stopping at time τ when
the deadline is T ′ > T . However, if the deadline is at T ′, the agent also has the option to continue testing at T and,
therefore, his payoff must be weakly higher.
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exists t such that Vt (sDM , τ
∗) = Vt (sDM , t), compare the continuation value of stopping at t with

the continuation value of testing until the deadline T :

Vt (sDM , t) ≥ Vt (sDM , T )⇔ sDM
1− sDM

Pr (qT < sDM | qt = sDM , τ = T, ω1)

Pr (qT < sDM | qt = sDM , τ = T, ω0)
≥ sA

1− sA

⇔
Φ
(
−
√
T − t

)
Φ
(√
T − t

) ≥ sA
1− sA

1− sDM
sDM

. (28)

As t→ T , the LHS of (28) tends to 1 and the inequality is satisfied for any sA ≤ sDM , i.e. stopping
yields a strictly higher continuation value sufficiently close to the deadline T .

The next step is to show that the critical level of the time remaining R satisfies (27). First, let
R′ ∈ (0, T ) be an amount of time remaining such that Vt (sDM , T −R′) ≥ Vt (sDM , T ), implying
that the agent stops at q = sDM if T − t ≤ R′. Second, fix some ε ∈ (0, R′). Consider t with
T − t ≥ R′ and qt = sDM . Consider the following stopping rule τε: the agent tests at any time in
[t, t+ ε) and then the agent stops at the first time that q ≥ sDM . Take T to be sufficiently large.
Then by the previous argument, as T − t increases above R′, there exists a critical level of the time
remaining Rε at which the agent is indifferent between stopping at T − Rε and following stopping
rule τε,43 i.e.

VT−Rε (sDM , τε) = VT−Rε (sDM , T −Rε)

⇔
Pr

(
max

k∈[T−Rε+ε,T ]
qk < sDM | qT−Rε = sDM , ω1

)
Pr

(
max

k∈[T−Rε+ε,T ]
qk < sDM | qT−Rε = sDM , ω0

) =
sA

1− sA
1− sDM
sDM

, (29)

where

Pr

(
max

k∈[T−Rε+ε,T ]
qk < sDM | qT−Rε = sDM , ω

)
=∫ SDM

−∞
Pr

(
Σε =

1

2
(x− SDM ) | Σ0 = 0, ω

)
Pr

(
max

k∈[0,Rε−ε]
Σk <

1

2
(SDM − x) | Σ0 = 0, ω

)
dx,

(30)

and Σt ≡ 1
2Qt = µωdt+ dWt and SDM ≡ log

(
sDM

1−sDM

)
.

The next step is to show that, in the limit as ε→ 0, (29) is equivalent to (27). Define

mε (x;ω) ≡ Pr

(
max

k∈[0,Rε−ε]
Σk <

1

2
(SDM − x) | Σ0 = 0, ω

)
. (31)

43The final action choice is affected by following stopping time τε instead of stopping at time T − Rε if the
belief drops below the DM’s standard within [T −Rε, T −Rε + ε) and never exceeds the DM’s standard within
[T −Rε + ε, T ].
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The Taylor expansion of mε (x;ω) about x = SDM is given by

m′ε (SDM ;ω) (x− SDM ) + r1,ε (x;ω) . (32)

Substituting (32) into (30):

∫ SDM

−∞

1√
2πε

exp

−1

2

(
1
2 (x− SDM )− µωε√

ε

)2
[m′ε (SDM ;ω) (x− SDM ) + r1,ε (x;ω)

]
dx

= m′ε (SDM ;ω)

∫ SDM

−∞

1√
2πε

exp

−1

2

(
1
2 (x− SDM )− µωε√

ε

)2
 (x− SDM ) dx

+

∫ SDM

−∞

1√
2πε

exp

−1

2

(
1
2 (x− SDM )− µωε√

ε

)2
 r1,ε (x;ω) dx. (33)

Therefore, taking the limit of the LHS of (29) as ε→ 0 yields:

lim
ε→0

Pr

(
max

k∈[T−Rε+ε,T ]
qk < sDM | qT−Rε = sDM , ω1

)

Pr

(
max

k∈[T−Rε+ε,T ]
qk < sDM | qT−Rε = sDM , ω0

) = lim
ε→0

m′ε (SDM ;ω1) + nε (SDM ;ω1)

m′ε (SDM ;ω0) + nε (SDM ;ω0)
, (34)

where

nε (SDM ;ω) =

∫ SDM
−∞

1√
2πε

exp

(
−1

2

( 1
2

(x−SDM )−µωε√
ε

)2
)
r1,ε (x;ω) dx

∫ SDM
−∞

1√
2πε

exp

(
−1

2

( 1
2

(x−SDM )−µωε√
ε

)2
)

(x− SDM ) dx

. (35)

To calculate m′ε (SDM ;ω), we use the following standard result repeated here for convenience: the
CDF of maxt∈[0,T ] W̃t of a drifted Brownian motion W̃t = γt + Wt over t ∈ [0, T ] with W̃0 = 0 is
given by:

Pr

(
max
t∈[0,T ]

W̃t < a

)
= Φ

(
a− γT√

T

)
− exp (2γa) Φ

(
−a− γT√

T

)
(36)

for a ≥ 0. Hence,

mε (x;ω) =Φ

(
1
2 (SDM − x)− µω (Rε − ε)√

Rε − ε

)

− exp (µω (SDM − x)) Φ

(
−1

2 (SDM − x)− µω (Rε − ε)√
Rε − ε

)
, (37)

m′ε (SDM ;ω) =− 1√
Rε − ε

φ
(
−µω

√
Rε − ε

)
+ µωΦ

(
−µω

√
Rε − ε

)
. (38)
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Suppose limε→0 nε (SDM ;ω) = 0. Then (34) and (38) yield

lim
ε→0

Pr

(
max

k∈[T−Rε+ε,T ]
qk < sDM | qT−Rε = sDM , ω1

)
Pr

(
max

k∈[T−Rε+ε,T ]
qk < sDM | qT−Rε = sDM , ω0

) = 1−
√
R

φ
(√

R
)

+
√
RΦ

(√
R
) . (39)

Therefore, in the limit as ε → 0, (29) is equivalent to (27). Hence, the critical time t must satisfy
t̂ = max {0, T −R} where R is defined by (27). See also Figure 3.

The LHS of (27) strictly decreases in R:

∂

∂R

log

1−
√
R

φ
(√

R
)

+
√
RΦ

(√
R
)
 =

∂

∂R

[
1− 1

g (R)

]
=

1

1− 1
g(R)

[
g′ (R)

g (R)2

]
< 0, (40)

where

g (R) =
1√
R
φ
(√

R
)

+ Φ
(√

R
)
, (41)

g′ (R) =−
exp

(
−1

2R
)

2
√

2πR
3
2

< 0, (42)

and g (R) ≥ 1 for all R ≥ 0 as limR→∞ g (R) = 1.

The rest of the proof shows that limε→0 nε (SDM ;ω) = 0. The remainder term in (32):

r1,ε (x;ω) = m′′ε (SDM ;ω) (x− SDM ) + r2,ε (x;ω) , (43)

Rewrite (35) as

m′′ε (SDM ;ω)
∫ SDM
−∞

1√
2πε

exp

(
−1

2

( 1
2

(x−SDM )−µωε√
ε

)2
)

(x− SDM )2 dx

∫ SDM
−∞

1√
2πε

exp

(
−1

2

( 1
2

(x−SDM )−µωε√
ε

)2
)

(x− SDM ) dx

+

∫ SDM
−∞

1√
2πε

exp

(
−1

2

( 1
2

(x−SDM )−µωε√
ε

)2
)
r2,ε (x;ω) dx

∫ SDM
−∞

1√
2πε

exp

(
−1

2

( 1
2

(x−SDM )−µωε√
ε

)2
)

(x− SDM ) dx

. (44)

The first term of (44) can be written as

m′′ε (SDM ;ω)

∫ 0
−∞

1√
2πε

exp

{
−1

2

(
y−µωε√

ε

)2
}
y2dy

∫ 0
−∞

1√
2πε

exp

{
−1

2

(
y−µωε√

ε

)2
}
ydy

= m′′ε (SDM ;ω)
E
(
Y 2|Y < 0

)
E (Y |Y < 0)

, (45)
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where Y ∼ N (µωε,
√
ε). Then for Z ∼ N (0, 1),

E (Y |Y < 0) = E
(√
εZ + µωε|Z < −µω

√
ε
)

=
√
ε

[√
εµω −

φ (−µω
√
ε)

Φ (−µω
√
ε)

]
(46)

E
(
Y 2|Y < 0

)
= E

((√
εZ + µωε

)2 |Z < −µω
√
ε
)

= ε+ ε2 − µωε
√
ε
φ (−µω

√
ε)

Φ (−µω
√
ε)

(47)

Substituting (46) and (47) into (45) and taking limits yields

lim
ε→0

E
(
Y 2|Y < 0

)
E (Y |Y < 0)

m′′ε (SDM ;ω) = m′′ε (SDM ;ω) lim
ε→0

√
ε+
√
εε− µωε

φ(−µω
√
ε)

Φ(−µω
√
ε)[

√
εµω −

φ(−µω
√
ε)

Φ(−µω
√
ε)

] =
0

−
√

2
π

= 0.

The same reasoning can be applied reiteratively to the second term of (44).

A.2.2 Hidden testing

Lemma A.2. Suppose testing is hidden. There exists a critical level of the DM’s standard ŝDM (q0, T, sA),
where ŝDM ∈ (q0, 1) is defined by

log

(
ŝDM

1− ŝDM

)
= Q0 + log


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such that if sDM ≤ ŝDM , an equilibrium exists, and the following are features of an agent-preferred
equilibrium,

• the agent tests until t = T , and discloses hT if and only if he prefers a0 given hT ,

• the DM chooses a0 if and only if the agent discloses hT and the DM prefers a0 given hT .

Proof. Given that the agent sendsm = ∅ if and only if qT ≥ sA, the DM’s consistent beliefs following
m = ∅ satisfy

Pr (ω1|m = ∅)
Pr (ω0|m = ∅)

=
q0

1− q0

Pr (qT ≥ sA|q0, τ = T, ω1)

Pr (qT ≥ sA|q0, τ = T, ω0)
=

q0

1− q0

1− Φ

(
1
2

(
log

(
sA

1−sA

)
−Q0

)
−T

√
T

)

1− Φ

(
1
2

(
log

(
sA

1−sA

)
−Q0

)
+T

√
T

) , (49)

hence, Pr (ω1|m = ∅) = ŝDM by (48). Since sDM ≤ ŝDM , the DM optimally chooses a1 following
m = ∅. In addition, the agent has no reason to deviate from his strategy because he achieves his
first-best payoff. This also implies that the equilibrium is agent-preferred.
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A.2.3 Welfare comparison

We now prove Proposition 6. Define ŝA (sDM , T ) such that (27) is satisfied when sA = ŝA and
R = T .

Under hidden testing, the agent can guarantee himself at least the same payoff as under ob-
servable testing by following the same testing strategy as in Lemma A.1 and reporting m = hT for
any hT . Then the agent’s equilibrium payoff is strictly less than his first-best payoff as the agent
stops before time T with positive probability. In the agent-preferred equilibrium in Lemma A.2,
the agent obtains his first-best payoff. Hence, the agent must have a strictly higher payoff in the
agent-preferred equilibrium under hidden testing than in the equilibrium under observable testing.

We will distinguish between two cases to compare the DM’s payoff under hidden and observable
testing: i) sDM ≤ q0 and sA ≤ ŝA and ii) q0 < sDM ≤ ŝDM and sA ≤ ŝA.44

In both case i) and case ii), by Lemma A.2, in the agent-preferred equilibrium under hidden
testing, a1 is chosen with probability Pr (qT ≥ sA|q0, τ = T ), i.e. with the probability that qT ≥ sA
given the prior is q0 and the agent tests until time T .

Consider case i), i.e. sDM ≤ q0 and sA ≤ ŝA. By Lemma A.1, t̂ = 0 and, hence, under observable
testing a1 is chosen with probability 1. Then the DM has a strictly higher payoff under hidden than
observable testing since

(1− q0)
sDM

1− sDM
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>
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which holds since
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>
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Pr (ω0|qT < sA, q0, τ = T )
.

The set of sDM for which sDM ≤ q0 is non-empty. In addition, the set of sA for which sA ≤ ŝA is
non-empty since ŝA (sDM , T ) > 0 for any sDM and finite T by Lemma A.1. Hence, for any q0 and
T the region for which sDM ≤ q0 and sA ≤ ŝA is non-empty.

Next, consider case ii), i.e. sA ≤ ŝA and q0 < sDM ≤ ŝDM , or equivalently,
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By Lemma A.1, a1 is chosen with probability Pr
(
maxt∈[0,T ] qt ≥ sDM |q0, τ = T

)
. Then the DM has

44Note that q0 < ŝDM by Lemma A.2.
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a strictly higher payoff under hidden than observable testing if and only if

Pr (qT < sA|q0, τ = T, ω0) +
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The LHS of (51) can be written as
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where Si ≡ log
(

si
1−si

)
for i ∈ {A,DM}, and the RHS can be written as
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using (36). Substituting (52) and (53) into (51), we can see that (51) is implied by the second
inequality of (50).
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